SlideShare a Scribd company logo
1 of 35
Download to read offline
9. Bessel Functions of Integer Order
                                F. W. J. O L V E R ~

                                   Contents
                                                                                       Page
Mathematical Properties . . . . . . . . . . . . . . . . . . . .                        358
  Notation. . . . . . . . . . . . . . . . . . . . . . . . . . .                        358
 Bessel Functions J and Y . . . . . . . . . . . . .               . . . . . .          358
      9.1. Definitions and Elementary Properties . . .            . . . . . .          358
      9.2. Asymptot.ic Expansions for Large Arguments             . . . . . .          364
      9.3. Asymptotic Expansions for Large Orders . .             . . . . . .          365
      9.4. Polynomial Approximations. . . . . . . .               . . . . . .          369
      9.5. Zeros. . . . . . . . . . . . . . . . . . .              . . . . .           370
 Modified Bessel Functions I and K. . . . . . . . .               . . . . . .          374
      9.6. Definitions and Properties . . . . . . . .             . . . . . .          374
      9.7. Asymptotic Expansions. . . . . . . . . .               . . . . . .          377
      9.8. Polynomial Approximations . . . . . . . .              . . . . . .          378
  Kelvin Functions. . . . . . . . . . . . . . . .             . . . .    .   .   .     379
       9.9. Definitions and Properties . . . . . .           . . . .    .    .   . .   379
       9.10. Asymptotic Expansions . . . . . . .             . . . .    .    .   . .   381
       9.11. Polynomial Approximations . . . . .             . . . .    .    .   . .   384
Numerical Methods . . . . . . . . . . . . . . . . . . . . . .                          385
      9.12. Use and Extension of the Tables. . . . . . . . . . .                       385
References. . . . . . . . . . . . . . . . . . . . . . . . . . .                        388
Table 9.1. Bessel Functions-Orders 0. 1. and 2 (0 5 ~ 5 1 7 . 5 ). . . .               390
                Jo(x). 15D. Ji@). J&).Yob).YI(~). 10D
                Yz(x), 8D
                ~=0(.1)17.5
           Bessel Functions-Modulus and Phase of Orders 0. 1. 2
             ( 1 O ~ s _ < ~ ). . . . . . . . . . . . . . . . . . . .                  396
                dMn(x).6, (z)-z. 8D
                n=0(1)2,2-'=.1(-.01)0
           Bessel Functions-Auxiliary Table for Small Arguments
                (05x52). . . . . . . . . . . . . . . . . . . . .                       397
                       2                    2
                 Y ( ; Jo(4 In z, Z[Y1(2)-; J I ( 4
                  o+                                  21

                 ~=0(.1)2, 8D
Table 9.2. Bessel Functions-Orders 3-9 (0 5 2 1 2 0 ) . . . . . . . .                  398
               Jn   7 Yn 9      n=3 (1)s
               2=0(.2)20,       5D or 5 s



     National Bureau of Standards. on leave from the National Physical Laboratory.
                                                                                              355
356                        BESSEL FTJNCTIONS OF INTEGER ORDER

                                                                                    Page
      Table 9.3. Bessel Functions-Orders 10, 11,20, and 21 ( 0 5 ~ 1 2 0 ) .
                                                                         .          402
                     2-*0J1o(x), z-l'J11 (z), z'"1o(z)
                     z=O(.l)lO, 8 or 9 s s
                     JlO(Z>, J l l ( 4 , YlO(Z>
                     2=10(.1)20, 8D
                        2-'0J20(2),   22 J 1 z , 2 V 2 0 ( 2 )
                                       - 1 2 ()
                       z=0(.1)20, 6 or 7
                                      s     s
                   Bessel Functions-Modulus and Phase of Orders 10,11,20,
                     and 21 ( 2 0 5 ~ Q)). . . . . . . . . . . . . . . . .
                                      5                                             406
                        zQ&dz), e n ( 4   -2
                         n=10, 11, 8D
                         n=20, 21, 6D
                        z-'= .05(- .002)0
      Table 9.4. Bessel Functions-Various Orders (OIn1100). . . . . .               407
                     Jn(z),Y&), n=0(1)20(10)50, 100
                     z=1, 2, 5, 10, 50, 100, 10s
      Table 9.5. Zeros and Associated Values of Bessel Functions and Their
                   Derivatives ( O s n 1 8 , 1 5 ~ 1 2 0 .) . . . . . . . . . .     409
                     j w , JX.in.8) ; j;*s, Jn(j;,8), 5D (10D for n=o>
                     ynS8, y n J ; Y ; . ~ , YJY;,~), 5D (8D for n=o>
                            W
                     s=1(1)20, n=0(1)8
      Table 96
             ..    Bessel Functions Jo(jo.,z), . . . . . . . . . . .
                                          s= 1 (1)5                                 413
                       z=O(.O2)1, 5D
      Table 9.7. Bessel Functions-Miscellaneous Zeros (s=1(1)5) . . . . .           414
                     8th zero of z J1 -Wdz)
                                        (2)
                        X, X-'=O(.O2) .I, .2(.2)1, 4D
                     8th zero of Jl(z)   -Wo(z)
                        X= .5(.1) 1, X-'= 1 (- .2).2, .I (- .O2)0, 4D
                     8th zero of Jo(z)   Yo(Az)Yo(z)Jo(Az)
                                                 -
                        X-'=.8(-.2)      .2, .1(-.02)0, 5D (8D for s=1)
                     8th zero of Jl(z)   Yl(Az)- Y,(z)J1(Az)
                        X-l=.8(--.2) .2, .1(-.02)0, 5D (8D for s=1)
                     8th zero of J1(z)   Yo(Az)- Yl(z)Jo(Az)
                        X-'=.8(--.2) .2, .1(-.02)0, 5D (8D for s=1)
      Table 9.8. Modified Bessel Functions of Orders 0, 1, and 2 (0 1 2 1 2 0 ) .   416
                    e-zlo(z), ezKo(z),e+ll( z), ezKl(z)
                    z=O(.l)lO (.2)20, 10D or 10s
                       Z-~Z(~),
                            2Kab)
                      ~=0(.1)5, 10D, 9D
                      e-zla (2), e'& (5)
                      z=5(.1)10 (.2)20, 9D, 8D
                   Modified Bessel Functions-Auxiliary Table          for Large
                    Arguments ( 2 0 5 ~ Q)) . . . . . . . . . .
                                          5                            . . . . .    422
                      de-zln(z),   n-ldeZK.(z), n=O, 1, 2
                      z-'= .05(-.002)0, 8-9D
                   Modified Bessel Functions-Auxiliary Table          for Small
                    Arguments ( 0 5 ~ 1 2 ) .. . . . . . . . . .      . . . . .     422
                      Ko(z)+Io(4 lnz, 4&(4--11(4 hzl
                      z=0(.1)2, 8D
BESSEL FUNCTIONS OF INTEGER ORDER                                       357
                                                                                   Page
Table 9.9.   Modified Bessel Functions-Orders 3-9 (O<z<20)                . . .     423
                e-”1,(z), e”K,(z), n= 3 (1)9
                Z= O( .2)10(.5)20, 5s

Table 9.10. Modified Bessel Functions-Orders 10, 11, 20 and 21
             ( < <0
              OS2 )      . . . . . . . . . . . . . . . . . . . .                    425
                            z-11111(2),
                  z-’Ol10(z),          zloKlo(z)
                z=0(.2)10, 8 or 9 s
                                s
                e-zllo(z), e-”111(z), e”Kd4
                z=10(.2)20, 10D, lOD, 7D
                z-zo120(z),z-z1121(4,  Z0Kz0(z)
                z=0(.2)20, 5 s to 7     s
             Modified Bessel Functions-Auxiliary        Table for Large
              Arguments (20 <z <      a). . . . . . . . . . . . . . .               427
                In{z+e-zllo(z)}, ln{z+e-zIll(z)},ln{?r-lzfeZKlo(z)}
                In{z+e-zlzo(z)}, z+e-zlzl(z)},
                                 In{              ln{r-lz’eZKzo(z)}
                ~-‘=.05(-.001)0, SD, 6D
Table 9.11. Modified Bessel Functions-Various Orders (0 <n <100)               .    428
               In(z),K,,(z), n=0(1)20(10)50, 100
               z=1, 2, 5, 10, 50, 100, 9s or 10s
Table 9.12. Kelvin Functions-Orders 0 and 1 ( << )
                                                Oz5      . . . . . .                430
                ber z, bei z, berl 2, bei, z
                ker z, kei z, kerl z, keil z
                z=0(.1)5, IOD, 9D
            Kelvin Functions-Auxiliary Table for Small Arguments
              (O<z<l).     . . . . . . . . . . . . . . . . . . . .                  430
                ker z+ber z In z, kei z+bei z z      I n


                z(kerlz+berl z In z), z(kei, z+beil z z)    I n


                z=O(.1)1, 9D
            Kelvin Functions-Modulus and Phase ( 0 1 ~ 1 7 ) . . .
                                                             .                      432
                  Mo(4, eO(4, Ml(d, el(4
                  N O ( 4 , 40(4, N1(4,41(4
                  z=0(.2)7, 6D
              Kelvin Functions-Modulus and Phase for Large Argu-
               ments (6.6535 a ) . . . . . . . . . . . . . . . .
                                         .                                          432
                                   eo(z)
                  z+e-”’J2Mo(z),-(z/./z),   z+e-Z/~Mlel(z)-(z/Jz)
                                                      (z),
                  z+ezlJ2No(z>, + (z/./z>,
                                 40(4       zifez’.“N(z),(2)+ (z/./z)
                                                       $1
                  z-’= -.Ol)O, 5D
                          .15(




     The author acknowledges the assistance of Alfred E. Beam, Ruth E. Capuano, Lois K.
Cherwinski, Elizabeth F. Godefroy, David S. Liepman, Mary Orr, Bertha H. Walter, and
Ruth Zucker of the National Bureau of Standards, and N. F. Bird, C. W. Clenshaw, and
Joan M. Felton of the National Physical Laboratory in the preparation and checking of the
tables and graphs.
9. Bessel Functions of Integer Order
                                          Mathematical Properties

Notation                                                              Bessel Functions J and Y
   The tables in this chapter are for Bessel func-        9.1. Definitions and Elementary Properties
tions of integer order; the text treats general
orders. The conventions used are:                                         Differential Equation
   z=z+iy; z, y real.                                                   d2w
                                                                      22-+2     dw
                                                                                -+(22-v2)w=O
   n is a positive integer or zero.                       9.1.1         dz2     dz
   v, p are unrestricted except where otherwise
indicated; v is supposed real in the sections devoted     Solutions are the Bessel functions of the f i s t kind
to Kelvin functions 9.9, 9.10, and 9.11.                  J*.(z), of the second kind Yv(z) (also called
   The notation used for the Bessel functions is          Weber’s  function) and of the third kindH$”(z),H:z)(z)
that of Watson [9.15] and the British Association         (also called the Hankel functions). Each is a
and Royal Society Mathematical Tables. The                regular (holomorphic) function of z throughout
function Y,(z) is often denoted Nv(z) by physicists       the z-plane cut along the negative real axis, and
and European workers.                                     for fixed z ( f 0 ) each is an entire (integral) func-
   Other notations are those of:                          tion of v. When v= &n, Jv(z)hrts no branch point
Aldis, Airey:                                             and is an entire (integral) function of z.
                                                             Important features of the various solutions are
     G,(z) for -+rY,(z),K,(z) for (-)*K,(z).              as follows: Jv(z)(9?v20) is bounded as z+O in
                                                          any bounded range of arg z. Jv(z) and J-,(z)
Clifford:
                                                          are linearly independent except when v is an
                C,(z) for ~-4~J,,(2fi).                   integer. J.(z) and Y ( ) linearly independent
                                                                                  , z are
                                                          for all values of v.
Gray, Mathews and MacRobert [9.9]:                            H!’)(z)  tends to zero as IzI+- in the sector
                                                          Oag ;T<Z
                                                            <r           Hi2)(z)tends to zero lzl--+m in the
                                                                                              as
         Y,(z) for +rY,(z)+ On 2--r)J,(z),                sector -r<arg      O<.
                                                                              z      For all values of v, H!”(z)
         -                                                and H!”(z)are linearly independent.
         Y,(z) for revr*sec(va) Y,(z),
         0,(2) for +7riH:1)
                         (2).

Jahnke, Emde and Losch [9.32]:                                        Relatione Between Solutions

             a&) for r   (Y+   1)($2) - ’ (2).
                                         J ,                                  J,(z) (m)- J-,(z)
                                                                                  COS
                                                          9.1.2      Y,(z)=        sin (m)
Jeff reys:
                                                          The right of this equation is replaced by its
H.s,(z) for HY(z), Hi,(z) for H?)(z),                     limiting value if v is an integer or zero.
                                 Kh,(z) for (2/a)K,(z).   9.1.3
Heine:
                 K (2) for- ~ P Y(2).
                  ,               ,
Neumann:
         Yn(z) for )?rY,(z)+(ln 2--y)Jn(z).
Wbittaker and Watson [9.18]:
               K,(z) for cos(vir)K,(z).
       358
BESSEL FUNCTIONS OF INTEGER ORDER                             359




                                                L             I



                                                              9.2.    Ylo(x),
                                                         FIGURE Jlo(z),     and
                                                            M o (z)=JJ:o (XI+ E (XI.
                                                                               o
    FIGURE Jo(z),YO@),
         9.1.        Jl(z), Yl(z>.




                                                     ’   FIGURE J,.(lO) and y”(10)-
                                                              9.3.




FIGURE Contour lines of the modulus and phase of the Hankel Function HP(x+iy)=MoefSo. From
       9.4.
  E. Jahnke, F. Emde, and F. Losch, Tables of higher functions, McGraw-Hill Book CO.,Inc., New
  York, N.Y., 1960 (with permission).
360                                                  BESSEL FUNCTIONS OF INTEGER ORDER

             Limiting Forms for Small Arguments                                              Integral Representations
                                                                             9.1.18
   When v is fixed and z+O
9.1.7
                                                                               J~ =;
                                                                                (2)
                                                                                      1
                                                                                          S,’ cos (z sin
                                           (VZ-1,       -2, -3,     . . .)   9.1.19
 Jv(z)-($z)v/r(V+l)
9.1.8                              In z
           Yo(z)--iH~1)(z)~~H~2)(z)~(2/~)                                       ~,(z)=f    I”   cos (z cos e) {r+h sin2 e) 1 d~
                                                                                                                 (22

9.1.9                                                                        9.1.20
YJZ)     - --i~:l)      (2) - i ~ : 2 )   (z)   --   ( I / ~r (.) ($2) -I
                                                            )
                                                                  (9v>O)
                            Ascending Series

                                                                             9.1.21
                                                                                                       COS   (zsin e-&)&
9.1.11
              ($E!)-”      n-1   (n-k-l)!
Y,(z)=--
                  T        k=O      k!    (tz”>”
                                                                             9.1.22




where $(n)is given by 6.3.2.



9.1.13




                                                                             9.1.26


                                                                             In the last integral the path of integration must
                                                                             lie to the left of the points t=O, 1, 2, . . . .
{
                                  BESSEL FUNCTIONS OF INTEGER ORDER                                                          361
                                                          and
                                                                                           4
                                                          9.1.34               pa,- qvr,=-gab

                                                                            Analytic Continuation
                                                            In 9.1.35 to 9.1.38, m is an integer.
                                                          9.1.35               ze’” =em- J (
                                                                             Jv(          ,z)
                                                          9.1.36
                                                                   =e-mvrfYv(z) sin(mvr) cot(vr) J,(z)
                                                           Y,(zemrf)         +2i
                                                          9.1.37
                                                          sin (v~)H:~) = -sin
                                                                   (amr      f,              sin(mvr) H!’)
                                                                                                         (2)
                                                                                                            }
                                                                                                (m- 1) v r H;l)(z)

                                                          9.1.38
                                                                    (amr? (m+ 1) v r )2 : (z)
                                                          sin(vr)H;’)    =sin                3’   )
                                                                                    +e v r f sin (mvr)H:’)
                                                                                                         (z)




                                                                                                                {{
                                                          9.1.39
                                                                                -e-vrfH$’) 0
                                                                      H!l)(zerf)=
                                                                          H:’) = -p*Hil’(z)
                                                                            (ze-rf)
                                                          9.1.40
                                                                        -                           -
                                                                JIG)=Jv(z)            Y,G) = Yv(z)
                                                            H;l)(Z)=m)                    Hr)(Z)=Hm                    (V    real)
                                      (k=O, 1,2, . . .)
9.1.31                                                             Generating Function and A m i a t e d Serier
                                                                                      m
                                                          9.1.41       eW-W)=
                                                                                 k--m
                                                                                           t*Jk(Z)          (tW
                                                                                                       m
                                                          9.1.42 cos (z sin e)=Jo(z) +2 C Jzk(z) (2M)
                                                                                              cos
                                                                                                      k=l
                                                                                           m
                                                          9.1.43 sin (z sin e)=2                 Jnk+l(~)
                                                                                                     sin (2k+l)O}
                                                                                          k-0

                                                          9.1.44
                                                                                                m
                                                            COS (Z COS    e)=Jo(z)+2                 (-)kJzk(~)
                                                                                                           COS (2M)
                                                                                              k-1

                                                          9.1.45
                                                                                 m
                                                            sin (z cos e)=2            (-)kJ2k+l(z)cos (2k+l)B}
                                                                                k-0



                     v          v+l
         P.+l+T,=;       p,--    b P+
                                   Vl
                     v          v+l
         rv+1+qv=- p,-- a P?+l
                 b
                     1         1      3
                8.=2     P..+l+ZP.-I-& p,                 9.1.48      sin z=2J~(z)-25,(2)+2J5(z)-                    . . .
362                                                  BESSEL FUNCTIONS OF INTEGER ORDER

                       Other Differential Equations

9.1.49        w" 4-      (  x2--
                                   3-
                                    z2
                                         3)w=o,           w=zQ?,(hz)
                                                                                          Derivatives With Respect to Order

9.1.50        wf       +(E--)      3-1        w=o,
                                                                                9.1.a




                   {
9.1.51        W"       +X22P-2~=0,              W=Z+     %?llp(2X~fP/p)
9.1.52
                                                                                9.1.65
                   2v-1
          W''--               w1+X2w=O,                w=z*%v(Az)
                        Z

9.1.53
                                                                                                      b
21w" + (1 -2p)m' + (A7$9g+p=-                           3$)w= 0,                           --c9c   (4avJJZ)
                                                                                                     -          - r . (2)
                                                                                                                7J
                                                           w =ZP%,(XZ~)                                         (VZO,   f l ,f2, . . , )
9.1.54                                                                          9.1.66
            w" + (A2eZ2- v2)w= 0,                     w = U,(Ae2)




{
9.1.55
2(2-v2)w"+z(z~-33)w'                                                            9.1.67
       + (22--3)2--(~+v~)}w=O,                                 w=U:(z)
9.1.56
          w(*n) (-)"A2nZ-nw,
              =                                 w= z*'Un(2Aazj)                 9.1.68
where a is any of the 2n roots of unity.
             DiEerentiaI Equations for Products
                           d                                                      Expreaaions in Terms of Hypergeometric Functions
     In the following QE z -and U,(z), 9,(z) are any
                                         dz
cylinder functions of orders v,                   p   respectively.             9.1.69

9.1.57
    94-                       w
          2(v"+ s)tp2+ (9- p*yj
            +422(9+ 1)(9+2)~=0,                          ?~=%',(z)52~(2)
                                                                                9.1.70
9.1.58
Q(Q2-43)~+4zP(Q+1)~=0,                                 ~=U.(z)gv(z)
                                                                                as A, p+= through real or complex values; z, v
915
 ..9                                                                            being fixed.
Zaw"'+2(4~?+ 1-49)~'+(43- l)w=O,                                                   (oF1is the generalized hypergeometric function.
                                                                                For M(a, b, z) and F(a, b;c; z) see chapters 13 and
                            w = zU,(                                2) 9 I(2)
                                                                                15.)
                                   Upper Bounds
                                                                                         Connection With Legendre Functions
9.1.60       JJ. I I 1 (V>_O),
               (2)                            1 J, I I/&
                                                  (4 5               (v 2 1)
                                                                                  If p and z are fixed and v+-           through real
                                                                                positive values
                                                                                9.1.71
                                                                                                          1 =J,,(z)     (z>O)
BESSEL F”CT1ONS            OF INTEGER ORDER                                                     363
9.1.72                                                                                 In 9.1.79 and 9.1.80,
                                                                                      w=~(u2+2?-2uv cos a),
  lim (I+”;’          (cos       E)}=-4rY,(z)                         (~>0)                       u-v cos a=w cos x, v sina=w sin x

  For P;’ and Q;”, see chapter 8.                                                     the branches being chosen so that 2o--vu and x+O
                                                                                      as v+O.   C‘X)(cos is Gegenbauer’s
                                                                                                        a)                   polynomial
                             Continued Fractions                                      (see chapter 22).
9.1.73
J’(4
-
-                    1               1           1                          ...
J,-l(2)-2vz-’--                  2(v+1)2-’- 2(v+2)2-l--
           -34.
           -- iz2/{            b+1) (v+2) 1 , . .
                  y(v+1) 1 tz2/{
               1-                 1-                             1-
                         Multiplication Theorem
9.1.74
                                                                                                        G e g e n h w ’ saddition theorem.
WPr(Xz)=X*’          c m

                     k-0
                                          g
                             (F)*(~*-1)*(3~)* (z)
                                         k!                      ’33
                                                                                         If u, v are real and positive and 0 Sa Sa, then w, x
                                                                      (IX’-ll<l)      are real and non-negative, and the geometrical
                                                                                      relationship of the variables is shown in the dia-
If W= J and the upper signs are taken, the restric-
                                                                                      gram.
tion on X is unnecessary.                                                                Thc restrictions Ive*‘”l< 1 . 1 are unnecessary in
   This theorem will furnish expansions of V W e )                                    9.1.79 when g=J ,, is an integer or zero, and
                                                                                                             and
in terms of Y,*k(r).                                                                  in 9.1.80 when Y=J.
                             Addition Theorems                                        Degenerate Form (u= 0):
Neumann’s
                                                                                      9.1.81
9.1.75       %‘,(uz!d=             5 %‘,~&)Jdv)                          (Ivl<lul)
                                                                                      et0   “06a=r(v)(32))-v     2 (v+k)i*J,+r(v)C:”(cosa)
                                                                                                                k-0
                                  ki-m                                                                                                 ( Y Z O , -1, . . .)
The restriction l ll l
                v<u                           is unnecessary when                     Neumann’sExpansion of an Arbitrary Function in e
%‘= and v is an integer or zero. Special cases are
  J                                                                                              Series of Beasel Function8


9.1.76                     l=JX2)+25                  Z 2
                                                       ( )
                                                                                      9.1.82 f(z)=aoJo(z)+2             2aJ&)
                                                                                                                        k-1
                                                                                                                                             (Izl<c)
                                              k-1

9.1.77                                                                                where c is the distance of the nearest singularity
                                                                                      off(z) from z=O,
o c
 =  2n
         (-)*Jk(Z)JP,-*(z>               +2   5J*(z)Jz,+r(d                  (n21)
   k-0                                        k-1
                                                                                      9.1.83 a*=-1
                                                                                                2a-i        J  +e’
                                                                                                                      f(t)O*(t)dt        (CC
                                                                                                                                         O’)
                                                                                                                                          <<
9.1.78
                                                                                      and O,(t) is Neumann’spolynomial. The latter
                                                    c(-)*Jdz)J,+dZ)
                                                     m
 Jn(2Z)=e            Jr(Z)J,-i         (2) 4-2                                        is defined by the generating function
              k-0                                   k-1

Graf”e
                                                                                      9.1.84

9.1.79                                                                                  L=JO(z)Odt)+2 k-1
                                                                                        t-2                           5J&)odt>                 (Izl<tl)
%‘’(W)
         cos
         sin vX= k--m      c W,+&)J*(v)
                             m
                                                          cos
                                                          s . ka(lveftal<lul)         O,(t) isapolynomialof degreen+l in l/t; Oo(t)=l/t,
                                                                                      9.1.85
Gegenbauer’s
                                                                                                        n(n-k-l)!         2 “-a+*       (n=1,2,. . .)
9.1.80                                                                                w - 4    -’% ko
                                                                                                    l        k!         (t>
-d ~ ) - ~ , ~ ( ~ (v+k)
*-
  W’
                   )       2              W p + t ( ~ ) JP+$v)
                                              U’             V
                                                                       c(x’(cos The more general form of expansion
                                                                           a)
                           k-0

                                          (v#O,-l,.              . ., Ive**al<IuI)
                                                                                      9.1.86         j(z) =ao~.(z>+2          5 aJv+*(z)
                                                                                                                              k-1
364                                 BESSEL F"CT1ONS                OF INTEGER ORDER

also called a Neumann expansion, is investigated                    9.2.6
in [9.7] and [9.15] together with further generaliza-               Yv(z)=~'2/(rz){P(v, sin x+Q(v, z) cosx}
                                                                                     z)
tions. Examples of Neumann expansions are
9.1.41 t 9.1.48 and the Addition Theorems. Other
        o                                                                                                                         (la% 2 <
                                                                                                                                        1
examples are                                                       9.2.7
9.1.87                                                             H,'"(z)=,/G){P(v,
                                                                                  z)+iQ(v, z)jefx
                                                                                                                        (-T<arg        2<2r)
                                    (VZO, -1,-2,.         .   .)    9.2.8
9.1.88                                                                (z)
                                                                   H!2) =        d        m   {    P( z) -iQ(v, z) }e-fx
                                                                                                     v,
         n!($z)-" n-1
Y, (2) =--
                        (+Z>Vk(Z)
                                                                                               (-2a<arg   z<r)
             T           (n-k)k!                                   where x=z-(+++)u and, with 4v2denoted byp,
                                                                   9.2.9



where +(n)is given by 6.3.2.                                                                  +    b-1) (p-9) (p-25) (p-49) - . . .
                                                                                                            4! (82)'
9.1.89                                                             9.2.10


                                                                            -cc--l                (~--~)(P-9~(cC--5)+ . . .
    9.2. Asymptotic Expansions for Large                                             82                 3! ( 8 ~ ) ~
                   Arguments                                         If v is real and non-negative and z is positive, the
                                                                   remainder after k terms in the expansion of P(v, z)
            Principal Asymptotic Forms
                                                                   does not exceed the (k+l)th term in absolute
  When Y is fixed and   lz1+co                                     value and is of the same sign, provided that
                                                                   k>$u-f.      The same is true of &(v,z, provided
                                                                   that k>$v-t.
                                                                             Asymptotic Expaneione of Derivative8

                                                                     With the conditions and notation of the pre-
9.2.2                                                              ceding subsection
Yl(4    =m                                                         9.2.11
                                                                   JL(z>=J~{                      --~(v, z) sinx--S(v, z) cos         x}
                                                                                                                                  (la% zl<r)
                                                                   9.2.12
                                                                   Y:(z) =JG) x- S(v, z) sin x)
                                                                           { R(v, z) cos
                                                                                                                                  (larg zl<r>
                                                                   9.2.13
          Hankel's Asymptotic Expansions
                                                                                         z)
                                                                   H;l)'(z)= 42/(~z){iR(v, --S(v,                       z)}e'x
  When v is k e d and 1zI+-                                                                                            (-7r<arg       z2)
                                                                                                                                       <r
9.2.5                                                              9.2.14
J,(z)=J-a/(rz){P(v, cosx-QQ(v,2) sinx)
                  2)                                               ~!2)'(z)=,/m{                    - - i ~ ( v , z)--~(u, z))e-'X
                                            I
                                           ( arg   4
                                                   I *<
                                                                                                                       (-2r<arg        z<r)
BESSEL m C T I O N S OF INTEGER ORDER                                                  365
9.2.15                                                       9.2.29




                                   {
                                                                         (p- 1) (p-25)       (p-1) (p2- 114p+1073)
                                                                     +       6 ( 4 ~ ) ~+            5 (42)
9.2.16
                                                                             1) (5p3- 1535p2+54703p-375733)
                                                                     + (p-              14(4.)’
                                                                                                                 + . ..

                                                             9.2.30
                                                               X--{1--
                                                                   2              --- 1 . 1 (c’-l)(Cc-45)-*.
                                                                                1 p-3                                *)
                                                                      ax        2 (2x12 2 . 4   (2x14
                      Modulus and Phase
  For real v and positive x                                  The general term in the last expansion is given by
9.2.17                                                       -1 - 1 3 . . . (2k-3)
           M, = W (4I =.I{ c m x ) + E(2)
                I                        1                         2 . 4 - 6 . . . (2k)
         8,=arg H:’)(x)=arctan Y,(x)/Jv(x))                      (p-l)(p-9).       .   .{/~-(2k-33)~}{p-(2k+1)(2k-l)~}
                                                             X
                                                                                              (22)

                                                  }
9.2.18                                                                                           2k

               N”=~H~”’(2)1=.I{JL’(x)+Y:’(x)}               9.2.31
         (p,   =arg Hi1) = arc tan Y (x)/ L
                       (x)’        L J(x)
                                                                                       p+3       p2+46p-63
9.2.19 J,(x)=M, cos e,,           Y,(x)=M, sin         e,,   qJ”-X-(+v-;)        f+
                                                                                 +
                                                                                 i-
                                                                                       2(4x)       6(4~)~
9.2.20 J:(x)=N, (pv,
              cos                 Y:(x)=N,sin (pV.                                        p3+ 185p2-2053p$    1899
                                                                                       +              5(42)
                                                                                                                 +..      .
  In the following relations, primes denote differ-
entiations with respect to x.                                  If v 20,the remainder after k terms in 9.2.28 does
9.2.21         M: =2/(a~)
                :
                e             xv:(2-
                                =2         v2)/(if$)         not exceed the (k+l)th term in absolute value
                                                             and is of the same sign, provided that k>v-$.
9.2.22           =M;2+A4;e:2 M:’
                            =   +4/(rxMy)’
9.2.23          (2-v2)MPM~+ZN,N:XX
                              +  =O
                                                             9.3. Asymptotic Expansions for Large Orders
9.2.24
                                                                              Principal Asymptotic Forms
          tan         0 . =M,O:/M:=2/(axMyM~)
                 ((py -   )
                  M,N,sin ((pV-e,)=2/(ax)                      In the following equations it is supposed that
                                                             v+ OJ through real positive values, the other vari-
9-2-25 2M;’ xM:(2P)Mv-4/(11.2M:)
          +   + -              =O                            ables being fixed.
9.2.26
                                                             9.3.1
2w”’tx(42+ 1-4v2)w’+ (4v2- l)w=O, w=xM




    Asymptotic Expansions of Modulus and Phase
  When v is fixed, xis large and positive, and p=4v2         9.3.2
9.2.28                                                                                     ,v(tsnh a-a)
366                                  BESSEL FUNCTIONS OF INTEGER                ORDER

9.3.3                                                           9.3.9
J (v sec @) =
 .
         J2/(7rv tan 8) {cos (v tan p- vp-   &)+ O (v-1)
                                                 <o<a<a*>
                                                            }   uo(t)=l
                                                                ~l(t)=(3t-5t?/24
                                                                UZ (t)== (8lt2-462t4+ 385t6)/l152
                                                                u3(t)=(3O375t3-3 69603t5+7 65765t7
Y.(v sec p)=                                                                                   -4 25425t9)/4 14720
                                                                ~ 4 ( t = (44 651255'- 941 21676ts+3499 22430t'
                                                                        )
        J2/(?rv tan @) {sin (v tan p-vp-$n)+O(v-*)}
                                                                          -4461 85740t"+ 1859 10725t12)/398 13120
                                                 (O<P<h)
9.3.4                                                                For u5(t) and u,(t) see [9.4] or [9.21].
        J& +ZV%)=2%-46 Ai( -2542)+O(v-l)                        9.3.10
        Y,(v+zvB)=-2!%-H       Bi(-Pz) +O(v-l)                  Uk+l(t)   = it'( 1-   tz)>d (t)+g1   ' (1-5t2)u,(f)dt
                                                                                                     0
                                                                                                               (k=O, 1 , . . .)
9.3.5                                                           Also
                               2% 1                             9.3.11
                   Y&)---            -
                             3 W ($) d 4
                                                                J:(v sech a)   -




                                {
                                                                9.3.12
                                                                Y:(v sech a)

                                                                                                         k=l
                                                                                                                             1
                                                                where
                                                                9i3.13
                                                                vo(t)=l
                                                                v,(t)= (-9t+7f!)/24
                                                                                +
                                                                vz(t) = (- 135% 594t'-455te)/1 152
   In the last two equations is gL*Ten y 9.3.38 and
                                             I                  v3(t)=(-42525t3+4 51737t'-8 83575P
9.3.39 below.                                                                                4-4 75475t9)/4 14720
                                                                9.3.14
                                                                vk(t)=uk(t)+t(t2-1){ ~uk-l(t)+tu~-l(t)}
             Debye's Asymptotic Expansions                                                         (k=1, 2, . . .)
                                                                   (ii) If p is fixed, O<r
                                                                                        <$
                                                                                        p      and v is large and
  (i) If a is fixed and positive and v is large and             positive
positive

9.3.7




9.3.8
Y,(v sech a)-                                                   9.3.17



                                                                          = I - 81 cot28+462 cot' 84-385 cot6B+ . . .
where                                                                                           11529
BESSEL FUNCTIONS OF INTEGER ORDER                                                                367
9.3.18                                                                   9.3.26




                                                                                                                   {{
                    -3 cot ~ + cot3 B- . . .
                                5                                                           17     1
                            24v                                                    gl(z)=-- 70 z3+-
                                                                                                  70
Also


                                                                                         549 z8-- 110767 z5+- 79
                                                                                   g3(~)=-                                       z2
                                                                                           28000            693000      12375
9.3.20                                                                     The corresponding expansions for        (Y+ z ~ ~ / ~ )

~ : ( v sec   0)=.J(sin 20)/(rv){ 8) cos P
                                N(v,                                     and H!a)(v+~v1/3) obtained by use of 9.1.3
                                                                                            are
                                           -O(Y, 8) sin           e}     and 9.1.4; they are valid for --)r<arg v<#r    and
where                                                                    -#?r<arg   v<+r,  respectively.
9.3.21                                                                   9.3.27

                                                                               --y2/3
                                                                                     22/3          hk(z)
                                                                         J:(v+zv~/~)Ai' (-2ll3z) 1 )
                                                                                                  +c
                                                                                                   -
                                                                                                                         (ID



                                                                                                                         k=l V
         =1+ 135 cot2 /3+594 cot' 84-455 cot8B - . . .
                          11529




                                           {
9.3.22


                                                                                                                           }-
                                                                         9.3.28

                                                                         Y:(v+ zV1I3)    -   2213
                                                                                             y/
                                                                                              23    Bi' (-2ll3z)     1+CV
                                                                                                                       k-1
                                                                                                                           hdz)
  Asymptotic Expansions in the Transition Regions

   When z is fixed, IvI is large and larg v
                                          b
                                          I
                                          <
9.3.23                                                                   where
                       21/3
                                      {1+2}
     J . ( ~ + z v ' / ~ ) - Ai (-21/3~)
                             ~
                                        fk(z>
                                         -p     OD
                                                                         9.3.29

                            +Ai' (-2%)
                            v
                            22/3                                 gk(z)
                                                                 -
                                                          k;IO   VZkl3

9.3.24                                                                                              57
                                                                         -&I
                                                                         =)                    z5+-    22
                                                                                         100        70
    Y , ( V + Z V ~ 21~ Bi - ~
                    ~ 3 ) - (-2ll3z)
                     1                         l+C---)
                                                  fk(z)
                                                     OD

                                                k-1       V*I3                    699   2617      23
                                                                           h3(~)=- z8--      z3+-
                                                                                 3500   3150    3150
                             22/3
                            -- Bit (-21/3z)
                                V
                                                          2 &@
                                                          k-0    Val3              27       46631 $+-
                                                                                                    3889 z4-- 1159
                                                                           h4(z)=-     z"--
                                                                                 20000      147000  4620      115500
where
9.3.25                                                                   9.3.30
          1                                                                          3         1
 jl(Z) =-- z                                                                   I0(z) =5 z3-%
          5

 j*(z)=-i@
                      3
                      35
                  z6+-22                                                       I, (2) =-- z4+l
                                                                                         13'
                                                                                         140       5
 j3(z)=-957 z8- -173 z3-- 1                                                               9 28+- 5437 z5-- 593 z2
        7000    3150     225
                                                                               &(z) =-500-
                                                                                                   4500     3150
 j ( )-- 27 z10-- 23573 z7+- 5903 z4+- 947                                             369        999443     31727       947
  4 2 -                                                                        &(z)=-        z9--        z8+-       z3+-
        20000     147000     138600   346500                                           7000       693000     173250    346500
368




9.3.34 Y:(v)        - 1 +c
                     3ll2b
                     7 k=l 5{
                           'Yk
                           v
                                           BESSEL FUNCTIONS IF INTEGER ORDER

                                                                            9.3.37



                                                                                                     +e2ri13Ai v5/3
                                                                                                                (e2ri13v2f3
                                                                                                                I




                                                                              When v++ m , these expansions hold uniformly


                                                                            sponding expansion for H?'(vz) is obtained by
                                                                                                                          I -%




                                                                            with respect to z in the sector larg z]5 ?r- e, where
                                                                            e is an arbitrary positive number. The corre-
                                                                                                                                  k=O
                                                                                                                                          bdl)
                                                                                                                                          V*




                                                                                                                          {
where                                                                       changing the sign of i in 9.3.37.
                                                                              Here
       21
        13
a=-=.44730                  73184,     3+a=.77475 90021                     9.3.38
   321317($1
      21
       23
b=--.41085                  01939,     3*b=.71161 34101
   31f3r(g)-
               ffo=l,       cy1=--=-  .004,                                 equivalently,
                               225
         ~r2=.000693735 . . .,    ~~3=-.00035 38 . .                    +
                                                                            9.3.39
                    1
                Bo=7q=.O1428 57143. . .,

                 1213 =-.00118 48596.. .,                                   the branches being chosen so that is real when
           'l=-10 23750
                                                                            z is positive. The coefficients are given by
         &=.00043 78 . . ., &=-.OOO38 . . .
                         23
          */o=I,     71=-=.00730             15873   .   1   .,
                        3150
    yz=- .00093 7300 . . .,            73=   .00044 40        . .   .
,5' ,6    1         -   947 = -
                        ~
                                  .00273 30447 . . .,
                      3 46500
         62=   .00060 47 . . . , 63= -.00038 . . .

                Uniform Asymptotic Expansions
  These are more powerful than the previous ex-                             9.3.41
pansions of this section, save for 9.3.31 and 9.3.32,                                                                             6sfl
                                                                                     (284-1) (2~+3) . . (68-1)
                                                                                                     .
but their coefficients are more complicated. They                             ha=
                                                                                              s! (144)'             9   p,=--
                                                                                                                                  6s- 1 A,
reduce to 9.3.31 and 9.3.32 when the argument
equals the order.                                                             Thus a,,({) 1,
                                                                                        =
9.3.35
                                                                            9.3.42
                                                                                            5    1          5                 1
                                        Ai'(v2I3{)            bk({)
                                                                              bo({)   =-=+?          124(1 -z2)3/2-8(1        -z2)i   1
                                       +     v5/3        27             1             =-- 5        1           5         1
                                                                                          48l2+(-s)i      '24(z2- 1)312+8(~2- 1
                                                                                                                           1))
9.3.36
                                                                            Tables of the early coefficients are given below.
                                                                            For more extensive tables of the coefficients and
                                                                            for bounds on the remainder terms in 9.3.35 and
                                                                            9.3.36 see t9.381.
369




                                                                                               {-
                                                BESSEL FUNCTIONS OF INTEGER ORDER

          Uniform Expansions of the Derivatives
  With the conditions of the preceding subsection
9.3.4!3
                                                                                Co({)"-pj 1 p+.146{-',                   d,({)=.OO3.


                                                                    For {<-lo            use
                                                                                     1
                                                                        bo(t))"z r2, a1(f)=.000,

                                                                         CO@)    "   --pj              -1.33 (-f) -5/2,        d, ({)= .OOO .

                                                                    Maximum values of higher coefficients:
                                                                      I bl ({)1 = .OO3,              J u ~ = .0008,
                                                                                                       ({)   I               Id2 ({)I = .001
                                                                      Icl({)I=.008 ({<lo),                   C1({)--.003{* as      {++OD.


                                                                                9.4. Polynomial Approximations
where
                                                                    9.4.1                                  -31x13
9.3.46
                            2kS1                                    J~(x)
                                                                       = 1-2.24999 97(~/3)'+1.26561 0 8 ( ~ / 3 ) ~
      ck({)=-r*              C
                             8=0
                                            (1--2)-tl
                                   ~~{-~~/~v2+~+1(
                                                                                 -.31638 66(~/3)~+.04444
                                                                                                      79(~/3)'
                     2k
      d&)        =E  ia{-3sflv2k-x{ -z2)-t}
                                   (1                                                    -.00394 44(~/3)'~+.000210 ( ~ / 3 ) ~ ~ + ~
                                                                                                               0
                  =O 8
                                                                                                     5
                                                                                                     1
                                                                                                     tl
                                                                                                     X
                                                                                                     <            10-8
and vk is given by 9.3.13 and 9.3.14. For bounds
on the remainder terms in 9.3.43 and 9.3.44 see                     9.4.2                                  0<x13
[9.381.
                                                                    Yo(x)= ( 2 / ~ln($x)J,(x) + .36746 691
                                                                                   )
           1                        a
                                    1   (r)     Gd-r)    di   (r)               +.60559 366(~/3)'-.74350 3 8 4 ( ~ / 3 ) ~
                                                                                + .25300 1 17 (2/3)'- .04261 2 14(~/3)
                 0       0.0180 -0. 004        0. 1587   0. 007
                 1        .0278 -. 004          . 1785    . 009                    + .00427 916(~/3)"- .00024 846 ( ~ / 3 )
                                                                                                                        12+                    t
                 2        . 0351 -. 001         . 1862    .007
                 3
                 4
                          . 0366 +. 002
                          .0352    .003
                                                . 1927
                                                .2031
                                                          .005
                                                          .004
                                                                                                    <ltI     1.4X lo-*
                 5        .0331    . 004        . 2155    .003
                 6        .0311    . 004        . 2284    . 003     9.4.3                                  31x<    03
                 7        . 0294   .004         . 2413    .003
                 8        . 0278
                          . 0265
                                   .004
                                   . 004
                                                . 2539
                                                . 2662
                                                          . 003
                                                          . 003
                                                                            Jo(x)=x-tfo cos e,                    Yo(x)=x-+j, sin e,
                 9
                10        .0253    .004         . 2781    . 003
                                                                    fo=.79788 456- .OOOOO 077(3/~) .00552 740(3/~)'
                                                                                                 -
                                                                                 -.00009 512(3/~)'+.00137 237(3/~)'
          --r            bo(r)      a1   (I)    d-r)
                                                                                     -.00072 805(3/~)~+
                                                                                                     .00014 476(3/~)*+t
                0        0.0180 -0.004         0. 1587    0. 007
                 1        .0109 -. 003          . 1323     .004                                     [el< 1.6X lo-*
                 2        . 0067 -. 002         . 1087     . 002
                 3        . 0044 -. 001         . 0903     . 001      2 Equations 9.4.1 to 9.4.6 and 9.8.1 to 9.8.8 are taken
                 4        . 0031 -. 001         .0764      . 001    from E. E. Allen, Analytical approximations, Math. Tables
                 5        .0022 -. 000          . 0658     . 000    Aids Comp. 8, 240-241 (1954), and Polynomial approxi-
                 6        . 0017 -. 000         . 0576     . 000
                 7        . 0013 -. 000         . 0511     . 000    mations to some modified Bessel functions, Math. Tables
                 8        fool1 -. 000          .0459      . 000    Aids Comp. 10, 162-164 (1956) (with permission). They
                 9        .0009 -. 000          . 0415     . 000    were checked at the National Physical Laboratory by
                10        .0007 -. 000          . 0379        .om   systematic tabulation; new bounds for the errors, e, given
                                                                    here were obtained as a result.
370                                   BESSEL FUNCTIONS OF INTEGER ORDER

e0=Z-    .78539 816- .04166 397(3/4
                                                         -      *t
                                                        J,.,~,y v . a
                                                   J,.,~,            and Y:,a respectively, except that z=O
                -.00003 954(3/~)~+.00262 573(3/~)~ is counted as the h t zero of J ( ) Since    Az.
                                                   Ji(z)=-Jl(z), it follows that
                -.00054 125(3/~)’-.00029 333(3/~)‘
                                                                                 .        *I

                              +.00013 558(3/x)’+a 9.5.1 jL,i=O,            ~o.s=ji.s-i    (s=2, 3, . .)

                      l 17
                      €<X 10-8                        The zeros interlace according to the inequalities
                                                        9.5.2
9.4.4                -35x53
                                                                                  ~.,l<~.+l,l<j.,Z<j~+,,Z<jU,3<                   *        *    .
                            +~
z-’J (z)=*- A6249 985( ~ / 3 ) .21093 573(~/3)’
   1
                                                                             Y*.l<Y~+l.l<Y..2<Yv+l.2<Yu.3<                                 *    -
               -.03954 289(~/3)’+
                                .00443 319(~/3)’
           -.00031 761 (~/3)”+
                             .00001 109(~/3)’~+€        &j:,         Y
                                                                     I,
                                                                     <.     Y
                                                                            <,:
                                                                            I              ,<A,
                                                                                        ~<j., 2

                    lt1<1.3X10-8                                                            < ,.
                                                                                            Y      , :Y<Z   2<jp,    2<   j;,<3   . . .
                                                        The positive zeros of any two real distinct cylinder
9.4.5                  Ox 3
                        <5
                                                        functions of the same order are interlaced, as are
zYl(s)=(2/?r)xln(~s)Jl(z)-.6366198                      the positive zeros of any real cylinder function
                                                        %‘,(z), defined as in 9.1.27, and the contiguous
             + .22120 91 (~/3)~+2.16827 09(x/3)’
                                                        function V,+,(Z).
             -1.31648 27(~/3)’+ .31239 51 (2/3)’          If pv is a zero of the cylinder function
          -.04009 76(~/3)”+  .00278 73(Z/3)12+c
                                                        9.5.3 Vp(z) J,(z) cos(d) + Y ( )
                                                                  =                 , z sin(?rt)
                    /al<l.lXlO-’                        where t is a parameter, then
9.4.6                  3 Is<
                                                        9.5.4                            =
                                                                            u:(P,)=u.-l(P.)- U . + , ( P . >
        J1(z)=s-+jl
                 COS   e,,        Yl(x)=x-+jl sin e,    If u. is a zero of W;(z) then
fi=.79788 456+.00000 156(3/~)+.01659    667(3/~)~
       +.00017 105(3/~)~-.00249   511(3/~)’
           +.00113 653(3/~)~-  .00020 033(3/~)’+~ The parameter t may be regarded as a continuous
                  I 1X
                   C4<   10-8                     variable and pr, u, as functions p . ( t ) , u,(t) of t. If
                                                  these functions are fixed by
 e1=~-2.356i9 449 + .12499 612 (3/4
                                                  9.5.6        p,(O)=O,      u.(o)=j;, 1
       + .00005 650(3/~)’-.00637 879(3/~)~
                                                  then
       + .00074 348(3/~)‘+.00079  824(3/x)‘
                            -.00029 166(3/~)’++t 9.5.7
                                                              j”,*=P,(s),               Y.,I=Pu(s-3)                (s=l,2, .         .I
                     lt1<9X10-8
                                                        9.5.8
  For expansions of Jo(s), Yo(s>,Jl(z),and Yl(x)
in series of Chebyshev polynomials for the ranges            ji,a=gv(s-1),                y;.a=Cv(s-$)               (s=l, 2,              *)
05s<S and 0<8/z5l, see t9.371.

                     9.5. Zeros
                     Real Zeros                                                         Infinite Products
  When Y is real, the functions J,(z),Jl(z), Y,(z)
and Y:(z) each have an infinite number -of real
zeros, all of which are simple with the possible
exception of z=O. For non-negative Y the 6th
positive zeros of these functions are denoted by
BESSEL FUNCTIONS OF INTEGER ORDER                                             371
                                  McMahon's Expansions for Large Zeros
    When v is fixed, s>>v   and p=45




                                                -64(p-l) (69494-1 53855p2+15 85743~-62 77237)- . . .
                                                                      105(8b)7
where P=(s+$v-4)a forjv,s,P=(s+$v-$)r for yI,*. With p=(t+4v-t)al                    the right of 9.5.12 is the
asymptotic expansion of pY(t) large t.
                            for




                                       -64(6949p4+2 9 6 4 9 2 ~ ~ - 48002p2+74 14380~-58 53627)- .
                                                                 12                                              . .
                                                                  105(88')'
where S'=(s+$v-q)a for jL.81      B'=(s+#v--))a for yl,,,B'=(t+$v+t)a for uI(t).             For higher terms in
9.5.12 and 9.5.13 see [9.4] or [9.40].
          Asymptotic Expansions of Zeros
       and Associated Values for Large Orders               Uniform Asymptotic Expansions of Zeros and
                                                                 Associated Values for Large Orders
9.5.14
   -
jy,l v+ 1.85575 71v1l3+1.03315 O V - " ~
         -.oo397v-'-.0908v-~/3+.043v-7/3+       . . .
                                                        9.5.22 j,.,-vz(r)+C    OD

                                                                              k=l
                                                                                    fk(r>   with { = ~ - ~ / ~ a ,

9.5.15                                                  9.5.23
yv,1-v+.93157 68vlf3+.26O35lv-li3
         + .01198v-'- .0060~-'~~- .001~-"~+ . .
                                           .
9.5.16                                                                                             with { = ~ - ~ / ~ a ,
j:.,-v+ 30861 65~'/~+.07249
                         Ov-lf3
                  -.05097~-'+ .0094~-"~+ . .
                                        .                                      (D



9.5.17                                                  9.5.24 j;,,-vz({)+C                 With { = ~ - ~ / ~ a :
                                                                              b-1    P-'
y, 1.~~+1.82109
 :               80~'/~+.94000 7v-l"                    9.5.25
                    -.05808v-'- .0540~-'~~+ . . .
9.5.18
JL(jv,l)
       ---1.11310 28~-~/~/(1+1.48460 - ~ / ~
                                       6 ~
         + .43294V-4/3-.1943v-2+ .019v-8/3+ . . . )     where a,, a: are the sth negative zeros of Ai@),
                                                        Ai'(z) (see 10.4), z=z(T) is the inverse function
9.5.19                                                  defined implicitly by 9.3.39, and
Y:(yv, m.95554 8 6 ~ - ~ / ~ / .74526 lv-2/3
      1)                       (1+
         +.10910v-'~3-.0185v-2-.003v-*/~+ . . . )       9.5.26
                                                                    h(O=I4t/(1--z2)It
9.5.20
JP(jL,1)
       m.67488 51~-'/~(1--.16172 ~ - ~ / ~
                               3                                    jl(r)   =Mr)Ih(r) 12bo(l)
                 + .02918~-~'~-.0068~-~+ . . )
                                            .                       m(n=3r-'z(r>{h(r)12co(r)
9.5.21                                                  where bo({), co({) appear in 9.3.42 and 9.3.%.
Y : J m.57319 40~-"~(1-
 &,                      .36422 O V - ~ / ~             Tables of the leading coefficients follow. More ex-
                 +.09077~-*~+.0237v-~+ . . ).           tensive tables are given in [9.40].
   Corresponding expansions for s=2, 3 are given          The expansions of yv. YXyv, y:. Iand Y ( :J
                                                                                 a,       a),        .Y.
in [9.40]. These expansions become progressively        corresponding to 9.5.22 to 9.5.25 are obtained by
weaker as s increases; those which follow do not        changing the symbols j, J, Ai, Ai', a, and a: to
suffer from this defect.                                y, Y, -Bi, -B?, b, and b: respectively.
372                                    BESSEL FUNCTIONS OF INTEQER ORDER


         -i-                      h (i-)               fl (i-)

         0. 0       1.000000      1. 25992
                                  -.   ~   _   .   .     0. 0143    -0.007     -0. 1260         -0.010         0. 000
         0. 2       1. 166284     1.22076                -. 0142     -. 005     -. 1335          -. 010         .002
         0. 4       1.347557      1. 18337                .0139      -. 004     -. 1399          -. 009         .004
         0. 6       1.543615      1. 14780                .0135      -. 003     -. 1453          -. 009         .005
         0. 8       1.754187      1. 11409                .0131      -. 003     -. 1498          -. 008         .006
         1. 0       1.978963      1.08220                0.0126     -0.002     -0. 1533         -0. 008        0.006


         -r
         -
         1. 0      1.978963       1.08220                0.0120     -0.002     -0. 1533         -0.008         0.006
         1. 2      2. 217607      1. 05208                .0121      -. 002     -. 1301          -. 004         .004
         1. 4      2. 469770      1.02367                 .0115      -. 001     -. 1130          -. 002         .003
         1. 6      2. 735103      0.99687                 . 0110     -. 001     -. 0998          -. 001         .002
         1. 8      3.013256        .97159                 .0105      -. 001     -. 0893          -. 001         .002
         2. 0
         2. 2
                   3.303889
                   3. 606673
                                  0.94775
                                   . 92524
                                                         0.0100
                                                          .0095
                                                                    -0.001
                                                                    -0.001
                                                                               -0.0807
                                                                                -. 0734
                                                                                           I    -0.001         0.001
                                                                                                                .001


                                                                                           I
         2. 4      3. 921292       .90397                 .0091                 -. 0673                         . 001
         2. 6      4. 247441       .a8387                 .0086                 -. 0619                         .001
         2. 8      4.584833        . 86484                .0082                 -. 0573                        0.001
                                                                                  -

         3. 0      4. 933192      0.84681                0.0078                -0.0533
         3. 2      5. 292257       .a2972                 .0075                 -. 0497
         3. 4      5.661780        . 81348                .0071                 -. 0464
         3. 6      6.041525        . 79806                .0068                 -. 0436
         3. 8      6. 431269       .78338                 .0065                 -. 0410
         4.0       6. 830800      0. 76939               0.0062                -0.0386
         4.2       7. 239917       .75605                 .0060                 -. 0365
         4.4       7. 658427       . 74332                .0057                 -. 0345
         4.6       8.086150        . 73115                .0055                 -. 0328
         4.8       8. 522912       .71951                 .0052                 -. 0311
         5. 0      8.968548       0. 70836              0.0050                 -0.0296
         5. 2      9.422900        .69768                .0048                  -. 0282
         5. 4      9.885820        . 68742               .0047                  -. 0270
         5. 6     10.357162        . 67758               .0045                  -. 0258
         5. 8     10.836791        . 66811               .0043                  -. 0246
         6. 0     11.324575       0. 65901               0.0042                -0.0236
         6. 2     11. 820388       .65024                 .0040                 -. 0227
         6. 4     12. 324111       .64180                 .0039                 -. 0218
         6. 6     12. 835627       .63366                 .0037                 -. 0209
         6. 8     13.354826        .62580                 .0036                 -. 0201
         7. 0     13.881601       0.61821               0.0035                 -0.0194


                                                                                      Complex Zeros of J,(s)
                            (--f)W)                         81(3)
                                                                       When v> -1 the zeros of J,(z)are all real. If
 0. 40          1.528915    1.62026            0.0040 -0.0224       v<-1    and v is not an integer the number of com-
  .35           1. 541532   1.65351             .0029 -. 0158       plex zeros of J,(z) is twice the integer part of
  .30           1. 551741   1. 68067            .0020 -. 0104
  .25           1.559490    1. 70146            . 0012 -. 0062      (-v); if the integer part of (-v) is odd two of
  .20           1.564907    1.71607             .0006 -. 0033       these zeros lie on the imaginary axis.
 0. 15          1.568285    1.72523            0.0003 -0.0014          If v20, all zeros of J ( ) are real.
                                                                                               Lz
  . 10          1.570048    1.73002             . 0001  -. 0004
  .05           1. 570703   1.73180             . m o o -. 0001
  . 00          1.570796    1. 73205            . w o o -. 0000

                                                                                      Complex &roo of Y,(r)

                                                                       When vis real the pattern of the complex zeros of
                                                                    P,(z) and Yv(z) depends on the non-integer part
                                                                    of v. Attention is confined here to the case u=n,
                                                                    a positive integer or zero.
I
         a=m=.66274 . . .                              FIGURE 9.6. Zeros ofHi’)(z)and Hi”’(z) . .
                                                                                               .
        b = + J m 2=.19146 . . .
                      I n                                               larg zl<?r.
and b=1.19968 . . . is the positive root of coth t   The asymptote Of the solitary infinite curve is
=t. There are n zeros near each of these curves.     given bY
Asymptotic expansions of these zeros for large n              Y~=-+In2=-.34657 . . .
BESSEL FUNCTIONS OF INTEGER ORDER                                                                375
                                                                   9.6.5
                                                                   Y,(zeW) =et(,+l)riI ,(z1 -(2/~)e-+*~K,(z)
                                                                                                                       (-*<a%      z<h)
                                                                   9.6.6        I-,(z)=l,(~), K-,(z)=K,(z)
                                                                     Most of the properties of modified Beasel
                                                                   functions can be deduced immediately from those
                                                                   of ordinary Bessel functions by application of
                                                                   these relations.


                                                                            Limiting Forms for Small Arguments
                                                              I:     When v is fked and z+O
                                                                   9.6.7
FIGURE e-zlo(z),e-zIl(~),eZKO(;C)e"Kl(z).
     9.8.                    and
                                                                       Iv(+(iz)yr(v+i)                           (vz-1,     -2, . . .)
                                                                   9.6.8                             Ko(z)--ln     z
                                                                   9.6.9        K,(z)-+r(V)(~Z)-'                      (gv>o)


                                                                                                 Ascending Series


                                                                                 1,(2)=(42)v 2 myv+k+i)
                                                                                                            o     (42")"
                                                                   9.6.10
                                                                   9.6.11
                                                                   Kn(z>=&(34-"                go k!
                                                                                                (n-k-l)!
                                                                                               n-1
                                                                                                                   (-322))"

                                                                                        + (-In+1             In ( 3 4 I n ( ~ )

                                                                    +(->"3(3d"                            (tz")"
                                                                                       2 INC+l)+W+k+l) 1 k!(n+k)!
                                                                                        k-0

                                                                   where +(n) given by 6.3.2.
                                                                             is
            FIGURE 1,(5) and K,(5).
                 9.9.
                                                                                   4z2 (2!)2
                                                                                  (1!)2 (+z">"
                                                                   9-6-12 Io(~)=l+-+-+-                                (tz2)3+*.
                                                                                                                        (3!)2
                                                                                                                                   .
               Relations Between Solutions                         9.6.13
9.6.2           K ( z ) = h I-,(z) -I,(z)
                                sin (y.)                           Ko(z)= - {h         (3Z)+YI~O(Z)              +m
                                                                                                                  4 z2

The right of this equation is replaced by its                                                           (4z">"                  (tz"3+*
                                                                                      +(1+3) (,!),+(1+3++)
limiting value if v is an integer or zero.                                                                                      (3!)2     a   -
9.6.3
        I,(z) =e-+prfJ,(zetrf)          (-r<arg       2<34                                            Wronskians
                                                                   9.6.14
        I,(z) =e3fl'/2J,(=-3"/2   1         (3*<arg    z 54
9.6.4
                                                                     W{    I)
                                                                           &,    )
                                                                                 &I             1 =I,(z)l-~,+l~(z)-I,+l(z)I-,(z)


                                                                                           }
                                                                                                     = -2    sin (vr)/(~z)
   K,(z)=)riet"'H~')(zet"') (-r<arg    z<$r)                       9.6.13
   K,(z)= -3rie-+*f HP)(ze-+")(- &<arg z <r)                       W{ ,K,(z)     I,(  z)       =
                                                                                               I
                                                                                               &)                 + (2)
                                                                                                            K,+l(z) Iv+l ZJ,z) = l/z
376                                       BESSEL FUNCTIONS OF INTEGER ORDER

                     Integral Representations                                   eurfKvany linear combination of
                                                                  %”, denotes I”,     or
9.6.16                                                          these functions, the coefficients in which are
   Io(z)=’S‘
         ‘ A 0                                                  independent of z and v.

9.6.17 K~(z)=--                         {?+In (22 sin2e)}&
                                                                9.6.27        I ( )
                                                                               ; Z    =   rl(z),      K (2)= -K~
                                                                                                       ;       (z)

9.6.18                                                                                Formulas for Derivatives
                                                                9.6.28




Ko(z) =l      0

                   cos (z sinh t ) d t = l mc
                                           *       dt                                 Analytic Continuation

                                                        (X>O)                 =em”’‘Iu(z) (m an integer)
                                                                9.6.30 Iu(zemrf)
9.6.22
                                                                9.6.31
K.(z)=sec (3m)
                        l-   cos (z sinh t) cosh (vt)dt
                                                                Kv(      t)   =e-mmf Kv(z)--?ri (mvn) csc (v?r)I,(z)
                                                                                              sin
      =csc (            l-
                    3 ~ ) sin (zsinh t) sinh (vt)dt
                                                                9.6.32 I.(Z)=I.(z),
                                                                                       -                       -
                                                                                                     K,.(B)=K,(z)
                                                                                                                  (m an integer)
                                                                                                                          (V   real)
                                          ( 9<11 z>O)
                                           14
9.6.23
                                                                      Generating Function and Associated Series

                                                                9.6.33                        2 tkIk(z)
                                                                                             k=-m
                                                                                                                (t#O)
                                                                                                       m
                                                                9.6.34        ez cOse=Io(z) C Ik(z)
                                                                                         +2       cos(k0)
                                                                                                     k-1
9.6.24 K.(z)=                      cosh (ut)&   (larg 2 <h)
                                                       1
                       J O

9.6.25

                                                                                                           2
                                                                                                    +2 k=l ( - ) ~ ~ ~ ( cOs(2ke)
                                                                                                                          z)

                                                                9.6.36    l=Io(~)-212(~)+214(~)-21~(~)+
                                                                                                     . . .

                                                                9.6.37 ez=Io(z)+211(2)+212(2)+213(2)+ .
                                                                                                    .                           ,



                                                                9.6.38 e-z=Io(z)-~11(2)+212(2)-~13(2)+ .                        .

                                                                9.6.39
                                                                    cosh ~ = I ~ ( z ) + 2 1 ~ ( ~ ) + 2 +216(2)+ . . .
                                                                                                         1,(~)
                                                                9.6.40 sinh 2=211(2)+213(z)+21~(2)+ . .
                                                                                                   .
 *See page   11.
BESSEL FUNCTIONS OF INTEGER ORDER                                     377
            Other Werential Equations
                                                      9.6.50   E m {v-pe-p"
  The quantity X2 in equations 9.1.49 to 9.1.54
and 9.1.56 can be replaced by -A2 if at the same        For the definition of P;" and Qf, see chapter 8.
time the symbol W in the given solutions is
replaced by 3 .                                                     Multiplication Theorems
                                                      9.6.51
9.6.41
zzw" + z( 1 f 22) w' + (f 2- S)w=O,    w =e~2f2",(
                                                 z)
  Differential equations for products may be
obtained from 9.1.57 to 9.1.59 by replacing z by
iZ.
          Derivatives With Reepect to Order
9.6.42



9.6.43




                                                                              Zeros
9.6.46                                                   Properties of the zeros of I,(z) and K,(z) may
                                                      be deduced from those of J,(z) and Hf)(z)respec-
                                                      tively, by application of the transformations
                                                      9.6.3 and 9.6.4.
9.6.46                                                   For example, if v is real the zeros of IJz) are all
                                                      complex unlese -kv-
                                                                        2<<          (2k- 1) for some posi-
                                                      tive integer k, in which event I,(z) has two real
                                                      zeros.
  Expreesions in Terms of Hypergeometric Functions       The approximate distribution of the zeros of
9.6.47                                                K,,(z) in the region -#r<arg z s a r i s obtainedon
                                                      rotating Figure 9.6 through an angle -3r so that
                                                      the cut lies along the poaitive imaginary axis.
                                                      The zeros in the region -$a <arg z 53% are their
                                                      conjugates. K,,(z) has no zeros in the region
                                                      larg z <$a; this result remains true when n is
                                                            I
                                                      replaced by any real number v.
9.6.48
                                                                9.7. Asymptotic Expansions
OF^ is the generalized hypergeometric function.           Asymptotic Expansions for Large Arguments
For M(a, b, z), Mo,,(z) Wo,,(z) see chapter 13.)
                      and                               When v is fixed, IzJis large and r=49
         Connection With Legendre Functions
                                                      9.7.1
  If LL and z are fixed, Wz>O, and v+w through
real positive values
9-6-49      l {r
            m e
            i v
Bessel functionsofintegerorder1
Bessel functionsofintegerorder1
Bessel functionsofintegerorder1
Bessel functionsofintegerorder1
Bessel functionsofintegerorder1
Bessel functionsofintegerorder1
Bessel functionsofintegerorder1
Bessel functionsofintegerorder1
Bessel functionsofintegerorder1
Bessel functionsofintegerorder1
Bessel functionsofintegerorder1
Bessel functionsofintegerorder1

More Related Content

Viewers also liked

Jack moran theoretical and computational aerodynamics
Jack moran   theoretical and computational aerodynamicsJack moran   theoretical and computational aerodynamics
Jack moran theoretical and computational aerodynamicsD. Rohan
 
Fundamentals of aerodynamics chapter 6
Fundamentals of aerodynamics chapter 6Fundamentals of aerodynamics chapter 6
Fundamentals of aerodynamics chapter 6forgotteniman
 
Aerodynamics aeronautics and flight mechanics
Aerodynamics aeronautics and flight mechanicsAerodynamics aeronautics and flight mechanics
Aerodynamics aeronautics and flight mechanicsAghilesh V
 
Practical Applications of Bessel's function
Practical Applications of Bessel's functionPractical Applications of Bessel's function
Practical Applications of Bessel's functionOneirosErebus
 
Fundamentals of aerodynamics by J.D.Anderson
 Fundamentals of aerodynamics by J.D.Anderson Fundamentals of aerodynamics by J.D.Anderson
Fundamentals of aerodynamics by J.D.AndersonAghilesh V
 
Aerodynamics anderson solution
Aerodynamics anderson solutionAerodynamics anderson solution
Aerodynamics anderson solutionGaurav Vaibhav
 
Modern compressible flow by J.D.Anderson
Modern compressible flow by J.D.AndersonModern compressible flow by J.D.Anderson
Modern compressible flow by J.D.AndersonAghilesh V
 
Boas mathematical methods in the physical sciences 3ed instructors solutions...
Boas  mathematical methods in the physical sciences 3ed instructors solutions...Boas  mathematical methods in the physical sciences 3ed instructors solutions...
Boas mathematical methods in the physical sciences 3ed instructors solutions...Praveen Prashant
 
Karl Kuhn- Basic Physics A self teaching guide
Karl Kuhn- Basic Physics A self teaching guideKarl Kuhn- Basic Physics A self teaching guide
Karl Kuhn- Basic Physics A self teaching guideKenny Weirich
 
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICSFUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICSRijo Tom
 

Viewers also liked (12)

Jack moran theoretical and computational aerodynamics
Jack moran   theoretical and computational aerodynamicsJack moran   theoretical and computational aerodynamics
Jack moran theoretical and computational aerodynamics
 
Aerodynamic Study of Blended Wing Body
Aerodynamic Study of Blended Wing BodyAerodynamic Study of Blended Wing Body
Aerodynamic Study of Blended Wing Body
 
Fundamentals of aerodynamics chapter 6
Fundamentals of aerodynamics chapter 6Fundamentals of aerodynamics chapter 6
Fundamentals of aerodynamics chapter 6
 
Waves
WavesWaves
Waves
 
Aerodynamics aeronautics and flight mechanics
Aerodynamics aeronautics and flight mechanicsAerodynamics aeronautics and flight mechanics
Aerodynamics aeronautics and flight mechanics
 
Practical Applications of Bessel's function
Practical Applications of Bessel's functionPractical Applications of Bessel's function
Practical Applications of Bessel's function
 
Fundamentals of aerodynamics by J.D.Anderson
 Fundamentals of aerodynamics by J.D.Anderson Fundamentals of aerodynamics by J.D.Anderson
Fundamentals of aerodynamics by J.D.Anderson
 
Aerodynamics anderson solution
Aerodynamics anderson solutionAerodynamics anderson solution
Aerodynamics anderson solution
 
Modern compressible flow by J.D.Anderson
Modern compressible flow by J.D.AndersonModern compressible flow by J.D.Anderson
Modern compressible flow by J.D.Anderson
 
Boas mathematical methods in the physical sciences 3ed instructors solutions...
Boas  mathematical methods in the physical sciences 3ed instructors solutions...Boas  mathematical methods in the physical sciences 3ed instructors solutions...
Boas mathematical methods in the physical sciences 3ed instructors solutions...
 
Karl Kuhn- Basic Physics A self teaching guide
Karl Kuhn- Basic Physics A self teaching guideKarl Kuhn- Basic Physics A self teaching guide
Karl Kuhn- Basic Physics A self teaching guide
 
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICSFUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
 

Similar to Bessel functionsofintegerorder1

Rmpiとsnowで 並列処理
Rmpiとsnowで 並列処理Rmpiとsnowで 並列処理
Rmpiとsnowで 並列処理Masafumi Okada
 
Boston Predictive Analytics: Linear and Logistic Regression Using R - Interme...
Boston Predictive Analytics: Linear and Logistic Regression Using R - Interme...Boston Predictive Analytics: Linear and Logistic Regression Using R - Interme...
Boston Predictive Analytics: Linear and Logistic Regression Using R - Interme...Enplus Advisors, Inc.
 
Hadoop Summit 2010 Multiple Sequence Alignment Using Hadoop
Hadoop Summit 2010 Multiple Sequence Alignment Using HadoopHadoop Summit 2010 Multiple Sequence Alignment Using Hadoop
Hadoop Summit 2010 Multiple Sequence Alignment Using HadoopYahoo Developer Network
 
Distilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental DataDistilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental Dataswissnex San Francisco
 
A coefficient inequality for the starlike univalent functions in the unit dis...
A coefficient inequality for the starlike univalent functions in the unit dis...A coefficient inequality for the starlike univalent functions in the unit dis...
A coefficient inequality for the starlike univalent functions in the unit dis...Alexander Decker
 
Hand book of Howard Anton calculus exercises 8th edition
Hand book of Howard Anton calculus exercises 8th editionHand book of Howard Anton calculus exercises 8th edition
Hand book of Howard Anton calculus exercises 8th editionPriSim
 
Singular Value Decompostion (SVD): Worked example 2
Singular Value Decompostion (SVD): Worked example 2Singular Value Decompostion (SVD): Worked example 2
Singular Value Decompostion (SVD): Worked example 2Isaac Yowetu
 
4 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-24 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-2Solo Hermelin
 

Similar to Bessel functionsofintegerorder1 (20)

Rmpiとsnowで 並列処理
Rmpiとsnowで 並列処理Rmpiとsnowで 並列処理
Rmpiとsnowで 並列処理
 
3rd Semester (Dec-2015; Jan-2016) Computer Science and Information Science E...
3rd Semester (Dec-2015; Jan-2016) Computer Science and Information Science  E...3rd Semester (Dec-2015; Jan-2016) Computer Science and Information Science  E...
3rd Semester (Dec-2015; Jan-2016) Computer Science and Information Science E...
 
Boston Predictive Analytics: Linear and Logistic Regression Using R - Interme...
Boston Predictive Analytics: Linear and Logistic Regression Using R - Interme...Boston Predictive Analytics: Linear and Logistic Regression Using R - Interme...
Boston Predictive Analytics: Linear and Logistic Regression Using R - Interme...
 
Hadoop Summit 2010 Multiple Sequence Alignment Using Hadoop
Hadoop Summit 2010 Multiple Sequence Alignment Using HadoopHadoop Summit 2010 Multiple Sequence Alignment Using Hadoop
Hadoop Summit 2010 Multiple Sequence Alignment Using Hadoop
 
3rd Semester Computer Science and Engineering (ACU - 2022) Question papers
3rd Semester Computer Science and Engineering  (ACU - 2022) Question papers3rd Semester Computer Science and Engineering  (ACU - 2022) Question papers
3rd Semester Computer Science and Engineering (ACU - 2022) Question papers
 
1st and 2nd Semester M Tech: VLSI Design and Embedded System (Dec-2015; Jan-2...
1st and 2nd Semester M Tech: VLSI Design and Embedded System (Dec-2015; Jan-2...1st and 2nd Semester M Tech: VLSI Design and Embedded System (Dec-2015; Jan-2...
1st and 2nd Semester M Tech: VLSI Design and Embedded System (Dec-2015; Jan-2...
 
1st and 2and Semester Chemistry Stream (2014-December) Question Papers
1st and 2and Semester Chemistry Stream (2014-December) Question Papers1st and 2and Semester Chemistry Stream (2014-December) Question Papers
1st and 2and Semester Chemistry Stream (2014-December) Question Papers
 
Distilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental DataDistilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental Data
 
1st and 2nd Semester M Tech: Computer Science and Engineering (Dec-2015; Jan-...
1st and 2nd Semester M Tech: Computer Science and Engineering (Dec-2015; Jan-...1st and 2nd Semester M Tech: Computer Science and Engineering (Dec-2015; Jan-...
1st and 2nd Semester M Tech: Computer Science and Engineering (Dec-2015; Jan-...
 
2013-June: 3rd Semester E & C Question Papers
2013-June: 3rd Semester E & C Question Papers2013-June: 3rd Semester E & C Question Papers
2013-June: 3rd Semester E & C Question Papers
 
3rd Semester Electronic and Communication Engineering (2013-June) Question P...
3rd  Semester Electronic and Communication Engineering (2013-June) Question P...3rd  Semester Electronic and Communication Engineering (2013-June) Question P...
3rd Semester Electronic and Communication Engineering (2013-June) Question P...
 
A coefficient inequality for the starlike univalent functions in the unit dis...
A coefficient inequality for the starlike univalent functions in the unit dis...A coefficient inequality for the starlike univalent functions in the unit dis...
A coefficient inequality for the starlike univalent functions in the unit dis...
 
4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
 
3rd Semester Electronics and Communication Engineering (June-2016) Question P...
3rd Semester Electronics and Communication Engineering (June-2016) Question P...3rd Semester Electronics and Communication Engineering (June-2016) Question P...
3rd Semester Electronics and Communication Engineering (June-2016) Question P...
 
Hand book of Howard Anton calculus exercises 8th edition
Hand book of Howard Anton calculus exercises 8th editionHand book of Howard Anton calculus exercises 8th edition
Hand book of Howard Anton calculus exercises 8th edition
 
5th Semester Electronic and Communication Engineering (June/July-2015) Questi...
5th Semester Electronic and Communication Engineering (June/July-2015) Questi...5th Semester Electronic and Communication Engineering (June/July-2015) Questi...
5th Semester Electronic and Communication Engineering (June/July-2015) Questi...
 
Steven Duplij, "Polyadic rings of p-adic integers"
Steven Duplij, "Polyadic rings of p-adic integers"Steven Duplij, "Polyadic rings of p-adic integers"
Steven Duplij, "Polyadic rings of p-adic integers"
 
Rsm notes f14
Rsm notes f14Rsm notes f14
Rsm notes f14
 
Singular Value Decompostion (SVD): Worked example 2
Singular Value Decompostion (SVD): Worked example 2Singular Value Decompostion (SVD): Worked example 2
Singular Value Decompostion (SVD): Worked example 2
 
4 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-24 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-2
 

More from Chumphol Mahattanakul (12)

Textile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&techTextile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&tech
 
Textile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&techTextile syllabus 4 tu sci&tech
Textile syllabus 4 tu sci&tech
 
Ip aspects of valuation malaysia
Ip aspects of valuation malaysiaIp aspects of valuation malaysia
Ip aspects of valuation malaysia
 
Textile syllabus tu rangsit
Textile syllabus tu rangsitTextile syllabus tu rangsit
Textile syllabus tu rangsit
 
Ip valuation presentation
Ip valuation presentationIp valuation presentation
Ip valuation presentation
 
A riddle of liquidity and interest rate public
A riddle of liquidity and interest rate publicA riddle of liquidity and interest rate public
A riddle of liquidity and interest rate public
 
Confluent hypergeometricfunctions
Confluent hypergeometricfunctionsConfluent hypergeometricfunctions
Confluent hypergeometricfunctions
 
Combinatorial analysis
Combinatorial analysisCombinatorial analysis
Combinatorial analysis
 
Bernoulli eulerriemannzeta
Bernoulli eulerriemannzetaBernoulli eulerriemannzeta
Bernoulli eulerriemannzeta
 
Cosmetics0290 09
Cosmetics0290 09Cosmetics0290 09
Cosmetics0290 09
 
M3
M3M3
M3
 
M3
M3M3
M3
 

Recently uploaded

Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 

Recently uploaded (20)

Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 

Bessel functionsofintegerorder1

  • 1. 9. Bessel Functions of Integer Order F. W. J. O L V E R ~ Contents Page Mathematical Properties . . . . . . . . . . . . . . . . . . . . 358 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . 358 Bessel Functions J and Y . . . . . . . . . . . . . . . . . . . 358 9.1. Definitions and Elementary Properties . . . . . . . . . 358 9.2. Asymptot.ic Expansions for Large Arguments . . . . . . 364 9.3. Asymptotic Expansions for Large Orders . . . . . . . . 365 9.4. Polynomial Approximations. . . . . . . . . . . . . . 369 9.5. Zeros. . . . . . . . . . . . . . . . . . . . . . . . 370 Modified Bessel Functions I and K. . . . . . . . . . . . . . . 374 9.6. Definitions and Properties . . . . . . . . . . . . . . 374 9.7. Asymptotic Expansions. . . . . . . . . . . . . . . . 377 9.8. Polynomial Approximations . . . . . . . . . . . . . . 378 Kelvin Functions. . . . . . . . . . . . . . . . . . . . . . . 379 9.9. Definitions and Properties . . . . . . . . . . . . . . 379 9.10. Asymptotic Expansions . . . . . . . . . . . . . . . 381 9.11. Polynomial Approximations . . . . . . . . . . . . . 384 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . 385 9.12. Use and Extension of the Tables. . . . . . . . . . . 385 References. . . . . . . . . . . . . . . . . . . . . . . . . . . 388 Table 9.1. Bessel Functions-Orders 0. 1. and 2 (0 5 ~ 5 1 7 . 5 ). . . . 390 Jo(x). 15D. Ji@). J&).Yob).YI(~). 10D Yz(x), 8D ~=0(.1)17.5 Bessel Functions-Modulus and Phase of Orders 0. 1. 2 ( 1 O ~ s _ < ~ ). . . . . . . . . . . . . . . . . . . . 396 dMn(x).6, (z)-z. 8D n=0(1)2,2-'=.1(-.01)0 Bessel Functions-Auxiliary Table for Small Arguments (05x52). . . . . . . . . . . . . . . . . . . . . 397 2 2 Y ( ; Jo(4 In z, Z[Y1(2)-; J I ( 4 o+ 21 ~=0(.1)2, 8D Table 9.2. Bessel Functions-Orders 3-9 (0 5 2 1 2 0 ) . . . . . . . . 398 Jn 7 Yn 9 n=3 (1)s 2=0(.2)20, 5D or 5 s National Bureau of Standards. on leave from the National Physical Laboratory. 355
  • 2. 356 BESSEL FTJNCTIONS OF INTEGER ORDER Page Table 9.3. Bessel Functions-Orders 10, 11,20, and 21 ( 0 5 ~ 1 2 0 ) . . 402 2-*0J1o(x), z-l'J11 (z), z'"1o(z) z=O(.l)lO, 8 or 9 s s JlO(Z>, J l l ( 4 , YlO(Z> 2=10(.1)20, 8D 2-'0J20(2), 22 J 1 z , 2 V 2 0 ( 2 ) - 1 2 () z=0(.1)20, 6 or 7 s s Bessel Functions-Modulus and Phase of Orders 10,11,20, and 21 ( 2 0 5 ~ Q)). . . . . . . . . . . . . . . . . 5 406 zQ&dz), e n ( 4 -2 n=10, 11, 8D n=20, 21, 6D z-'= .05(- .002)0 Table 9.4. Bessel Functions-Various Orders (OIn1100). . . . . . 407 Jn(z),Y&), n=0(1)20(10)50, 100 z=1, 2, 5, 10, 50, 100, 10s Table 9.5. Zeros and Associated Values of Bessel Functions and Their Derivatives ( O s n 1 8 , 1 5 ~ 1 2 0 .) . . . . . . . . . . 409 j w , JX.in.8) ; j;*s, Jn(j;,8), 5D (10D for n=o> ynS8, y n J ; Y ; . ~ , YJY;,~), 5D (8D for n=o> W s=1(1)20, n=0(1)8 Table 96 .. Bessel Functions Jo(jo.,z), . . . . . . . . . . . s= 1 (1)5 413 z=O(.O2)1, 5D Table 9.7. Bessel Functions-Miscellaneous Zeros (s=1(1)5) . . . . . 414 8th zero of z J1 -Wdz) (2) X, X-'=O(.O2) .I, .2(.2)1, 4D 8th zero of Jl(z) -Wo(z) X= .5(.1) 1, X-'= 1 (- .2).2, .I (- .O2)0, 4D 8th zero of Jo(z) Yo(Az)Yo(z)Jo(Az) - X-'=.8(-.2) .2, .1(-.02)0, 5D (8D for s=1) 8th zero of Jl(z) Yl(Az)- Y,(z)J1(Az) X-l=.8(--.2) .2, .1(-.02)0, 5D (8D for s=1) 8th zero of J1(z) Yo(Az)- Yl(z)Jo(Az) X-'=.8(--.2) .2, .1(-.02)0, 5D (8D for s=1) Table 9.8. Modified Bessel Functions of Orders 0, 1, and 2 (0 1 2 1 2 0 ) . 416 e-zlo(z), ezKo(z),e+ll( z), ezKl(z) z=O(.l)lO (.2)20, 10D or 10s Z-~Z(~), 2Kab) ~=0(.1)5, 10D, 9D e-zla (2), e'& (5) z=5(.1)10 (.2)20, 9D, 8D Modified Bessel Functions-Auxiliary Table for Large Arguments ( 2 0 5 ~ Q)) . . . . . . . . . . 5 . . . . . 422 de-zln(z), n-ldeZK.(z), n=O, 1, 2 z-'= .05(-.002)0, 8-9D Modified Bessel Functions-Auxiliary Table for Small Arguments ( 0 5 ~ 1 2 ) .. . . . . . . . . . . . . . . 422 Ko(z)+Io(4 lnz, 4&(4--11(4 hzl z=0(.1)2, 8D
  • 3. BESSEL FUNCTIONS OF INTEGER ORDER 357 Page Table 9.9. Modified Bessel Functions-Orders 3-9 (O<z<20) . . . 423 e-”1,(z), e”K,(z), n= 3 (1)9 Z= O( .2)10(.5)20, 5s Table 9.10. Modified Bessel Functions-Orders 10, 11, 20 and 21 ( < <0 OS2 ) . . . . . . . . . . . . . . . . . . . . 425 z-11111(2), z-’Ol10(z), zloKlo(z) z=0(.2)10, 8 or 9 s s e-zllo(z), e-”111(z), e”Kd4 z=10(.2)20, 10D, lOD, 7D z-zo120(z),z-z1121(4, Z0Kz0(z) z=0(.2)20, 5 s to 7 s Modified Bessel Functions-Auxiliary Table for Large Arguments (20 <z < a). . . . . . . . . . . . . . . 427 In{z+e-zllo(z)}, ln{z+e-zIll(z)},ln{?r-lzfeZKlo(z)} In{z+e-zlzo(z)}, z+e-zlzl(z)}, In{ ln{r-lz’eZKzo(z)} ~-‘=.05(-.001)0, SD, 6D Table 9.11. Modified Bessel Functions-Various Orders (0 <n <100) . 428 In(z),K,,(z), n=0(1)20(10)50, 100 z=1, 2, 5, 10, 50, 100, 9s or 10s Table 9.12. Kelvin Functions-Orders 0 and 1 ( << ) Oz5 . . . . . . 430 ber z, bei z, berl 2, bei, z ker z, kei z, kerl z, keil z z=0(.1)5, IOD, 9D Kelvin Functions-Auxiliary Table for Small Arguments (O<z<l). . . . . . . . . . . . . . . . . . . . . 430 ker z+ber z In z, kei z+bei z z I n z(kerlz+berl z In z), z(kei, z+beil z z) I n z=O(.1)1, 9D Kelvin Functions-Modulus and Phase ( 0 1 ~ 1 7 ) . . . . 432 Mo(4, eO(4, Ml(d, el(4 N O ( 4 , 40(4, N1(4,41(4 z=0(.2)7, 6D Kelvin Functions-Modulus and Phase for Large Argu- ments (6.6535 a ) . . . . . . . . . . . . . . . . . 432 eo(z) z+e-”’J2Mo(z),-(z/./z), z+e-Z/~Mlel(z)-(z/Jz) (z), z+ezlJ2No(z>, + (z/./z>, 40(4 zifez’.“N(z),(2)+ (z/./z) $1 z-’= -.Ol)O, 5D .15( The author acknowledges the assistance of Alfred E. Beam, Ruth E. Capuano, Lois K. Cherwinski, Elizabeth F. Godefroy, David S. Liepman, Mary Orr, Bertha H. Walter, and Ruth Zucker of the National Bureau of Standards, and N. F. Bird, C. W. Clenshaw, and Joan M. Felton of the National Physical Laboratory in the preparation and checking of the tables and graphs.
  • 4. 9. Bessel Functions of Integer Order Mathematical Properties Notation Bessel Functions J and Y The tables in this chapter are for Bessel func- 9.1. Definitions and Elementary Properties tions of integer order; the text treats general orders. The conventions used are: Differential Equation z=z+iy; z, y real. d2w 22-+2 dw -+(22-v2)w=O n is a positive integer or zero. 9.1.1 dz2 dz v, p are unrestricted except where otherwise indicated; v is supposed real in the sections devoted Solutions are the Bessel functions of the f i s t kind to Kelvin functions 9.9, 9.10, and 9.11. J*.(z), of the second kind Yv(z) (also called The notation used for the Bessel functions is Weber’s function) and of the third kindH$”(z),H:z)(z) that of Watson [9.15] and the British Association (also called the Hankel functions). Each is a and Royal Society Mathematical Tables. The regular (holomorphic) function of z throughout function Y,(z) is often denoted Nv(z) by physicists the z-plane cut along the negative real axis, and and European workers. for fixed z ( f 0 ) each is an entire (integral) func- Other notations are those of: tion of v. When v= &n, Jv(z)hrts no branch point Aldis, Airey: and is an entire (integral) function of z. Important features of the various solutions are G,(z) for -+rY,(z),K,(z) for (-)*K,(z). as follows: Jv(z)(9?v20) is bounded as z+O in any bounded range of arg z. Jv(z) and J-,(z) Clifford: are linearly independent except when v is an C,(z) for ~-4~J,,(2fi). integer. J.(z) and Y ( ) linearly independent , z are for all values of v. Gray, Mathews and MacRobert [9.9]: H!’)(z) tends to zero as IzI+- in the sector Oag ;T<Z <r Hi2)(z)tends to zero lzl--+m in the as Y,(z) for +rY,(z)+ On 2--r)J,(z), sector -r<arg O<. z For all values of v, H!”(z) - and H!”(z)are linearly independent. Y,(z) for revr*sec(va) Y,(z), 0,(2) for +7riH:1) (2). Jahnke, Emde and Losch [9.32]: Relatione Between Solutions a&) for r (Y+ 1)($2) - ’ (2). J , J,(z) (m)- J-,(z) COS 9.1.2 Y,(z)= sin (m) Jeff reys: The right of this equation is replaced by its H.s,(z) for HY(z), Hi,(z) for H?)(z), limiting value if v is an integer or zero. Kh,(z) for (2/a)K,(z). 9.1.3 Heine: K (2) for- ~ P Y(2). , , Neumann: Yn(z) for )?rY,(z)+(ln 2--y)Jn(z). Wbittaker and Watson [9.18]: K,(z) for cos(vir)K,(z). 358
  • 5. BESSEL FUNCTIONS OF INTEGER ORDER 359 L I 9.2. Ylo(x), FIGURE Jlo(z), and M o (z)=JJ:o (XI+ E (XI. o FIGURE Jo(z),YO@), 9.1. Jl(z), Yl(z>. ’ FIGURE J,.(lO) and y”(10)- 9.3. FIGURE Contour lines of the modulus and phase of the Hankel Function HP(x+iy)=MoefSo. From 9.4. E. Jahnke, F. Emde, and F. Losch, Tables of higher functions, McGraw-Hill Book CO.,Inc., New York, N.Y., 1960 (with permission).
  • 6. 360 BESSEL FUNCTIONS OF INTEGER ORDER Limiting Forms for Small Arguments Integral Representations 9.1.18 When v is fixed and z+O 9.1.7 J~ =; (2) 1 S,’ cos (z sin (VZ-1, -2, -3, . . .) 9.1.19 Jv(z)-($z)v/r(V+l) 9.1.8 In z Yo(z)--iH~1)(z)~~H~2)(z)~(2/~) ~,(z)=f I” cos (z cos e) {r+h sin2 e) 1 d~ (22 9.1.9 9.1.20 YJZ) - --i~:l) (2) - i ~ : 2 ) (z) -- ( I / ~r (.) ($2) -I ) (9v>O) Ascending Series 9.1.21 COS (zsin e-&)& 9.1.11 ($E!)-” n-1 (n-k-l)! Y,(z)=-- T k=O k! (tz”>” 9.1.22 where $(n)is given by 6.3.2. 9.1.13 9.1.26 In the last integral the path of integration must lie to the left of the points t=O, 1, 2, . . . .
  • 7. { BESSEL FUNCTIONS OF INTEGER ORDER 361 and 4 9.1.34 pa,- qvr,=-gab Analytic Continuation In 9.1.35 to 9.1.38, m is an integer. 9.1.35 ze’” =em- J ( Jv( ,z) 9.1.36 =e-mvrfYv(z) sin(mvr) cot(vr) J,(z) Y,(zemrf) +2i 9.1.37 sin (v~)H:~) = -sin (amr f, sin(mvr) H!’) (2) } (m- 1) v r H;l)(z) 9.1.38 (amr? (m+ 1) v r )2 : (z) sin(vr)H;’) =sin 3’ ) +e v r f sin (mvr)H:’) (z) {{ 9.1.39 -e-vrfH$’) 0 H!l)(zerf)= H:’) = -p*Hil’(z) (ze-rf) 9.1.40 - - JIG)=Jv(z) Y,G) = Yv(z) H;l)(Z)=m) Hr)(Z)=Hm (V real) (k=O, 1,2, . . .) 9.1.31 Generating Function and A m i a t e d Serier m 9.1.41 eW-W)= k--m t*Jk(Z) (tW m 9.1.42 cos (z sin e)=Jo(z) +2 C Jzk(z) (2M) cos k=l m 9.1.43 sin (z sin e)=2 Jnk+l(~) sin (2k+l)O} k-0 9.1.44 m COS (Z COS e)=Jo(z)+2 (-)kJzk(~) COS (2M) k-1 9.1.45 m sin (z cos e)=2 (-)kJ2k+l(z)cos (2k+l)B} k-0 v v+l P.+l+T,=; p,-- b P+ Vl v v+l rv+1+qv=- p,-- a P?+l b 1 1 3 8.=2 P..+l+ZP.-I-& p, 9.1.48 sin z=2J~(z)-25,(2)+2J5(z)- . . .
  • 8. 362 BESSEL FUNCTIONS OF INTEGER ORDER Other Differential Equations 9.1.49 w" 4- ( x2-- 3- z2 3)w=o, w=zQ?,(hz) Derivatives With Respect to Order 9.1.50 wf +(E--) 3-1 w=o, 9.1.a { 9.1.51 W" +X22P-2~=0, W=Z+ %?llp(2X~fP/p) 9.1.52 9.1.65 2v-1 W''-- w1+X2w=O, w=z*%v(Az) Z 9.1.53 b 21w" + (1 -2p)m' + (A7$9g+p=- 3$)w= 0, --c9c (4avJJZ) - - r . (2) 7J w =ZP%,(XZ~) (VZO, f l ,f2, . . , ) 9.1.54 9.1.66 w" + (A2eZ2- v2)w= 0, w = U,(Ae2) { 9.1.55 2(2-v2)w"+z(z~-33)w' 9.1.67 + (22--3)2--(~+v~)}w=O, w=U:(z) 9.1.56 w(*n) (-)"A2nZ-nw, = w= z*'Un(2Aazj) 9.1.68 where a is any of the 2n roots of unity. DiEerentiaI Equations for Products d Expreaaions in Terms of Hypergeometric Functions In the following QE z -and U,(z), 9,(z) are any dz cylinder functions of orders v, p respectively. 9.1.69 9.1.57 94- w 2(v"+ s)tp2+ (9- p*yj +422(9+ 1)(9+2)~=0, ?~=%',(z)52~(2) 9.1.70 9.1.58 Q(Q2-43)~+4zP(Q+1)~=0, ~=U.(z)gv(z) as A, p+= through real or complex values; z, v 915 ..9 being fixed. Zaw"'+2(4~?+ 1-49)~'+(43- l)w=O, (oF1is the generalized hypergeometric function. For M(a, b, z) and F(a, b;c; z) see chapters 13 and w = zU,( 2) 9 I(2) 15.) Upper Bounds Connection With Legendre Functions 9.1.60 JJ. I I 1 (V>_O), (2) 1 J, I I/& (4 5 (v 2 1) If p and z are fixed and v+- through real positive values 9.1.71 1 =J,,(z) (z>O)
  • 9. BESSEL F”CT1ONS OF INTEGER ORDER 363 9.1.72 In 9.1.79 and 9.1.80, w=~(u2+2?-2uv cos a), lim (I+”;’ (cos E)}=-4rY,(z) (~>0) u-v cos a=w cos x, v sina=w sin x For P;’ and Q;”, see chapter 8. the branches being chosen so that 2o--vu and x+O as v+O. C‘X)(cos is Gegenbauer’s a) polynomial Continued Fractions (see chapter 22). 9.1.73 J’(4 - - 1 1 1 ... J,-l(2)-2vz-’-- 2(v+1)2-’- 2(v+2)2-l-- -34. -- iz2/{ b+1) (v+2) 1 , . . y(v+1) 1 tz2/{ 1- 1- 1- Multiplication Theorem 9.1.74 G e g e n h w ’ saddition theorem. WPr(Xz)=X*’ c m k-0 g (F)*(~*-1)*(3~)* (z) k! ’33 If u, v are real and positive and 0 Sa Sa, then w, x (IX’-ll<l) are real and non-negative, and the geometrical relationship of the variables is shown in the dia- If W= J and the upper signs are taken, the restric- gram. tion on X is unnecessary. Thc restrictions Ive*‘”l< 1 . 1 are unnecessary in This theorem will furnish expansions of V W e ) 9.1.79 when g=J ,, is an integer or zero, and and in terms of Y,*k(r). in 9.1.80 when Y=J. Addition Theorems Degenerate Form (u= 0): Neumann’s 9.1.81 9.1.75 %‘,(uz!d= 5 %‘,~&)Jdv) (Ivl<lul) et0 “06a=r(v)(32))-v 2 (v+k)i*J,+r(v)C:”(cosa) k-0 ki-m ( Y Z O , -1, . . .) The restriction l ll l v<u is unnecessary when Neumann’sExpansion of an Arbitrary Function in e %‘= and v is an integer or zero. Special cases are J Series of Beasel Function8 9.1.76 l=JX2)+25 Z 2 ( ) 9.1.82 f(z)=aoJo(z)+2 2aJ&) k-1 (Izl<c) k-1 9.1.77 where c is the distance of the nearest singularity off(z) from z=O, o c = 2n (-)*Jk(Z)JP,-*(z> +2 5J*(z)Jz,+r(d (n21) k-0 k-1 9.1.83 a*=-1 2a-i J +e’ f(t)O*(t)dt (CC O’) << 9.1.78 and O,(t) is Neumann’spolynomial. The latter c(-)*Jdz)J,+dZ) m Jn(2Z)=e Jr(Z)J,-i (2) 4-2 is defined by the generating function k-0 k-1 Graf”e 9.1.84 9.1.79 L=JO(z)Odt)+2 k-1 t-2 5J&)odt> (Izl<tl) %‘’(W) cos sin vX= k--m c W,+&)J*(v) m cos s . ka(lveftal<lul) O,(t) isapolynomialof degreen+l in l/t; Oo(t)=l/t, 9.1.85 Gegenbauer’s n(n-k-l)! 2 “-a+* (n=1,2,. . .) 9.1.80 w - 4 -’% ko l k! (t> -d ~ ) - ~ , ~ ( ~ (v+k) *- W’ ) 2 W p + t ( ~ ) JP+$v) U’ V c(x’(cos The more general form of expansion a) k-0 (v#O,-l,. . ., Ive**al<IuI) 9.1.86 j(z) =ao~.(z>+2 5 aJv+*(z) k-1
  • 10. 364 BESSEL F"CT1ONS OF INTEGER ORDER also called a Neumann expansion, is investigated 9.2.6 in [9.7] and [9.15] together with further generaliza- Yv(z)=~'2/(rz){P(v, sin x+Q(v, z) cosx} z) tions. Examples of Neumann expansions are 9.1.41 t 9.1.48 and the Addition Theorems. Other o (la% 2 < 1 examples are 9.2.7 9.1.87 H,'"(z)=,/G){P(v, z)+iQ(v, z)jefx (-T<arg 2<2r) (VZO, -1,-2,. . .) 9.2.8 9.1.88 (z) H!2) = d m { P( z) -iQ(v, z) }e-fx v, n!($z)-" n-1 Y, (2) =-- (+Z>Vk(Z) (-2a<arg z<r) T (n-k)k! where x=z-(+++)u and, with 4v2denoted byp, 9.2.9 where +(n)is given by 6.3.2. + b-1) (p-9) (p-25) (p-49) - . . . 4! (82)' 9.1.89 9.2.10 -cc--l (~--~)(P-9~(cC--5)+ . . . 9.2. Asymptotic Expansions for Large 82 3! ( 8 ~ ) ~ Arguments If v is real and non-negative and z is positive, the remainder after k terms in the expansion of P(v, z) Principal Asymptotic Forms does not exceed the (k+l)th term in absolute When Y is fixed and lz1+co value and is of the same sign, provided that k>$u-f. The same is true of &(v,z, provided that k>$v-t. Asymptotic Expaneione of Derivative8 With the conditions and notation of the pre- 9.2.2 ceding subsection Yl(4 =m 9.2.11 JL(z>=J~{ --~(v, z) sinx--S(v, z) cos x} (la% zl<r) 9.2.12 Y:(z) =JG) x- S(v, z) sin x) { R(v, z) cos (larg zl<r> 9.2.13 Hankel's Asymptotic Expansions z) H;l)'(z)= 42/(~z){iR(v, --S(v, z)}e'x When v is k e d and 1zI+- (-7r<arg z2) <r 9.2.5 9.2.14 J,(z)=J-a/(rz){P(v, cosx-QQ(v,2) sinx) 2) ~!2)'(z)=,/m{ - - i ~ ( v , z)--~(u, z))e-'X I ( arg 4 I *< (-2r<arg z<r)
  • 11. BESSEL m C T I O N S OF INTEGER ORDER 365 9.2.15 9.2.29 { (p- 1) (p-25) (p-1) (p2- 114p+1073) + 6 ( 4 ~ ) ~+ 5 (42) 9.2.16 1) (5p3- 1535p2+54703p-375733) + (p- 14(4.)’ + . .. 9.2.30 X--{1-- 2 --- 1 . 1 (c’-l)(Cc-45)-*. 1 p-3 *) ax 2 (2x12 2 . 4 (2x14 Modulus and Phase For real v and positive x The general term in the last expansion is given by 9.2.17 -1 - 1 3 . . . (2k-3) M, = W (4I =.I{ c m x ) + E(2) I 1 2 . 4 - 6 . . . (2k) 8,=arg H:’)(x)=arctan Y,(x)/Jv(x)) (p-l)(p-9). . .{/~-(2k-33)~}{p-(2k+1)(2k-l)~} X (22) } 9.2.18 2k N”=~H~”’(2)1=.I{JL’(x)+Y:’(x)} 9.2.31 (p, =arg Hi1) = arc tan Y (x)/ L (x)’ L J(x) p+3 p2+46p-63 9.2.19 J,(x)=M, cos e,, Y,(x)=M, sin e,, qJ”-X-(+v-;) f+ + i- 2(4x) 6(4~)~ 9.2.20 J:(x)=N, (pv, cos Y:(x)=N,sin (pV. p3+ 185p2-2053p$ 1899 + 5(42) +.. . In the following relations, primes denote differ- entiations with respect to x. If v 20,the remainder after k terms in 9.2.28 does 9.2.21 M: =2/(a~) : e xv:(2- =2 v2)/(if$) not exceed the (k+l)th term in absolute value and is of the same sign, provided that k>v-$. 9.2.22 =M;2+A4;e:2 M:’ = +4/(rxMy)’ 9.2.23 (2-v2)MPM~+ZN,N:XX + =O 9.3. Asymptotic Expansions for Large Orders 9.2.24 Principal Asymptotic Forms tan 0 . =M,O:/M:=2/(axMyM~) ((py - ) M,N,sin ((pV-e,)=2/(ax) In the following equations it is supposed that v+ OJ through real positive values, the other vari- 9-2-25 2M;’ xM:(2P)Mv-4/(11.2M:) + + - =O ables being fixed. 9.2.26 9.3.1 2w”’tx(42+ 1-4v2)w’+ (4v2- l)w=O, w=xM Asymptotic Expansions of Modulus and Phase When v is fixed, xis large and positive, and p=4v2 9.3.2 9.2.28 ,v(tsnh a-a)
  • 12. 366 BESSEL FUNCTIONS OF INTEGER ORDER 9.3.3 9.3.9 J (v sec @) = . J2/(7rv tan 8) {cos (v tan p- vp- &)+ O (v-1) <o<a<a*> } uo(t)=l ~l(t)=(3t-5t?/24 UZ (t)== (8lt2-462t4+ 385t6)/l152 u3(t)=(3O375t3-3 69603t5+7 65765t7 Y.(v sec p)= -4 25425t9)/4 14720 ~ 4 ( t = (44 651255'- 941 21676ts+3499 22430t' ) J2/(?rv tan @) {sin (v tan p-vp-$n)+O(v-*)} -4461 85740t"+ 1859 10725t12)/398 13120 (O<P<h) 9.3.4 For u5(t) and u,(t) see [9.4] or [9.21]. J& +ZV%)=2%-46 Ai( -2542)+O(v-l) 9.3.10 Y,(v+zvB)=-2!%-H Bi(-Pz) +O(v-l) Uk+l(t) = it'( 1- tz)>d (t)+g1 ' (1-5t2)u,(f)dt 0 (k=O, 1 , . . .) 9.3.5 Also 2% 1 9.3.11 Y&)--- - 3 W ($) d 4 J:(v sech a) - { 9.3.12 Y:(v sech a) k=l 1 where 9i3.13 vo(t)=l v,(t)= (-9t+7f!)/24 + vz(t) = (- 135% 594t'-455te)/1 152 In the last two equations is gL*Ten y 9.3.38 and I v3(t)=(-42525t3+4 51737t'-8 83575P 9.3.39 below. 4-4 75475t9)/4 14720 9.3.14 vk(t)=uk(t)+t(t2-1){ ~uk-l(t)+tu~-l(t)} Debye's Asymptotic Expansions (k=1, 2, . . .) (ii) If p is fixed, O<r <$ p and v is large and (i) If a is fixed and positive and v is large and positive positive 9.3.7 9.3.8 Y,(v sech a)- 9.3.17 = I - 81 cot28+462 cot' 84-385 cot6B+ . . . where 11529
  • 13. BESSEL FUNCTIONS OF INTEGER ORDER 367 9.3.18 9.3.26 {{ -3 cot ~ + cot3 B- . . . 5 17 1 24v gl(z)=-- 70 z3+- 70 Also 549 z8-- 110767 z5+- 79 g3(~)=- z2 28000 693000 12375 9.3.20 The corresponding expansions for (Y+ z ~ ~ / ~ ) ~ : ( v sec 0)=.J(sin 20)/(rv){ 8) cos P N(v, and H!a)(v+~v1/3) obtained by use of 9.1.3 are -O(Y, 8) sin e} and 9.1.4; they are valid for --)r<arg v<#r and where -#?r<arg v<+r, respectively. 9.3.21 9.3.27 --y2/3 22/3 hk(z) J:(v+zv~/~)Ai' (-2ll3z) 1 ) +c - (ID k=l V =1+ 135 cot2 /3+594 cot' 84-455 cot8B - . . . 11529 { 9.3.22 }- 9.3.28 Y:(v+ zV1I3) - 2213 y/ 23 Bi' (-2ll3z) 1+CV k-1 hdz) Asymptotic Expansions in the Transition Regions When z is fixed, IvI is large and larg v b I < 9.3.23 where 21/3 {1+2} J . ( ~ + z v ' / ~ ) - Ai (-21/3~) ~ fk(z> -p OD 9.3.29 +Ai' (-2%) v 22/3 gk(z) - k;IO VZkl3 9.3.24 57 -&I =) z5+- 22 100 70 Y , ( V + Z V ~ 21~ Bi - ~ ~ 3 ) - (-2ll3z) 1 l+C---) fk(z) OD k-1 V*I3 699 2617 23 h3(~)=- z8-- z3+- 3500 3150 3150 22/3 -- Bit (-21/3z) V 2 &@ k-0 Val3 27 46631 $+- 3889 z4-- 1159 h4(z)=- z"-- 20000 147000 4620 115500 where 9.3.25 9.3.30 1 3 1 jl(Z) =-- z I0(z) =5 z3-% 5 j*(z)=-i@ 3 35 z6+-22 I, (2) =-- z4+l 13' 140 5 j3(z)=-957 z8- -173 z3-- 1 9 28+- 5437 z5-- 593 z2 7000 3150 225 &(z) =-500- 4500 3150 j ( )-- 27 z10-- 23573 z7+- 5903 z4+- 947 369 999443 31727 947 4 2 - &(z)=- z9-- z8+- z3+- 20000 147000 138600 346500 7000 693000 173250 346500
  • 14. 368 9.3.34 Y:(v) - 1 +c 3ll2b 7 k=l 5{ 'Yk v BESSEL FUNCTIONS IF INTEGER ORDER 9.3.37 +e2ri13Ai v5/3 (e2ri13v2f3 I When v++ m , these expansions hold uniformly sponding expansion for H?'(vz) is obtained by I -% with respect to z in the sector larg z]5 ?r- e, where e is an arbitrary positive number. The corre- k=O bdl) V* { where changing the sign of i in 9.3.37. Here 21 13 a=-=.44730 73184, 3+a=.77475 90021 9.3.38 321317($1 21 23 b=--.41085 01939, 3*b=.71161 34101 31f3r(g)- ffo=l, cy1=--=- .004, equivalently, 225 ~r2=.000693735 . . ., ~~3=-.00035 38 . . + 9.3.39 1 Bo=7q=.O1428 57143. . ., 1213 =-.00118 48596.. ., the branches being chosen so that is real when 'l=-10 23750 z is positive. The coefficients are given by &=.00043 78 . . ., &=-.OOO38 . . . 23 */o=I, 71=-=.00730 15873 . 1 ., 3150 yz=- .00093 7300 . . ., 73= .00044 40 . . . ,5' ,6 1 - 947 = - ~ .00273 30447 . . ., 3 46500 62= .00060 47 . . . , 63= -.00038 . . . Uniform Asymptotic Expansions These are more powerful than the previous ex- 9.3.41 pansions of this section, save for 9.3.31 and 9.3.32, 6sfl (284-1) (2~+3) . . (68-1) . but their coefficients are more complicated. They ha= s! (144)' 9 p,=-- 6s- 1 A, reduce to 9.3.31 and 9.3.32 when the argument equals the order. Thus a,,({) 1, = 9.3.35 9.3.42 5 1 5 1 Ai'(v2I3{) bk({) bo({) =-=+? 124(1 -z2)3/2-8(1 -z2)i 1 + v5/3 27 1 =-- 5 1 5 1 48l2+(-s)i '24(z2- 1)312+8(~2- 1 1)) 9.3.36 Tables of the early coefficients are given below. For more extensive tables of the coefficients and for bounds on the remainder terms in 9.3.35 and 9.3.36 see t9.381.
  • 15. 369 {- BESSEL FUNCTIONS OF INTEGER ORDER Uniform Expansions of the Derivatives With the conditions of the preceding subsection 9.3.4!3 Co({)"-pj 1 p+.146{-', d,({)=.OO3. For {<-lo use 1 bo(t))"z r2, a1(f)=.000, CO@) " --pj -1.33 (-f) -5/2, d, ({)= .OOO . Maximum values of higher coefficients: I bl ({)1 = .OO3, J u ~ = .0008, ({) I Id2 ({)I = .001 Icl({)I=.008 ({<lo), C1({)--.003{* as {++OD. 9.4. Polynomial Approximations where 9.4.1 -31x13 9.3.46 2kS1 J~(x) = 1-2.24999 97(~/3)'+1.26561 0 8 ( ~ / 3 ) ~ ck({)=-r* C 8=0 (1--2)-tl ~~{-~~/~v2+~+1( -.31638 66(~/3)~+.04444 79(~/3)' 2k d&) =E ia{-3sflv2k-x{ -z2)-t} (1 -.00394 44(~/3)'~+.000210 ( ~ / 3 ) ~ ~ + ~ 0 =O 8 5 1 tl X < 10-8 and vk is given by 9.3.13 and 9.3.14. For bounds on the remainder terms in 9.3.43 and 9.3.44 see 9.4.2 0<x13 [9.381. Yo(x)= ( 2 / ~ln($x)J,(x) + .36746 691 ) 1 a 1 (r) Gd-r) di (r) +.60559 366(~/3)'-.74350 3 8 4 ( ~ / 3 ) ~ + .25300 1 17 (2/3)'- .04261 2 14(~/3) 0 0.0180 -0. 004 0. 1587 0. 007 1 .0278 -. 004 . 1785 . 009 + .00427 916(~/3)"- .00024 846 ( ~ / 3 ) 12+ t 2 . 0351 -. 001 . 1862 .007 3 4 . 0366 +. 002 .0352 .003 . 1927 .2031 .005 .004 <ltI 1.4X lo-* 5 .0331 . 004 . 2155 .003 6 .0311 . 004 . 2284 . 003 9.4.3 31x< 03 7 . 0294 .004 . 2413 .003 8 . 0278 . 0265 .004 . 004 . 2539 . 2662 . 003 . 003 Jo(x)=x-tfo cos e, Yo(x)=x-+j, sin e, 9 10 .0253 .004 . 2781 . 003 fo=.79788 456- .OOOOO 077(3/~) .00552 740(3/~)' - -.00009 512(3/~)'+.00137 237(3/~)' --r bo(r) a1 (I) d-r) -.00072 805(3/~)~+ .00014 476(3/~)*+t 0 0.0180 -0.004 0. 1587 0. 007 1 .0109 -. 003 . 1323 .004 [el< 1.6X lo-* 2 . 0067 -. 002 . 1087 . 002 3 . 0044 -. 001 . 0903 . 001 2 Equations 9.4.1 to 9.4.6 and 9.8.1 to 9.8.8 are taken 4 . 0031 -. 001 .0764 . 001 from E. E. Allen, Analytical approximations, Math. Tables 5 .0022 -. 000 . 0658 . 000 Aids Comp. 8, 240-241 (1954), and Polynomial approxi- 6 . 0017 -. 000 . 0576 . 000 7 . 0013 -. 000 . 0511 . 000 mations to some modified Bessel functions, Math. Tables 8 fool1 -. 000 .0459 . 000 Aids Comp. 10, 162-164 (1956) (with permission). They 9 .0009 -. 000 . 0415 . 000 were checked at the National Physical Laboratory by 10 .0007 -. 000 . 0379 .om systematic tabulation; new bounds for the errors, e, given here were obtained as a result.
  • 16. 370 BESSEL FUNCTIONS OF INTEGER ORDER e0=Z- .78539 816- .04166 397(3/4 - *t J,.,~,y v . a J,.,~, and Y:,a respectively, except that z=O -.00003 954(3/~)~+.00262 573(3/~)~ is counted as the h t zero of J ( ) Since Az. Ji(z)=-Jl(z), it follows that -.00054 125(3/~)’-.00029 333(3/~)‘ . *I +.00013 558(3/x)’+a 9.5.1 jL,i=O, ~o.s=ji.s-i (s=2, 3, . .) l 17 €<X 10-8 The zeros interlace according to the inequalities 9.5.2 9.4.4 -35x53 ~.,l<~.+l,l<j.,Z<j~+,,Z<jU,3< * * . +~ z-’J (z)=*- A6249 985( ~ / 3 ) .21093 573(~/3)’ 1 Y*.l<Y~+l.l<Y..2<Yv+l.2<Yu.3< * - -.03954 289(~/3)’+ .00443 319(~/3)’ -.00031 761 (~/3)”+ .00001 109(~/3)’~+€ &j:, Y I, <. Y <,: I ,<A, ~<j., 2 lt1<1.3X10-8 < ,. Y , :Y<Z 2<jp, 2< j;,<3 . . . The positive zeros of any two real distinct cylinder 9.4.5 Ox 3 <5 functions of the same order are interlaced, as are zYl(s)=(2/?r)xln(~s)Jl(z)-.6366198 the positive zeros of any real cylinder function %‘,(z), defined as in 9.1.27, and the contiguous + .22120 91 (~/3)~+2.16827 09(x/3)’ function V,+,(Z). -1.31648 27(~/3)’+ .31239 51 (2/3)’ If pv is a zero of the cylinder function -.04009 76(~/3)”+ .00278 73(Z/3)12+c 9.5.3 Vp(z) J,(z) cos(d) + Y ( ) = , z sin(?rt) /al<l.lXlO-’ where t is a parameter, then 9.4.6 3 Is< 9.5.4 = u:(P,)=u.-l(P.)- U . + , ( P . > J1(z)=s-+jl COS e,, Yl(x)=x-+jl sin e, If u. is a zero of W;(z) then fi=.79788 456+.00000 156(3/~)+.01659 667(3/~)~ +.00017 105(3/~)~-.00249 511(3/~)’ +.00113 653(3/~)~- .00020 033(3/~)’+~ The parameter t may be regarded as a continuous I 1X C4< 10-8 variable and pr, u, as functions p . ( t ) , u,(t) of t. If these functions are fixed by e1=~-2.356i9 449 + .12499 612 (3/4 9.5.6 p,(O)=O, u.(o)=j;, 1 + .00005 650(3/~)’-.00637 879(3/~)~ then + .00074 348(3/~)‘+.00079 824(3/x)‘ -.00029 166(3/~)’++t 9.5.7 j”,*=P,(s), Y.,I=Pu(s-3) (s=l,2, . .I lt1<9X10-8 9.5.8 For expansions of Jo(s), Yo(s>,Jl(z),and Yl(x) in series of Chebyshev polynomials for the ranges ji,a=gv(s-1), y;.a=Cv(s-$) (s=l, 2, *) 05s<S and 0<8/z5l, see t9.371. 9.5. Zeros Real Zeros Infinite Products When Y is real, the functions J,(z),Jl(z), Y,(z) and Y:(z) each have an infinite number -of real zeros, all of which are simple with the possible exception of z=O. For non-negative Y the 6th positive zeros of these functions are denoted by
  • 17. BESSEL FUNCTIONS OF INTEGER ORDER 371 McMahon's Expansions for Large Zeros When v is fixed, s>>v and p=45 -64(p-l) (69494-1 53855p2+15 85743~-62 77237)- . . . 105(8b)7 where P=(s+$v-4)a forjv,s,P=(s+$v-$)r for yI,*. With p=(t+4v-t)al the right of 9.5.12 is the asymptotic expansion of pY(t) large t. for -64(6949p4+2 9 6 4 9 2 ~ ~ - 48002p2+74 14380~-58 53627)- . 12 . . 105(88')' where S'=(s+$v-q)a for jL.81 B'=(s+#v--))a for yl,,,B'=(t+$v+t)a for uI(t). For higher terms in 9.5.12 and 9.5.13 see [9.4] or [9.40]. Asymptotic Expansions of Zeros and Associated Values for Large Orders Uniform Asymptotic Expansions of Zeros and Associated Values for Large Orders 9.5.14 - jy,l v+ 1.85575 71v1l3+1.03315 O V - " ~ -.oo397v-'-.0908v-~/3+.043v-7/3+ . . . 9.5.22 j,.,-vz(r)+C OD k=l fk(r> with { = ~ - ~ / ~ a , 9.5.15 9.5.23 yv,1-v+.93157 68vlf3+.26O35lv-li3 + .01198v-'- .0060~-'~~- .001~-"~+ . . . 9.5.16 with { = ~ - ~ / ~ a , j:.,-v+ 30861 65~'/~+.07249 Ov-lf3 -.05097~-'+ .0094~-"~+ . . . (D 9.5.17 9.5.24 j;,,-vz({)+C With { = ~ - ~ / ~ a : b-1 P-' y, 1.~~+1.82109 : 80~'/~+.94000 7v-l" 9.5.25 -.05808v-'- .0540~-'~~+ . . . 9.5.18 JL(jv,l) ---1.11310 28~-~/~/(1+1.48460 - ~ / ~ 6 ~ + .43294V-4/3-.1943v-2+ .019v-8/3+ . . . ) where a,, a: are the sth negative zeros of Ai@), Ai'(z) (see 10.4), z=z(T) is the inverse function 9.5.19 defined implicitly by 9.3.39, and Y:(yv, m.95554 8 6 ~ - ~ / ~ / .74526 lv-2/3 1) (1+ +.10910v-'~3-.0185v-2-.003v-*/~+ . . . ) 9.5.26 h(O=I4t/(1--z2)It 9.5.20 JP(jL,1) m.67488 51~-'/~(1--.16172 ~ - ~ / ~ 3 jl(r) =Mr)Ih(r) 12bo(l) + .02918~-~'~-.0068~-~+ . . ) . m(n=3r-'z(r>{h(r)12co(r) 9.5.21 where bo({), co({) appear in 9.3.42 and 9.3.%. Y : J m.57319 40~-"~(1- &, .36422 O V - ~ / ~ Tables of the leading coefficients follow. More ex- +.09077~-*~+.0237v-~+ . . ). tensive tables are given in [9.40]. Corresponding expansions for s=2, 3 are given The expansions of yv. YXyv, y:. Iand Y ( :J a, a), .Y. in [9.40]. These expansions become progressively corresponding to 9.5.22 to 9.5.25 are obtained by weaker as s increases; those which follow do not changing the symbols j, J, Ai, Ai', a, and a: to suffer from this defect. y, Y, -Bi, -B?, b, and b: respectively.
  • 18. 372 BESSEL FUNCTIONS OF INTEQER ORDER -i- h (i-) fl (i-) 0. 0 1.000000 1. 25992 -. ~ _ . . 0. 0143 -0.007 -0. 1260 -0.010 0. 000 0. 2 1. 166284 1.22076 -. 0142 -. 005 -. 1335 -. 010 .002 0. 4 1.347557 1. 18337 .0139 -. 004 -. 1399 -. 009 .004 0. 6 1.543615 1. 14780 .0135 -. 003 -. 1453 -. 009 .005 0. 8 1.754187 1. 11409 .0131 -. 003 -. 1498 -. 008 .006 1. 0 1.978963 1.08220 0.0126 -0.002 -0. 1533 -0. 008 0.006 -r - 1. 0 1.978963 1.08220 0.0120 -0.002 -0. 1533 -0.008 0.006 1. 2 2. 217607 1. 05208 .0121 -. 002 -. 1301 -. 004 .004 1. 4 2. 469770 1.02367 .0115 -. 001 -. 1130 -. 002 .003 1. 6 2. 735103 0.99687 . 0110 -. 001 -. 0998 -. 001 .002 1. 8 3.013256 .97159 .0105 -. 001 -. 0893 -. 001 .002 2. 0 2. 2 3.303889 3. 606673 0.94775 . 92524 0.0100 .0095 -0.001 -0.001 -0.0807 -. 0734 I -0.001 0.001 .001 I 2. 4 3. 921292 .90397 .0091 -. 0673 . 001 2. 6 4. 247441 .a8387 .0086 -. 0619 .001 2. 8 4.584833 . 86484 .0082 -. 0573 0.001 - 3. 0 4. 933192 0.84681 0.0078 -0.0533 3. 2 5. 292257 .a2972 .0075 -. 0497 3. 4 5.661780 . 81348 .0071 -. 0464 3. 6 6.041525 . 79806 .0068 -. 0436 3. 8 6. 431269 .78338 .0065 -. 0410 4.0 6. 830800 0. 76939 0.0062 -0.0386 4.2 7. 239917 .75605 .0060 -. 0365 4.4 7. 658427 . 74332 .0057 -. 0345 4.6 8.086150 . 73115 .0055 -. 0328 4.8 8. 522912 .71951 .0052 -. 0311 5. 0 8.968548 0. 70836 0.0050 -0.0296 5. 2 9.422900 .69768 .0048 -. 0282 5. 4 9.885820 . 68742 .0047 -. 0270 5. 6 10.357162 . 67758 .0045 -. 0258 5. 8 10.836791 . 66811 .0043 -. 0246 6. 0 11.324575 0. 65901 0.0042 -0.0236 6. 2 11. 820388 .65024 .0040 -. 0227 6. 4 12. 324111 .64180 .0039 -. 0218 6. 6 12. 835627 .63366 .0037 -. 0209 6. 8 13.354826 .62580 .0036 -. 0201 7. 0 13.881601 0.61821 0.0035 -0.0194 Complex Zeros of J,(s) (--f)W) 81(3) When v> -1 the zeros of J,(z)are all real. If 0. 40 1.528915 1.62026 0.0040 -0.0224 v<-1 and v is not an integer the number of com- .35 1. 541532 1.65351 .0029 -. 0158 plex zeros of J,(z) is twice the integer part of .30 1. 551741 1. 68067 .0020 -. 0104 .25 1.559490 1. 70146 . 0012 -. 0062 (-v); if the integer part of (-v) is odd two of .20 1.564907 1.71607 .0006 -. 0033 these zeros lie on the imaginary axis. 0. 15 1.568285 1.72523 0.0003 -0.0014 If v20, all zeros of J ( ) are real. Lz . 10 1.570048 1.73002 . 0001 -. 0004 .05 1. 570703 1.73180 . m o o -. 0001 . 00 1.570796 1. 73205 . w o o -. 0000 Complex &roo of Y,(r) When vis real the pattern of the complex zeros of P,(z) and Yv(z) depends on the non-integer part of v. Attention is confined here to the case u=n, a positive integer or zero.
  • 19. I a=m=.66274 . . . FIGURE 9.6. Zeros ofHi’)(z)and Hi”’(z) . . . b = + J m 2=.19146 . . . I n larg zl<?r. and b=1.19968 . . . is the positive root of coth t The asymptote Of the solitary infinite curve is =t. There are n zeros near each of these curves. given bY Asymptotic expansions of these zeros for large n Y~=-+In2=-.34657 . . .
  • 20.
  • 21. BESSEL FUNCTIONS OF INTEGER ORDER 375 9.6.5 Y,(zeW) =et(,+l)riI ,(z1 -(2/~)e-+*~K,(z) (-*<a% z<h) 9.6.6 I-,(z)=l,(~), K-,(z)=K,(z) Most of the properties of modified Beasel functions can be deduced immediately from those of ordinary Bessel functions by application of these relations. Limiting Forms for Small Arguments I: When v is fked and z+O 9.6.7 FIGURE e-zlo(z),e-zIl(~),eZKO(;C)e"Kl(z). 9.8. and Iv(+(iz)yr(v+i) (vz-1, -2, . . .) 9.6.8 Ko(z)--ln z 9.6.9 K,(z)-+r(V)(~Z)-' (gv>o) Ascending Series 1,(2)=(42)v 2 myv+k+i) o (42")" 9.6.10 9.6.11 Kn(z>=&(34-" go k! (n-k-l)! n-1 (-322))" + (-In+1 In ( 3 4 I n ( ~ ) +(->"3(3d" (tz")" 2 INC+l)+W+k+l) 1 k!(n+k)! k-0 where +(n) given by 6.3.2. is FIGURE 1,(5) and K,(5). 9.9. 4z2 (2!)2 (1!)2 (+z">" 9-6-12 Io(~)=l+-+-+- (tz2)3+*. (3!)2 . Relations Between Solutions 9.6.13 9.6.2 K ( z ) = h I-,(z) -I,(z) sin (y.) Ko(z)= - {h (3Z)+YI~O(Z) +m 4 z2 The right of this equation is replaced by its (4z">" (tz"3+* +(1+3) (,!),+(1+3++) limiting value if v is an integer or zero. (3!)2 a - 9.6.3 I,(z) =e-+prfJ,(zetrf) (-r<arg 2<34 Wronskians 9.6.14 I,(z) =e3fl'/2J,(=-3"/2 1 (3*<arg z 54 9.6.4 W{ I) &, ) &I 1 =I,(z)l-~,+l~(z)-I,+l(z)I-,(z) } = -2 sin (vr)/(~z) K,(z)=)riet"'H~')(zet"') (-r<arg z<$r) 9.6.13 K,(z)= -3rie-+*f HP)(ze-+")(- &<arg z <r) W{ ,K,(z) I,( z) = I &) + (2) K,+l(z) Iv+l ZJ,z) = l/z
  • 22. 376 BESSEL FUNCTIONS OF INTEGER ORDER Integral Representations eurfKvany linear combination of %”, denotes I”, or 9.6.16 these functions, the coefficients in which are Io(z)=’S‘ ‘ A 0 independent of z and v. 9.6.17 K~(z)=-- {?+In (22 sin2e)}& 9.6.27 I ( ) ; Z = rl(z), K (2)= -K~ ; (z) 9.6.18 Formulas for Derivatives 9.6.28 Ko(z) =l 0 cos (z sinh t ) d t = l mc * dt Analytic Continuation (X>O) =em”’‘Iu(z) (m an integer) 9.6.30 Iu(zemrf) 9.6.22 9.6.31 K.(z)=sec (3m) l- cos (z sinh t) cosh (vt)dt Kv( t) =e-mmf Kv(z)--?ri (mvn) csc (v?r)I,(z) sin =csc ( l- 3 ~ ) sin (zsinh t) sinh (vt)dt 9.6.32 I.(Z)=I.(z), - - K,.(B)=K,(z) (m an integer) (V real) ( 9<11 z>O) 14 9.6.23 Generating Function and Associated Series 9.6.33 2 tkIk(z) k=-m (t#O) m 9.6.34 ez cOse=Io(z) C Ik(z) +2 cos(k0) k-1 9.6.24 K.(z)= cosh (ut)& (larg 2 <h) 1 J O 9.6.25 2 +2 k=l ( - ) ~ ~ ~ ( cOs(2ke) z) 9.6.36 l=Io(~)-212(~)+214(~)-21~(~)+ . . . 9.6.37 ez=Io(z)+211(2)+212(2)+213(2)+ . . , 9.6.38 e-z=Io(z)-~11(2)+212(2)-~13(2)+ . . 9.6.39 cosh ~ = I ~ ( z ) + 2 1 ~ ( ~ ) + 2 +216(2)+ . . . 1,(~) 9.6.40 sinh 2=211(2)+213(z)+21~(2)+ . . . *See page 11.
  • 23. BESSEL FUNCTIONS OF INTEGER ORDER 377 Other Werential Equations 9.6.50 E m {v-pe-p" The quantity X2 in equations 9.1.49 to 9.1.54 and 9.1.56 can be replaced by -A2 if at the same For the definition of P;" and Qf, see chapter 8. time the symbol W in the given solutions is replaced by 3 . Multiplication Theorems 9.6.51 9.6.41 zzw" + z( 1 f 22) w' + (f 2- S)w=O, w =e~2f2",( z) Differential equations for products may be obtained from 9.1.57 to 9.1.59 by replacing z by iZ. Derivatives With Reepect to Order 9.6.42 9.6.43 Zeros 9.6.46 Properties of the zeros of I,(z) and K,(z) may be deduced from those of J,(z) and Hf)(z)respec- tively, by application of the transformations 9.6.3 and 9.6.4. 9.6.46 For example, if v is real the zeros of IJz) are all complex unlese -kv- 2<< (2k- 1) for some posi- tive integer k, in which event I,(z) has two real zeros. Expreesions in Terms of Hypergeometric Functions The approximate distribution of the zeros of 9.6.47 K,,(z) in the region -#r<arg z s a r i s obtainedon rotating Figure 9.6 through an angle -3r so that the cut lies along the poaitive imaginary axis. The zeros in the region -$a <arg z 53% are their conjugates. K,,(z) has no zeros in the region larg z <$a; this result remains true when n is I replaced by any real number v. 9.6.48 9.7. Asymptotic Expansions OF^ is the generalized hypergeometric function. Asymptotic Expansions for Large Arguments For M(a, b, z), Mo,,(z) Wo,,(z) see chapter 13.) and When v is fixed, IzJis large and r=49 Connection With Legendre Functions 9.7.1 If LL and z are fixed, Wz>O, and v+w through real positive values 9-6-49 l {r m e i v