SlideShare a Scribd company logo
1 of 15
Download to read offline
Project Paper
                       On
Security Requirements and Constraints Analysis
           For Voice Over IP System




                Raisul Haque Rajib
                    063 435 056
              North South University
MS in Electronics and Telecommunication Engineering
                     (MS-ETE)
                   Spring 2008




                 Course: ETE 605
       Course Teacher: Dr. Mashiur Rahman
1. Introduction
1.1 Background
Voice over IP (VoIP) is a technology by which voice can be transferred from circuit-
switched networks to or over IP networks, and vice versa. This is interesting since the
amount of voice, video and data traffic is rapidly increasing as more and more people get
online. This will result in increased need to expand capacity especially in the trunk
networks. So far the only way to add capacity in the trunk networks has been building a
new, additional trunk network separately with respect to each media: voice, video and
data. The concept of converged networks, i.e. all media can be transported via the very
same network gives an option to build one unified trunk network to take care of increased
capacity needs, therefore providing an elegant and low-cost solution.

However, even though at the moment cost savings can justify transition from traditional
telephony to VoIP telephony for multinational corporations, that is not the ultimate driver
which will foster the penetration of VoIP. Such a killer application(s) will be those value-
added services, which do not exist yet and can relatively easily be provided only via
VoIP. Integration of VoIP into existing Internet-based services like e-mail and web will
be an area to watch.

Numerous VoIP products and solutions are already available in the market. Products are
not yet very interoperable. Everyone seems to be interested in getting into this rather new
lucrative area of business – a number of product development projects are started to
create a new VoIP product and almost as many are cancelled. The world does not yet
know which of all the VoIP related, overlapping standards is going to win. Also the
quality of voice in VoIP due to non-guaranteed QoS, latency and some other
characteristics of IP networks cause troubles.

Security of VoIP is considered right from the beginning, and parallel with the
development in other areas of VoIP. Many security mechanisms are already defined in
the standards but they also have some flaws and many security problems remain
unsolved.

1.2 Objectives of the Paper

Objectives of the paper are to first introduce characteristics, in terms of security, of some
VoIP architectures already in use, then identify some components of which VoIP security
comprises, and finally analyze security constraints imposed by some, selected VoIP
architectures or protocols.
2. Security Characteristics of Some Existing VoIP Protocols
2.1 ITU-T’s H.323
Addressing in H.323 is based on transport address, which is composed of network
address and TSAP Identifier. In case of TCP/IP networks transport address equals to IP
address and TCP port. H.323 uses three different types of channels, which are Call
Connection Channel, Call Control Channel and Media Channels, depending on the type
of information to be transferred. Media Channels are usually directly routed between the
participants of a call but both Call Control Channel and Call Connection Channel can be
routed via gatekeeper or directly between the participants as chosen by the gatekeeper. A
gatekeeper may or may not be present in different areas of the Internet.

H.235 recommendation contains provisions for entities utilizing the H.235 to support a
key recovery technique but it is not specifically required for operation.

Call Connection Channel is secured a priori with TLS (TCP-port 1300). In the initial
connection setup, the Call Connection Channel is first opened in case there is no
gatekeeper present. If the gatekeeper is present, the first channel to be opened is RAS
channel with the gatekeeper. In RAS channel, some authentication mechanism should be
used but not much is said on encrypting the traffic between the terminal and the
gatekeeper. After connection establishment procedures the H.245 Call Control Channel is
opened with using secured mode if negotiated. Information on Media Channels including
encryption keys is passed via the H.245 Call Control Channel.




                        Figure 1: H.323 Network Architecture
Authentication

There are two types of authentication that may be utilized: 1) symmetric encryption-
based that requires no prior contact between the communicating entities and 2) an ability
to have some prior shared secret (in the H.235 recommendation referenced to as
“subscription” based). This second way to authenticate can either be symmetric or
asymmetric.

As symmetric encryption-based authentication, there is Diffie-Hellman key-exchange
available which is intended to be used to generate a shared secret between two entities. It
may also be used for the authentication of application- or protocol-specific request
messages, not users of terminals, by the responder.

Subscription-based authentication has three variations, which are:

     •   Password-based with symmetric encryption.

     •   Password-based with hashing (also symmetric).

     •   Certificate-based with signatures (asymmetric).

Other “authentication” mechanisms that can be specified as the authentication mechanism
to be used are “IPSEC based connection”, “TLS” and “something else”.

Encryption

Encryption can be done in RTP-layer (see figure 1) which is used to transport information
streams. Encryption can be utilities packet-by-packet basis, which means that it is up to
the specified policy how encryption capabilities are applied to each packet.
2.2 IETF’s SIP
SIP is a text-based protocol, similar to HTTP and SMTP, for initiating interactive
communication sessions between users. Such sessions include voice, video, chat,
interactive games, and virtual reality.




                           Figure 2: SIP Network Architecture

Authentication

All authentication mechanisms that SIP provides are challenge-response based. There
exist three alternatives, which are:

       •   Basic authentication;

       •   Digest authentication; and

       •   PGP authentication.

As client-server architecture, the communications is based on requests and responses. In
addition to requests, it is also possible within SIP to authenticate responses, but this
option is not widely used.
Encryption

Encryption capabilities of SIP itself are very limited. Only PGP-based encryption of
certain headers in a message is possible.

2.3 IETF’s and ITU-T’s MGCP/MEGACO/H.248

Approach of MGCP/MEGACO/H.248 to authentication and encryption is clear and
straightforward. According to RFC2885 as of August 2000, IPSEC “should” be used for
the authentication and encryption of protocol connections. IKE should also be used to
provide more robust keying options. Encryption keys for Media Gateways to encrypt
media connections are provided by Media Gateway Controllers via IPSEC-secured
protocol connections, i.e. media connections are not be encrypted via IPSEC.




                 Figure 3: MGCP/MEGACO Network Architecture

3. Security Requirements for VoIP
VoIP security requirements list is given below:

       • Dynamic per-call firewall control
       • Dynamic per-call bandwidth control
       • NAT traversal
       • Signalling protocol compatibility
       • Ability to handle encrypted VoIP Traffic
• WAN failover to back-up gateway for local survivability
       • Adjunct Systems Health Monitoring
       • Protecting the IP PBX and Adjunct Systems
       • Endpoint-to-endpoint media traffic
       • Preservation of location-specific IP addresses
       • Network Call Usage Reporting
       • VoIP Overlay Installation
       • CALEA support
       • Video, IM, Wireless, and other support
       • Solutions for a full range of VoIP style deployments
       • Redundancy options

3.1 VoIP Security Requirement Details

Dynamic per-call firewall control

The VoIP security solution should employ multiple dynamic layers of security to protect
the VoIP enabled network, including:

       • Dynamically opening and closing firewall “pinholes” on a per-call basis.
       • Subdividing the network in multiple security zones (for instance, separate zones
         for voice and data).
       • Allowing for per-user network authentication.

Dynamic per-call bandwidth control
In a recent InformationWeek VoIP survey of 300 business technology executives,
performance and quality of service was the number one concern in deploying VoIP. The
VoIP security solution should address this concern by its ability to:

       • Allocate bandwidth on a per-call basis.
       • Allocate bandwidth based on call classification.
       • Allocate bandwidth and route calls over multiple WAN links.
       • WAN link fail over with automatic call policy adjustment.
       • Immediate bandwidth allocation for emergency calls.

NAT Traversal
The use of NAT between Private and Public address spaces can cause call set-up
problems. The VoIP security solution should solve this issue by communicating this
information to the IP PBX on a per-call basis, in effect making the IP PBX NAT-aware.
Figure 4: IP Telephones Behind NAT and Firewall


Signaling protocol compatibility
The VoIP security solution should be able to be used in conjunction with any version of
SIP, H.323, MGCP, or other standard or proprietary signaling protocols. Thus it should
not be necessary to make changes to the VoIP security equipment as these protocols
evolve or new protocols are conceived.

Ability to handle encrypted VoIP Traffic
Since this ideal VoIP security solution does not depend upon the inspection of signaling
or media stream traffic, this traffic can be encrypted using any encryption mechanism.
All functionality of the VoIP security solution should still be available. It is increasingly
being acknowledged that the encryption of signaling traffic is quite important, since it
often contains sensitive customer-specific information including, for instance, credit card
numbers.

WAN failover to back-up gateway for local survivability
In a Hosted IP PBX environment, it may be common to minimize the amount of CPE
(Customer Premises Equipment). In such a scenario, the IP PBX is hosted in “the
network” and the only CPE may be IP Phones and a back-up gateway to enable calls to
the PSTN should that be necessary. The ideal VoIP solution should detect if the WAN
interface is down, and automatically re-route the VoIP traffic (signaling and media) to the
backup gateway (instead of to the networkhosted IP PBX).
Adjunct Systems Health Monitoring

A full VoIP security solution should also provide Heath Monitoring of IP PBX and
adjunct systems with automatic failure notification to both the IP PBX and network
and/or security management systems via SNMP. Adjunct systems that should be
monitored include:

       • Messaging (Voicemail, etc.)
       • IVR.
       • Media Servers.
       • Media Gateways and Analog Terminal Adapters.
       • Conferencing Servers.
       • IP Phones.
       • Switches and Routers.

Protecting the IP PBX and Adjunct Systems

Unlike with traditional PBXs, a Denial of Service attack on an IP PBX can effectively
isolate the IP PBX or in worst-case bring it down. A VoIP security solution must protect
the IP PBX server by:

       • “Zoned” firewall protection of the IP PBX and Adjunct Systems
       • Denial of Service Protection for the IP PBX and Adjunct Systems including:
                 Rate limiting of connection attempts allowing the IP/PBX and Adjunct
                 Systems to continue to service internal calls and gateways while under
                 attack.
                 DOS attack alarm and SNMP notification
       • The VoIP security solution should not require all media streams to pass through
         a centralized device in the network. In this way, the VoIP solution is less
         susceptible to

Denial of Service attacks. Latency-sensitive media stream traffic can easily be disrupted
by a DoS attack, making solutions requiring all traffic to pass through a single point in
the network unacceptable for reliable communications.

Endpoint-to-endpoint media traffic
In addition to superior Denial of Service protection, the ability to support direct endpoint-
to-endpoint media streams (as opposed to all media streams passing through a central
point in the network) provides greater network efficiency and bandwidth utilization. In
solutions where all media streams must pass through a central point, the media streams
for all calls within a single branch must still pass out of the branch, to the network-hosted
facility, and back to the branch! Thus for this type of call, twice the bandwidth in
consumed on the narrow WAN local loop as compared to the desired VoIP security
solution.
Preservation of location-specific IP addresses
Location-specific IP addresses should be preserved for Call Controller and Presence
features that require this information.

Network Call Usage Reporting
The VoIP security devices should employ a dedicated management CPU and
communication port to collect accounting statistics and distribute to external Accounting,
Billing, and Network Management Systems.

This accounting information can be used for:

       • Remote monitoring and maintenance services.
       • Network optimization and monitoring.
       • Per-customer billing.
       • Departmental charge back.
       • Traffic studies.

VoIP Overlay Installation
When installing an IP Phone network it is recommended to separate the voice and data
traffic into different LAN segments. Typically this is done by creating a separate VLAN
for both Voice and Data. The ideal VoIP security solution should not require the creation
of a new sub-net and reconfiguration of Host IP addresses.

CALEA support
The VoIP security solution should support CALEA by allowing any traffic stream to be
mirrored to a second destination.

Solutions for a full range of VoIP style deployments
The ideal VoIP security solution should be applicable for reliably and securely delivering
VoIP in a variety of deployment architectures including:

       • Centrex Model.
       • Enterprise.
       • Multi-Branch Offices.
       • Consumer long distance.
       • Multi-Tenant Buildings.
Video, IM, Wireless, and other support
The ideal VoIP security solution should be applicable for more than just VoIP. All
features described herein for Voice-over-IP, including dynamic per-call (per-session)
firewall and bandwidth control, NAT traversal, usage and health monitoring, encryption
compatibility, and signalling protocol independence, should also be applicable to:

       • Video-over-IP.
       • Instant Messaging.
       • 802.11 (Wi-Fi) traffic.
       • Message traffic between remotely located Unified Messaging, CRM (Customer
         Relationship Management), or other systems.
       • Other IP PBX functions.
       • Other services the Service Provider may wish to offer, such as video
         surveillance and physical security and fire monitoring .

Redundancy options
The VoIP security solution should support several types of redundancy including:

       • Link Redundancy.
       • Unit Redundancy.
       • WAN Redundancy with automatic policy adjustment.
       • Port Redundancy using Spanning Tree.
       • Fan Redundancy.
       • Power Supply Redundancy.
       • Feed Redundancy.

4. Security Constraints of VoIP
Security constraints are reasons why predefined security requirements cannot be reached
at all, or in special conditions, in VoIP communications. Security constraints can result
from inadequate design of VoIP protocols or incomplete implementations of these. And
the underlying architecture of the Internet itself gives also some limitations, naturally.
There are many network infrastructure elements, like firewalls and e.g. IPSEC security
gateways using NAT, which are used to add security to the networks where they are used.
The functioning of these devices and the restrictions they pose should be taken into
account in the design of VoIP protocols, and may be vice versa also, i.e. there still may
be some tasks which just need to be done in a certain way requiring few changes to
existing network elements already in place.

At this point, it would be convenient to notice that security can be implemented and
therefore exist at many levels. Three different levels can be identified: link-level
security, secured packets and chosen fields in a packet. And in each of these levels, the
choice can be all information or part of the information depending on the sensitivity of
the information transferred.

When security is implemented in the link-level, the security is transparent for users and
applications since either of them have zero knowledge on what happens to packets when
they pass the IP-layer and enter to link layer. All information that goes through certain
link is secured.

Not every packet contains information having high sensitivity and therefore also high
priority to be secured. If the security is implemented at the packet level, the security is
not anymore as transparent, for instance to network infrastructure devices, as it is at the
link level.

Sometimes only certain fields of packets are secured. This, of course, gives the weakest
level of protection when compared to two previously mentioned methods. However, if
fields chosen include all the fields containing sensitive information, this method may turn
out to be adequate and secure enough.

4.1 Delay Sensitivity of VoIP
“Perhaps the most vexing problem in voice-over-IP, in general, has been the issue of
quality of service. The delay in conversation that many VoIP users encounter is caused
by the jitter and latency of packet delivery within the Internet itself [11].” Quality of
service, latency and jitter are definitely problems for VoIP. Does these have any effect on
the security point of view? Yes, indeed they have.

Prerequisite for fully secured end-to-end connection is that the whole path, i.e. all devices
and links between them, is protected against man-in-the-middle attacks [6]. One
consequence of this is that all devices must perform mutual authentication. Public key
cryptography based authentication is the one and only means of authentication that scales
up to arbitrarily large networks by making it possible to securely distribute keys
relatively easily through unsecured networks.

On the other hand public-key based methods set two major constraints. First, currently
there is not required public-key infrastructure that would span major parts of the globe, in
place. Secondly, public-key based authentication procedures require and use vast amount
of computational power. If authentication is performed at the link-level by two endpoints
of a link every now and then, this should not be a problem. Public-key cryptography
would also give convenient tools for the encryption of messages. If the encryption takes
place between two endpoints, this should not be a problem because end devices can be
equipped with required computational power, e.g. crypto chips. But if encrypted packets
need to be encrypted at any intermediary device (e.g. router), this can easily become a
bottleneck and introduce additional delay, to delay sensitive delivery of VoIP packets.
4.2 Specified Message Format
SIP, H.323 and other VoIP protocols are used to initiate sessions, e.g. audio sessions. The
information that is needed for creating media channel between two entities is
encapsulated in the body of VoIP message. This information includes IP addresses. While
NAT is used internal addresses would require translation to external addresses to be
applicaple. The body must not be encrypted when a NAT device does the translation and
this imposes a security constraint.

4.3 End-to-End and Hop-by-Hop Security
There are two interesting concepts and ways to implement both authentication and
encryption in use. Namely, end-to-end and hop-by-hop. As the names imply, end-to-end
covers the whole connection from the sender to the recipient. Hop-by-hop instead covers
at least one hop of a connection. It may cover other hops, if there exists more, but that is
not guaranteed.

Advantages of hop-by-hop security:

        •   No need for end users to have public keys.

        •   Only service providers need to have public keys.

        •   It models current web security that has proven to work.

Major limitation of hop-by-hop security:

        •   Requires transitive trust model.

In end-to-end security messages are encrypted or/and authenticated all the way from the
sender to the recipient.

4.4 Real-life Examples of Security Problems

H.323

H.235 provides quite comprehensive security architecture for H.323 protocol suite. It
provides several different alternatives for authentication and also for encryption. Using
TLS in a pre-defined port 1300 does the establishment of the Call Connection Channel a
priori. This should be considered to a constraint since it is predefined and any other
security mechanisms can not be used for the first connection.
NAT and Firewall Traversal

Since H.323-compliant applications use dynamically allocated sockets for audio, video
and data channels, a firewall must be able to allow H.323 traffic through on an intelligent
basis. The firewall must be either H.323-enabled with an H.323 proxy, or able to “snoop”
to control channel to determine which dynamic sockets are in use for H.323 sessions, and
allow traffic as long as the control channel is active.

SIP

Below SIP specific security constraints are discussed on the basis of presentation by chief
scientist Jonathan Rosenberg from Dynamic soft.

Forking

Forking is a situation where A calls to B and the call invitation request forks to B1 and
B2, which are different terminals that user B has specified he or she is using. The
outcome should be the both terminals B1 and B2 ringing. Challenge-response mechanism
used within SIP does not work with forking; only B1 rings in cases where challenge-
response is used. Using signed requests without challenge-response can solve the
problem but this would require the use of PKI. Replay attacks can be achieved by
remembering Call-IDs.

Reflection Attack

May happen when using http digest authentication for both request and response. If the
same shared secret is used in both directions, an attacker can obtain credentials by
reflecting a challenge in a response back in request. Using different secrets in each
direction eliminates attack. This kind of attack is not a problem when PGP is used for
authentication.

Encryption Limitations

SIP encryption is based on the use of PGP. This, to be useful, requires PKI. Encryption
does not cover many critical headers (e.g. To, From). Does not work with forwarding and
last but not least limitation: the PGP-based model assumes advance knowledge of the
recipient’s public key.

Cancel Security

CANCEL is a SIP command which cancel searches and ringing, simply if attacker sends
CANCEL to target when target gets INVITE, the target can be prevented from receiving
calls.
NAT and Firewall Traversal

There is a big need for secure traversal of SIP and its signaled sessions through NAT and
firewall. Since SIP is a session control protocol IP addresses and TCP ports appear in the
body of the protocol. In networks where NAT is used internal network addresses would
require translation to external network addresses to be applicable. The body must not be
encrypted when a NAT device does the translation and this impose a security constraint
This is fundamental to SIP operations and results in difficulties in NAT and firewall
traversal.

MGCP/MEGACO/H.248

Issues with security constraints of MGCP and the related standards are similar to the
presented constraints of H.323 and SIP with the exception that according to RFC2885
security issues should be solved by using external security protocols and especially
IPSEC. Assuming that IPSEC is required to be used, it follows that they are actually the
security issues of IPSEC that determine the security constraints for MGCP and related
protocols – at least up to some extent.

5. Conclusion
VOIP is still an emerging technology, so it is somewhat speculative to develop a
complete picture of what a mature worldwide VOIP network will one day look like. The
situation is analogous to the state of the Internet in the late 80s and early 90s. Competing
protocols and designs for the infrastructure of the net flourished at the time, but as the
purpose of the Internet became more defined with the emergence of the world wide web
and other staples of today’s net, the structure and protocols became standardized and
interoperability became much easier. The same may one day be true of VOIP. Although
there are currently many different architectures and protocols to choose from, eventually
a dominant standard will emerge. Converged networks are complex and drive the need
for increased security and performance requirements. A wide range of network security
devices are currently available on the market, presenting a potentially confusing array or
options. However, low-cost, highly-secure VoIP Security Devices exist today and can
mitigate security and performance risks in a straightforward and cost-effective manner.

References
[1]    Mika Marjalaakso, Security Requirements and Constraints of VoIP
       http://www.tml.tkk.fi/Opinnot/Tik-110.501/2000/papers/marjalaakso/voip.html

[2]    D. Richard Kuhn, Thomas J. Walsh and Steffen Fries, Security Considerations for
       Voice Over IP Systems.
       http://csrc.nist.gov/publications/nistpubs/800-58/SP800-58-final.pdf

[3]    Ranch Networks, What To Look For in VoIP Security.
       http://www.securitytechnet.com/resource/hot-topic/voip/VoIP-Security.pdf

More Related Content

What's hot

Basic isp network design
Basic isp network designBasic isp network design
Basic isp network designpiku das
 
Wireless Technology
Wireless TechnologyWireless Technology
Wireless TechnologyNetwax Lab
 
Tcpip networking basics_and_troubleshooting
Tcpip networking basics_and_troubleshootingTcpip networking basics_and_troubleshooting
Tcpip networking basics_and_troubleshootingKumar
 
CCNA training 101
CCNA training 101CCNA training 101
CCNA training 101Rohan Reddy
 
Ch11 Hacking Wireless Networks it-slideshares.blogspot.com
Ch11 Hacking Wireless Networks it-slideshares.blogspot.comCh11 Hacking Wireless Networks it-slideshares.blogspot.com
Ch11 Hacking Wireless Networks it-slideshares.blogspot.comphanleson
 
Design Scenario Network Analysis & Design
Design Scenario Network Analysis & Design   Design Scenario Network Analysis & Design
Design Scenario Network Analysis & Design Muhd Mu'izuddin
 
summer training report on Computer network and Cisco packet tracer
summer training report on Computer network and Cisco packet tracer summer training report on Computer network and Cisco packet tracer
summer training report on Computer network and Cisco packet tracer Dheeraj Giri
 
Private Network Project for Colleges
Private Network Project for CollegesPrivate Network Project for Colleges
Private Network Project for CollegesAditya Jain
 
Module 15 (hacking wireless networks)
Module 15 (hacking wireless networks)Module 15 (hacking wireless networks)
Module 15 (hacking wireless networks)Wail Hassan
 
gkkSecurity essentials domain 2
gkkSecurity essentials   domain 2gkkSecurity essentials   domain 2
gkkSecurity essentials domain 2Anne Starr
 
103 Basic network concepts
103 Basic network concepts103 Basic network concepts
103 Basic network conceptsSsendiSamuel
 
Nec exp ether071719
Nec exp ether071719Nec exp ether071719
Nec exp ether071719Yutaka Kawai
 
Lecture 11 wifi security
Lecture 11 wifi securityLecture 11 wifi security
Lecture 11 wifi securityrajakhurram
 
CCNA Industrial Training Presentation
CCNA Industrial Training PresentationCCNA Industrial Training Presentation
CCNA Industrial Training PresentationTalvinder Singh
 

What's hot (20)

Basic isp network design
Basic isp network designBasic isp network design
Basic isp network design
 
Wireless Technology
Wireless TechnologyWireless Technology
Wireless Technology
 
K1102026669
K1102026669K1102026669
K1102026669
 
Ccna guide
Ccna guideCcna guide
Ccna guide
 
Tcpip networking basics_and_troubleshooting
Tcpip networking basics_and_troubleshootingTcpip networking basics_and_troubleshooting
Tcpip networking basics_and_troubleshooting
 
IP Address
IP AddressIP Address
IP Address
 
CCNA training 101
CCNA training 101CCNA training 101
CCNA training 101
 
Ch11 Hacking Wireless Networks it-slideshares.blogspot.com
Ch11 Hacking Wireless Networks it-slideshares.blogspot.comCh11 Hacking Wireless Networks it-slideshares.blogspot.com
Ch11 Hacking Wireless Networks it-slideshares.blogspot.com
 
Design Scenario Network Analysis & Design
Design Scenario Network Analysis & Design   Design Scenario Network Analysis & Design
Design Scenario Network Analysis & Design
 
summer training report on Computer network and Cisco packet tracer
summer training report on Computer network and Cisco packet tracer summer training report on Computer network and Cisco packet tracer
summer training report on Computer network and Cisco packet tracer
 
Private Network Project for Colleges
Private Network Project for CollegesPrivate Network Project for Colleges
Private Network Project for Colleges
 
Module 15 (hacking wireless networks)
Module 15 (hacking wireless networks)Module 15 (hacking wireless networks)
Module 15 (hacking wireless networks)
 
Wi-fi Hacking
Wi-fi HackingWi-fi Hacking
Wi-fi Hacking
 
Ids in wn
Ids in wnIds in wn
Ids in wn
 
gkkSecurity essentials domain 2
gkkSecurity essentials   domain 2gkkSecurity essentials   domain 2
gkkSecurity essentials domain 2
 
103 Basic network concepts
103 Basic network concepts103 Basic network concepts
103 Basic network concepts
 
Nec exp ether071719
Nec exp ether071719Nec exp ether071719
Nec exp ether071719
 
Lecture 11 wifi security
Lecture 11 wifi securityLecture 11 wifi security
Lecture 11 wifi security
 
Do d directives regarding wireless lan
Do d directives regarding wireless lanDo d directives regarding wireless lan
Do d directives regarding wireless lan
 
CCNA Industrial Training Presentation
CCNA Industrial Training PresentationCCNA Industrial Training Presentation
CCNA Industrial Training Presentation
 

Similar to Raisul Haq Rajib (063435056)

Abdullah Al Mamun 062507056
Abdullah Al Mamun 062507056Abdullah Al Mamun 062507056
Abdullah Al Mamun 062507056mashiur
 
Case study about voip
Case study about voipCase study about voip
Case study about voipelmudthir
 
Voip
VoipVoip
VoipPTCL
 
Internet2 National Video Conferencing Service: Getting ...
Internet2 National Video Conferencing Service: Getting ...Internet2 National Video Conferencing Service: Getting ...
Internet2 National Video Conferencing Service: Getting ...Videoguy
 
Shahnshah Sarker 072802556
Shahnshah Sarker  072802556Shahnshah Sarker  072802556
Shahnshah Sarker 072802556mashiur
 
Paul final voip
Paul final voipPaul final voip
Paul final voipPaul Fares
 
MULTIMEDIA SERVICES OVER IP NETWORKS
MULTIMEDIA SERVICES OVER IP NETWORKSMULTIMEDIA SERVICES OVER IP NETWORKS
MULTIMEDIA SERVICES OVER IP NETWORKSYatish Bathla
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
A NEW SYSTEM ON CHIP RECONFIGURABLE GATEWAY ARCHITECTURE FOR VOICE OVER INTER...
A NEW SYSTEM ON CHIP RECONFIGURABLE GATEWAY ARCHITECTURE FOR VOICE OVER INTER...A NEW SYSTEM ON CHIP RECONFIGURABLE GATEWAY ARCHITECTURE FOR VOICE OVER INTER...
A NEW SYSTEM ON CHIP RECONFIGURABLE GATEWAY ARCHITECTURE FOR VOICE OVER INTER...csandit
 
Voice over IP: Issues and Protocols
Voice over IP: Issues and ProtocolsVoice over IP: Issues and Protocols
Voice over IP: Issues and ProtocolsVideoguy
 
Video Conferencing and Security
Video Conferencing and SecurityVideo Conferencing and Security
Video Conferencing and SecurityVideoguy
 

Similar to Raisul Haq Rajib (063435056) (20)

Abdullah Al Mamun 062507056
Abdullah Al Mamun 062507056Abdullah Al Mamun 062507056
Abdullah Al Mamun 062507056
 
Case study about voip
Case study about voipCase study about voip
Case study about voip
 
Voip on Wimax
Voip on WimaxVoip on Wimax
Voip on Wimax
 
Voip
VoipVoip
Voip
 
Voip security
Voip securityVoip security
Voip security
 
How does VOIP work diagram
How does VOIP work diagramHow does VOIP work diagram
How does VOIP work diagram
 
VoIP for Beginners
VoIP for BeginnersVoIP for Beginners
VoIP for Beginners
 
Internet2 National Video Conferencing Service: Getting ...
Internet2 National Video Conferencing Service: Getting ...Internet2 National Video Conferencing Service: Getting ...
Internet2 National Video Conferencing Service: Getting ...
 
Shahnshah Sarker 072802556
Shahnshah Sarker  072802556Shahnshah Sarker  072802556
Shahnshah Sarker 072802556
 
Paul final voip
Paul final voipPaul final voip
Paul final voip
 
R43019698
R43019698R43019698
R43019698
 
MULTIMEDIA SERVICES OVER IP NETWORKS
MULTIMEDIA SERVICES OVER IP NETWORKSMULTIMEDIA SERVICES OVER IP NETWORKS
MULTIMEDIA SERVICES OVER IP NETWORKS
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
ccna project
ccna projectccna project
ccna project
 
VoIP Research Paper
VoIP Research PaperVoIP Research Paper
VoIP Research Paper
 
A NEW SYSTEM ON CHIP RECONFIGURABLE GATEWAY ARCHITECTURE FOR VOICE OVER INTER...
A NEW SYSTEM ON CHIP RECONFIGURABLE GATEWAY ARCHITECTURE FOR VOICE OVER INTER...A NEW SYSTEM ON CHIP RECONFIGURABLE GATEWAY ARCHITECTURE FOR VOICE OVER INTER...
A NEW SYSTEM ON CHIP RECONFIGURABLE GATEWAY ARCHITECTURE FOR VOICE OVER INTER...
 
Voice over IP: Issues and Protocols
Voice over IP: Issues and ProtocolsVoice over IP: Issues and Protocols
Voice over IP: Issues and Protocols
 
Ip
IpIp
Ip
 
Ip
IpIp
Ip
 
Video Conferencing and Security
Video Conferencing and SecurityVideo Conferencing and Security
Video Conferencing and Security
 

More from mashiur

Touseef Kamal062159056
Touseef Kamal062159056Touseef Kamal062159056
Touseef Kamal062159056mashiur
 
Towfique 063382056
Towfique 063382056Towfique 063382056
Towfique 063382056mashiur
 
Tasmiah Binte Zilani (071649556)
Tasmiah Binte Zilani (071649556)Tasmiah Binte Zilani (071649556)
Tasmiah Binte Zilani (071649556)mashiur
 
Sk M Rezaul Karim 072899056
Sk M Rezaul Karim  072899056Sk M Rezaul Karim  072899056
Sk M Rezaul Karim 072899056mashiur
 
Syeda Farhana Shirin Id#062681056
Syeda Farhana Shirin  Id#062681056Syeda Farhana Shirin  Id#062681056
Syeda Farhana Shirin Id#062681056mashiur
 
Shihab Uddin 062483056
Shihab Uddin  062483056Shihab Uddin  062483056
Shihab Uddin 062483056mashiur
 
Shakhawat Hossain (062364056)
Shakhawat Hossain (062364056)Shakhawat Hossain (062364056)
Shakhawat Hossain (062364056)mashiur
 
Shahriar Khaled 062473056
Shahriar Khaled 062473056Shahriar Khaled 062473056
Shahriar Khaled 062473056mashiur
 
Shah M Saklaen 072809056
Shah M Saklaen 072809056Shah M Saklaen 072809056
Shah M Saklaen 072809056mashiur
 
Sayef Almaji (063170056)
Sayef Almaji (063170056)Sayef Almaji (063170056)
Sayef Almaji (063170056)mashiur
 
Shah Md Zobair(063560056)
Shah Md Zobair(063560056)Shah Md Zobair(063560056)
Shah Md Zobair(063560056)mashiur
 
Shahed.Anwar 061708556
Shahed.Anwar 061708556Shahed.Anwar 061708556
Shahed.Anwar 061708556mashiur
 
Sajjad Hossain 071297056
Sajjad Hossain  071297056Sajjad Hossain  071297056
Sajjad Hossain 071297056mashiur
 
S K Ashikur Rahman (072874556)
S K Ashikur Rahman (072874556)S K Ashikur Rahman (072874556)
S K Ashikur Rahman (072874556)mashiur
 
Rumana Rashid Riti (Id 053 507 056)
Rumana Rashid Riti (Id 053 507 056)Rumana Rashid Riti (Id 053 507 056)
Rumana Rashid Riti (Id 053 507 056)mashiur
 
Rumana Akther Id#072842056
Rumana Akther Id#072842056Rumana Akther Id#072842056
Rumana Akther Id#072842056mashiur
 
Ridhwana Mohammad (071403056)
Ridhwana Mohammad (071403056)Ridhwana Mohammad (071403056)
Ridhwana Mohammad (071403056)mashiur
 
Riaz Rahman (072878056)
Riaz Rahman (072878056)Riaz Rahman (072878056)
Riaz Rahman (072878056)mashiur
 
Rubaiyet Rashid Romel (063454056)
Rubaiyet Rashid Romel (063454056)Rubaiyet Rashid Romel (063454056)
Rubaiyet Rashid Romel (063454056)mashiur
 
Rehana Zakia (063411056)
Rehana Zakia (063411056)Rehana Zakia (063411056)
Rehana Zakia (063411056)mashiur
 

More from mashiur (20)

Touseef Kamal062159056
Touseef Kamal062159056Touseef Kamal062159056
Touseef Kamal062159056
 
Towfique 063382056
Towfique 063382056Towfique 063382056
Towfique 063382056
 
Tasmiah Binte Zilani (071649556)
Tasmiah Binte Zilani (071649556)Tasmiah Binte Zilani (071649556)
Tasmiah Binte Zilani (071649556)
 
Sk M Rezaul Karim 072899056
Sk M Rezaul Karim  072899056Sk M Rezaul Karim  072899056
Sk M Rezaul Karim 072899056
 
Syeda Farhana Shirin Id#062681056
Syeda Farhana Shirin  Id#062681056Syeda Farhana Shirin  Id#062681056
Syeda Farhana Shirin Id#062681056
 
Shihab Uddin 062483056
Shihab Uddin  062483056Shihab Uddin  062483056
Shihab Uddin 062483056
 
Shakhawat Hossain (062364056)
Shakhawat Hossain (062364056)Shakhawat Hossain (062364056)
Shakhawat Hossain (062364056)
 
Shahriar Khaled 062473056
Shahriar Khaled 062473056Shahriar Khaled 062473056
Shahriar Khaled 062473056
 
Shah M Saklaen 072809056
Shah M Saklaen 072809056Shah M Saklaen 072809056
Shah M Saklaen 072809056
 
Sayef Almaji (063170056)
Sayef Almaji (063170056)Sayef Almaji (063170056)
Sayef Almaji (063170056)
 
Shah Md Zobair(063560056)
Shah Md Zobair(063560056)Shah Md Zobair(063560056)
Shah Md Zobair(063560056)
 
Shahed.Anwar 061708556
Shahed.Anwar 061708556Shahed.Anwar 061708556
Shahed.Anwar 061708556
 
Sajjad Hossain 071297056
Sajjad Hossain  071297056Sajjad Hossain  071297056
Sajjad Hossain 071297056
 
S K Ashikur Rahman (072874556)
S K Ashikur Rahman (072874556)S K Ashikur Rahman (072874556)
S K Ashikur Rahman (072874556)
 
Rumana Rashid Riti (Id 053 507 056)
Rumana Rashid Riti (Id 053 507 056)Rumana Rashid Riti (Id 053 507 056)
Rumana Rashid Riti (Id 053 507 056)
 
Rumana Akther Id#072842056
Rumana Akther Id#072842056Rumana Akther Id#072842056
Rumana Akther Id#072842056
 
Ridhwana Mohammad (071403056)
Ridhwana Mohammad (071403056)Ridhwana Mohammad (071403056)
Ridhwana Mohammad (071403056)
 
Riaz Rahman (072878056)
Riaz Rahman (072878056)Riaz Rahman (072878056)
Riaz Rahman (072878056)
 
Rubaiyet Rashid Romel (063454056)
Rubaiyet Rashid Romel (063454056)Rubaiyet Rashid Romel (063454056)
Rubaiyet Rashid Romel (063454056)
 
Rehana Zakia (063411056)
Rehana Zakia (063411056)Rehana Zakia (063411056)
Rehana Zakia (063411056)
 

Recently uploaded

A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMANIlamathiKannappan
 
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
 
Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxAndy Lambert
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Dave Litwiller
 
Regression analysis: Simple Linear Regression Multiple Linear Regression
Regression analysis:  Simple Linear Regression Multiple Linear RegressionRegression analysis:  Simple Linear Regression Multiple Linear Regression
Regression analysis: Simple Linear Regression Multiple Linear RegressionRavindra Nath Shukla
 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.Aaiza Hassan
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...lizamodels9
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfPaul Menig
 
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒anilsa9823
 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Roland Driesen
 
Unlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdfUnlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdfOnline Income Engine
 
Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...Roland Driesen
 
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxB.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxpriyanshujha201
 
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...amitlee9823
 
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...Aggregage
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayNZSG
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst SummitHolger Mueller
 

Recently uploaded (20)

A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMAN
 
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
 
Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptx
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
 
Regression analysis: Simple Linear Regression Multiple Linear Regression
Regression analysis:  Simple Linear Regression Multiple Linear RegressionRegression analysis:  Simple Linear Regression Multiple Linear Regression
Regression analysis: Simple Linear Regression Multiple Linear Regression
 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdf
 
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...
 
Unlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdfUnlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdf
 
Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...
 
Forklift Operations: Safety through Cartoons
Forklift Operations: Safety through CartoonsForklift Operations: Safety through Cartoons
Forklift Operations: Safety through Cartoons
 
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabiunwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
 
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxB.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
 
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
 
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 May
 
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst Summit
 

Raisul Haq Rajib (063435056)

  • 1. Project Paper On Security Requirements and Constraints Analysis For Voice Over IP System Raisul Haque Rajib 063 435 056 North South University MS in Electronics and Telecommunication Engineering (MS-ETE) Spring 2008 Course: ETE 605 Course Teacher: Dr. Mashiur Rahman
  • 2. 1. Introduction 1.1 Background Voice over IP (VoIP) is a technology by which voice can be transferred from circuit- switched networks to or over IP networks, and vice versa. This is interesting since the amount of voice, video and data traffic is rapidly increasing as more and more people get online. This will result in increased need to expand capacity especially in the trunk networks. So far the only way to add capacity in the trunk networks has been building a new, additional trunk network separately with respect to each media: voice, video and data. The concept of converged networks, i.e. all media can be transported via the very same network gives an option to build one unified trunk network to take care of increased capacity needs, therefore providing an elegant and low-cost solution. However, even though at the moment cost savings can justify transition from traditional telephony to VoIP telephony for multinational corporations, that is not the ultimate driver which will foster the penetration of VoIP. Such a killer application(s) will be those value- added services, which do not exist yet and can relatively easily be provided only via VoIP. Integration of VoIP into existing Internet-based services like e-mail and web will be an area to watch. Numerous VoIP products and solutions are already available in the market. Products are not yet very interoperable. Everyone seems to be interested in getting into this rather new lucrative area of business – a number of product development projects are started to create a new VoIP product and almost as many are cancelled. The world does not yet know which of all the VoIP related, overlapping standards is going to win. Also the quality of voice in VoIP due to non-guaranteed QoS, latency and some other characteristics of IP networks cause troubles. Security of VoIP is considered right from the beginning, and parallel with the development in other areas of VoIP. Many security mechanisms are already defined in the standards but they also have some flaws and many security problems remain unsolved. 1.2 Objectives of the Paper Objectives of the paper are to first introduce characteristics, in terms of security, of some VoIP architectures already in use, then identify some components of which VoIP security comprises, and finally analyze security constraints imposed by some, selected VoIP architectures or protocols.
  • 3. 2. Security Characteristics of Some Existing VoIP Protocols 2.1 ITU-T’s H.323 Addressing in H.323 is based on transport address, which is composed of network address and TSAP Identifier. In case of TCP/IP networks transport address equals to IP address and TCP port. H.323 uses three different types of channels, which are Call Connection Channel, Call Control Channel and Media Channels, depending on the type of information to be transferred. Media Channels are usually directly routed between the participants of a call but both Call Control Channel and Call Connection Channel can be routed via gatekeeper or directly between the participants as chosen by the gatekeeper. A gatekeeper may or may not be present in different areas of the Internet. H.235 recommendation contains provisions for entities utilizing the H.235 to support a key recovery technique but it is not specifically required for operation. Call Connection Channel is secured a priori with TLS (TCP-port 1300). In the initial connection setup, the Call Connection Channel is first opened in case there is no gatekeeper present. If the gatekeeper is present, the first channel to be opened is RAS channel with the gatekeeper. In RAS channel, some authentication mechanism should be used but not much is said on encrypting the traffic between the terminal and the gatekeeper. After connection establishment procedures the H.245 Call Control Channel is opened with using secured mode if negotiated. Information on Media Channels including encryption keys is passed via the H.245 Call Control Channel. Figure 1: H.323 Network Architecture
  • 4. Authentication There are two types of authentication that may be utilized: 1) symmetric encryption- based that requires no prior contact between the communicating entities and 2) an ability to have some prior shared secret (in the H.235 recommendation referenced to as “subscription” based). This second way to authenticate can either be symmetric or asymmetric. As symmetric encryption-based authentication, there is Diffie-Hellman key-exchange available which is intended to be used to generate a shared secret between two entities. It may also be used for the authentication of application- or protocol-specific request messages, not users of terminals, by the responder. Subscription-based authentication has three variations, which are: • Password-based with symmetric encryption. • Password-based with hashing (also symmetric). • Certificate-based with signatures (asymmetric). Other “authentication” mechanisms that can be specified as the authentication mechanism to be used are “IPSEC based connection”, “TLS” and “something else”. Encryption Encryption can be done in RTP-layer (see figure 1) which is used to transport information streams. Encryption can be utilities packet-by-packet basis, which means that it is up to the specified policy how encryption capabilities are applied to each packet.
  • 5. 2.2 IETF’s SIP SIP is a text-based protocol, similar to HTTP and SMTP, for initiating interactive communication sessions between users. Such sessions include voice, video, chat, interactive games, and virtual reality. Figure 2: SIP Network Architecture Authentication All authentication mechanisms that SIP provides are challenge-response based. There exist three alternatives, which are: • Basic authentication; • Digest authentication; and • PGP authentication. As client-server architecture, the communications is based on requests and responses. In addition to requests, it is also possible within SIP to authenticate responses, but this option is not widely used.
  • 6. Encryption Encryption capabilities of SIP itself are very limited. Only PGP-based encryption of certain headers in a message is possible. 2.3 IETF’s and ITU-T’s MGCP/MEGACO/H.248 Approach of MGCP/MEGACO/H.248 to authentication and encryption is clear and straightforward. According to RFC2885 as of August 2000, IPSEC “should” be used for the authentication and encryption of protocol connections. IKE should also be used to provide more robust keying options. Encryption keys for Media Gateways to encrypt media connections are provided by Media Gateway Controllers via IPSEC-secured protocol connections, i.e. media connections are not be encrypted via IPSEC. Figure 3: MGCP/MEGACO Network Architecture 3. Security Requirements for VoIP VoIP security requirements list is given below: • Dynamic per-call firewall control • Dynamic per-call bandwidth control • NAT traversal • Signalling protocol compatibility • Ability to handle encrypted VoIP Traffic
  • 7. • WAN failover to back-up gateway for local survivability • Adjunct Systems Health Monitoring • Protecting the IP PBX and Adjunct Systems • Endpoint-to-endpoint media traffic • Preservation of location-specific IP addresses • Network Call Usage Reporting • VoIP Overlay Installation • CALEA support • Video, IM, Wireless, and other support • Solutions for a full range of VoIP style deployments • Redundancy options 3.1 VoIP Security Requirement Details Dynamic per-call firewall control The VoIP security solution should employ multiple dynamic layers of security to protect the VoIP enabled network, including: • Dynamically opening and closing firewall “pinholes” on a per-call basis. • Subdividing the network in multiple security zones (for instance, separate zones for voice and data). • Allowing for per-user network authentication. Dynamic per-call bandwidth control In a recent InformationWeek VoIP survey of 300 business technology executives, performance and quality of service was the number one concern in deploying VoIP. The VoIP security solution should address this concern by its ability to: • Allocate bandwidth on a per-call basis. • Allocate bandwidth based on call classification. • Allocate bandwidth and route calls over multiple WAN links. • WAN link fail over with automatic call policy adjustment. • Immediate bandwidth allocation for emergency calls. NAT Traversal The use of NAT between Private and Public address spaces can cause call set-up problems. The VoIP security solution should solve this issue by communicating this information to the IP PBX on a per-call basis, in effect making the IP PBX NAT-aware.
  • 8. Figure 4: IP Telephones Behind NAT and Firewall Signaling protocol compatibility The VoIP security solution should be able to be used in conjunction with any version of SIP, H.323, MGCP, or other standard or proprietary signaling protocols. Thus it should not be necessary to make changes to the VoIP security equipment as these protocols evolve or new protocols are conceived. Ability to handle encrypted VoIP Traffic Since this ideal VoIP security solution does not depend upon the inspection of signaling or media stream traffic, this traffic can be encrypted using any encryption mechanism. All functionality of the VoIP security solution should still be available. It is increasingly being acknowledged that the encryption of signaling traffic is quite important, since it often contains sensitive customer-specific information including, for instance, credit card numbers. WAN failover to back-up gateway for local survivability In a Hosted IP PBX environment, it may be common to minimize the amount of CPE (Customer Premises Equipment). In such a scenario, the IP PBX is hosted in “the network” and the only CPE may be IP Phones and a back-up gateway to enable calls to the PSTN should that be necessary. The ideal VoIP solution should detect if the WAN interface is down, and automatically re-route the VoIP traffic (signaling and media) to the backup gateway (instead of to the networkhosted IP PBX).
  • 9. Adjunct Systems Health Monitoring A full VoIP security solution should also provide Heath Monitoring of IP PBX and adjunct systems with automatic failure notification to both the IP PBX and network and/or security management systems via SNMP. Adjunct systems that should be monitored include: • Messaging (Voicemail, etc.) • IVR. • Media Servers. • Media Gateways and Analog Terminal Adapters. • Conferencing Servers. • IP Phones. • Switches and Routers. Protecting the IP PBX and Adjunct Systems Unlike with traditional PBXs, a Denial of Service attack on an IP PBX can effectively isolate the IP PBX or in worst-case bring it down. A VoIP security solution must protect the IP PBX server by: • “Zoned” firewall protection of the IP PBX and Adjunct Systems • Denial of Service Protection for the IP PBX and Adjunct Systems including: Rate limiting of connection attempts allowing the IP/PBX and Adjunct Systems to continue to service internal calls and gateways while under attack. DOS attack alarm and SNMP notification • The VoIP security solution should not require all media streams to pass through a centralized device in the network. In this way, the VoIP solution is less susceptible to Denial of Service attacks. Latency-sensitive media stream traffic can easily be disrupted by a DoS attack, making solutions requiring all traffic to pass through a single point in the network unacceptable for reliable communications. Endpoint-to-endpoint media traffic In addition to superior Denial of Service protection, the ability to support direct endpoint- to-endpoint media streams (as opposed to all media streams passing through a central point in the network) provides greater network efficiency and bandwidth utilization. In solutions where all media streams must pass through a central point, the media streams for all calls within a single branch must still pass out of the branch, to the network-hosted facility, and back to the branch! Thus for this type of call, twice the bandwidth in consumed on the narrow WAN local loop as compared to the desired VoIP security solution.
  • 10. Preservation of location-specific IP addresses Location-specific IP addresses should be preserved for Call Controller and Presence features that require this information. Network Call Usage Reporting The VoIP security devices should employ a dedicated management CPU and communication port to collect accounting statistics and distribute to external Accounting, Billing, and Network Management Systems. This accounting information can be used for: • Remote monitoring and maintenance services. • Network optimization and monitoring. • Per-customer billing. • Departmental charge back. • Traffic studies. VoIP Overlay Installation When installing an IP Phone network it is recommended to separate the voice and data traffic into different LAN segments. Typically this is done by creating a separate VLAN for both Voice and Data. The ideal VoIP security solution should not require the creation of a new sub-net and reconfiguration of Host IP addresses. CALEA support The VoIP security solution should support CALEA by allowing any traffic stream to be mirrored to a second destination. Solutions for a full range of VoIP style deployments The ideal VoIP security solution should be applicable for reliably and securely delivering VoIP in a variety of deployment architectures including: • Centrex Model. • Enterprise. • Multi-Branch Offices. • Consumer long distance. • Multi-Tenant Buildings.
  • 11. Video, IM, Wireless, and other support The ideal VoIP security solution should be applicable for more than just VoIP. All features described herein for Voice-over-IP, including dynamic per-call (per-session) firewall and bandwidth control, NAT traversal, usage and health monitoring, encryption compatibility, and signalling protocol independence, should also be applicable to: • Video-over-IP. • Instant Messaging. • 802.11 (Wi-Fi) traffic. • Message traffic between remotely located Unified Messaging, CRM (Customer Relationship Management), or other systems. • Other IP PBX functions. • Other services the Service Provider may wish to offer, such as video surveillance and physical security and fire monitoring . Redundancy options The VoIP security solution should support several types of redundancy including: • Link Redundancy. • Unit Redundancy. • WAN Redundancy with automatic policy adjustment. • Port Redundancy using Spanning Tree. • Fan Redundancy. • Power Supply Redundancy. • Feed Redundancy. 4. Security Constraints of VoIP Security constraints are reasons why predefined security requirements cannot be reached at all, or in special conditions, in VoIP communications. Security constraints can result from inadequate design of VoIP protocols or incomplete implementations of these. And the underlying architecture of the Internet itself gives also some limitations, naturally. There are many network infrastructure elements, like firewalls and e.g. IPSEC security gateways using NAT, which are used to add security to the networks where they are used. The functioning of these devices and the restrictions they pose should be taken into account in the design of VoIP protocols, and may be vice versa also, i.e. there still may be some tasks which just need to be done in a certain way requiring few changes to existing network elements already in place. At this point, it would be convenient to notice that security can be implemented and therefore exist at many levels. Three different levels can be identified: link-level security, secured packets and chosen fields in a packet. And in each of these levels, the
  • 12. choice can be all information or part of the information depending on the sensitivity of the information transferred. When security is implemented in the link-level, the security is transparent for users and applications since either of them have zero knowledge on what happens to packets when they pass the IP-layer and enter to link layer. All information that goes through certain link is secured. Not every packet contains information having high sensitivity and therefore also high priority to be secured. If the security is implemented at the packet level, the security is not anymore as transparent, for instance to network infrastructure devices, as it is at the link level. Sometimes only certain fields of packets are secured. This, of course, gives the weakest level of protection when compared to two previously mentioned methods. However, if fields chosen include all the fields containing sensitive information, this method may turn out to be adequate and secure enough. 4.1 Delay Sensitivity of VoIP “Perhaps the most vexing problem in voice-over-IP, in general, has been the issue of quality of service. The delay in conversation that many VoIP users encounter is caused by the jitter and latency of packet delivery within the Internet itself [11].” Quality of service, latency and jitter are definitely problems for VoIP. Does these have any effect on the security point of view? Yes, indeed they have. Prerequisite for fully secured end-to-end connection is that the whole path, i.e. all devices and links between them, is protected against man-in-the-middle attacks [6]. One consequence of this is that all devices must perform mutual authentication. Public key cryptography based authentication is the one and only means of authentication that scales up to arbitrarily large networks by making it possible to securely distribute keys relatively easily through unsecured networks. On the other hand public-key based methods set two major constraints. First, currently there is not required public-key infrastructure that would span major parts of the globe, in place. Secondly, public-key based authentication procedures require and use vast amount of computational power. If authentication is performed at the link-level by two endpoints of a link every now and then, this should not be a problem. Public-key cryptography would also give convenient tools for the encryption of messages. If the encryption takes place between two endpoints, this should not be a problem because end devices can be equipped with required computational power, e.g. crypto chips. But if encrypted packets need to be encrypted at any intermediary device (e.g. router), this can easily become a bottleneck and introduce additional delay, to delay sensitive delivery of VoIP packets.
  • 13. 4.2 Specified Message Format SIP, H.323 and other VoIP protocols are used to initiate sessions, e.g. audio sessions. The information that is needed for creating media channel between two entities is encapsulated in the body of VoIP message. This information includes IP addresses. While NAT is used internal addresses would require translation to external addresses to be applicaple. The body must not be encrypted when a NAT device does the translation and this imposes a security constraint. 4.3 End-to-End and Hop-by-Hop Security There are two interesting concepts and ways to implement both authentication and encryption in use. Namely, end-to-end and hop-by-hop. As the names imply, end-to-end covers the whole connection from the sender to the recipient. Hop-by-hop instead covers at least one hop of a connection. It may cover other hops, if there exists more, but that is not guaranteed. Advantages of hop-by-hop security: • No need for end users to have public keys. • Only service providers need to have public keys. • It models current web security that has proven to work. Major limitation of hop-by-hop security: • Requires transitive trust model. In end-to-end security messages are encrypted or/and authenticated all the way from the sender to the recipient. 4.4 Real-life Examples of Security Problems H.323 H.235 provides quite comprehensive security architecture for H.323 protocol suite. It provides several different alternatives for authentication and also for encryption. Using TLS in a pre-defined port 1300 does the establishment of the Call Connection Channel a priori. This should be considered to a constraint since it is predefined and any other security mechanisms can not be used for the first connection.
  • 14. NAT and Firewall Traversal Since H.323-compliant applications use dynamically allocated sockets for audio, video and data channels, a firewall must be able to allow H.323 traffic through on an intelligent basis. The firewall must be either H.323-enabled with an H.323 proxy, or able to “snoop” to control channel to determine which dynamic sockets are in use for H.323 sessions, and allow traffic as long as the control channel is active. SIP Below SIP specific security constraints are discussed on the basis of presentation by chief scientist Jonathan Rosenberg from Dynamic soft. Forking Forking is a situation where A calls to B and the call invitation request forks to B1 and B2, which are different terminals that user B has specified he or she is using. The outcome should be the both terminals B1 and B2 ringing. Challenge-response mechanism used within SIP does not work with forking; only B1 rings in cases where challenge- response is used. Using signed requests without challenge-response can solve the problem but this would require the use of PKI. Replay attacks can be achieved by remembering Call-IDs. Reflection Attack May happen when using http digest authentication for both request and response. If the same shared secret is used in both directions, an attacker can obtain credentials by reflecting a challenge in a response back in request. Using different secrets in each direction eliminates attack. This kind of attack is not a problem when PGP is used for authentication. Encryption Limitations SIP encryption is based on the use of PGP. This, to be useful, requires PKI. Encryption does not cover many critical headers (e.g. To, From). Does not work with forwarding and last but not least limitation: the PGP-based model assumes advance knowledge of the recipient’s public key. Cancel Security CANCEL is a SIP command which cancel searches and ringing, simply if attacker sends CANCEL to target when target gets INVITE, the target can be prevented from receiving calls.
  • 15. NAT and Firewall Traversal There is a big need for secure traversal of SIP and its signaled sessions through NAT and firewall. Since SIP is a session control protocol IP addresses and TCP ports appear in the body of the protocol. In networks where NAT is used internal network addresses would require translation to external network addresses to be applicable. The body must not be encrypted when a NAT device does the translation and this impose a security constraint This is fundamental to SIP operations and results in difficulties in NAT and firewall traversal. MGCP/MEGACO/H.248 Issues with security constraints of MGCP and the related standards are similar to the presented constraints of H.323 and SIP with the exception that according to RFC2885 security issues should be solved by using external security protocols and especially IPSEC. Assuming that IPSEC is required to be used, it follows that they are actually the security issues of IPSEC that determine the security constraints for MGCP and related protocols – at least up to some extent. 5. Conclusion VOIP is still an emerging technology, so it is somewhat speculative to develop a complete picture of what a mature worldwide VOIP network will one day look like. The situation is analogous to the state of the Internet in the late 80s and early 90s. Competing protocols and designs for the infrastructure of the net flourished at the time, but as the purpose of the Internet became more defined with the emergence of the world wide web and other staples of today’s net, the structure and protocols became standardized and interoperability became much easier. The same may one day be true of VOIP. Although there are currently many different architectures and protocols to choose from, eventually a dominant standard will emerge. Converged networks are complex and drive the need for increased security and performance requirements. A wide range of network security devices are currently available on the market, presenting a potentially confusing array or options. However, low-cost, highly-secure VoIP Security Devices exist today and can mitigate security and performance risks in a straightforward and cost-effective manner. References [1] Mika Marjalaakso, Security Requirements and Constraints of VoIP http://www.tml.tkk.fi/Opinnot/Tik-110.501/2000/papers/marjalaakso/voip.html [2] D. Richard Kuhn, Thomas J. Walsh and Steffen Fries, Security Considerations for Voice Over IP Systems. http://csrc.nist.gov/publications/nistpubs/800-58/SP800-58-final.pdf [3] Ranch Networks, What To Look For in VoIP Security. http://www.securitytechnet.com/resource/hot-topic/voip/VoIP-Security.pdf