SlideShare a Scribd company logo
1 of 119
Download to read offline
Luc_Faucheux_2021
THE RATES WORLD โ€“ Part VII
More on measures and change of measures
1
Luc_Faucheux_2021
That deck
2
ยจ After a bunch of decks, we take here a breather to revisit some of the assumptions/results,
and finish up a number of sections that we had left unfinished
ยจ Something to say about the notation / progression of those decks.
ยจ I tried very hard to do it in a progressive manner, and so the formalism and notations
became more complicated but also more complete as we went on.
ยจ So in many ways the โ€simpleโ€ notation that I used at the beginning were potentially
confusing. Many apologies for that, but that was intended in order to demonstrate as we go
along the need for more complicated notation, as opposed to just dump it at the beginning
in a very formal manner
ยจ Hopefully you will have found the journey interesting and enlightning, and maybe more alive
than a formal class, which again this is not. This is merely a bunch of notes that I put down
in a Powerpoint in a selfish purpose so that I can more easily find them and retrieve them,
and hopefully this helps you reading and understanding real serious and formal textbooks on
the subject.
Luc_Faucheux_2021
That deck - II
ยจ Here we start playing with measures and change of measure
ยจ We revisit Ho-Lee and understand why the deflated zeros were not only a martingale, but
could be expressed as the Radon-Nikodym derivative between two measures.
ยจ We start looking at drift between measures and start laying down the foundations of what
we will need to derive the LMM (Libor Market Model), hopefully in deck VIII
ยจ Also, a section on some career advice
3
Luc_Faucheux_2021
A couple of useful tools
4
Luc_Faucheux_2021
Useful tools
ยจ As you go through those slides, it is quite apparent that there are some relations or
properties that we keep using over and over again, or that are worth mentioning.
ยจ I tried to put all of them together in a quick summary section here
ยจ I still need to work on a notation section, maybe once I get my book deal
ยจ Would love to get your feedback on this section, if there are tools that you tend to use a lot
and find useful, just drop me a note and I would be happy to include those
5
Luc_Faucheux_2021
Useful tools โ€“ ITO LEMMA
ยจ The ITO lemma is revered in stochastic calculus.
ยจ In the somewhat misleading โ€œdifferentialโ€ form it reads:
ยจ ๐›ฟ๐‘“ =
!"
!#
. ๐›ฟ๐‘‹ +
$
%
.
!!"
!#! . (๐›ฟ๐‘‹)%
ยจ It should really only be expressed as:
ยจ ๐‘“ ๐‘‹ ๐‘ก& โˆ’ ๐‘“ ๐‘‹ ๐‘ก' = โˆซ
()("
()(# !"
!*
. ([). ๐‘‘๐‘‹(๐‘ก) + โˆซ
()("
()(# $
%
.
!!"
!#! . ([). (๐›ฟ๐‘‹)%
ยจ The ITO convention for the ITO integral is that we take the โ€œLHSโ€ (Left Hand side) in the
partition as noted by: ([)
ยจ And the definition of the integral is:
ยจ โˆซ
()("
()(#
๐‘“ ๐‘‹(๐‘ก) . ๐‘‘๐‘Š ๐‘ก = lim
+โ†’-
โˆ‘.)/
.)+
๐‘“ ๐‘‹(๐‘ก.) . {๐‘Š ๐‘ก.0$ โˆ’ ๐‘Š(๐‘ก.)}
ยจ Where we assume that we do not choose a pathological mesh and the the function is
relatively well behaved
6
Luc_Faucheux_2021
Useful tools โ€“ ITO LEMMA - II
ยจ Be careful that stochastic calculus in many ways has NOTHING to do with regular calculus
ยจ So it is quite dangerous to write:
ยจ ๐›ฟ๐‘“ =
!"
!#
. ๐›ฟ๐‘‹ +
$
%
.
!!"
!#! . (๐›ฟ๐‘‹)%
ยจ And say โ€œ oh well stochastic calculus is the same as regular calculus, it is just when I do
Taylor expansion I should really go up one more order in order to go up to all the orders that
are at least linear in timeโ€
ยจ Again, this is ONLY a formal correspondence, or a way to write down two things that are
almost completely different
ยจ Stochastic processes are NOT differentiable, so do not even think of using a โ€œTaylor
expansion on a stochastic processโ€
ยจ ALWAYS go back to the integral, always try to use the SIE format (Stochastic Integral
Equation), never the SDE format (Stochastic Differential Equation)
7
Luc_Faucheux_2021
Useful tools โ€“ ITO Leibniz
ยจ Again, for ease of notation, we use the โ€œdifferentialโ€ form, but by now we know better than
to trust is:
ยจ ๐›ฟ๐‘“ ๐‘‹, ๐‘Œ =
!"
!*
. ๐›ฟ๐‘‹ +
!"
!1
. ๐›ฟ๐‘Œ +
$
%
.
!!"
!*! . ๐›ฟ๐‘‹% +
$
%
.
!!"
!1! . ๐›ฟ๐‘Œ% +
!!"
!*!1
. ๐›ฟ๐‘‹. ๐›ฟ๐‘Œ
ยจ Note: should really be written as:
ยจ ๐›ฟ๐‘“ ๐‘‹, ๐‘Œ =
!"
!#
. ๐›ฟ๐‘‹ +
!"
!2
. ๐›ฟ๐‘Œ +
$
%
.
!!"
!#! . ๐›ฟ๐‘‹% +
$
%
.
!!"
!2! . ๐›ฟ๐‘Œ% +
!!"
!#!2
. ๐›ฟ๐‘‹. ๐›ฟ๐‘Œ
ยจ Lower case ๐‘ฅ is a regular variable
ยจ Upper case ๐‘‹ is a stochastic variable
ยจ ๐‘“ ๐‘‹, ๐‘Œ is really noted ๐‘“ ๐‘ฅ = ๐‘‹, ๐‘ฆ = ๐‘Œ and all the partial derivatives are for example:
ยจ
!!"
!#!2
=
!!"
!#!2
|#)* ( ,2)1(()
8
Luc_Faucheux_2021
Useful tools โ€“ ITO and STRATO correspondence
ยจ ITO integral is defined as LHS (Left Hand Side)
ยจ โˆซ
()('
()(&
๐น ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘‹(๐‘ก) = lim
6โ†’-
{โˆ‘7)$
7)6
๐น(๐‘‹(๐‘ก7)). [๐‘‹(๐‘ก70$) โˆ’ ๐‘‹(๐‘ก7)]}
ยจ STRATO integral is defined as M (Middle)
ยจ โˆซ
()('
()(&
๐น ๐‘‹ ๐‘ก . (โˆ˜). ๐‘‘๐‘‹(๐‘ก) = lim
6โ†’-
{โˆ‘7)$
7)6
๐น(
*(($%& 0*(($)]
%
). [๐‘‹(๐‘ก70$) โˆ’ ๐‘‹(๐‘ก7)]}
ยจ For a simple Brownian motion
ยจ โˆซ
()('
()(&
๐‘“ ๐‘Š ๐‘ก . (โˆ˜). ๐‘‘๐‘Š(๐‘ก) = โˆซ
()('
()(&
๐‘“ ๐‘Š ๐‘ก . ([). ๐‘‘๐‘Š(๐‘ก) +
$
%
โˆซ
()('
()(& !"
!9
|9):((). ๐‘‘๐‘ก
ยจ The integral in time โˆซ
()('
()(& !"
!9
|9):((). ๐‘‘๐‘ก is the usual Riemann integral defined as
ยจ โˆซ
()('
()(&
๐น ๐‘‹ ๐‘ก . ๐‘‘๐‘ก = lim
6โ†’-
{โˆ‘7)$
7)6
๐น(๐‘‹(๐œ‘[๐‘ก7, ๐‘ก70$])). [๐‘ก70$ โˆ’ ๐‘ก7]}
9
Luc_Faucheux_2021
Useful tools โ€“ ITO and STRATO correspondence - II
ยจ Where ๐œ‘[๐‘ก7, ๐‘ก70$] is a function that takes some point within the mesh (does not matter
where, LHS, RIHS, middle, anywhere, could also varies from one bucket to the next, that is
the beauty of the Riemann integral in regular, or Newtonian, calculus, is that you do not
have all those pesky differences between ITO or Stratonovitch,โ€ฆ)
ยจ For a more complicated stochastic process
ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘Š
ยจ We have:
ยจ โˆซ
()('
()(&
๐‘“ ๐‘‹ ๐‘ก . โˆ˜ . ๐‘‘๐‘Š ๐‘ก = โˆซ
()('
()(&
๐‘“ ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š(๐‘ก) + โˆซ
()('
()(& $
%
. ๐‘ ๐‘ก, ๐‘‹ ๐‘ก .
!"
!#
|#)*((). ๐‘‘๐‘ก
10
Luc_Faucheux_2021
Useful tools โ€“ ITO integral is a martingale
ยจ This is super useful
ยจ For a Brownian motion ๐‘Š ๐‘  associated to the measure
ยจ ๐”ผ{โˆซ
;)/
;)(
๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘  } = ๐”ผ{lim
+โ†’-
โˆ‘.)/
.)+
๐‘“ ๐‘ . . {๐‘Š ๐‘ .0$ โˆ’ ๐‘Š(๐‘ .)} }
ยจ ๐”ผ{โˆซ
;)/
;)(
๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘  } = lim
+โ†’-
โˆ‘.)/
.)+
๐‘“ ๐‘ . . ๐”ผ{๐‘Š ๐‘ .0$ โˆ’ ๐‘Š(๐‘ .)}
ยจ ๐”ผ{โˆซ
;)/
;)(
๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘  } = lim
+โ†’-
โˆ‘.)/
.)+
๐‘“ ๐‘ . . 0 = 0
ยจ ๐”ผ โˆซ
;)/
;)(
๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘  = 0
ยจ ๐”ผ โˆซ
;)/
;)(
๐‘“ ๐‘Š ๐‘  , ๐‘  . ๐‘‘๐‘Š ๐‘  = 0
11
Luc_Faucheux_2021
Useful tools โ€“ Isometry of the ITO integral
ยจ ๐”ผ{ โˆซ
;)/
;)(
๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘ 
%
} = โˆซ
;)/
;)(
๐‘“ ๐‘  %. ๐‘‘๐‘ 
ยจ ๐”ผ{ โˆซ
;)/
;)(
๐‘“ ๐‘Š ๐‘  , ๐‘  . ๐‘‘๐‘Š ๐‘ 
%
} = โˆซ
;)/
;)(
๐‘“ ๐‘Š ๐‘  , ๐‘  %. ๐‘‘๐‘ 
12
Luc_Faucheux_2021
Useful tools โ€“ A martingale is driftless, a driftless process is a
martingale
ยจ ๐”ผ:{๐‘‹(๐‘ก)|)|๐”‰(๐‘ )} = 0
ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘Š
ยจ ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก = 0
ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘Š
ยจ No advection, no drift for a martingale
ยจ ๐‘‹ ๐‘ก = โˆซ
;)/
;)(
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘Š ๐‘ 
ยจ Again the ITO integral is a martingale
ยจ ๐”ผ โˆซ
;)/
;)(
๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘Š ๐‘  = 0
ยจ ๐”ผ:{๐‘‹(๐‘ก)|)|๐”‰(๐‘ )} = 0
13
Luc_Faucheux_2021
Useful tools โ€“ useful relationship
ยจ ๐”ผ exp โˆซ
;)/
;)(
๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘  = exp[โˆซ
;)/
;)( $
%
๐‘“ ๐‘  %. ๐‘‘๐‘ ]
14
Luc_Faucheux_2021
Useful tools โ€“ expected value of the exponential
ยจ ๐”ผ exp ๐‘‹ = exp ๐”ผ ๐‘‹ . exp
$
%
๐”ผ (๐‘‹ โˆ’ ๐”ผ ๐‘‹ )%
ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐”ผ ๐‘‹
ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐”ผ (๐‘‹(๐‘ก) โˆ’ ๐‘€ ๐‘‹ ๐‘ก )%
ยจ ๐”ผ exp ๐‘‹ = exp ๐‘€[๐‘‹(๐‘ก)] . exp
$
%
๐‘‰[๐‘‹(๐‘ก)]
ยจ ๐”ผ exp ๐‘‹ = exp[๐‘€] . exp
$
%
๐‘‰
15
Luc_Faucheux_2021
Useful tools - Fubini
ยจ ๐‘‹ = โˆซ
;)(
;)('
{โˆซ
<)(
<);
๐‘“(๐‘ข). ([). ๐‘‘๐‘Š(๐‘ข)}. ๐‘‘๐‘ 
16
s
๐‘  = ๐‘ก!
u
s
u
๐‘  = ๐‘ก ๐‘  = ๐‘ก!
๐‘  = ๐‘ก
๐‘‹ = J
;)(
;)('
{ J
<)(
<);
๐‘“(๐‘ข). ([). ๐‘‘๐‘Š(๐‘ข)}. ๐‘‘๐‘  ๐‘‹ = J
<)(
<)('
{ J
;)<
;)('
๐‘“(๐‘ ). ๐‘‘๐‘ }. ([). ๐‘‘๐‘Š(๐‘ข)
Luc_Faucheux_2021
Useful tools โ€“ how to always create a martingale
ยจ We use here the Tower property:
ยจ For any process ๐‘‹ ๐‘ก , we create:
ยจ ๐‘ ๐‘ก = ๐”ผ=
:
{๐‘‹(๐‘‡)|๐”‰(๐‘ก)}
ยจ ๐”ผ=
:
๐‘ ๐‘ก ๐”‰ ๐‘  = ๐”ผ=
:
๐”ผ=
:
๐‘‹ ๐‘‡ ๐”‰ ๐‘ก ๐”‰ ๐‘  = ๐”ผ=
:
๐‘‹ ๐‘‡ ๐”‰ ๐‘  = ๐‘(๐‘ )
ยจ Because conditioning firstly on information back to time ๐‘ก then back to time ๐‘  is just the
same as conditioning back to time ๐‘  to start with.
ยจ ๐”ผ=
:
๐‘ ๐‘ก ๐”‰ ๐‘  = ๐‘(๐‘ )
ยจ So ๐‘ ๐‘ก = ๐”ผ=
:
{๐‘‹(๐‘‡)|๐”‰(๐‘ก)} is by construction a ๐‘Š-martingale
ยจ That is a neat little trick to always create a martingale process (Baxter p. 77)
17
Luc_Faucheux_2021
Useful tools โ€“ Radon-Nikodym as expectation
ยจ ๐”ผโ„™ is the measure associated to the Brownian motion ๐‘Šโ„™(๐‘ก)
ยจ ๐”ผโ„š is the measure associated to the Brownian motion ๐‘Šโ„š(๐‘ก)
ยจ The Radon-Nikodym
@โ„š
@โ„™
(๐‘ก) is such that:
ยจ ๐”ผ(
โ„š
๐‘‹ ๐‘ก ๐”‰ 0 = ๐”ผ(
โ„™{
@โ„š
@โ„™
๐‘ก . ๐‘‹(๐‘ก)|๐”‰ 0 }
ยจ We also have this beautiful equation (Baxter p.68)
ยจ
@โ„š
@โ„™
๐‘ก = ๐”ผ=
โ„™
{
@โ„š
@โ„™
๐‘‡ |๐”‰ ๐‘ก } for ๐‘‡ > ๐‘ก
ยจ The Radon-Nikodym derivative
@โ„š
@โ„™
๐‘ก is a martingale under the โ„™-measure ๐”ผโ„™
ยจ In particular:
@โ„š
@โ„™
0 = 1
ยจ ๐”ผ=
โ„™ @โ„š
@โ„™
๐‘‡ ๐”‰ 0 = 1
18
Luc_Faucheux_2021
Useful tools โ€“ Radon-Nikodym as expectation -II
ยจ ๐”ผ=
โ„™ @โ„š
@โ„™
๐‘‡ ๐”‰ 0 = 1
ยจ We had derived this in the deck V-b using the โ€œuseful formulaโ€ starting from:
ยจ
@โ„š
@โ„™
= exp[โˆ’ โˆซ
;)/
;)(
๐œ‰ ๐‘  . ๐‘‘๐‘Š ๐‘  โˆ’
$
%
โˆซ
;)/
;)(
๐œ‰ ๐‘  %. ๐‘‘๐‘ ]
ยจ ๐”ผ(
โ„™ exp โˆซ
;)/
;)(
๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘  โˆ’
$
%
โˆซ
;)/
;)(
๐‘“ ๐‘  %. ๐‘‘๐‘  |๐”‰ 0 = 1
ยจ ๐”ผ(
โ„™ @โ„š
@โ„™
(๐‘ก)|๐”‰ 0 = 1
ยจ Note that this should not be too surprising since the definition of the derivative is:
ยจ ๐”ผโ„š ๐‘‹ ๐‘ก ๐”‰ 0 = ๐”ผโ„™{
@โ„š
@โ„™
๐‘‹(๐‘ก)|๐”‰ 0 }, replacing ๐‘‹ ๐‘ก = 1
ยจ ๐”ผโ„š 1 ๐”‰ 0 = 1 = ๐”ผโ„™{
@โ„š
@โ„™
|๐”‰ 0 } so we get: ๐”ผ(
โ„™ @โ„š
@โ„™
(๐‘ก)|๐”‰ 0 = 1
19
Luc_Faucheux_2021
Useful tools โ€“ Radon-Nikodym as expectation -III
ยจ ๐”ผ(
โ„š
๐‘‹ ๐‘ก ๐”‰ 0 = ๐”ผ(
โ„™{
@โ„š
@โ„™
๐‘ก . ๐‘‹(๐‘ก)|๐”‰ 0 }
ยจ
@โ„š
@โ„™
๐‘ก = ๐”ผ=
โ„™{
@โ„š
@โ„™
๐‘‡ |๐”‰ ๐‘ก } for ๐‘‡ > ๐‘ก
ยจ ๐”ผ(
โ„š
๐‘‹ ๐‘ก ๐”‰ ๐‘  =
$
(โ„š
(โ„™
;
. ๐”ผ(
โ„™{
@โ„š
@โ„™
๐‘ก . ๐‘‹(๐‘ก)|๐”‰ ๐‘  } for ๐‘  < ๐‘ก
ยจ ๐”ผ(
โ„™ @โ„š
@โ„™
๐‘ก . ๐‘‹ ๐‘ก ๐”‰ ๐‘  = ๐”ผ(
โ„š @โ„š
@โ„™
๐‘  . ๐‘‹ ๐‘ก ๐”‰ ๐‘  =
@โ„š
@โ„™
๐‘  . ๐”ผ(
โ„š
๐‘‹ ๐‘ก ๐”‰ ๐‘ 
ยจ ๐”ผ(
โ„š
๐‘‹ ๐‘ก ๐”‰ ๐‘  = ๐”ผ(
โ„™{
(โ„š
(โ„™
(
(โ„š
(โ„™
;
. ๐‘‹(๐‘ก)|๐”‰ ๐‘  }
ยจ ๐”ผ(
โ„š
๐‘‹ ๐‘ก ๐”‰ 0 = ๐”ผ(
โ„™
(โ„š
(โ„™
(
(โ„š
(โ„™
/
. ๐‘‹ ๐‘ก ๐”‰ 0 = ๐”ผ(
โ„™{
@โ„š
@โ„™
๐‘ก . ๐‘‹(๐‘ก)|๐”‰ 0 }
20
Luc_Faucheux_2021
Useful tools โ€“ most stupid equation ever
ยจ ๐‘ 0,0, ๐‘ก = exp(โˆ’ โˆซ
;)/
;)(
๐”ผ;
โ„ค(;)
๐‘…(๐‘ , ๐‘ , ๐‘ ) ๐”‰ 0 . ๐‘‘๐‘ )
ยจ ๐‘๐ถ 0,0, ๐‘ก = ๐”ผ(
โ„š
exp[โˆ’ โˆซ
;)/
;)(
๐‘… ๐‘ , ๐‘ , ๐‘  . ๐‘‘๐‘ ]|๐”‰(0)
ยจ ๐‘‰ 0, $1, ๐‘ก, ๐‘ก = ๐‘ 0,0, ๐‘ก
ยจ ๐‘‰ 0, $1, ๐‘ก, ๐‘ก = exp(โˆ’ โˆซ
;)/
;)(
๐”ผ;
โ„ค(;)
๐‘‰(๐‘ , $๐‘… ๐‘ , ๐‘ , ๐‘  , ๐‘ , ๐‘ ) ๐”‰ 0 . ๐‘‘๐‘ )
ยจ ๐‘‰ 0, $1, ๐‘ก, ๐‘ก = ๐”ผ(
โ„š
exp[โˆ’ โˆซ
;)/
;)(
๐‘‰(๐‘ , $๐‘… ๐‘ , ๐‘ , ๐‘  , ๐‘ , ๐‘ ). ๐‘‘๐‘ ]|๐”‰(0)
ยจ
๐”ผ+
โ„š
CDE[G โˆซ
,-.
,-+
I(;,$K ;,;,; ,;,;).@;]|๐”‰(/)
CDE(G โˆซ
,-.
,-+
๐”ผ,
โ„ค(,)
๐‘‰(๐‘ , $๐‘… ๐‘ , ๐‘ , ๐‘  , ๐‘ , ๐‘ ) ๐”‰ 0 .@;)
= 1
21
Luc_Faucheux_2021
Useful tools โ€“ most stupid equation ever - II
ยจ
๐”ผ+
โ„š
CDE[G โˆซ
,-.
,-+
I(;,$K ;,;,; ,;,;).@;]|๐”‰(/)
CDE(G โˆซ
,-.
,-+
๐”ผ,
โ„ค(,)
๐‘‰(๐‘ , $๐‘… ๐‘ , ๐‘ , ๐‘  , ๐‘ , ๐‘ ) ๐”‰ 0 .@;)
= 1
ยจ The ratio of ;
the expectation at time ๐‘ก under the risk-neutral measure ๐”ผโ„š associated to the rolling
numeraire ๐ต ๐‘  = exp[โˆซ
<)/
<);
๐‘… ๐‘ข, ๐‘ข, ๐‘ข . ๐‘‘๐‘ข], subject to the filtration ๐”‰ 0 , of the exponential of
the opposite of the integral over the time ๐‘  from time ๐‘  = 0 to time ๐‘  = ๐‘ก of the claim valued at
time ๐‘  that pays at time ๐‘  the instantaneous short rate ๐‘… ๐‘ , ๐‘ , ๐‘  set at time ๐‘ ;
to the exponential of the opposite of the integral over the time ๐‘  from time ๐‘  = 0 to
time ๐‘  = ๐‘ก of the expectations at time ๐‘  under the terminal measures ๐”ผโ„ค(;), subject to the same
filtration ๐”‰ 0 , associated to the Zeros ๐‘(๐‘ข, ๐‘ข, ๐‘ ), of the same claim valued at time ๐‘  that pays
at time ๐‘  the instantaneous short rate ๐‘… ๐‘ , ๐‘ , ๐‘  set at time ๐‘ ,
isโ€ฆ..equal to 1
ยจ There are on the internet a number of post about making 1=1 as complicated as possible.
22
Luc_Faucheux_2021
Change of Numeraire and change of Measure
23
Luc_Faucheux_2021
Change of numeraire - I
ยจ ๐”ผโ„™ is the measure associated to the Brownian motion ๐‘Šโ„™(๐‘ก)
ยจ ๐‘โ„™(๐‘ก) is the numeraire associated to that measure ๐”ผโ„™
ยจ ๐”ผโ„š is the measure associated to the Brownian motion ๐‘Šโ„š(๐‘ก)
ยจ ๐‘โ„š(๐‘ก) is the numeraire associated to that measure ๐”ผโ„š
ยจ A general claim ๐‘‰(๐‘ก) is such that:
ยจ ๐”ผ=
โ„™ I(=)
6โ„™(=)
๐”‰ ๐‘ก =
I(()
6โ„™(()
ยจ ๐”ผ=
โ„š I(=)
6โ„š(=)
๐”‰ ๐‘ก =
I(()
6โ„š(()
24
Luc_Faucheux_2021
Change of numeraire - II
ยจ
@โ„š
@โ„™
๐‘ก = ๐”ผ=
โ„™
{
@โ„š
@โ„™
๐‘‡ |๐”‰ ๐‘ก } for ๐‘‡ > ๐‘ก
ยจ More generally from the trick of always creating a martingale we know that:
ยจ ๐‘ ๐‘ก = ๐”ผ=
:
{๐‘‹(๐‘‡)|๐”‰(๐‘ก)} is by construction a ๐‘Š-martingale meaning that:
ยจ ๐”ผ=
:
๐‘ ๐‘ก ๐”‰ ๐‘  = ๐‘(๐‘ )
ยจ Letโ€™s check it for the specific case ๐‘ ๐‘ก =
@โ„š
@โ„™
๐‘ก in the โ„™-measure
ยจ ๐”ผ=
โ„™ @โ„š
@โ„™
๐‘ก ๐”‰ ๐‘  = ๐”ผ=
โ„™ ๐”ผ=
โ„™ @โ„š
@โ„™
๐‘‡ ๐”‰ ๐‘ก ๐”‰ ๐‘  = ๐”ผ=
โ„™ @โ„š
@โ„™
๐‘‡ ๐”‰ ๐‘  =
@โ„š
@โ„™
๐‘ 
25
Luc_Faucheux_2021
Change of numeraire - III
ยจ ๐”ผ=
โ„™ I(=)
6โ„™(=)
๐”‰ ๐‘ก =
I(()
6โ„™(()
ยจ ๐”ผ=
โ„š I(=)
6โ„š(=)
๐”‰ ๐‘ก =
I(()
6โ„š(()
ยจ ๐”ผ(
โ„š
๐‘‹ ๐‘ก ๐”‰ ๐‘  = ๐”ผ(
โ„™{
(โ„š
(โ„™
(
(โ„š
(โ„™
;
. ๐‘‹(๐‘ก)|๐”‰ ๐‘  }
ยจ ๐”ผ=
โ„š
๐‘‹ ๐‘‡ ๐”‰ ๐‘ก = ๐”ผ=
โ„™
{
(โ„š
(โ„™
=
(โ„š
(โ„™
(
. ๐‘‹(๐‘‡)|๐”‰ ๐‘ก }
ยจ We apply this to the specific case of :
ยจ ๐‘‹ ๐‘‡ =
I(=)
6โ„š(=)
26
Luc_Faucheux_2021
Change of numeraire - IV
ยจ
I(()
6โ„š(()
= ๐”ผ=
โ„š I(=)
6โ„š(=)
๐”‰ ๐‘ก = ๐”ผ=
โ„™{
(โ„š
(โ„™
=
(โ„š
(โ„™
(
.
I(=)
6โ„š(=)
|๐”‰ ๐‘ก }
ยจ ๐”ผ=
โ„™ I(=)
6โ„™(=)
๐”‰ ๐‘ก =
I(()
6โ„™(()
ยจ
I(()
6โ„š(()
=
I(()
6โ„™(()
.
6โ„™(()
6โ„š(()
= ๐”ผ=
โ„™ I(=)
6โ„™(=)
๐”‰ ๐‘ก .
6โ„™(()
6โ„š(()
= ๐”ผ=
โ„™
{
(โ„š
(โ„™
=
(โ„š
(โ„™
(
.
I(=)
6โ„š(=)
|๐”‰ ๐‘ก }
ยจ ๐”ผ=
โ„™ I(=)
6โ„™(=)
๐”‰ ๐‘ก .
6โ„™(()
6โ„š(()
= ๐”ผ=
โ„™{
(โ„š
(โ„™
=
(โ„š
(โ„™
(
.
I(=)
6โ„š(=)
|๐”‰ ๐‘ก }
ยจ ๐”ผ=
โ„™ I(=)
6โ„™(=)
.
6โ„™(()
6โ„š(()
๐”‰ ๐‘ก = ๐”ผ=
โ„™{
(โ„š
(โ„™
=
(โ„š
(โ„™
(
.
I(=)
6โ„š(=)
|๐”‰ ๐‘ก }
27
Luc_Faucheux_2021
Change of numeraire - V
ยจ ๐”ผ=
โ„™ I(=)
6โ„™(=)
.
6โ„™(()
6โ„š(()
๐”‰ ๐‘ก = ๐”ผ=
โ„™{
(โ„š
(โ„™
=
(โ„š
(โ„™
(
.
I(=)
6โ„š(=)
|๐”‰ ๐‘ก }
ยจ ๐”ผ=
โ„™ I(=)
6โ„™(=)
.
6โ„™(()
6โ„š(()
๐”‰ ๐‘ก = ๐”ผ=
โ„™
{
(โ„š
(โ„™
=
(โ„š
(โ„™
(
.
I(=)
6โ„™(=)
.
6โ„™(=)
6โ„š(=)
|๐”‰ ๐‘ก }
ยจ Since this has to hold for any and every possible and imaginable claim ๐‘‰(๐‘ก):
ยจ
6โ„™(()
6โ„š(()
=
(โ„š
(โ„™
=
(โ„š
(โ„™
(
.
6โ„™(=)
6โ„š(=)
ยจ
6โ„™(()
6โ„š(()
.
@โ„š
@โ„™
๐‘ก =
6โ„™(=)
6โ„š(=)
.
@โ„š
@โ„™
๐‘‡
28
Luc_Faucheux_2021
Change of numeraire - VI
ยจ
6โ„™(()
6โ„š(()
.
@โ„š
@โ„™
๐‘ก =
6โ„™(=)
6โ„š(=)
.
@โ„š
@โ„™
๐‘‡
ยจ And this has to be valid for every ๐‘ก < ๐‘‡
ยจ In particular for ๐‘ก = 0
ยจ
@โ„š
@โ„™
0 = 1
ยจ
6โ„™(()
6โ„š(()
.
@โ„š
@โ„™
๐‘ก =
6โ„™(/)
6โ„š(/)
ยจ And so we finally obtain for the change of measure from a change of numeraire:
ยจ
@โ„š
@โ„™
๐‘ก =
6โ„™(/)
6โ„š(/)
/
6โ„™(()
6โ„š(()
29
Luc_Faucheux_2021
Change of numeraire - VII
ยจ
@โ„š
@โ„™
๐‘ก =
6โ„™(/)
6โ„š(/)
/
6โ„™(()
6โ„š(()
ยจ
@โ„š
@โ„™
๐‘ก =
6โ„š(()
6โ„™(()
/
6โ„š(/)
6โ„™(/)
ยจ If we normalize the numeraires by their time ๐‘ก = 0 values:
ยจ X
๐‘โ„š ๐‘ก = ๐‘โ„š(๐‘ก)/๐‘โ„š(0)
ยจ X
๐‘โ„™ ๐‘ก = ๐‘โ„™(๐‘ก)/๐‘โ„™(0)
ยจ We obtain the celebrated formula:
ยจ
@โ„š
@โ„™
๐‘ก =
O
6โ„š (
O
6โ„™ (
ยจ The Radon-Nikodym derivative at time ๐‘ก is given by the ratio of the numeraires normalized
by their time ๐‘ก = 0 values.
30
Luc_Faucheux_2021
Another way to look at Ho-Lee
31
Luc_Faucheux_2021
Another way to look at Ho-Lee
ยจ We noticed in the previous deck that we had the expression:
ยจ โ„ฐ โˆซ
/
(
๐œ‰ ๐‘  . ๐‘‘๐‘Š ๐‘  = exp(โˆซ
/
(
๐œ‰ ๐‘  . ๐‘‘๐‘Š(๐‘ ) โˆ’ โˆซ
/
( $
%
๐œ‰ ๐‘  %. ๐‘‘๐‘ )
ยจ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z
๐‘ 0,0, ๐‘ก. . exp โˆซ
<)/
<)(
๐œŽ. (๐‘ก. โˆ’ ๐‘ข). ๐‘‘๐‘Š(๐‘ข) โˆ’
$
%
. โˆซ
<)/
<)(
{๐œŽ. (๐‘ก. โˆ’ ๐‘ข)}%. ๐‘‘๐‘ข
ยจ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z
๐‘ 0,0, ๐‘ก. . โ„ฐ โˆซ
<)/
<)(
๐œŽ. (๐‘ก. โˆ’ ๐‘ข). ๐‘‘๐‘Š(๐‘ข)
ยจ We could not help but notice a rather strong connection between the deflated Zeros and the
expression of a Radon-Nikodym derivative.
ยจ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. =
P (,(,('
Q (
ยจ Letโ€™s illustrate here why this is not a coincidence
32
Luc_Faucheux_2021
Another way to look at Ho-Lee - II
ยจ If โ„š$ is a measure with an associated ๐‘Šโ„š&(๐‘ก)Brownian motion (a โ„š$-Brownian motion)
ยจ If โ„š% is a measure with an associated ๐‘Šโ„š!(๐‘ก)Brownian motion (a โ„š%-Brownian motion)
ยจ We have (under the famous Novikov condition..)
ยจ If there is a process ๐œ‰ ๐‘ก such that it is reasonably well-behaved
ยจ ๐”ผ(
โ„š&
exp โˆซ
/
( $
%
๐œ‰ ๐‘  %. ๐‘‘๐‘  |๐”‰(0) < 0
ยจ Then , following Baxter p.74:
ยจ โ„š% is equivalent to โ„š$
ยจ
@โ„š!
@โ„š&
= exp โˆ’ โˆซ
/
(
๐œ‰ ๐‘  . ๐‘‘๐‘Š ๐‘  โˆ’ โˆซ
/
( $
%
๐œ‰ ๐‘  %. ๐‘‘๐‘  = โ„ฐ โˆซ
/
(
(โˆ’๐œ‰ ๐‘  ). ๐‘‘๐‘Š ๐‘ 
ยจ ๐‘Šโ„š! ๐‘ก = ๐‘Šโ„š& ๐‘ก + โˆซ
/
(
๐œ‰ ๐‘  . ๐‘‘๐‘ 
33
Luc_Faucheux_2021
Another way to look at Ho-Lee - III
ยจ Under the Risk Neutral measure noted โ„š, associated to the Brownian motion ๐‘Šโ„š ๐‘ก , the
SDE for the instantaneous forward rate is:
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก
ยจ The SIE is:
ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. โˆ’ ๐‘… 0, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. ๐‘ก. โˆ’
$
%
๐‘ก โˆ’ ๐œŽ. ([). ๐‘Šโ„š ๐‘ก
ยจ The numeraire associated with the risk free measure is the rolling discount:
ยจ ๐ต ๐‘ก = exp[โˆซ
;)/
;)(
๐‘… ๐‘ , ๐‘ , ๐‘  . ๐‘‘๐‘ ]
34
Luc_Faucheux_2021
Another way to look at Ho-Lee - IV
ยจ Under the Terminal (forward measure) noted โ„ค(๐‘ก.), associated with the Brownian motion
that we note by: ๐‘Šโ„ค((') ๐‘ก
ยจ The instantaneous forward is a martingale under this measure
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(2
โ„ค((2)
๐‘‰(๐‘กR, $๐ฟ ๐‘ก., ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก
ยจ lim
(2โ†’('
๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐‘… ๐‘ก, ๐‘ก., ๐‘ก.
ยจ lim
(2โ†’('
[๐”ผ(2
โ„ค((2)
๐‘‰(๐‘กR, $๐ฟ ๐‘ก., ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก ] = ๐”ผ('
โ„ค((')
๐‘‰(๐‘ก., $๐ฟ ๐‘ก., ๐‘ก., ๐‘ก. , ๐‘ก., ๐‘ก.) ๐”‰ ๐‘ก
ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐”ผ('
โ„ค((')
๐‘‰(๐‘ก., $๐ฟ ๐‘ก., ๐‘ก., ๐‘ก. , ๐‘ก., ๐‘ก.) ๐”‰ ๐‘ก = ๐”ผ('
โ„ค((')
๐‘…(๐‘ก., ๐‘ก., ๐‘ก.) ๐”‰ ๐‘ก
ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐”ผ('
โ„ค((')
๐‘…(๐‘ก., ๐‘ก., ๐‘ก.) ๐”‰ ๐‘ก
35
Luc_Faucheux_2021
Another way to look at Ho-Lee - V
ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐”ผ('
โ„ค((')
๐‘…(๐‘ก., ๐‘ก., ๐‘ก.) ๐”‰ ๐‘ก
ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. is a martingale under the terminal measure โ„ค(๐‘ก.)
ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. is a driftless process
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค((') ๐‘ก
ยจ The numeraire associated to the terminal measure is the Zero ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.
ยจ Letโ€™s compare:
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค((') ๐‘ก
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก
36
Luc_Faucheux_2021
Another way to look at Ho-Lee - VI
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค((') ๐‘ก
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก
ยจ For the two processes to have the same variance we need:
ยจ ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” = โˆ’๐œŽ
ยจ So we have:
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„ค((') ๐‘ก
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก
37
Luc_Faucheux_2021
Another way to look at Ho-Lee - VII
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„ค((') ๐‘ก
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก
ยจ Which leads to:
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก
38
Luc_Faucheux_2021
Another way to look at Ho-Lee - VIII
ยจ We could also do it from the SIE:
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„ค((') ๐‘ก
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก
ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. โˆ’ ๐‘… 0, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘Šโ„ค((') ๐‘ก
ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. โˆ’ ๐‘… 0, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. ๐‘ก. โˆ’
$
%
๐‘ก โˆ’ ๐œŽ. ([). ๐‘Šโ„š ๐‘ก
ยจ Which leads to:
ยจ ๐‘Šโ„ค((') ๐‘ก = ๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. ๐‘ก. โˆ’
$
%
๐‘ก
39
Luc_Faucheux_2021
Another way to look at Ho-Lee - IX
ยจ ๐‘Šโ„ค((') ๐‘ก = ๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. ๐‘ก. โˆ’
$
%
๐‘ก
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’
$
%
๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’
$
%
. ๐‘‘๐‘ก
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก
40
Luc_Faucheux_2021
Another way to look at Ho-Lee - X
ยจ OK, letโ€™s recap:
ยจ In the risk free measure โ„š with the numeraire ๐ต ๐‘ก and the Brownian motion ๐‘Šโ„š ๐‘ก , the
Ho-Lee model is:
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก
ยจ In the terminal measure โ„ค(๐‘ก.) with the numeraire ๐‘ ๐‘ก, ๐‘ก., ๐‘ก. and the Brownian motion
๐‘Šโ„ค((') ๐‘ก , the Ho-Lee model is:
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„ค((') ๐‘ก
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก
41
Luc_Faucheux_2021
Another way to look at Ho-Lee - XI
ยจ We know from the change of numeraire section that:
ยจ
@โ„š
@โ„™
๐‘ก =
6โ„š(()
6โ„™(()
/
6โ„š(/)
6โ„™(/)
ยจ
@โ„ค((')
@โ„š
๐‘ก =
6โ„ค(+')(()
6โ„š(()
/
6โ„ค(+')(/)
6โ„š(/)
ยจ ๐‘โ„š ๐‘ก = ๐ต(๐‘ก)
ยจ ๐‘โ„š 0 = ๐ต(0)
ยจ ๐‘โ„ค ('
๐‘ก = ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.
ยจ ๐‘โ„ค ('
0 = ๐‘ 0,0, ๐‘ก.
42
Luc_Faucheux_2021
Another way to look at Ho-Lee - XII
ยจ
@โ„ค((')
@โ„š
๐‘ก =
6โ„ค(+')(()
6โ„š(()
/
6โ„ค(+')(/)
6โ„š(/)
ยจ
@โ„ค((')
@โ„š
๐‘ก =
P (,(',('
Q(()
/
P /,(',('
Q(/)
ยจ
@โ„ค((')
@โ„š
๐‘ก = Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. / Z
๐‘ 0,0, ๐‘ก.
ยจ So if we know the expression for the Radon-Nikodym derivative
@โ„ค((')
@โ„š
๐‘ก , we will know the
expression for the deflated Zeros
ยจ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z
๐‘ 0,0, ๐‘ก. .
@โ„ค((')
@โ„š
๐‘ก
ยจ So now the question is can we know what is the expression for :
@โ„ค((')
@โ„š
๐‘ก
43
Luc_Faucheux_2021
Another way to look at Ho-Lee - XIII
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก
ยจ
@โ„š!
@โ„š&
= exp โˆ’ โˆซ
/
(
๐œ‰ ๐‘  . ๐‘‘๐‘Š ๐‘  โˆ’ โˆซ
/
( $
%
๐œ‰ ๐‘  %. ๐‘‘๐‘  = โ„ฐ โˆซ
/
(
(โˆ’๐œ‰ ๐‘  ). ๐‘‘๐‘Š ๐‘ 
ยจ ๐‘Šโ„š! ๐‘ก = ๐‘Šโ„š& ๐‘ก + โˆซ
/
(
๐œ‰ ๐‘  . ๐‘‘๐‘ 
ยจ ๐‘‘๐‘Šโ„š! ๐‘ก = ๐‘‘๐‘Šโ„š& ๐‘ก + ๐œ‰ ๐‘ก . ๐‘‘๐‘ก
ยจ โ„š% = โ„ค(๐‘ก.)
ยจ โ„š$ = โ„š
ยจ ๐œ‰ ๐‘ก = โˆ’๐œŽ. ๐‘ก. โˆ’ ๐‘ก
ยจ
@โ„š!
@โ„š&
=
@โ„ค((')
@โ„š
= โ„ฐ โˆซ
;)/
;)(
(โˆ’๐œ‰ ๐‘  ). ๐‘‘๐‘Š ๐‘  = โ„ฐ โˆซ
;)/
;)(
(๐œŽ. ๐‘ก. โˆ’ ๐‘  ). ๐‘‘๐‘Š ๐‘ 
44
Luc_Faucheux_2021
Another way to look at Ho-Lee - XIV
ยจ We also know that:
ยจ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z
๐‘ 0,0, ๐‘ก. .
@โ„ค((')
@โ„š
๐‘ก
ยจ
@โ„ค ('
@โ„š
(๐‘ก) = โ„ฐ โˆซ
;)/
;)(
(๐œŽ. ๐‘ก. โˆ’ ๐‘  ). ๐‘‘๐‘Š ๐‘ 
ยจ And so we โ€retrouveโ€ the expression that did perplex us in the previous deck:
ยจ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z
๐‘ 0,0, ๐‘ก. . โ„ฐ โˆซ
<)/
<)(
๐œŽ. (๐‘ก. โˆ’ ๐‘ข). ๐‘‘๐‘Š(๐‘ข)
ยจ Thus this is no coincidence that the deflated Zeros are ALSO the Radon-Nikodym derivative
45
Luc_Faucheux_2021
Another way to look at Ho-Lee - XV
ยจ The deflated Zeros are the ratio of the Zeros to the rolling numeraire
ยจ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. =
P (,(,('
Q(()
ยจ The deflated Zeros is the ratio of the Terminal measure โ„ค(๐‘ก.) numeraire to the risk-free
measure โ„š numeraire
ยจ The ratio of numeraires is related to the Radon-Nikodym derivative by the following:
ยจ
@โ„ค((')
@โ„š
๐‘ก =
6โ„ค(+')(()
6โ„š(()
/
6โ„ค(+')(/)
6โ„š(/)
ยจ
@โ„ค((')
@โ„š
๐‘ก =
P (,(,('
Q(()
/
P /,/,('
Q(/)
ยจ
@โ„ค((')
@โ„š
๐‘ก = Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. / Z
๐‘ 0,0, ๐‘ก.
46
Luc_Faucheux_2021
Another way to look at Ho-Lee - XVI
ยจ So it makes sense that the deflated Zeros can be casted as a function of a Radon-Nikodym
derivative:
ยจ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z
๐‘ 0,0, ๐‘ก. .
@โ„ค((')
@โ„š
๐‘ก
ยจ And now to obtain the RN derivative we just need to know the relation between the two
Brownian motions ๐‘Šโ„ค((') ๐‘ก and ๐‘Šโ„š ๐‘ก
ยจ We know that in the terminal measure โ„ค(๐‘ก.) the instantaneous forward rate ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. is a
martingale and thus is a driftless process:
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค((') ๐‘ก
ยจ We just need to know the SDE for the instantaneous forward rate ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. in the risk free
measure in the Ho-Lee model (or another model)
47
Luc_Faucheux_2021
Another way to look at Ho-Lee - XVII
ยจ In the case of Ho-Lee:
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค((') ๐‘ก
ยจ So:
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก
ยจ And:
ยจ
@โ„ค((')
@โ„š
= โ„ฐ โˆซ
;)/
;)(
(๐œŽ. ๐‘ก. โˆ’ ๐‘  ). ๐‘‘๐‘Š ๐‘ 
48
Luc_Faucheux_2021
Another way to look at Ho-Lee - XVIII
ยจ Letโ€™s also note that since the RN derivative is a martingale under the reference measure, so
will be the deflated Zeros:
ยจ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z
๐‘ 0,0, ๐‘ก. .
@โ„ค((')
@โ„š
๐‘ก
ยจ
@โ„ค((')
@โ„š
๐‘ก is a martingale under the โ„š-measure
ยจ
@โ„ค ('
@โ„š
(๐‘ก) = ๐”ผ=
โ„š
{
@โ„ค((')
@โ„š
๐‘‡ |๐”‰ ๐‘ก } for ๐‘‡ > ๐‘ก
ยจ So the process for
@โ„ค((')
@โ„š
๐‘ก is driftless using the ๐‘Šโ„š ๐‘ก Brownian motion
ยจ ๐‘‘
@โ„ค ('
@โ„š
๐‘ก = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„š ๐‘ก
49
Luc_Faucheux_2021
Another way to look at Ho-Lee - XIX
ยจ ๐‘‘
@โ„ค ('
@โ„š
๐‘ก = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„š ๐‘ก
ยจ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z
๐‘ 0,0, ๐‘ก. .
@โ„ค((')
@โ„š
๐‘ก
ยจ ๐‘‘
S
P (,(,('
S
P /,/,('
= 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„š ๐‘ก
ยจ We also know that :
ยจ ๐‘‘๐‘Œ ๐‘ก = ๐œ‰ ๐‘ก . ๐‘Œ ๐‘ก . [ . ๐‘‘๐‘Š ๐‘ก
ยจ Is driftless, and the solution of it is:
ยจ ๐‘Œ ๐‘ก = ๐‘Œ 0 . exp โˆซ
;)/
;)(
๐œ‰ ๐‘  . [ . ๐‘‘๐‘Š ๐‘  โˆ’
$
%
โˆซ
;)/
;)(
๐œ‰ ๐‘  %. ๐‘‘๐‘  = ๐‘Œ 0 . โ„ฐ โˆซ
;)/
;)(
๐œ‰ ๐‘  . ๐‘‘๐‘Š ๐‘ 
50
Luc_Faucheux_2021
Another way to look at Ho-Lee - XX
ยจ Finally, we know that
ยจ
S
P (,(,('
S
P /,/,('
=
@โ„ค((')
@โ„š
๐‘ก and thus has to be a RN (radon-Nikodym) derivative.
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก + ๐œ‰ ๐‘ก . ๐‘‘๐‘ก
ยจ
@โ„ค ('
@โ„š
(๐‘ก) = โ„ฐ โˆซ
;)/
;)(
(โˆ’๐œ‰ ๐‘  ). ๐‘‘๐‘Šโ„š ๐‘ 
ยจ Cranking the ITO handle back down to the SDE will return:
ยจ ๐‘‘
@โ„ค ('
@โ„š
๐‘ก = โˆ’๐œ‰ ๐‘ก . {
@โ„ค ('
@โ„š
(๐‘ก)}. [ . ๐‘‘๐‘Šโ„š ๐‘ก
ยจ ๐‘‘
S
P (,(,('
S
P /,/,('
= โˆ’๐œ‰ ๐‘ก . {
S
P (,(,('
S
P /,/,('
(๐‘ก)}. [ . ๐‘‘๐‘Šโ„š ๐‘ก
51
Luc_Faucheux_2021
Another way to look at Ho-Lee - XXI
ยจ ๐‘‘
S
P (,(,('
S
P /,/,('
= โˆ’๐œ‰ ๐‘ก . {
S
P (,(,('
S
P /,/,('
(๐‘ก)}. [ . ๐‘‘๐‘Šโ„š ๐‘ก
ยจ ๐‘‘ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = โˆ’๐œ‰ ๐‘ก . Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. . [ . ๐‘‘๐‘Šโ„š ๐‘ก
ยจ Where: ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก + ๐œ‰ ๐‘ก . ๐‘‘๐‘ก
ยจ This is somewhat of a general result:
ยจ The deflated Zeros are a martingale in the Risk-free measure
ยจ The SDE for the deflated Zeros is of the form:
ยจ ๐‘‘ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = โˆ’๐œ‰ ๐‘ก . Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. . [ . ๐‘‘๐‘Šโ„š ๐‘ก
ยจ The volatility coefficient for the deflated Zeros is the drift between the risk-free โ„š-Brownian
motion and the terminal โ„ค(๐‘ก.)-Brownian motion
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก + ๐œ‰ ๐‘ก . ๐‘‘๐‘ก
52
Luc_Faucheux_2021
Another way to look at Ho-Lee - XXII
ยจ In the case of Ho-Lee:
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก + ๐œ‰ ๐‘ก . ๐‘‘๐‘ก
ยจ ๐œ‰ ๐‘ก = โˆ’๐œŽ. ๐‘ก. โˆ’ ๐‘ก
ยจ ๐‘‘ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = โˆ’๐œ‰ ๐‘ก . Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. . [ . ๐‘‘๐‘Šโ„š ๐‘ก
ยจ ๐‘‘ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = ๐œŽ. ๐‘ก. โˆ’ ๐‘ก . Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. . [ . ๐‘‘๐‘Šโ„š ๐‘ก
53
Luc_Faucheux_2021
Another way to look at Ho-Lee โ€“ XXIII
ยจ Letโ€™s see if we can do something more general with this (it seems that we sould be able to
do it).
ยจ The deflated Zeros are the ratio of two numeraires.
ยจ So they are also the RN derivative between the two measures
ยจ In particular, they are always a martingale (driftless process) in the measure associated to
the bottom (denominator) numeraire.
ยจ Because the Zeros are the numeraire of the terminal measure under which the
instantaneous forward rate is martingale (driftless process), that leaves us as โ€œdegrees of
freedomโ€ what kind of process we can write for the instantaneous forward rates in the risk-
free measure (since we do not have much choice in the terminal measure, it is driftless).
ยจ We follow here somewhat Baxter p.144 see if we can write something a little more general
than the specific Ho-Lee case.
54
Luc_Faucheux_2021
Something a little more general about the
Deflated Zeros and the Instantaneous
Forward Rates
55
Luc_Faucheux_2021
Another way to look at Ho-Lee โ€“ a little more general - I
ยจ Letโ€™s see if we can do something more general with this (it seems that we sould be able to
do it).
ยจ The deflated Zeros are the ratio of two numeraires.
ยจ So they are also the RN derivative between the two measures
ยจ In particular, they are always a martingale (driftless process) in the measure associated to
the bottom (denominator) numeraire.
ยจ Because the Zeros are the numeraire of the terminal measure under which the
instantaneous forward rate is martingale (driftless process), that leaves us as โ€œdegrees of
freedomโ€ what kind of process we can write for the instantaneous forward rates in the risk-
free measure (since we do not have much choice in the terminal measure, it is driftless).
ยจ We follow here somewhat Baxter p.144 see if we can write something a little more general
than the specific Ho-Lee case.
56
Luc_Faucheux_2021
Another way to look at Ho-Lee โ€“ a little more general - II
ยจ In the terminal measure:
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค((') ๐‘ก
ยจ In the risk free measure, letโ€™s assume that we can write something like:
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐‘Ž. ๐‘‘๐‘ก + ๐‘. ๐‘‘๐‘Šโ„š ๐‘ก
ยจ Where:
ยจ ๐‘Ž = ๐‘Ž(๐”‰ ๐‘ก , ๐‘ก.)
ยจ ๐‘ = ๐‘(๐”‰ ๐‘ก , ๐‘ก.)
ยจ Those functions (advection/drift and volatilities) can depend on the history of the Brownian
motion ๐‘Šโ„š ๐‘ก and the rates themselves up to time ๐‘ก, and also depends on the terminal
time ๐‘ก.
ยจ Note that here we are dealing with a single factor model for ease of notation
57
Luc_Faucheux_2021
Another way to look at Ho-Lee โ€“ a little more general - III
ยจ Couple of โ€œmathyโ€ conditions on the advection and the volatility, from the original HJM
paper, essentially, this is ensuring โ€well-behavedโ€ functions, and somewhat simplified:
ยจ ๐‘Ž = ๐‘Ž(๐”‰ ๐‘ก , ๐‘ก.)
ยจ ๐‘ = ๐‘(๐”‰ ๐‘ก , ๐‘ก.)
ยจ โˆซ
;)/
;)(
|๐‘Ž(๐”‰ ๐‘  , ๐‘ก.) | . ๐‘‘๐‘  < โˆž
ยจ โˆซ
;)/
;)(
๐‘(๐”‰ ๐‘  , ๐‘ก.) % . ๐‘‘๐‘  < โˆž
ยจ โˆซ
;)/
;)(
|๐‘…(0, ๐‘ , ๐‘ , )| . ๐‘‘๐‘  < โˆž
ยจ โˆซ
;)/
;)(
๐‘‘๐‘  {โˆซ
<)/
<);
|๐‘Ž(๐”‰ ๐‘ข , ๐‘ก.) | . ๐‘‘๐‘ข} < โˆž meaning that we can do Fubini
ยจ ๐”ผ(
โ„š
{โˆซ
;)/
;)(
๐‘‘๐‘  {โˆซ
<)/
<);
๐‘ ๐”‰ ๐‘ข , ๐‘ก. . ({). ๐‘‘๐‘Šโ„š ๐‘ข }|๐”‰ 0 } < โˆž
58
Luc_Faucheux_2021
Another way to look at Ho-Lee โ€“ a little more general - IV
ยจ Actually am trying to keep those decks under 150 slides or so, so will move that section in
the next deck
59
Luc_Faucheux_2021
A little quiz on martingales
60
Luc_Faucheux_2021
A little quiz on martingales โ€“ prep before the quiz
ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐”ผ('
โ„ค((')
๐‘…(๐‘ก., ๐‘ก., ๐‘ก.) ๐”‰ ๐‘ก
ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. is a martingale under the terminal measure โ„ค(๐‘ก.)
ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. is a driftless process
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค((') ๐‘ก
ยจ The numeraire associated to the terminal measure is the Zero ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.
61
Luc_Faucheux_2021
A little quiz on martingales - II
ยจ The deflated Zeros are the ratio of the Zeros to the rolling numeraire
ยจ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. =
P (,(,('
Q(()
ยจ
S
P (,(,('
S
P /,/,('
is a martingale under the Risk-Free measure โ„š
ยจ {
S
P (,(,('
S
P /,/,('
}G$ is a martingale under the Terminal measure โ„ค(๐‘ก.)
62
Luc_Faucheux_2021
A little quiz on martingales - III
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(2
โ„ค((2)
๐‘‰(๐‘กR, $๐ฟ ๐‘ก., ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ('
โ„ค((')
๐‘‰ ๐‘ก., $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ('
โ„ค((')
๐‘(๐‘ก., ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก
ยจ Simply compounded FORWARD at time ๐‘ก: ๐‘๐ถ ๐‘ก, ๐‘ก., ๐‘กR =
$
$0T (,(',(2 .U (,(',(2
ยจ Simply compounded FORWARD at time ๐‘ก. : ๐‘๐ถ ๐‘ก., ๐‘ก., ๐‘กR =
$
$0T (',(',(2 .U (',(',(2
63
Luc_Faucheux_2021
A little quiz on martingales - IV
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(2
โ„ค((2)
๐‘‰(๐‘กR, $๐ฟ ๐‘ก., ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก
ยจ The simply compounded forward ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR spanning the period [๐‘ก., ๐‘กR] is a martingale in the
forward (๐‘กR -terminal measure) โ„ค(๐‘กR)
64
Luc_Faucheux_2021
A little quiz on martingales - V
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ('
โ„ค((')
๐‘‰ ๐‘ก., $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ('
โ„ค((')
๐‘(๐‘ก., ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก
ยจ The Zeros ๐‘ ๐‘ก, ๐‘ก., ๐‘กR spanning the period [๐‘ก., ๐‘กR] is a martingale in the early/tree/discount
(๐‘ก. - Terminal measure) โ„ค(๐‘ก.)
ยจ The fixed swaplet payment {
$
$0T (,(',(2 .U (,(',(2
} is a martingale in the early/tree/discount (๐‘ก. -
Terminal measure) โ„ค(๐‘ก.)
ยจ The floating swaplet payment {
T (,(',(2 .U (,(',(2
$0T (,(',(2 .U (,(',(2
} is a martingale in the early/tree/discount
(๐‘ก. - Terminal measure) โ„ค(๐‘ก.)
65
Luc_Faucheux_2021
A little quiz on martingales - VI
ยจ Just to be a little safe but maybe pedantic, because in Finance, it is always claims that we are
looking at and WHEN they are paid (this is the first principle of the time value of money)
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ('
โ„ค((')
๐‘‰ ๐‘ก., $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ('
โ„ค((')
๐‘(๐‘ก., ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ('
โ„ค((')
๐‘‰ ๐‘ก., $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ('
โ„ค((')
๐‘‰ ๐‘ก., $๐‘(๐‘ก, ๐‘ก., ๐‘กR), ๐‘ก., ๐‘ก. ๐”‰ ๐‘ก
ยจ {
$
$0T (,(',(2 .U (,(',(2
} = ๐”ผ('
โ„ค((')
๐‘‰ ๐‘ก., ${
$
$0T (,(',(2 .U (,(',(2
}, ๐‘ก., ๐‘ก. ๐”‰ ๐‘ก
ยจ {
T (,(',(2 .U (,(',(2
$0T (,(',(2 .U (,(',(2
} = ๐”ผ('
โ„ค((')
๐‘‰ ๐‘ก., ${
T (,(',(2 .U (,(',(2
$0T (,(',(2 .U (,(',(2
}, ๐‘ก., ๐‘ก. ๐”‰ ๐‘ก
66
Luc_Faucheux_2021
A little quiz on martingales โ€“ VI-a
ยจ I think that part of the confusion comes from going between a variable and a claim.
ยจ Saying that ๐‘‹(๐‘ก) is a martingale under the measure โ„š$ associated ๐‘Šโ„š&(๐‘ก)Brownian motion
ยจ ๐‘‘๐‘‹ ๐‘ก = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . [ . ๐‘‘๐‘Šโ„š&(๐‘ก)
ยจ Or using the expectation formalism:
ยจ ๐‘‹ ๐‘  = ๐”ผ(
โ„š&
๐‘‹ ๐‘ก ๐”‰ ๐‘ 
ยจ When going to a claim, the only thing that you can build from above is the value at time ๐‘ก of
a claim that pays ๐‘‹ ๐‘ก set at time ๐‘ก and paid at time ๐‘ก. This is really the only thing that you
can deduce on the valuation of claims from the fact that a variable is a martingale. Anything
gets out of sync (fixing time, payment time, valuation time of the claim) and you really
cannot say anything at all
ยจ ๐‘‰(๐‘ , $๐‘‹ ๐‘  , ๐‘ , ๐‘ ) = ๐”ผ(
โ„š&
๐‘‰(๐‘ก, $๐‘‹ ๐‘ก , ๐‘ก, ๐‘ก) ๐”‰ ๐‘ 
67
Luc_Faucheux_2021
A little quiz on martingales - VII
ยจ We have to do a little refresher on the notation (because remember unlike in Physics, what
matters really in Finance is WHEN you get paid, not when you observe/fix/set the payment)
ยจ ๐‘‰(๐‘ก) = ๐‘‰ ๐‘ก, $๐ป(๐‘ก), ๐‘ก., ๐‘กR
68
๐‘ƒ๐‘Ž๐‘–๐‘‘ ๐‘Ž๐‘ก ๐‘ก๐‘–๐‘š๐‘’ ๐‘กR
๐น๐‘–๐‘ฅ๐‘’๐‘‘ ๐‘œ๐‘Ÿ ๐‘ ๐‘’๐‘ก ๐‘Ž๐‘ก ๐‘ก๐‘–๐‘š๐‘’ ๐‘ก.
๐บ๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ƒ๐‘Ž๐‘ฆ๐‘œ๐‘“๐‘“ ๐ป ๐‘ก ๐‘–๐‘› ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘๐‘ฆ $
๐‘‰๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ฆ๐‘œ๐‘“๐‘“ ๐‘œ๐‘๐‘ ๐‘’๐‘Ÿ๐‘ฃ๐‘’๐‘‘ ๐‘Ž๐‘ก ๐‘ก๐‘–๐‘š๐‘’ ๐‘ก
Luc_Faucheux_2021
A little quiz on martingales - VIII
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(2
โ„ค((2)
๐‘‰(๐‘กR, $๐ฟ ๐‘ก., ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(2
โ„ค((2)
๐‘‰(๐‘กR, $๐ฟ ๐‘ก, ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ<
โ„ค((2)
๐‘‰(๐‘ข, $๐ฟ ๐‘ข, ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก with ๐‘ก < ๐‘ข < ๐‘ก. < ๐‘กR
ยจ BUT
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR โ‰  ๐”ผ<
โ„ค((2)
๐‘‰(๐‘ข, $๐ฟ ๐‘ข, ๐‘ก., ๐‘กR , ๐‘ก., ๐‘ก.) ๐”‰ ๐‘ก
ยจ The simply compounded forward rates HAS to be paid AT THE END of the period [๐‘ก., ๐‘กR] at
the time ๐‘กR
ยจ OTHERWISE that is a LIBOR-IN-ARREARS trade
69
Luc_Faucheux_2021
A little quiz on martingales - IX
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ('
โ„ค((')
๐‘‰ ๐‘ก., $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ('
โ„ค((')
๐‘(๐‘ก., ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ<
โ„ค((')
๐‘‰ ๐‘ข, $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ<
โ„ค((')
๐‘(๐‘ข, ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก
ยจ with ๐‘ก < ๐‘ข < ๐‘ก. < ๐‘กR
ยจ ๐‘ ๐‘ข, ๐‘ข, ๐‘กR = ๐‘ ๐‘ข, ๐‘ข, ๐‘ก. . ๐‘(๐‘ข, ๐‘ก., ๐‘กR)
70
Luc_Faucheux_2021
Letโ€™s do the quiz
71
Luc_Faucheux_2021
Quiz, letโ€™s see how you do..some notations firstโ€ฆ
ยจ ๐‘Šโ„ค((') ๐‘ก is the Brownian motion associated to the terminal measure โ„ค(๐‘ก.) which is
associated with the Zero ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.
ยจ ๐‘Šโ„š ๐‘ก is the Brownian motion associated to the risk-free measure โ„š which is associated
with the rolling numeraire ๐ต ๐‘ก = exp[โˆซ
;)/
;)(
๐‘… ๐‘ , ๐‘ , ๐‘  . ๐‘‘๐‘ ]
ยจ โ„š$ is a measure with an associated ๐‘Šโ„š&(๐‘ก)Brownian motion
ยจ โ„š% is a measure with an associated ๐‘Šโ„š!(๐‘ก)Brownian motion
ยจ The simply compounded forward is defined through the usual bootstrapping formula:
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ =
P (,(,('%&
P (,(,('
=
$
$0T (,(',('%& .U (,(',('%&
ยจ The deflated Zeros are:
ยจ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. =
P (,(,('
Q (
72
Luc_Faucheux_2021
Quiz time โ€ฆ.right/wrongโ€ฆ
ยจ ๐‘‹ ๐‘ก = 1 is a martingale under the risk free measure โ„š
ยจ ๐‘Šโ„š ๐‘ก is a martingale under the risk free measure โ„š
ยจ {๐‘Šโ„š ๐‘ก }% is a martingale under the risk free measure โ„š
ยจ {๐‘Šโ„š ๐‘ก }%V0$ is a martingale under the risk free measure โ„š
ยจ ๐ผ ๐‘ก = โˆซ
;)/
;)(
๐‘‘๐‘Šโ„š ๐‘  is a martingale under the risk free measure โ„š
ยจ ๐ผ ๐‘ก = โˆซ
;)/
;)(
๐œ‰ ๐‘  . ([). ๐‘‘๐‘Šโ„š ๐‘  is a martingale under the risk free measure โ„š
ยจ ๐ผ ๐‘ก = โˆซ
;)/
;)(
๐‘Šโ„š ๐‘  . ([). ๐‘‘๐‘Šโ„š ๐‘  is a martingale under the risk free measure โ„š
ยจ ๐ผ ๐‘ก = โˆซ
;)/
;)(
{๐‘Šโ„š ๐‘ก }%. ([). ๐‘‘๐‘Šโ„š ๐‘  is a martingale under the risk free measure โ„š
ยจ ๐ผ ๐‘ก = โˆซ
;)/
;)(
{๐‘Šโ„š ๐‘ก }7. ([). ๐‘‘๐‘Šโ„š ๐‘  is a martingale under the risk free measure โ„š
73
Luc_Faucheux_2021
Quiz time โ€ฆ.right/wrongโ€ฆII
ยจ
@โ„š!
@โ„š&
๐‘ก is a martingale under the โ„š$-measure
ยจ
@โ„š&
@โ„š!
๐‘ก is a martingale under the โ„š%-measure
ยจ
@โ„š!
@โ„š&
๐‘ก is a martingale under the โ„š%-measure
ยจ
@โ„š&
@โ„š!
๐‘ก is a martingale under the โ„š$-measure
74
Luc_Faucheux_2021
Quiz time โ€ฆ.right/wrongโ€ฆIII
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.0$) measure
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.) measure
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก) measure
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the risk free measure โ„š
ยจ {๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ }% is a martingale under the โ„ค(๐‘ก.0$) measure
ยจ
$
$0T'.U (,(',('%&
is a martingale under the โ„ค(๐‘ก.) measure
ยจ
T'.U (,(',('%&
$0T'.U (,(',('%&
is a martingale under the โ„ค(๐‘ก.) measure
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.) measure
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$
G$ is a martingale under the โ„ค(๐‘ก.0$) measure
75
Luc_Faucheux_2021
Quiz time โ€ฆ.right/wrongโ€ฆIV
ยจ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. is a martingale under the โ„ค(๐‘ก.0$) measure
ยจ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. is a martingale under the risk free measure โ„š
ยจ Z
๐‘ ๐‘ก, ๐‘ก, ๐‘ก. is a martingale under the โ„ค(๐‘ก.) measure
ยจ
$
S
P (,(,('
is a martingale under the โ„ค(๐‘ก.0$) measure
ยจ
$
S
P (,(,('
is a martingale under the risk free measure โ„š
ยจ
$
S
P (,(,('
is a martingale under the โ„ค(๐‘ก.) measure
76
Luc_Faucheux_2021
Quiz time โ€ฆ.right/wrongโ€ฆV
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.) measure
ยจ ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. is a martingale under the โ„ค(๐‘ก.) measure
ยจ ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.) measure
ยจ ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.0$) measure
ยจ ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก) measure
ยจ
$
P (,(',('%&
is a martingale under the โ„ค(๐‘ก.0$) measure
ยจ
$
P (,(',('%&
is a martingale under the โ„ค(๐‘ก.) measure
ยจ
$
P (,(',('%&
is a martingale under the risk free measure โ„š
77
Luc_Faucheux_2021
Quiz time โ€ฆ.right/wrongโ€ฆVI
ยจ
T'.U (,(',('%&
$0T'.U (,(',('%&
is a martingale under the โ„ค(๐‘ก.) measure
ยจ
T'.U (,(',('%&
$0T'.U (,(',('%&
is a martingale under the โ„ค(๐‘ก.0$) measure
ยจ
{T'.U (,(',('%& }!
$0T'.U (,(',('%&
is a martingale under the โ„ค(๐‘ก.) measure
ยจ
{T'.U (,(',('%& }!
$0T'.U (,(',('%&
is a martingale under the โ„ค(๐‘ก.0$) measure
ยจ
T'.U (,(',('%&
$0T'.U (,(',('%&
is a martingale under the risk free measure โ„š
78
Luc_Faucheux_2021
Bootstrapping the measures
79
Luc_Faucheux_2021
Bootstrapping the measures.
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ('
โ„ค((')
๐‘‰ ๐‘ก., $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ('
โ„ค((')
๐‘(๐‘ก., ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก
ยจ The Zeros ๐‘ ๐‘ก, ๐‘ก., ๐‘กR spanning the period [๐‘ก., ๐‘กR] is a martingale in the early/tree/discount
(๐‘ก. - Terminal measure) โ„ค(๐‘ก.)
ยจ Since we are going to use those to value successive swaplets, we will encounter first the
important case ๐‘— = ๐‘– + 1
ยจ Here we assume that we have indexed the time buckets say along the periods of a swap or
derivative that we want to value.
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ =
P (,(,('%&
P (,(,('
=
$
$0T (,(',('%& .U (,(',('%&
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the terminal (forward) measure โ„ค(๐‘ก.0$)
ยจ So the SDE looks something like:
ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก
80
Luc_Faucheux_2021
Bootstrapping the measures - II
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the terminal (forward) measure โ„ค(๐‘ก.0$)
ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘”_๐ฟ . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale in the the terminal (forward) measure โ„ค(๐‘ก.)
ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘”_๐‘ . ๐‘‘๐‘Šโ„ค((') ๐‘ก
ยจ And we have the relationship:
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ =
P (,(,('%&
P (,(,('
=
$
$0T (,(',('%& .U (,(',('%&
ยจ So the idea is that we should be able to say something about how to go from โ„ค(๐‘ก.0$) to
โ„ค(๐‘ก.) because we need to verify those 3 relationships.
ยจ That is the idea behind the LMM (Libor Market Model)
81
Luc_Faucheux_2021
Bootstrapping the measures - III
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ =
P (,(,('%&
P (,(,('
=
$
$0T (,(',('%& .U (,(',('%&
ยจ We use ITO lemma on this.
ยจ ๐›ฟ๐‘“ =
!"
!#
. ๐›ฟ๐‘‹ +
$
%
.
!!"
!#! . (๐›ฟ๐‘‹)%
ยจ With: ๐‘‹ = ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ and ๐‘“(๐‘ฅ) = 1/(1 + ๐œ ๐‘ก, ๐‘ก., ๐‘ก.0$ . ๐‘ฅ)
ยจ
!"
!#
=
GT (,(',('%&
($0T (,(',('%& .#)!
ยจ
!!"
!#! =
%.T (,(',('%&
!
($0T (,(',('%& .#)3
ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ =
GT (,(',('%&
($0T (,(',('%& .U (,(',('%& )! . ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ +
$
%
.
%.T (,(',('%&
!
($0T (,(',('%& .#)3 . (๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ )%
82
Luc_Faucheux_2021
Bootstrapping the measures - IV
ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ =
GT (,(',('%&
($0T (,(',('%& .U (,(',('%& )! . ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ +
$
%
.
%.T (,(',('%&
!
($0T (,(',('%& .#)3 . (๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ )%
ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘”_๐ฟ . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก
ยจ If we choose a function :
ยจ ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘”_๐ฟ = ๐‘{๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ , ๐”‰ ๐‘ก } that could be function of the rate at all times prior to
time ๐‘ก, that we note ๐‘ just for ease of notation
ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ = 0 . ๐‘‘๐‘ก + ๐‘. ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก
ยจ (๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ )%= ๐‘%. ๐‘‘๐‘ก
ยจ Note that if the function ๐‘{๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ , ๐”‰ ๐‘ก } has dependency on the stochastic variable, we
need to make sure that we are working in the ITO calculus
ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ = 0 . ๐‘‘๐‘ก + ๐‘. [ . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก
ยจ (๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ )%= ๐‘%. ๐‘‘๐‘ก
83
Luc_Faucheux_2021
Bootstrapping the measures - V
ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ =
GT (,(',('%&
($0T (,(',('%& .U (,(',('%& )! . ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ +
$
%
.
%.T (,(',('%&
!
($0T (,(',('%& .#)3 . (๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ )%
ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ = ๐‘. [ . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก
ยจ (๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ )%= ๐‘%. ๐‘‘๐‘ก
ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ =
GT (,(',('%&
($0T (,(',('%& .U (,(',('%& )! . ๐‘. [ . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก +
$
%
.
%.T (,(',('%&
!
($0T (,(',('%& .U (,(',('%& )3 . ๐‘%. ๐‘‘๐‘ก
ยจ Following Piterbarg (p. 595), letโ€™s just simplify a little the daycount fraction by writing:
ยจ ๐œ ๐‘ก, ๐‘ก., ๐‘ก.0$ = ๐œ.
ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ =
GT'
($0T'.U (,(',('%& )! . ๐‘. [ . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก +
$
%
.
%.T'
!
($0T'.U (,(',('%& )3 . ๐‘%. ๐‘‘๐‘ก
ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ =
GT'.&
($0T'.U (,(',('%& )! . { [ . ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’
T'
($0T'.U (,(',('%& )
. ๐‘. ๐‘‘๐‘ก}
84
Luc_Faucheux_2021
Bootstrapping the measures - VI
ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ =
GT'.&
($0T'.U (,(',('%& )! . { [ . ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’
T'
($0T'.U (,(',('%& )
. ๐‘. ๐‘‘๐‘ก}
ยจ But we also know that:
ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘”_๐‘ . ๐‘‘๐‘Šโ„ค((') ๐‘ก
ยจ So the only way that works is:
ยจ ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘”_๐‘ =
GT'.&
($0T'.U (,(',('%& )!
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’
T'
($0T'.U (,(',('%& )
. ๐‘. ๐‘‘๐‘ก
ยจ So this is how we can go from the โ„ค ๐‘ก.0$ terminal measure to the โ„ค(๐‘ก.) terminal measure
85
Luc_Faucheux_2021
Bootstrapping the measures - VII
ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ = ๐‘{๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ , ๐”‰ ๐‘ก }. [ . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’
T'
($0T'.U (,(',('%& )
. ๐‘{๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ , ๐”‰ ๐‘ก }. ๐‘‘๐‘ก
ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก.G$, ๐‘ก. = ๐‘{๐ฟ ๐‘ก, ๐‘ก.G$, ๐‘ก. , ๐”‰ ๐‘ก }. [ . ๐‘‘๐‘Šโ„ค((') ๐‘ก
ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก.G$, ๐‘ก. = ๐‘ ๐ฟ ๐‘ก, ๐‘ก.G$, ๐‘ก. , ๐”‰ ๐‘ก . [ . {๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’
T'.&{U (,(',('%& ,๐”‰ ( }
($0T'.U (,(',('%& )
. ๐‘‘๐‘ก}
ยจ This illustrates that if ๐ฟ ๐‘ก, ๐‘ก.G$, ๐‘ก. is a martingale in the โ„ค(๐‘ก.) terminal measure, it is NOT a
martingale in the โ„ค(๐‘ก.0$) terminal measure, and the drift can be quite a complicated formula:
ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก.G$, ๐‘ก. = โˆ’
T'.& U (,(',('%& ,๐”‰ ( .& U (,('4&,(' ,๐”‰ (
$0T'.U (,(',('%&
. ๐‘‘๐‘ก + ๐‘ ๐ฟ ๐‘ก, ๐‘ก.G$, ๐‘ก. , ๐”‰ ๐‘ก . [ ๐‘‘๐‘Šโ„ค ('%& ๐‘ก
86
Luc_Faucheux_2021
Bootstrapping the measures - VIII
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’
T'
($0T'.U (,(',('%& )
. ๐‘. ๐‘‘๐‘ก
ยจ ๐‘‘๐‘Šโ„ค ('%& ๐‘ก = ๐‘‘๐‘Šโ„ค((') ๐‘ก +
T'
($0T'.U (,(',('%& )
. ๐‘. ๐‘‘๐‘ก
ยจ Remember that:
ยจ ๐‘ = ๐‘ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ , ๐”‰ ๐‘ก = ๐‘(๐‘–)
ยจ We can go down by recurrence
ยจ ๐‘‘๐‘Šโ„ค ('%& ๐‘ก = ๐‘‘๐‘Šโ„ค((') ๐‘ก +
T'
$0T'.U (,(',('%&
. ๐‘(๐‘–). ๐‘‘๐‘ก
ยจ ๐‘‘๐‘Šโ„ค (' ๐‘ก = ๐‘‘๐‘Šโ„ค(('4&) ๐‘ก +
T'4&
$0T'4&.U (,('4&,('
. ๐‘(๐‘– โˆ’ 1). ๐‘‘๐‘ก
ยจ ๐‘‘๐‘Šโ„ค (2 ๐‘ก = ๐‘‘๐‘Šโ„ค((') ๐‘ก + โˆ‘7).
7)RG$ T$4&
$0T$4&.U (,($4&,($
. ๐‘(๐‘˜ โˆ’ 1). ๐‘‘๐‘ก
87
Luc_Faucheux_2021
Bootstrapping the measures โ€“ VIII - a
ยจ Letโ€™s leave this one like that for now, but note that we are laying down the foundations to
derive the LMM (Libor Market Model). Hopefully will do that in deck VIII.
88
Luc_Faucheux_2021
Bootstrapping the measures - IX
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’
T'
($0T'.U (,(',('%& )
. ๐‘. ๐‘‘๐‘ก
ยจ Letโ€™s tie that to the RN derivative
89
Luc_Faucheux_2021
Bootstrapping the measures - X
ยจ If โ„š$ is a measure with an associated ๐‘Šโ„š&(๐‘ก)Brownian motion (a โ„š$-Brownian motion)
ยจ If โ„š% is a measure with an associated ๐‘Šโ„š!(๐‘ก)Brownian motion (a โ„š%-Brownian motion)
ยจ We have (under the famous Novikov condition..)
ยจ If there is a process ๐œ‰ ๐‘ก such that it is reasonably well-behaved
ยจ
@โ„š!
@โ„š&
= exp โˆ’ โˆซ
/
(
๐œ‰ ๐‘  . ๐‘‘๐‘Š ๐‘  โˆ’ โˆซ
/
( $
%
๐œ‰ ๐‘  %. ๐‘‘๐‘  = โ„ฐ โˆซ
/
(
(โˆ’๐œ‰ ๐‘  ). ๐‘‘๐‘Š ๐‘ 
ยจ ๐‘Šโ„š! ๐‘ก = ๐‘Šโ„š& ๐‘ก + โˆซ
/
(
๐œ‰ ๐‘  . ๐‘‘๐‘ 
ยจ ๐‘‘๐‘Šโ„š! ๐‘ก = ๐‘‘๐‘Šโ„š& ๐‘ก + ๐œ‰ ๐‘ก . ๐‘‘๐‘ก
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’
T'
($0T'.U (,(',('%& )
. ๐‘. ๐‘‘๐‘ก
90
Luc_Faucheux_2021
Bootstrapping the measures - XI
ยจ ๐‘‘๐‘Šโ„š! ๐‘ก = ๐‘‘๐‘Šโ„š& ๐‘ก + ๐œ‰ ๐‘ก . ๐‘‘๐‘ก
ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’
T'
($0T'.U (,(',('%& )
. ๐‘. ๐‘‘๐‘ก
ยจ The โ„š% measure here is the โ„ค(๐‘ก.), associated with the numeraire ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.
ยจ The โ„š$ measure here is the โ„ค(๐‘ก.0$), associated with the numeraire ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.0$
ยจ ๐œ‰ ๐‘ก = โˆ’
T'
($0T'.U (,(',('%& )
. ๐‘
ยจ
@โ„š!
@โ„š&
= exp โˆ’ โˆซ
/
(
๐œ‰ ๐‘  . ๐‘‘๐‘Š ๐‘  โˆ’ โˆซ
/
( $
%
๐œ‰ ๐‘  %. ๐‘‘๐‘  = โ„ฐ โˆซ
/
(
(โˆ’๐œ‰ ๐‘  ). ๐‘‘๐‘Š ๐‘ 
91
Luc_Faucheux_2021
Bootstrapping the measures - XII
ยจ X
๐‘โ„š&
๐‘ก = ๐‘โ„š&
(๐‘ก)/๐‘โ„š&
(0)
ยจ X
๐‘โ„š!
๐‘ก = ๐‘โ„š!
(๐‘ก)/๐‘โ„š!
(0)
ยจ We obtain the celebrated formula:
ยจ
@โ„š!
@โ„š&
๐‘ก =
Y
6โ„š! (
Y
6โ„š& (
ยจ ๐‘โ„š!
(๐‘ก) = ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.
ยจ ๐‘โ„š&
(๐‘ก) = ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.0$
ยจ
@โ„š!
@โ„š&
๐‘ก =
@โ„ค((')
@โ„ค(('%&)
๐‘ก =
Y
6โ„š! (
Y
6โ„š& (
=
P (,(,(' /P /,/,('
P (,(,('%& /P /,/,('%&
ยจ
@โ„ค((')
@โ„ค(('%&)
๐‘ก =
P (,(,(' /P /,/,('
P (,(,('%& /P /,/,('%&
=
P /,/,('%&
P /,/,('
. {1 + ๐œ.. ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ }
92
Luc_Faucheux_2021
Bootstrapping the measures - XIII
ยจ
@โ„ค((')
@โ„ค(('%&)
๐‘ก =
P /,/,('%&
P /,/,('
. {1 + ๐œ.. ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ }
ยจ We also know that:
ยจ
@โ„š!
@โ„š&
๐‘ก is a martingale under the โ„š$-measure
ยจ
@โ„š&
@โ„š!
๐‘ก is a martingale under the โ„š%-measure
ยจ And since the RN derivative is a ratio of numeraire:
ยจ
@โ„š&
@โ„š!
๐‘ก = {
@โ„š!
@โ„š&
๐‘ก }G$
93
Luc_Faucheux_2021
Bootstrapping the measures - XIV
ยจ The โ„š% = โ„ค(๐‘ก.), associated with the numeraire ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.
ยจ The โ„š$ = โ„ค(๐‘ก.0$), associated with the numeraire ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.0$
ยจ
@โ„ค((')
@โ„ค(('%&)
๐‘ก =
P /,/,('%&
P /,/,('
. {1 + ๐œ.. ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ }
ยจ
@โ„š!
@โ„š&
๐‘ก is a martingale under the โ„š$-measure
ยจ BECOMES:
ยจ
@โ„ค((')
@โ„ค(('%&)
๐‘ก =
P /,/,('%&
P /,/,('
. {1 + ๐œ.. ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ } is a martingale under the โ„ค(๐‘ก.0$) measure
ยจ And thus:
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.0$) measure
94
Luc_Faucheux_2021
Bootstrapping the measures - XV
ยจ
@โ„š&
@โ„š!
๐‘ก is a martingale under the โ„š%-measure
ยจ BECOMES:
ยจ
@โ„ค(('%&)
@โ„ค((')
๐‘ก = {
@โ„ค((')
@โ„ค(('%&)
๐‘ก }G$= {
P /,/,('%&
P /,/,('
. {1 + ๐œ.. ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ }}G$ is a martingale under
the โ„ค(๐‘ก.) measure
ยจ And thus:
ยจ
$
$0T'.U (,(',('%&
is a martingale under the โ„ค(๐‘ก.) measure
ยจ
T'.U (,(',('%&
$0T'.U (,(',('%&
is a martingale under the โ„ค(๐‘ก.) measure
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.) measure
95
Luc_Faucheux_2021
Bootstrapping the measures - XVI
ยจ So we could have really started from that angle (like in some textbooks) if we knew a lot to
start with RN derivative, and changes of measures, we could have said:
ยจ The โ„ค(๐‘ก.)-measure is associated with the numeraire ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.
ยจ The โ„ค(๐‘ก.0$)-measure is associated with the numeraire ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.0$
ยจ So by construction, since ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ =
P (,(,('%&
P (,(,('
=
$
$0T (,(',('%& .U (,(',('%&
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.0$) measure
ยจ
$
$0T'.U (,(',('%&
is a martingale under the โ„ค(๐‘ก.) measure
ยจ
T'.U (,(',('%&
$0T'.U (,(',('%&
is a martingale under the โ„ค(๐‘ก.) measure
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.) measure
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$
G$ is a martingale under the โ„ค(๐‘ก.0$) measure
96
Luc_Faucheux_2021
Bootstrapping the measures - XVII
ยจ That would have been so much easier but maybe not that intuitive
ยจ AS ALWAYS in Finance, when dealing with Terminal measures, when we say that ๐‘‹(๐‘ก)is a
martingale, when talking about the value of a claim, that is the value at time ๐‘ก that pays
$๐‘‹ ๐‘ก at time ๐‘‡ associated with that measure (when the Numeraire is ๐‘ ๐‘ก, ๐‘ก, ๐‘‡ =
๐‘ ๐‘‡, ๐‘‡, ๐‘‡ = 1)
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.0$) measure
ยจ When talking about a payment equal to it:
ยจ ๐‘‰(๐‘ก, $๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ , ๐‘ก., ๐‘ก.0$) is a martingale under the โ„ค(๐‘ก.0$) measure
ยจ
$
$0T'.U (,(',('%&
is a martingale under the โ„ค(๐‘ก.) measure
ยจ When talking about a payment equal to it:
ยจ ๐‘‰(๐‘ก, $
$
$0T'.U (,(',('%&
, ๐‘ก., ๐‘ก.) is a martingale under the โ„ค(๐‘ก.) measure
97
Luc_Faucheux_2021
Bootstrapping the measures - XVIII
ยจ So in a sense we always start with the claim, and then when the timing coincide we can say
something about the actual variable:
ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(2
โ„ค((2)
๐‘‰(๐‘กR, $๐ฟ ๐‘ก., ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก
ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ('
โ„ค((')
๐‘‰ ๐‘ก., $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ('
โ„ค((')
๐‘(๐‘ก., ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก
ยจ Simply compounded FORWARD at time ๐‘ก: ๐‘๐ถ ๐‘ก, ๐‘ก., ๐‘กR =
$
$0T (,(',(2 .U (,(',(2
ยจ Simply compounded FORWARD at time ๐‘ก. : ๐‘๐ถ ๐‘ก., ๐‘ก., ๐‘กR =
$
$0T (',(',(2 .U (',(',(2
98
Luc_Faucheux_2021
Bootstrapping the measures - XIX
ยจ In the next deck, we will revisit those slides, and start building the LMM model, where we
will explicitly derive the drift for all the forwards ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR in the same measure, following
the derivation from Piterbarg and also Tuckman which builds more intuition.
99
Luc_Faucheux_2021
Career advices from Uncle Luc
100
Luc_Faucheux_2021
Career advices from Uncle Luc
ยจ So, not sure if this is the New Moon or Mercury going retrograde, or if it is the season of
bonuses, but Uncle Luc is feeling extra gloomy and wants to impart some of his wisdom on
the young generations on what they should do for their careers in finance
ยจ So gather around the campfire (am the one with the laptop in the picture below)
101
Luc_Faucheux_2021
Never ever work in Rates Derivatives on the Sell side
ยจ It is too hard
ยจ There is no juice in it
ยจ The reporting requirements for regulators are quite stringent
ยจ The need for computing power is quite big
ยจ The theory is really complicated. Most textbooks start with equity, and they either say that
the rate is equal to zero or a constant, not even a deterministic function of time. It is only
after some serious math that you can start talking about modeling rates
ยจ Unlike Equity for example, the arbitrage-free conditions that you need to enforce create
some non-trivial constraints on the curve construction and stochastic processes
102
Luc_Faucheux_2021
Never ever work in Rates Derivatives on the Sell side - II
ยจ There is no juice in it.
ยจ People get excited about basis points.
ยจ 1 basis point = 1% / 100
ยจ 1% = 1/100
ยจ 1 basis point = 1/100/100 = 1/10,000
ยจ Bid offer is usually around a quarter of a basis point if that.
ยจ Daily move is usually a couple of basis points if that.
ยจ People would arb each other for half a basis point.
103
Luc_Faucheux_2021
Never ever work in Rates Derivatives on the Sell side - III
ยจ Peter Carr in the jacket for the Pieterbarg book said it quite nicely:
ยจ โ€œIn the complex and highly liquid interest rate derivatives market, the requirements for
model accuracy and realism are inordinately demanding.โ€
ยจ Yeah, could not agree more, the need for precision, computing power, accuracy, speed,
complexity of the modeling to accurately capture the markets, with the reporting
requirements, the trading requirements (on a SEF, not on a SEF, MAT, not MAT, cleared, not
cleared, bla bla bla..) are INORDINATELY DEMANDING !!! And all that for not even half a
basis point, and for a trade that most likely is going to stay on your books for the whole
duration, eating up VAR, RWA, Cost of Risk, cost to run the risk, CPUs, emails,โ€ฆ.
ยจ So trust me, if that was to do it again I would not.
ยจ I was Quixotic in my youth trying to understand what I thought was complicated and worthy
of my time and effort. I know better now, and hopefully you will heed my advice.
104
Luc_Faucheux_2021
Never ever work in Rates Derivatives on the Sell side - IV
ยจ To be fair when you run any kind of financial endeavior, it all comes down to funding and
time value of money, so interest rates are at the core of any bank, and you cannot really
avoid it.
ยจ So this is a necessary evil, and usually once you have done Interest-Rate derivatives, there is
really nothing that you cannot branch into. So I might be a tad overboard on the
gloominess.
105
Luc_Faucheux_2021
Never ever work in Rates Derivatives on the Sell side - V
ยจ People get overly excited over changes in BASIS POINTS
ยจ https://www.risk.net/derivatives/7739631/funds-steering-clear-of-bets-on-libor-timeline-
after-losses
ยจ Here is the graph everyone is getting excited about: a 4 basis point move at most
106
Luc_Faucheux_2021
Never ever work in Rates Derivatives on the Sell side - VI
ยจ Meanwhile on the equity side:
107
Luc_Faucheux_2021
Never ever work in Rates Derivatives on the Sell side - VII
ยจ Or on the currency side:
108
Luc_Faucheux_2021
Never ever work in Rates Derivatives on the Sell side - VIII
ยจ So letโ€™s recap.
ยจ On the Interest-Rates side, people get super excited about a move of 4 basis points, when
valuing the difference over 5 years of a swap paying 3month-LIBOR on one side, set
quarterly, compounded flat and paid semi-annually versus 6month-LIBOR on the other side,
set semi-annually and paid semi-annually. This is super hard to model and value.
ยจ 4 basis points.
ยจ Fine I will be nice to you and give you 10 basis points.
ยจ 10 basis points = (10/100) % = 0.1%
ยจ On the equity side, GameStop moved from $49 to $490 in a couple of days.
ยจ That is a move of 1,000% !
ยจ That is a move 10,000 greater than the 5year 3s6s basis, for a security that is easy to book
and needs no curve construction, bi-curve, discounting, rates modeling or such
109
Luc_Faucheux_2021
Never ever work in Rates Derivatives on the Sell side - IX
ยจ Ok, on the currency side, since Bitcoin is as legitimate a currency as any fiat currency
according to Elon:
ยจ Bitcoin moved from $10,000 to $50,000 in a little less than 5 months.
ยจ That is a 500% move, again for something that does not require the full
HJM/measure/Girsanov theorem/arbitrage-free/martingale/thousands of powerpoint slides
before you can make sense of anything/army of Russian and French PhD to compute even
the simplest future contract or convexity adjustment
ยจ So yeah congratsโ€ฆno juice in it for an โ€œinordinateโ€ amount of effort and time..
110
Luc_Faucheux_2021
My career advice #1
ยจ In my next life I want to be a baseball player
ยจ You get paid a lot
ยจ You live a pretty healthy lifestyle (they force you to exercise)
ยจ You do not travel as much and as often as tennis players, basketball players, you do not have
jetlags as usually a series stays in one town for a week or so
ยจ You are part of a team so you share expenses unlike golf players
ยจ You do not damage your body like football soccer tennis
ยจ You can play until you have grandkids
ยจ It starts to rain, snow, or get too cold, you stop playing
ยจ Spring โ€trainingโ€ is on Floridaโ€ฆyeahhh
ยจ So yeahโ€ฆproblem is that it is quite boring, but hey that is the only minus I seeโ€ฆ
111
Luc_Faucheux_2021
My career advice #2
ยจ If you cannot make it as a baseball player, I highly recommend being a credit trader on the
sell side and selling all the credit protection that you can
ยจ This is viewed as patriotic because you are bullish your clients and the market
ยจ If something blows up, it is because someone else screwed up, not you. Let me elaborate.
ยจ You pay fixed in 10year swap and the market rally, you lost money, you get yelled at
ยจ You sell protection on ENRON, Parmalat, Worldcom, Wework, Theranos,โ€ฆ.and then the
company goes belly-up, that is not something you did, it is fraud/accounting/wrong
management AT the company, certainly not something that you did wrong, so you do not
get yelled at as much, because you were supporting a key client of the bank. Psychologically
subtle but trueโ€ฆ
ยจ Oh hey also when you blow up, everyone usually blow up together you relatively speaking
you are still doing OK
ยจ You also get paid for the carry before the blow-up, with usually no reserve whatsoever, so
life is good. Also there is more juice in Credit, moves in points, not in basis points
112
Luc_Faucheux_2021
My career advice #3
ยจ If you cannot do #1 or #2, am starting to feel sorry for you.
ยจ I have some other advice
ยจ Become an equity option trader and sell all the long dated options that you can.
ยจ Similar to credit, you are fulfilling a patriotic duty to support the market and key clients of
the bank
ยจ Similar to credit, when you blow up, chances are everyone is blowing up at the same time,
so you can find another job, in the meantime you collected a nice carry, โ€œclipping the
couponsโ€ as they say
113
Luc_Faucheux_2021
My career advice #4
ยจ All right so you could not do any of the above so far.
ยจ I have one for youโ€ฆBig data and Machine Learning
ยจ CPUs is cheaper every year
ยจ You have tons of data to play with
ยจ So far the field of big data / ML / AI is just a big Excel GoalSeek, nothing more.
ยจ Am still waiting for the qualitative jump that Douglas Hoffstadter predicted in the field of AI.
ยจ So far no singularity, no emergence, no qualitative jump, just a lot more of number
crunching and burning of CPUs
ยจ So use words like virtuous vortex of connectivity, deep learning, ML on BigData cloud based,
make sure that your project is way too ambitious to ever be measurable against the goalโ€ฆet
voila !! You get yourself a nice cushy job, and while the CPUs that you are burning gently
warm up the planet, maybe you have some time to write some Powerpoint slides on more
eternal and timeless issues like Ito versus Stratanovitch
114
Luc_Faucheux_2021
Things I still want to do
115
Luc_Faucheux_2021
Things I still want to do
ยจ Redo the Ho-Lee deck with the following models
ยจ Ho-Lee with time-dependent volatility:
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก, ๐‘ก = ๐œƒ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ(๐‘ก). ([). ๐‘‘๐‘Š(๐‘ก)
ยจ Hull-White:
ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก, ๐‘ก = {๐œƒ ๐‘ก โˆ’ ๐‘˜. ๐‘…(๐‘ก, ๐‘ก, ๐‘ก)}. ๐‘‘๐‘ก โˆ’ ๐œŽ(๐‘ก). ([). ๐‘‘๐‘Š(๐‘ก)
ยจ Langevin equation:
ยจ ๐‘‘๐‘‰ ๐‘ก = โˆ’๐‘˜. ๐‘‰(๐‘ก). ๐‘‘๐‘ก + ๐œŽ. ([). ๐‘‘๐‘Š(๐‘ก)
ยจ So we can use a lot of the materials of the Langevin deck.
116
Luc_Faucheux_2021
Things I still want to do - II
ยจ Caplet numeraire
ยจ Swaption numeraire
ยจ Normal BS derivation
ยจ Finish the binary section
ยจ Derive Gaussian from MaxEnt principle and Lagrange multipliers
ยจ CLT
ยจ Master equation -> Gaussian (Van Kampen book)
ยจ Numeraire change
ยจ Arcsin law
ยจ Eris swap future contract
ยจ CMS convexity adjustment
117
Luc_Faucheux_2021
Things I still want to do - III
ยจ Add to yield curve section the work of Tom Coleman, the Sultan of Spline
ยจ Do the efficient frontier and CAPM line
ยจ C=int(delta,dS) -> P=C-delta.S -> E(P)=0
ยจ Add to forward versus spot risk
ยจ Expand with spreadsheet the MPT example in part I
ยจ Add fast curve / slow curve section
ยจ Expand on โ€œit is it 0 at time t it is 0 at all timeโ€ wrong for CMS and Libor in arrrears
ยจ Section on local versus global arbitrage in trees
ยจ Derive the LMM drifts in both terminal, spot and risk free measures
ยจ Tie out Tuckman with Piterbarg (the art of drift)
118
Luc_Faucheux_2021
So at least for nowโ€ฆ..
119

More Related Content

What's hot

Lf 2020 langevin
Lf 2020 langevinLf 2020 langevin
Lf 2020 langevinluc faucheux
ย 
Lf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-aLf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-aluc faucheux
ย 
Lf 2020 rates_i
Lf 2020 rates_iLf 2020 rates_i
Lf 2020 rates_iluc faucheux
ย 
Lf 2021 rates_vi
Lf 2021 rates_viLf 2021 rates_vi
Lf 2021 rates_viluc faucheux
ย 
Lf 2020 trees
Lf 2020 treesLf 2020 trees
Lf 2020 treesluc faucheux
ย 
Lf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-iiLf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-iiluc faucheux
ย 

What's hot (6)

Lf 2020 langevin
Lf 2020 langevinLf 2020 langevin
Lf 2020 langevin
ย 
Lf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-aLf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-a
ย 
Lf 2020 rates_i
Lf 2020 rates_iLf 2020 rates_i
Lf 2020 rates_i
ย 
Lf 2021 rates_vi
Lf 2021 rates_viLf 2021 rates_vi
Lf 2021 rates_vi
ย 
Lf 2020 trees
Lf 2020 treesLf 2020 trees
Lf 2020 trees
ย 
Lf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-iiLf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-ii
ย 

Similar to Lf 2021 rates_vii

Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recapFarzad Javidanrad
ย 
Mattia Manzati - Real-World MobX Project Architecture - Codemotion Rome 2019
Mattia Manzati - Real-World MobX Project Architecture - Codemotion Rome 2019Mattia Manzati - Real-World MobX Project Architecture - Codemotion Rome 2019
Mattia Manzati - Real-World MobX Project Architecture - Codemotion Rome 2019Codemotion
ย 
Lesson 1 Antiderivatives and the Power Formula.pdf
Lesson 1 Antiderivatives and the Power Formula.pdfLesson 1 Antiderivatives and the Power Formula.pdf
Lesson 1 Antiderivatives and the Power Formula.pdfJingVerstappen
ย 
Haskell retrospective
Haskell retrospectiveHaskell retrospective
Haskell retrospectivechenge2k
ย 
Deep Learning: Introduction & Chapter 5 Machine Learning Basics
Deep Learning: Introduction & Chapter 5 Machine Learning BasicsDeep Learning: Introduction & Chapter 5 Machine Learning Basics
Deep Learning: Introduction & Chapter 5 Machine Learning BasicsJason Tsai
ย 
Lf 2021 rates_viii
Lf 2021 rates_viiiLf 2021 rates_viii
Lf 2021 rates_viiiluc faucheux
ย 
Some approximation properties of modified baskakov stancu operators
Some approximation properties of modified baskakov stancu operatorsSome approximation properties of modified baskakov stancu operators
Some approximation properties of modified baskakov stancu operatorseSAT Journals
ย 
CP2-Chp2-Series.pptx
CP2-Chp2-Series.pptxCP2-Chp2-Series.pptx
CP2-Chp2-Series.pptxNasimSalim2
ย 
P1-Chp13-Integration.pptx
P1-Chp13-Integration.pptxP1-Chp13-Integration.pptx
P1-Chp13-Integration.pptxYashTiwari512330
ย 
Introduction to Python Language and Data Types
Introduction to Python Language and Data TypesIntroduction to Python Language and Data Types
Introduction to Python Language and Data TypesRavi Shankar
ย 
Variational Autoencoder Tutorial
Variational Autoencoder Tutorial Variational Autoencoder Tutorial
Variational Autoencoder Tutorial Hojin Yang
ย 
Functional Concepts for OOP Developers
Functional Concepts for OOP DevelopersFunctional Concepts for OOP Developers
Functional Concepts for OOP Developersbrweber2
ย 
Application of Convolution Theorem
Application of Convolution TheoremApplication of Convolution Theorem
Application of Convolution Theoremijtsrd
ย 
c++ Data Types and Selection
c++ Data Types and Selectionc++ Data Types and Selection
c++ Data Types and SelectionAhmed Nobi
ย 
Ai2418281871
Ai2418281871Ai2418281871
Ai2418281871IJMER
ย 

Similar to Lf 2021 rates_vii (20)

Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recap
ย 
Periodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral EquationsPeriodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral Equations
ย 
Google maps
Google mapsGoogle maps
Google maps
ย 
Mattia Manzati - Real-World MobX Project Architecture - Codemotion Rome 2019
Mattia Manzati - Real-World MobX Project Architecture - Codemotion Rome 2019Mattia Manzati - Real-World MobX Project Architecture - Codemotion Rome 2019
Mattia Manzati - Real-World MobX Project Architecture - Codemotion Rome 2019
ย 
Lesson 1 Antiderivatives and the Power Formula.pdf
Lesson 1 Antiderivatives and the Power Formula.pdfLesson 1 Antiderivatives and the Power Formula.pdf
Lesson 1 Antiderivatives and the Power Formula.pdf
ย 
Haskell retrospective
Haskell retrospectiveHaskell retrospective
Haskell retrospective
ย 
Deep Learning: Introduction & Chapter 5 Machine Learning Basics
Deep Learning: Introduction & Chapter 5 Machine Learning BasicsDeep Learning: Introduction & Chapter 5 Machine Learning Basics
Deep Learning: Introduction & Chapter 5 Machine Learning Basics
ย 
Lf 2021 rates_viii
Lf 2021 rates_viiiLf 2021 rates_viii
Lf 2021 rates_viii
ย 
Some approximation properties of modified baskakov stancu operators
Some approximation properties of modified baskakov stancu operatorsSome approximation properties of modified baskakov stancu operators
Some approximation properties of modified baskakov stancu operators
ย 
CP2-Chp2-Series.pptx
CP2-Chp2-Series.pptxCP2-Chp2-Series.pptx
CP2-Chp2-Series.pptx
ย 
20 Jo P Aug 08
20 Jo P Aug 0820 Jo P Aug 08
20 Jo P Aug 08
ย 
P1-Chp13-Integration.pptx
P1-Chp13-Integration.pptxP1-Chp13-Integration.pptx
P1-Chp13-Integration.pptx
ย 
Php + my sql
Php + my sqlPhp + my sql
Php + my sql
ย 
Introduction to Python Language and Data Types
Introduction to Python Language and Data TypesIntroduction to Python Language and Data Types
Introduction to Python Language and Data Types
ย 
Variational Autoencoder Tutorial
Variational Autoencoder Tutorial Variational Autoencoder Tutorial
Variational Autoencoder Tutorial
ย 
Functional Concepts for OOP Developers
Functional Concepts for OOP DevelopersFunctional Concepts for OOP Developers
Functional Concepts for OOP Developers
ย 
ACL17_Sakaguchi
ACL17_SakaguchiACL17_Sakaguchi
ACL17_Sakaguchi
ย 
Application of Convolution Theorem
Application of Convolution TheoremApplication of Convolution Theorem
Application of Convolution Theorem
ย 
c++ Data Types and Selection
c++ Data Types and Selectionc++ Data Types and Selection
c++ Data Types and Selection
ย 
Ai2418281871
Ai2418281871Ai2418281871
Ai2418281871
ย 

More from luc faucheux

Marcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdfMarcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdfluc faucheux
ย 
Selection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdfSelection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdfluc faucheux
ย 
Binary_Potential.pdf
Binary_Potential.pdfBinary_Potential.pdf
Binary_Potential.pdfluc faucheux
ย 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdfluc faucheux
ย 
ConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdfConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdfluc faucheux
ย 
Optical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdfOptical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdfluc faucheux
ย 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101luc faucheux
ย 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101luc faucheux
ย 
Lf 2021 rates_v_b2
Lf 2021 rates_v_b2Lf 2021 rates_v_b2
Lf 2021 rates_v_b2luc faucheux
ย 
Lf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-iLf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-iluc faucheux
ย 
Lf 2020 structured
Lf 2020 structuredLf 2020 structured
Lf 2020 structuredluc faucheux
ย 
Lf 2020 options
Lf 2020 optionsLf 2020 options
Lf 2020 optionsluc faucheux
ย 
Lf 2020 skew
Lf 2020 skewLf 2020 skew
Lf 2020 skewluc faucheux
ย 
Lf 2020 bachelier
Lf 2020 bachelierLf 2020 bachelier
Lf 2020 bachelierluc faucheux
ย 

More from luc faucheux (14)

Marcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdfMarcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdf
ย 
Selection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdfSelection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdf
ย 
Binary_Potential.pdf
Binary_Potential.pdfBinary_Potential.pdf
Binary_Potential.pdf
ย 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdf
ย 
ConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdfConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdf
ย 
Optical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdfOptical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdf
ย 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101
ย 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101
ย 
Lf 2021 rates_v_b2
Lf 2021 rates_v_b2Lf 2021 rates_v_b2
Lf 2021 rates_v_b2
ย 
Lf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-iLf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-i
ย 
Lf 2020 structured
Lf 2020 structuredLf 2020 structured
Lf 2020 structured
ย 
Lf 2020 options
Lf 2020 optionsLf 2020 options
Lf 2020 options
ย 
Lf 2020 skew
Lf 2020 skewLf 2020 skew
Lf 2020 skew
ย 
Lf 2020 bachelier
Lf 2020 bachelierLf 2020 bachelier
Lf 2020 bachelier
ย 

Recently uploaded

๏ผˆๅŠž็†ๅŽŸ็‰ˆไธ€ๆ ท๏ผ‰QUTๆฏ•ไธš่ฏๆ˜†ๅฃซๅ…ฐ็ง‘ๆŠ€ๅคงๅญฆๆฏ•ไธš่ฏๅญฆไฝ่ฏ็•™ไฟกๅญฆๅŽ†่ฎค่ฏๆˆ็ปฉๅ•่กฅๅŠž
๏ผˆๅŠž็†ๅŽŸ็‰ˆไธ€ๆ ท๏ผ‰QUTๆฏ•ไธš่ฏๆ˜†ๅฃซๅ…ฐ็ง‘ๆŠ€ๅคงๅญฆๆฏ•ไธš่ฏๅญฆไฝ่ฏ็•™ไฟกๅญฆๅŽ†่ฎค่ฏๆˆ็ปฉๅ•่กฅๅŠž๏ผˆๅŠž็†ๅŽŸ็‰ˆไธ€ๆ ท๏ผ‰QUTๆฏ•ไธš่ฏๆ˜†ๅฃซๅ…ฐ็ง‘ๆŠ€ๅคงๅญฆๆฏ•ไธš่ฏๅญฆไฝ่ฏ็•™ไฟกๅญฆๅŽ†่ฎค่ฏๆˆ็ปฉๅ•่กฅๅŠž
๏ผˆๅŠž็†ๅŽŸ็‰ˆไธ€ๆ ท๏ผ‰QUTๆฏ•ไธš่ฏๆ˜†ๅฃซๅ…ฐ็ง‘ๆŠ€ๅคงๅญฆๆฏ•ไธš่ฏๅญฆไฝ่ฏ็•™ไฟกๅญฆๅŽ†่ฎค่ฏๆˆ็ปฉๅ•่กฅๅŠžfqiuho152
ย 
The Triple Threat | Article on Global Resession | Harsh Kumar
The Triple Threat | Article on Global Resession | Harsh KumarThe Triple Threat | Article on Global Resession | Harsh Kumar
The Triple Threat | Article on Global Resession | Harsh KumarHarsh Kumar
ย 
NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...
NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...
NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...Amil baba
ย 
fca-bsps-decision-letter-redacted (1).pdf
fca-bsps-decision-letter-redacted (1).pdffca-bsps-decision-letter-redacted (1).pdf
fca-bsps-decision-letter-redacted (1).pdfHenry Tapper
ย 
OAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptx
OAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptxOAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptx
OAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptxhiddenlevers
ย 
Authentic No 1 Amil Baba In Pakistan Authentic No 1 Amil Baba In Karachi No 1...
Authentic No 1 Amil Baba In Pakistan Authentic No 1 Amil Baba In Karachi No 1...Authentic No 1 Amil Baba In Pakistan Authentic No 1 Amil Baba In Karachi No 1...
Authentic No 1 Amil Baba In Pakistan Authentic No 1 Amil Baba In Karachi No 1...First NO1 World Amil baba in Faisalabad
ย 
Call Girls Near Delhi Pride Hotel, New Delhi|9873777170
Call Girls Near Delhi Pride Hotel, New Delhi|9873777170Call Girls Near Delhi Pride Hotel, New Delhi|9873777170
Call Girls Near Delhi Pride Hotel, New Delhi|9873777170Sonam Pathan
ย 
Chapter 2.ppt of macroeconomics by mankiw 9th edition
Chapter 2.ppt of macroeconomics by mankiw 9th editionChapter 2.ppt of macroeconomics by mankiw 9th edition
Chapter 2.ppt of macroeconomics by mankiw 9th editionMuhammadHusnain82237
ย 
Call Girls Near Me WhatsApp:+91-9833363713
Call Girls Near Me WhatsApp:+91-9833363713Call Girls Near Me WhatsApp:+91-9833363713
Call Girls Near Me WhatsApp:+91-9833363713Sonam Pathan
ย 
magnetic-pensions-a-new-blueprint-for-the-dc-landscape.pdf
magnetic-pensions-a-new-blueprint-for-the-dc-landscape.pdfmagnetic-pensions-a-new-blueprint-for-the-dc-landscape.pdf
magnetic-pensions-a-new-blueprint-for-the-dc-landscape.pdfHenry Tapper
ย 
Andheri Call Girls In 9825968104 Mumbai Hot Models
Andheri Call Girls In 9825968104 Mumbai Hot ModelsAndheri Call Girls In 9825968104 Mumbai Hot Models
Andheri Call Girls In 9825968104 Mumbai Hot Modelshematsharma006
ย 
Governor Olli Rehn: Dialling back monetary restraint
Governor Olli Rehn: Dialling back monetary restraintGovernor Olli Rehn: Dialling back monetary restraint
Governor Olli Rehn: Dialling back monetary restraintSuomen Pankki
ย 
Vp Girls near me Delhi Call Now or WhatsApp
Vp Girls near me Delhi Call Now or WhatsAppVp Girls near me Delhi Call Now or WhatsApp
Vp Girls near me Delhi Call Now or WhatsAppmiss dipika
ย 
Call Girls Near Golden Tulip Essential Hotel, New Delhi 9873777170
Call Girls Near Golden Tulip Essential Hotel, New Delhi 9873777170Call Girls Near Golden Tulip Essential Hotel, New Delhi 9873777170
Call Girls Near Golden Tulip Essential Hotel, New Delhi 9873777170Sonam Pathan
ย 
House of Commons ; CDC schemes overview document
House of Commons ; CDC schemes overview documentHouse of Commons ; CDC schemes overview document
House of Commons ; CDC schemes overview documentHenry Tapper
ย 
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdf
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdfBPPG response - Options for Defined Benefit schemes - 19Apr24.pdf
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdfHenry Tapper
ย 
Interimreport1 Januaryโ€“31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 Januaryโ€“31 March2024 Elo Mutual Pension Insurance CompanyInterimreport1 Januaryโ€“31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 Januaryโ€“31 March2024 Elo Mutual Pension Insurance CompanyTyรถelรคkeyhtiรถ Elo
ย 
Bladex Earnings Call Presentation 1Q2024
Bladex Earnings Call Presentation 1Q2024Bladex Earnings Call Presentation 1Q2024
Bladex Earnings Call Presentation 1Q2024Bladex
ย 
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service AizawlVip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawlmakika9823
ย 

Recently uploaded (20)

๏ผˆๅŠž็†ๅŽŸ็‰ˆไธ€ๆ ท๏ผ‰QUTๆฏ•ไธš่ฏๆ˜†ๅฃซๅ…ฐ็ง‘ๆŠ€ๅคงๅญฆๆฏ•ไธš่ฏๅญฆไฝ่ฏ็•™ไฟกๅญฆๅŽ†่ฎค่ฏๆˆ็ปฉๅ•่กฅๅŠž
๏ผˆๅŠž็†ๅŽŸ็‰ˆไธ€ๆ ท๏ผ‰QUTๆฏ•ไธš่ฏๆ˜†ๅฃซๅ…ฐ็ง‘ๆŠ€ๅคงๅญฆๆฏ•ไธš่ฏๅญฆไฝ่ฏ็•™ไฟกๅญฆๅŽ†่ฎค่ฏๆˆ็ปฉๅ•่กฅๅŠž๏ผˆๅŠž็†ๅŽŸ็‰ˆไธ€ๆ ท๏ผ‰QUTๆฏ•ไธš่ฏๆ˜†ๅฃซๅ…ฐ็ง‘ๆŠ€ๅคงๅญฆๆฏ•ไธš่ฏๅญฆไฝ่ฏ็•™ไฟกๅญฆๅŽ†่ฎค่ฏๆˆ็ปฉๅ•่กฅๅŠž
๏ผˆๅŠž็†ๅŽŸ็‰ˆไธ€ๆ ท๏ผ‰QUTๆฏ•ไธš่ฏๆ˜†ๅฃซๅ…ฐ็ง‘ๆŠ€ๅคงๅญฆๆฏ•ไธš่ฏๅญฆไฝ่ฏ็•™ไฟกๅญฆๅŽ†่ฎค่ฏๆˆ็ปฉๅ•่กฅๅŠž
ย 
The Triple Threat | Article on Global Resession | Harsh Kumar
The Triple Threat | Article on Global Resession | Harsh KumarThe Triple Threat | Article on Global Resession | Harsh Kumar
The Triple Threat | Article on Global Resession | Harsh Kumar
ย 
NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...
NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...
NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...
ย 
fca-bsps-decision-letter-redacted (1).pdf
fca-bsps-decision-letter-redacted (1).pdffca-bsps-decision-letter-redacted (1).pdf
fca-bsps-decision-letter-redacted (1).pdf
ย 
OAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptx
OAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptxOAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptx
OAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptx
ย 
Authentic No 1 Amil Baba In Pakistan Authentic No 1 Amil Baba In Karachi No 1...
Authentic No 1 Amil Baba In Pakistan Authentic No 1 Amil Baba In Karachi No 1...Authentic No 1 Amil Baba In Pakistan Authentic No 1 Amil Baba In Karachi No 1...
Authentic No 1 Amil Baba In Pakistan Authentic No 1 Amil Baba In Karachi No 1...
ย 
Call Girls Near Delhi Pride Hotel, New Delhi|9873777170
Call Girls Near Delhi Pride Hotel, New Delhi|9873777170Call Girls Near Delhi Pride Hotel, New Delhi|9873777170
Call Girls Near Delhi Pride Hotel, New Delhi|9873777170
ย 
Chapter 2.ppt of macroeconomics by mankiw 9th edition
Chapter 2.ppt of macroeconomics by mankiw 9th editionChapter 2.ppt of macroeconomics by mankiw 9th edition
Chapter 2.ppt of macroeconomics by mankiw 9th edition
ย 
Call Girls Near Me WhatsApp:+91-9833363713
Call Girls Near Me WhatsApp:+91-9833363713Call Girls Near Me WhatsApp:+91-9833363713
Call Girls Near Me WhatsApp:+91-9833363713
ย 
magnetic-pensions-a-new-blueprint-for-the-dc-landscape.pdf
magnetic-pensions-a-new-blueprint-for-the-dc-landscape.pdfmagnetic-pensions-a-new-blueprint-for-the-dc-landscape.pdf
magnetic-pensions-a-new-blueprint-for-the-dc-landscape.pdf
ย 
Andheri Call Girls In 9825968104 Mumbai Hot Models
Andheri Call Girls In 9825968104 Mumbai Hot ModelsAndheri Call Girls In 9825968104 Mumbai Hot Models
Andheri Call Girls In 9825968104 Mumbai Hot Models
ย 
Governor Olli Rehn: Dialling back monetary restraint
Governor Olli Rehn: Dialling back monetary restraintGovernor Olli Rehn: Dialling back monetary restraint
Governor Olli Rehn: Dialling back monetary restraint
ย 
Vp Girls near me Delhi Call Now or WhatsApp
Vp Girls near me Delhi Call Now or WhatsAppVp Girls near me Delhi Call Now or WhatsApp
Vp Girls near me Delhi Call Now or WhatsApp
ย 
Call Girls Near Golden Tulip Essential Hotel, New Delhi 9873777170
Call Girls Near Golden Tulip Essential Hotel, New Delhi 9873777170Call Girls Near Golden Tulip Essential Hotel, New Delhi 9873777170
Call Girls Near Golden Tulip Essential Hotel, New Delhi 9873777170
ย 
House of Commons ; CDC schemes overview document
House of Commons ; CDC schemes overview documentHouse of Commons ; CDC schemes overview document
House of Commons ; CDC schemes overview document
ย 
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdf
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdfBPPG response - Options for Defined Benefit schemes - 19Apr24.pdf
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdf
ย 
Monthly Economic Monitoring of Ukraine No 231, April 2024
Monthly Economic Monitoring of Ukraine No 231, April 2024Monthly Economic Monitoring of Ukraine No 231, April 2024
Monthly Economic Monitoring of Ukraine No 231, April 2024
ย 
Interimreport1 Januaryโ€“31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 Januaryโ€“31 March2024 Elo Mutual Pension Insurance CompanyInterimreport1 Januaryโ€“31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 Januaryโ€“31 March2024 Elo Mutual Pension Insurance Company
ย 
Bladex Earnings Call Presentation 1Q2024
Bladex Earnings Call Presentation 1Q2024Bladex Earnings Call Presentation 1Q2024
Bladex Earnings Call Presentation 1Q2024
ย 
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service AizawlVip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
ย 

Lf 2021 rates_vii

  • 1. Luc_Faucheux_2021 THE RATES WORLD โ€“ Part VII More on measures and change of measures 1
  • 2. Luc_Faucheux_2021 That deck 2 ยจ After a bunch of decks, we take here a breather to revisit some of the assumptions/results, and finish up a number of sections that we had left unfinished ยจ Something to say about the notation / progression of those decks. ยจ I tried very hard to do it in a progressive manner, and so the formalism and notations became more complicated but also more complete as we went on. ยจ So in many ways the โ€simpleโ€ notation that I used at the beginning were potentially confusing. Many apologies for that, but that was intended in order to demonstrate as we go along the need for more complicated notation, as opposed to just dump it at the beginning in a very formal manner ยจ Hopefully you will have found the journey interesting and enlightning, and maybe more alive than a formal class, which again this is not. This is merely a bunch of notes that I put down in a Powerpoint in a selfish purpose so that I can more easily find them and retrieve them, and hopefully this helps you reading and understanding real serious and formal textbooks on the subject.
  • 3. Luc_Faucheux_2021 That deck - II ยจ Here we start playing with measures and change of measure ยจ We revisit Ho-Lee and understand why the deflated zeros were not only a martingale, but could be expressed as the Radon-Nikodym derivative between two measures. ยจ We start looking at drift between measures and start laying down the foundations of what we will need to derive the LMM (Libor Market Model), hopefully in deck VIII ยจ Also, a section on some career advice 3
  • 5. Luc_Faucheux_2021 Useful tools ยจ As you go through those slides, it is quite apparent that there are some relations or properties that we keep using over and over again, or that are worth mentioning. ยจ I tried to put all of them together in a quick summary section here ยจ I still need to work on a notation section, maybe once I get my book deal ยจ Would love to get your feedback on this section, if there are tools that you tend to use a lot and find useful, just drop me a note and I would be happy to include those 5
  • 6. Luc_Faucheux_2021 Useful tools โ€“ ITO LEMMA ยจ The ITO lemma is revered in stochastic calculus. ยจ In the somewhat misleading โ€œdifferentialโ€ form it reads: ยจ ๐›ฟ๐‘“ = !" !# . ๐›ฟ๐‘‹ + $ % . !!" !#! . (๐›ฟ๐‘‹)% ยจ It should really only be expressed as: ยจ ๐‘“ ๐‘‹ ๐‘ก& โˆ’ ๐‘“ ๐‘‹ ๐‘ก' = โˆซ ()(" ()(# !" !* . ([). ๐‘‘๐‘‹(๐‘ก) + โˆซ ()(" ()(# $ % . !!" !#! . ([). (๐›ฟ๐‘‹)% ยจ The ITO convention for the ITO integral is that we take the โ€œLHSโ€ (Left Hand side) in the partition as noted by: ([) ยจ And the definition of the integral is: ยจ โˆซ ()(" ()(# ๐‘“ ๐‘‹(๐‘ก) . ๐‘‘๐‘Š ๐‘ก = lim +โ†’- โˆ‘.)/ .)+ ๐‘“ ๐‘‹(๐‘ก.) . {๐‘Š ๐‘ก.0$ โˆ’ ๐‘Š(๐‘ก.)} ยจ Where we assume that we do not choose a pathological mesh and the the function is relatively well behaved 6
  • 7. Luc_Faucheux_2021 Useful tools โ€“ ITO LEMMA - II ยจ Be careful that stochastic calculus in many ways has NOTHING to do with regular calculus ยจ So it is quite dangerous to write: ยจ ๐›ฟ๐‘“ = !" !# . ๐›ฟ๐‘‹ + $ % . !!" !#! . (๐›ฟ๐‘‹)% ยจ And say โ€œ oh well stochastic calculus is the same as regular calculus, it is just when I do Taylor expansion I should really go up one more order in order to go up to all the orders that are at least linear in timeโ€ ยจ Again, this is ONLY a formal correspondence, or a way to write down two things that are almost completely different ยจ Stochastic processes are NOT differentiable, so do not even think of using a โ€œTaylor expansion on a stochastic processโ€ ยจ ALWAYS go back to the integral, always try to use the SIE format (Stochastic Integral Equation), never the SDE format (Stochastic Differential Equation) 7
  • 8. Luc_Faucheux_2021 Useful tools โ€“ ITO Leibniz ยจ Again, for ease of notation, we use the โ€œdifferentialโ€ form, but by now we know better than to trust is: ยจ ๐›ฟ๐‘“ ๐‘‹, ๐‘Œ = !" !* . ๐›ฟ๐‘‹ + !" !1 . ๐›ฟ๐‘Œ + $ % . !!" !*! . ๐›ฟ๐‘‹% + $ % . !!" !1! . ๐›ฟ๐‘Œ% + !!" !*!1 . ๐›ฟ๐‘‹. ๐›ฟ๐‘Œ ยจ Note: should really be written as: ยจ ๐›ฟ๐‘“ ๐‘‹, ๐‘Œ = !" !# . ๐›ฟ๐‘‹ + !" !2 . ๐›ฟ๐‘Œ + $ % . !!" !#! . ๐›ฟ๐‘‹% + $ % . !!" !2! . ๐›ฟ๐‘Œ% + !!" !#!2 . ๐›ฟ๐‘‹. ๐›ฟ๐‘Œ ยจ Lower case ๐‘ฅ is a regular variable ยจ Upper case ๐‘‹ is a stochastic variable ยจ ๐‘“ ๐‘‹, ๐‘Œ is really noted ๐‘“ ๐‘ฅ = ๐‘‹, ๐‘ฆ = ๐‘Œ and all the partial derivatives are for example: ยจ !!" !#!2 = !!" !#!2 |#)* ( ,2)1(() 8
  • 9. Luc_Faucheux_2021 Useful tools โ€“ ITO and STRATO correspondence ยจ ITO integral is defined as LHS (Left Hand Side) ยจ โˆซ ()(' ()(& ๐น ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘‹(๐‘ก) = lim 6โ†’- {โˆ‘7)$ 7)6 ๐น(๐‘‹(๐‘ก7)). [๐‘‹(๐‘ก70$) โˆ’ ๐‘‹(๐‘ก7)]} ยจ STRATO integral is defined as M (Middle) ยจ โˆซ ()(' ()(& ๐น ๐‘‹ ๐‘ก . (โˆ˜). ๐‘‘๐‘‹(๐‘ก) = lim 6โ†’- {โˆ‘7)$ 7)6 ๐น( *(($%& 0*(($)] % ). [๐‘‹(๐‘ก70$) โˆ’ ๐‘‹(๐‘ก7)]} ยจ For a simple Brownian motion ยจ โˆซ ()(' ()(& ๐‘“ ๐‘Š ๐‘ก . (โˆ˜). ๐‘‘๐‘Š(๐‘ก) = โˆซ ()(' ()(& ๐‘“ ๐‘Š ๐‘ก . ([). ๐‘‘๐‘Š(๐‘ก) + $ % โˆซ ()(' ()(& !" !9 |9):((). ๐‘‘๐‘ก ยจ The integral in time โˆซ ()(' ()(& !" !9 |9):((). ๐‘‘๐‘ก is the usual Riemann integral defined as ยจ โˆซ ()(' ()(& ๐น ๐‘‹ ๐‘ก . ๐‘‘๐‘ก = lim 6โ†’- {โˆ‘7)$ 7)6 ๐น(๐‘‹(๐œ‘[๐‘ก7, ๐‘ก70$])). [๐‘ก70$ โˆ’ ๐‘ก7]} 9
  • 10. Luc_Faucheux_2021 Useful tools โ€“ ITO and STRATO correspondence - II ยจ Where ๐œ‘[๐‘ก7, ๐‘ก70$] is a function that takes some point within the mesh (does not matter where, LHS, RIHS, middle, anywhere, could also varies from one bucket to the next, that is the beauty of the Riemann integral in regular, or Newtonian, calculus, is that you do not have all those pesky differences between ITO or Stratonovitch,โ€ฆ) ยจ For a more complicated stochastic process ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘Š ยจ We have: ยจ โˆซ ()(' ()(& ๐‘“ ๐‘‹ ๐‘ก . โˆ˜ . ๐‘‘๐‘Š ๐‘ก = โˆซ ()(' ()(& ๐‘“ ๐‘‹ ๐‘ก . ([). ๐‘‘๐‘Š(๐‘ก) + โˆซ ()(' ()(& $ % . ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . !" !# |#)*((). ๐‘‘๐‘ก 10
  • 11. Luc_Faucheux_2021 Useful tools โ€“ ITO integral is a martingale ยจ This is super useful ยจ For a Brownian motion ๐‘Š ๐‘  associated to the measure ยจ ๐”ผ{โˆซ ;)/ ;)( ๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘  } = ๐”ผ{lim +โ†’- โˆ‘.)/ .)+ ๐‘“ ๐‘ . . {๐‘Š ๐‘ .0$ โˆ’ ๐‘Š(๐‘ .)} } ยจ ๐”ผ{โˆซ ;)/ ;)( ๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘  } = lim +โ†’- โˆ‘.)/ .)+ ๐‘“ ๐‘ . . ๐”ผ{๐‘Š ๐‘ .0$ โˆ’ ๐‘Š(๐‘ .)} ยจ ๐”ผ{โˆซ ;)/ ;)( ๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘  } = lim +โ†’- โˆ‘.)/ .)+ ๐‘“ ๐‘ . . 0 = 0 ยจ ๐”ผ โˆซ ;)/ ;)( ๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘  = 0 ยจ ๐”ผ โˆซ ;)/ ;)( ๐‘“ ๐‘Š ๐‘  , ๐‘  . ๐‘‘๐‘Š ๐‘  = 0 11
  • 12. Luc_Faucheux_2021 Useful tools โ€“ Isometry of the ITO integral ยจ ๐”ผ{ โˆซ ;)/ ;)( ๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘  % } = โˆซ ;)/ ;)( ๐‘“ ๐‘  %. ๐‘‘๐‘  ยจ ๐”ผ{ โˆซ ;)/ ;)( ๐‘“ ๐‘Š ๐‘  , ๐‘  . ๐‘‘๐‘Š ๐‘  % } = โˆซ ;)/ ;)( ๐‘“ ๐‘Š ๐‘  , ๐‘  %. ๐‘‘๐‘  12
  • 13. Luc_Faucheux_2021 Useful tools โ€“ A martingale is driftless, a driftless process is a martingale ยจ ๐”ผ:{๐‘‹(๐‘ก)|)|๐”‰(๐‘ )} = 0 ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘ก + ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘Š ยจ ๐‘Ž ๐‘ก, ๐‘‹ ๐‘ก = 0 ยจ ๐‘‘๐‘‹ ๐‘ก = ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘Š ยจ No advection, no drift for a martingale ยจ ๐‘‹ ๐‘ก = โˆซ ;)/ ;)( ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘Š ๐‘  ยจ Again the ITO integral is a martingale ยจ ๐”ผ โˆซ ;)/ ;)( ๐‘ ๐‘ก, ๐‘‹ ๐‘ก . ๐‘‘๐‘Š ๐‘  = 0 ยจ ๐”ผ:{๐‘‹(๐‘ก)|)|๐”‰(๐‘ )} = 0 13
  • 14. Luc_Faucheux_2021 Useful tools โ€“ useful relationship ยจ ๐”ผ exp โˆซ ;)/ ;)( ๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘  = exp[โˆซ ;)/ ;)( $ % ๐‘“ ๐‘  %. ๐‘‘๐‘ ] 14
  • 15. Luc_Faucheux_2021 Useful tools โ€“ expected value of the exponential ยจ ๐”ผ exp ๐‘‹ = exp ๐”ผ ๐‘‹ . exp $ % ๐”ผ (๐‘‹ โˆ’ ๐”ผ ๐‘‹ )% ยจ ๐‘€ ๐‘‹ ๐‘ก = ๐”ผ ๐‘‹ ยจ ๐‘‰ ๐‘‹ ๐‘ก = ๐”ผ (๐‘‹(๐‘ก) โˆ’ ๐‘€ ๐‘‹ ๐‘ก )% ยจ ๐”ผ exp ๐‘‹ = exp ๐‘€[๐‘‹(๐‘ก)] . exp $ % ๐‘‰[๐‘‹(๐‘ก)] ยจ ๐”ผ exp ๐‘‹ = exp[๐‘€] . exp $ % ๐‘‰ 15
  • 16. Luc_Faucheux_2021 Useful tools - Fubini ยจ ๐‘‹ = โˆซ ;)( ;)(' {โˆซ <)( <); ๐‘“(๐‘ข). ([). ๐‘‘๐‘Š(๐‘ข)}. ๐‘‘๐‘  16 s ๐‘  = ๐‘ก! u s u ๐‘  = ๐‘ก ๐‘  = ๐‘ก! ๐‘  = ๐‘ก ๐‘‹ = J ;)( ;)(' { J <)( <); ๐‘“(๐‘ข). ([). ๐‘‘๐‘Š(๐‘ข)}. ๐‘‘๐‘  ๐‘‹ = J <)( <)(' { J ;)< ;)(' ๐‘“(๐‘ ). ๐‘‘๐‘ }. ([). ๐‘‘๐‘Š(๐‘ข)
  • 17. Luc_Faucheux_2021 Useful tools โ€“ how to always create a martingale ยจ We use here the Tower property: ยจ For any process ๐‘‹ ๐‘ก , we create: ยจ ๐‘ ๐‘ก = ๐”ผ= : {๐‘‹(๐‘‡)|๐”‰(๐‘ก)} ยจ ๐”ผ= : ๐‘ ๐‘ก ๐”‰ ๐‘  = ๐”ผ= : ๐”ผ= : ๐‘‹ ๐‘‡ ๐”‰ ๐‘ก ๐”‰ ๐‘  = ๐”ผ= : ๐‘‹ ๐‘‡ ๐”‰ ๐‘  = ๐‘(๐‘ ) ยจ Because conditioning firstly on information back to time ๐‘ก then back to time ๐‘  is just the same as conditioning back to time ๐‘  to start with. ยจ ๐”ผ= : ๐‘ ๐‘ก ๐”‰ ๐‘  = ๐‘(๐‘ ) ยจ So ๐‘ ๐‘ก = ๐”ผ= : {๐‘‹(๐‘‡)|๐”‰(๐‘ก)} is by construction a ๐‘Š-martingale ยจ That is a neat little trick to always create a martingale process (Baxter p. 77) 17
  • 18. Luc_Faucheux_2021 Useful tools โ€“ Radon-Nikodym as expectation ยจ ๐”ผโ„™ is the measure associated to the Brownian motion ๐‘Šโ„™(๐‘ก) ยจ ๐”ผโ„š is the measure associated to the Brownian motion ๐‘Šโ„š(๐‘ก) ยจ The Radon-Nikodym @โ„š @โ„™ (๐‘ก) is such that: ยจ ๐”ผ( โ„š ๐‘‹ ๐‘ก ๐”‰ 0 = ๐”ผ( โ„™{ @โ„š @โ„™ ๐‘ก . ๐‘‹(๐‘ก)|๐”‰ 0 } ยจ We also have this beautiful equation (Baxter p.68) ยจ @โ„š @โ„™ ๐‘ก = ๐”ผ= โ„™ { @โ„š @โ„™ ๐‘‡ |๐”‰ ๐‘ก } for ๐‘‡ > ๐‘ก ยจ The Radon-Nikodym derivative @โ„š @โ„™ ๐‘ก is a martingale under the โ„™-measure ๐”ผโ„™ ยจ In particular: @โ„š @โ„™ 0 = 1 ยจ ๐”ผ= โ„™ @โ„š @โ„™ ๐‘‡ ๐”‰ 0 = 1 18
  • 19. Luc_Faucheux_2021 Useful tools โ€“ Radon-Nikodym as expectation -II ยจ ๐”ผ= โ„™ @โ„š @โ„™ ๐‘‡ ๐”‰ 0 = 1 ยจ We had derived this in the deck V-b using the โ€œuseful formulaโ€ starting from: ยจ @โ„š @โ„™ = exp[โˆ’ โˆซ ;)/ ;)( ๐œ‰ ๐‘  . ๐‘‘๐‘Š ๐‘  โˆ’ $ % โˆซ ;)/ ;)( ๐œ‰ ๐‘  %. ๐‘‘๐‘ ] ยจ ๐”ผ( โ„™ exp โˆซ ;)/ ;)( ๐‘“ ๐‘  . ๐‘‘๐‘Š ๐‘  โˆ’ $ % โˆซ ;)/ ;)( ๐‘“ ๐‘  %. ๐‘‘๐‘  |๐”‰ 0 = 1 ยจ ๐”ผ( โ„™ @โ„š @โ„™ (๐‘ก)|๐”‰ 0 = 1 ยจ Note that this should not be too surprising since the definition of the derivative is: ยจ ๐”ผโ„š ๐‘‹ ๐‘ก ๐”‰ 0 = ๐”ผโ„™{ @โ„š @โ„™ ๐‘‹(๐‘ก)|๐”‰ 0 }, replacing ๐‘‹ ๐‘ก = 1 ยจ ๐”ผโ„š 1 ๐”‰ 0 = 1 = ๐”ผโ„™{ @โ„š @โ„™ |๐”‰ 0 } so we get: ๐”ผ( โ„™ @โ„š @โ„™ (๐‘ก)|๐”‰ 0 = 1 19
  • 20. Luc_Faucheux_2021 Useful tools โ€“ Radon-Nikodym as expectation -III ยจ ๐”ผ( โ„š ๐‘‹ ๐‘ก ๐”‰ 0 = ๐”ผ( โ„™{ @โ„š @โ„™ ๐‘ก . ๐‘‹(๐‘ก)|๐”‰ 0 } ยจ @โ„š @โ„™ ๐‘ก = ๐”ผ= โ„™{ @โ„š @โ„™ ๐‘‡ |๐”‰ ๐‘ก } for ๐‘‡ > ๐‘ก ยจ ๐”ผ( โ„š ๐‘‹ ๐‘ก ๐”‰ ๐‘  = $ (โ„š (โ„™ ; . ๐”ผ( โ„™{ @โ„š @โ„™ ๐‘ก . ๐‘‹(๐‘ก)|๐”‰ ๐‘  } for ๐‘  < ๐‘ก ยจ ๐”ผ( โ„™ @โ„š @โ„™ ๐‘ก . ๐‘‹ ๐‘ก ๐”‰ ๐‘  = ๐”ผ( โ„š @โ„š @โ„™ ๐‘  . ๐‘‹ ๐‘ก ๐”‰ ๐‘  = @โ„š @โ„™ ๐‘  . ๐”ผ( โ„š ๐‘‹ ๐‘ก ๐”‰ ๐‘  ยจ ๐”ผ( โ„š ๐‘‹ ๐‘ก ๐”‰ ๐‘  = ๐”ผ( โ„™{ (โ„š (โ„™ ( (โ„š (โ„™ ; . ๐‘‹(๐‘ก)|๐”‰ ๐‘  } ยจ ๐”ผ( โ„š ๐‘‹ ๐‘ก ๐”‰ 0 = ๐”ผ( โ„™ (โ„š (โ„™ ( (โ„š (โ„™ / . ๐‘‹ ๐‘ก ๐”‰ 0 = ๐”ผ( โ„™{ @โ„š @โ„™ ๐‘ก . ๐‘‹(๐‘ก)|๐”‰ 0 } 20
  • 21. Luc_Faucheux_2021 Useful tools โ€“ most stupid equation ever ยจ ๐‘ 0,0, ๐‘ก = exp(โˆ’ โˆซ ;)/ ;)( ๐”ผ; โ„ค(;) ๐‘…(๐‘ , ๐‘ , ๐‘ ) ๐”‰ 0 . ๐‘‘๐‘ ) ยจ ๐‘๐ถ 0,0, ๐‘ก = ๐”ผ( โ„š exp[โˆ’ โˆซ ;)/ ;)( ๐‘… ๐‘ , ๐‘ , ๐‘  . ๐‘‘๐‘ ]|๐”‰(0) ยจ ๐‘‰ 0, $1, ๐‘ก, ๐‘ก = ๐‘ 0,0, ๐‘ก ยจ ๐‘‰ 0, $1, ๐‘ก, ๐‘ก = exp(โˆ’ โˆซ ;)/ ;)( ๐”ผ; โ„ค(;) ๐‘‰(๐‘ , $๐‘… ๐‘ , ๐‘ , ๐‘  , ๐‘ , ๐‘ ) ๐”‰ 0 . ๐‘‘๐‘ ) ยจ ๐‘‰ 0, $1, ๐‘ก, ๐‘ก = ๐”ผ( โ„š exp[โˆ’ โˆซ ;)/ ;)( ๐‘‰(๐‘ , $๐‘… ๐‘ , ๐‘ , ๐‘  , ๐‘ , ๐‘ ). ๐‘‘๐‘ ]|๐”‰(0) ยจ ๐”ผ+ โ„š CDE[G โˆซ ,-. ,-+ I(;,$K ;,;,; ,;,;).@;]|๐”‰(/) CDE(G โˆซ ,-. ,-+ ๐”ผ, โ„ค(,) ๐‘‰(๐‘ , $๐‘… ๐‘ , ๐‘ , ๐‘  , ๐‘ , ๐‘ ) ๐”‰ 0 .@;) = 1 21
  • 22. Luc_Faucheux_2021 Useful tools โ€“ most stupid equation ever - II ยจ ๐”ผ+ โ„š CDE[G โˆซ ,-. ,-+ I(;,$K ;,;,; ,;,;).@;]|๐”‰(/) CDE(G โˆซ ,-. ,-+ ๐”ผ, โ„ค(,) ๐‘‰(๐‘ , $๐‘… ๐‘ , ๐‘ , ๐‘  , ๐‘ , ๐‘ ) ๐”‰ 0 .@;) = 1 ยจ The ratio of ; the expectation at time ๐‘ก under the risk-neutral measure ๐”ผโ„š associated to the rolling numeraire ๐ต ๐‘  = exp[โˆซ <)/ <); ๐‘… ๐‘ข, ๐‘ข, ๐‘ข . ๐‘‘๐‘ข], subject to the filtration ๐”‰ 0 , of the exponential of the opposite of the integral over the time ๐‘  from time ๐‘  = 0 to time ๐‘  = ๐‘ก of the claim valued at time ๐‘  that pays at time ๐‘  the instantaneous short rate ๐‘… ๐‘ , ๐‘ , ๐‘  set at time ๐‘ ; to the exponential of the opposite of the integral over the time ๐‘  from time ๐‘  = 0 to time ๐‘  = ๐‘ก of the expectations at time ๐‘  under the terminal measures ๐”ผโ„ค(;), subject to the same filtration ๐”‰ 0 , associated to the Zeros ๐‘(๐‘ข, ๐‘ข, ๐‘ ), of the same claim valued at time ๐‘  that pays at time ๐‘  the instantaneous short rate ๐‘… ๐‘ , ๐‘ , ๐‘  set at time ๐‘ , isโ€ฆ..equal to 1 ยจ There are on the internet a number of post about making 1=1 as complicated as possible. 22
  • 23. Luc_Faucheux_2021 Change of Numeraire and change of Measure 23
  • 24. Luc_Faucheux_2021 Change of numeraire - I ยจ ๐”ผโ„™ is the measure associated to the Brownian motion ๐‘Šโ„™(๐‘ก) ยจ ๐‘โ„™(๐‘ก) is the numeraire associated to that measure ๐”ผโ„™ ยจ ๐”ผโ„š is the measure associated to the Brownian motion ๐‘Šโ„š(๐‘ก) ยจ ๐‘โ„š(๐‘ก) is the numeraire associated to that measure ๐”ผโ„š ยจ A general claim ๐‘‰(๐‘ก) is such that: ยจ ๐”ผ= โ„™ I(=) 6โ„™(=) ๐”‰ ๐‘ก = I(() 6โ„™(() ยจ ๐”ผ= โ„š I(=) 6โ„š(=) ๐”‰ ๐‘ก = I(() 6โ„š(() 24
  • 25. Luc_Faucheux_2021 Change of numeraire - II ยจ @โ„š @โ„™ ๐‘ก = ๐”ผ= โ„™ { @โ„š @โ„™ ๐‘‡ |๐”‰ ๐‘ก } for ๐‘‡ > ๐‘ก ยจ More generally from the trick of always creating a martingale we know that: ยจ ๐‘ ๐‘ก = ๐”ผ= : {๐‘‹(๐‘‡)|๐”‰(๐‘ก)} is by construction a ๐‘Š-martingale meaning that: ยจ ๐”ผ= : ๐‘ ๐‘ก ๐”‰ ๐‘  = ๐‘(๐‘ ) ยจ Letโ€™s check it for the specific case ๐‘ ๐‘ก = @โ„š @โ„™ ๐‘ก in the โ„™-measure ยจ ๐”ผ= โ„™ @โ„š @โ„™ ๐‘ก ๐”‰ ๐‘  = ๐”ผ= โ„™ ๐”ผ= โ„™ @โ„š @โ„™ ๐‘‡ ๐”‰ ๐‘ก ๐”‰ ๐‘  = ๐”ผ= โ„™ @โ„š @โ„™ ๐‘‡ ๐”‰ ๐‘  = @โ„š @โ„™ ๐‘  25
  • 26. Luc_Faucheux_2021 Change of numeraire - III ยจ ๐”ผ= โ„™ I(=) 6โ„™(=) ๐”‰ ๐‘ก = I(() 6โ„™(() ยจ ๐”ผ= โ„š I(=) 6โ„š(=) ๐”‰ ๐‘ก = I(() 6โ„š(() ยจ ๐”ผ( โ„š ๐‘‹ ๐‘ก ๐”‰ ๐‘  = ๐”ผ( โ„™{ (โ„š (โ„™ ( (โ„š (โ„™ ; . ๐‘‹(๐‘ก)|๐”‰ ๐‘  } ยจ ๐”ผ= โ„š ๐‘‹ ๐‘‡ ๐”‰ ๐‘ก = ๐”ผ= โ„™ { (โ„š (โ„™ = (โ„š (โ„™ ( . ๐‘‹(๐‘‡)|๐”‰ ๐‘ก } ยจ We apply this to the specific case of : ยจ ๐‘‹ ๐‘‡ = I(=) 6โ„š(=) 26
  • 27. Luc_Faucheux_2021 Change of numeraire - IV ยจ I(() 6โ„š(() = ๐”ผ= โ„š I(=) 6โ„š(=) ๐”‰ ๐‘ก = ๐”ผ= โ„™{ (โ„š (โ„™ = (โ„š (โ„™ ( . I(=) 6โ„š(=) |๐”‰ ๐‘ก } ยจ ๐”ผ= โ„™ I(=) 6โ„™(=) ๐”‰ ๐‘ก = I(() 6โ„™(() ยจ I(() 6โ„š(() = I(() 6โ„™(() . 6โ„™(() 6โ„š(() = ๐”ผ= โ„™ I(=) 6โ„™(=) ๐”‰ ๐‘ก . 6โ„™(() 6โ„š(() = ๐”ผ= โ„™ { (โ„š (โ„™ = (โ„š (โ„™ ( . I(=) 6โ„š(=) |๐”‰ ๐‘ก } ยจ ๐”ผ= โ„™ I(=) 6โ„™(=) ๐”‰ ๐‘ก . 6โ„™(() 6โ„š(() = ๐”ผ= โ„™{ (โ„š (โ„™ = (โ„š (โ„™ ( . I(=) 6โ„š(=) |๐”‰ ๐‘ก } ยจ ๐”ผ= โ„™ I(=) 6โ„™(=) . 6โ„™(() 6โ„š(() ๐”‰ ๐‘ก = ๐”ผ= โ„™{ (โ„š (โ„™ = (โ„š (โ„™ ( . I(=) 6โ„š(=) |๐”‰ ๐‘ก } 27
  • 28. Luc_Faucheux_2021 Change of numeraire - V ยจ ๐”ผ= โ„™ I(=) 6โ„™(=) . 6โ„™(() 6โ„š(() ๐”‰ ๐‘ก = ๐”ผ= โ„™{ (โ„š (โ„™ = (โ„š (โ„™ ( . I(=) 6โ„š(=) |๐”‰ ๐‘ก } ยจ ๐”ผ= โ„™ I(=) 6โ„™(=) . 6โ„™(() 6โ„š(() ๐”‰ ๐‘ก = ๐”ผ= โ„™ { (โ„š (โ„™ = (โ„š (โ„™ ( . I(=) 6โ„™(=) . 6โ„™(=) 6โ„š(=) |๐”‰ ๐‘ก } ยจ Since this has to hold for any and every possible and imaginable claim ๐‘‰(๐‘ก): ยจ 6โ„™(() 6โ„š(() = (โ„š (โ„™ = (โ„š (โ„™ ( . 6โ„™(=) 6โ„š(=) ยจ 6โ„™(() 6โ„š(() . @โ„š @โ„™ ๐‘ก = 6โ„™(=) 6โ„š(=) . @โ„š @โ„™ ๐‘‡ 28
  • 29. Luc_Faucheux_2021 Change of numeraire - VI ยจ 6โ„™(() 6โ„š(() . @โ„š @โ„™ ๐‘ก = 6โ„™(=) 6โ„š(=) . @โ„š @โ„™ ๐‘‡ ยจ And this has to be valid for every ๐‘ก < ๐‘‡ ยจ In particular for ๐‘ก = 0 ยจ @โ„š @โ„™ 0 = 1 ยจ 6โ„™(() 6โ„š(() . @โ„š @โ„™ ๐‘ก = 6โ„™(/) 6โ„š(/) ยจ And so we finally obtain for the change of measure from a change of numeraire: ยจ @โ„š @โ„™ ๐‘ก = 6โ„™(/) 6โ„š(/) / 6โ„™(() 6โ„š(() 29
  • 30. Luc_Faucheux_2021 Change of numeraire - VII ยจ @โ„š @โ„™ ๐‘ก = 6โ„™(/) 6โ„š(/) / 6โ„™(() 6โ„š(() ยจ @โ„š @โ„™ ๐‘ก = 6โ„š(() 6โ„™(() / 6โ„š(/) 6โ„™(/) ยจ If we normalize the numeraires by their time ๐‘ก = 0 values: ยจ X ๐‘โ„š ๐‘ก = ๐‘โ„š(๐‘ก)/๐‘โ„š(0) ยจ X ๐‘โ„™ ๐‘ก = ๐‘โ„™(๐‘ก)/๐‘โ„™(0) ยจ We obtain the celebrated formula: ยจ @โ„š @โ„™ ๐‘ก = O 6โ„š ( O 6โ„™ ( ยจ The Radon-Nikodym derivative at time ๐‘ก is given by the ratio of the numeraires normalized by their time ๐‘ก = 0 values. 30
  • 31. Luc_Faucheux_2021 Another way to look at Ho-Lee 31
  • 32. Luc_Faucheux_2021 Another way to look at Ho-Lee ยจ We noticed in the previous deck that we had the expression: ยจ โ„ฐ โˆซ / ( ๐œ‰ ๐‘  . ๐‘‘๐‘Š ๐‘  = exp(โˆซ / ( ๐œ‰ ๐‘  . ๐‘‘๐‘Š(๐‘ ) โˆ’ โˆซ / ( $ % ๐œ‰ ๐‘  %. ๐‘‘๐‘ ) ยจ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z ๐‘ 0,0, ๐‘ก. . exp โˆซ <)/ <)( ๐œŽ. (๐‘ก. โˆ’ ๐‘ข). ๐‘‘๐‘Š(๐‘ข) โˆ’ $ % . โˆซ <)/ <)( {๐œŽ. (๐‘ก. โˆ’ ๐‘ข)}%. ๐‘‘๐‘ข ยจ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z ๐‘ 0,0, ๐‘ก. . โ„ฐ โˆซ <)/ <)( ๐œŽ. (๐‘ก. โˆ’ ๐‘ข). ๐‘‘๐‘Š(๐‘ข) ยจ We could not help but notice a rather strong connection between the deflated Zeros and the expression of a Radon-Nikodym derivative. ยจ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = P (,(,(' Q ( ยจ Letโ€™s illustrate here why this is not a coincidence 32
  • 33. Luc_Faucheux_2021 Another way to look at Ho-Lee - II ยจ If โ„š$ is a measure with an associated ๐‘Šโ„š&(๐‘ก)Brownian motion (a โ„š$-Brownian motion) ยจ If โ„š% is a measure with an associated ๐‘Šโ„š!(๐‘ก)Brownian motion (a โ„š%-Brownian motion) ยจ We have (under the famous Novikov condition..) ยจ If there is a process ๐œ‰ ๐‘ก such that it is reasonably well-behaved ยจ ๐”ผ( โ„š& exp โˆซ / ( $ % ๐œ‰ ๐‘  %. ๐‘‘๐‘  |๐”‰(0) < 0 ยจ Then , following Baxter p.74: ยจ โ„š% is equivalent to โ„š$ ยจ @โ„š! @โ„š& = exp โˆ’ โˆซ / ( ๐œ‰ ๐‘  . ๐‘‘๐‘Š ๐‘  โˆ’ โˆซ / ( $ % ๐œ‰ ๐‘  %. ๐‘‘๐‘  = โ„ฐ โˆซ / ( (โˆ’๐œ‰ ๐‘  ). ๐‘‘๐‘Š ๐‘  ยจ ๐‘Šโ„š! ๐‘ก = ๐‘Šโ„š& ๐‘ก + โˆซ / ( ๐œ‰ ๐‘  . ๐‘‘๐‘  33
  • 34. Luc_Faucheux_2021 Another way to look at Ho-Lee - III ยจ Under the Risk Neutral measure noted โ„š, associated to the Brownian motion ๐‘Šโ„š ๐‘ก , the SDE for the instantaneous forward rate is: ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก ยจ The SIE is: ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. โˆ’ ๐‘… 0, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. ๐‘ก. โˆ’ $ % ๐‘ก โˆ’ ๐œŽ. ([). ๐‘Šโ„š ๐‘ก ยจ The numeraire associated with the risk free measure is the rolling discount: ยจ ๐ต ๐‘ก = exp[โˆซ ;)/ ;)( ๐‘… ๐‘ , ๐‘ , ๐‘  . ๐‘‘๐‘ ] 34
  • 35. Luc_Faucheux_2021 Another way to look at Ho-Lee - IV ยจ Under the Terminal (forward measure) noted โ„ค(๐‘ก.), associated with the Brownian motion that we note by: ๐‘Šโ„ค((') ๐‘ก ยจ The instantaneous forward is a martingale under this measure ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(2 โ„ค((2) ๐‘‰(๐‘กR, $๐ฟ ๐‘ก., ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก ยจ lim (2โ†’(' ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. ยจ lim (2โ†’(' [๐”ผ(2 โ„ค((2) ๐‘‰(๐‘กR, $๐ฟ ๐‘ก., ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก ] = ๐”ผ(' โ„ค((') ๐‘‰(๐‘ก., $๐ฟ ๐‘ก., ๐‘ก., ๐‘ก. , ๐‘ก., ๐‘ก.) ๐”‰ ๐‘ก ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐”ผ(' โ„ค((') ๐‘‰(๐‘ก., $๐ฟ ๐‘ก., ๐‘ก., ๐‘ก. , ๐‘ก., ๐‘ก.) ๐”‰ ๐‘ก = ๐”ผ(' โ„ค((') ๐‘…(๐‘ก., ๐‘ก., ๐‘ก.) ๐”‰ ๐‘ก ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐”ผ(' โ„ค((') ๐‘…(๐‘ก., ๐‘ก., ๐‘ก.) ๐”‰ ๐‘ก 35
  • 36. Luc_Faucheux_2021 Another way to look at Ho-Lee - V ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐”ผ(' โ„ค((') ๐‘…(๐‘ก., ๐‘ก., ๐‘ก.) ๐”‰ ๐‘ก ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. is a martingale under the terminal measure โ„ค(๐‘ก.) ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. is a driftless process ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค((') ๐‘ก ยจ The numeraire associated to the terminal measure is the Zero ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. ยจ Letโ€™s compare: ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค((') ๐‘ก ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก 36
  • 37. Luc_Faucheux_2021 Another way to look at Ho-Lee - VI ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค((') ๐‘ก ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก ยจ For the two processes to have the same variance we need: ยจ ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” = โˆ’๐œŽ ยจ So we have: ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„ค((') ๐‘ก ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก 37
  • 38. Luc_Faucheux_2021 Another way to look at Ho-Lee - VII ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„ค((') ๐‘ก ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก ยจ Which leads to: ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก 38
  • 39. Luc_Faucheux_2021 Another way to look at Ho-Lee - VIII ยจ We could also do it from the SIE: ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„ค((') ๐‘ก ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. โˆ’ ๐‘… 0, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘Šโ„ค((') ๐‘ก ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. โˆ’ ๐‘… 0, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. ๐‘ก. โˆ’ $ % ๐‘ก โˆ’ ๐œŽ. ([). ๐‘Šโ„š ๐‘ก ยจ Which leads to: ยจ ๐‘Šโ„ค((') ๐‘ก = ๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. ๐‘ก. โˆ’ $ % ๐‘ก 39
  • 40. Luc_Faucheux_2021 Another way to look at Ho-Lee - IX ยจ ๐‘Šโ„ค((') ๐‘ก = ๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. ๐‘ก. โˆ’ $ % ๐‘ก ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’ $ % ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’ $ % . ๐‘‘๐‘ก ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก 40
  • 41. Luc_Faucheux_2021 Another way to look at Ho-Lee - X ยจ OK, letโ€™s recap: ยจ In the risk free measure โ„š with the numeraire ๐ต ๐‘ก and the Brownian motion ๐‘Šโ„š ๐‘ก , the Ho-Lee model is: ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก ยจ In the terminal measure โ„ค(๐‘ก.) with the numeraire ๐‘ ๐‘ก, ๐‘ก., ๐‘ก. and the Brownian motion ๐‘Šโ„ค((') ๐‘ก , the Ho-Lee model is: ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„ค((') ๐‘ก ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก 41
  • 42. Luc_Faucheux_2021 Another way to look at Ho-Lee - XI ยจ We know from the change of numeraire section that: ยจ @โ„š @โ„™ ๐‘ก = 6โ„š(() 6โ„™(() / 6โ„š(/) 6โ„™(/) ยจ @โ„ค((') @โ„š ๐‘ก = 6โ„ค(+')(() 6โ„š(() / 6โ„ค(+')(/) 6โ„š(/) ยจ ๐‘โ„š ๐‘ก = ๐ต(๐‘ก) ยจ ๐‘โ„š 0 = ๐ต(0) ยจ ๐‘โ„ค (' ๐‘ก = ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. ยจ ๐‘โ„ค (' 0 = ๐‘ 0,0, ๐‘ก. 42
  • 43. Luc_Faucheux_2021 Another way to look at Ho-Lee - XII ยจ @โ„ค((') @โ„š ๐‘ก = 6โ„ค(+')(() 6โ„š(() / 6โ„ค(+')(/) 6โ„š(/) ยจ @โ„ค((') @โ„š ๐‘ก = P (,(',(' Q(() / P /,(',(' Q(/) ยจ @โ„ค((') @โ„š ๐‘ก = Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. / Z ๐‘ 0,0, ๐‘ก. ยจ So if we know the expression for the Radon-Nikodym derivative @โ„ค((') @โ„š ๐‘ก , we will know the expression for the deflated Zeros ยจ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z ๐‘ 0,0, ๐‘ก. . @โ„ค((') @โ„š ๐‘ก ยจ So now the question is can we know what is the expression for : @โ„ค((') @โ„š ๐‘ก 43
  • 44. Luc_Faucheux_2021 Another way to look at Ho-Lee - XIII ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก ยจ @โ„š! @โ„š& = exp โˆ’ โˆซ / ( ๐œ‰ ๐‘  . ๐‘‘๐‘Š ๐‘  โˆ’ โˆซ / ( $ % ๐œ‰ ๐‘  %. ๐‘‘๐‘  = โ„ฐ โˆซ / ( (โˆ’๐œ‰ ๐‘  ). ๐‘‘๐‘Š ๐‘  ยจ ๐‘Šโ„š! ๐‘ก = ๐‘Šโ„š& ๐‘ก + โˆซ / ( ๐œ‰ ๐‘  . ๐‘‘๐‘  ยจ ๐‘‘๐‘Šโ„š! ๐‘ก = ๐‘‘๐‘Šโ„š& ๐‘ก + ๐œ‰ ๐‘ก . ๐‘‘๐‘ก ยจ โ„š% = โ„ค(๐‘ก.) ยจ โ„š$ = โ„š ยจ ๐œ‰ ๐‘ก = โˆ’๐œŽ. ๐‘ก. โˆ’ ๐‘ก ยจ @โ„š! @โ„š& = @โ„ค((') @โ„š = โ„ฐ โˆซ ;)/ ;)( (โˆ’๐œ‰ ๐‘  ). ๐‘‘๐‘Š ๐‘  = โ„ฐ โˆซ ;)/ ;)( (๐œŽ. ๐‘ก. โˆ’ ๐‘  ). ๐‘‘๐‘Š ๐‘  44
  • 45. Luc_Faucheux_2021 Another way to look at Ho-Lee - XIV ยจ We also know that: ยจ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z ๐‘ 0,0, ๐‘ก. . @โ„ค((') @โ„š ๐‘ก ยจ @โ„ค (' @โ„š (๐‘ก) = โ„ฐ โˆซ ;)/ ;)( (๐œŽ. ๐‘ก. โˆ’ ๐‘  ). ๐‘‘๐‘Š ๐‘  ยจ And so we โ€retrouveโ€ the expression that did perplex us in the previous deck: ยจ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z ๐‘ 0,0, ๐‘ก. . โ„ฐ โˆซ <)/ <)( ๐œŽ. (๐‘ก. โˆ’ ๐‘ข). ๐‘‘๐‘Š(๐‘ข) ยจ Thus this is no coincidence that the deflated Zeros are ALSO the Radon-Nikodym derivative 45
  • 46. Luc_Faucheux_2021 Another way to look at Ho-Lee - XV ยจ The deflated Zeros are the ratio of the Zeros to the rolling numeraire ยจ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = P (,(,(' Q(() ยจ The deflated Zeros is the ratio of the Terminal measure โ„ค(๐‘ก.) numeraire to the risk-free measure โ„š numeraire ยจ The ratio of numeraires is related to the Radon-Nikodym derivative by the following: ยจ @โ„ค((') @โ„š ๐‘ก = 6โ„ค(+')(() 6โ„š(() / 6โ„ค(+')(/) 6โ„š(/) ยจ @โ„ค((') @โ„š ๐‘ก = P (,(,(' Q(() / P /,/,(' Q(/) ยจ @โ„ค((') @โ„š ๐‘ก = Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. / Z ๐‘ 0,0, ๐‘ก. 46
  • 47. Luc_Faucheux_2021 Another way to look at Ho-Lee - XVI ยจ So it makes sense that the deflated Zeros can be casted as a function of a Radon-Nikodym derivative: ยจ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z ๐‘ 0,0, ๐‘ก. . @โ„ค((') @โ„š ๐‘ก ยจ And now to obtain the RN derivative we just need to know the relation between the two Brownian motions ๐‘Šโ„ค((') ๐‘ก and ๐‘Šโ„š ๐‘ก ยจ We know that in the terminal measure โ„ค(๐‘ก.) the instantaneous forward rate ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. is a martingale and thus is a driftless process: ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค((') ๐‘ก ยจ We just need to know the SDE for the instantaneous forward rate ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. in the risk free measure in the Ho-Lee model (or another model) 47
  • 48. Luc_Faucheux_2021 Another way to look at Ho-Lee - XVII ยจ In the case of Ho-Lee: ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐œŽ%. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ. ([). ๐‘‘๐‘Šโ„š ๐‘ก ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค((') ๐‘ก ยจ So: ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก ยจ And: ยจ @โ„ค((') @โ„š = โ„ฐ โˆซ ;)/ ;)( (๐œŽ. ๐‘ก. โˆ’ ๐‘  ). ๐‘‘๐‘Š ๐‘  48
  • 49. Luc_Faucheux_2021 Another way to look at Ho-Lee - XVIII ยจ Letโ€™s also note that since the RN derivative is a martingale under the reference measure, so will be the deflated Zeros: ยจ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z ๐‘ 0,0, ๐‘ก. . @โ„ค((') @โ„š ๐‘ก ยจ @โ„ค((') @โ„š ๐‘ก is a martingale under the โ„š-measure ยจ @โ„ค (' @โ„š (๐‘ก) = ๐”ผ= โ„š { @โ„ค((') @โ„š ๐‘‡ |๐”‰ ๐‘ก } for ๐‘‡ > ๐‘ก ยจ So the process for @โ„ค((') @โ„š ๐‘ก is driftless using the ๐‘Šโ„š ๐‘ก Brownian motion ยจ ๐‘‘ @โ„ค (' @โ„š ๐‘ก = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„š ๐‘ก 49
  • 50. Luc_Faucheux_2021 Another way to look at Ho-Lee - XIX ยจ ๐‘‘ @โ„ค (' @โ„š ๐‘ก = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„š ๐‘ก ยจ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = Z ๐‘ 0,0, ๐‘ก. . @โ„ค((') @โ„š ๐‘ก ยจ ๐‘‘ S P (,(,(' S P /,/,(' = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„š ๐‘ก ยจ We also know that : ยจ ๐‘‘๐‘Œ ๐‘ก = ๐œ‰ ๐‘ก . ๐‘Œ ๐‘ก . [ . ๐‘‘๐‘Š ๐‘ก ยจ Is driftless, and the solution of it is: ยจ ๐‘Œ ๐‘ก = ๐‘Œ 0 . exp โˆซ ;)/ ;)( ๐œ‰ ๐‘  . [ . ๐‘‘๐‘Š ๐‘  โˆ’ $ % โˆซ ;)/ ;)( ๐œ‰ ๐‘  %. ๐‘‘๐‘  = ๐‘Œ 0 . โ„ฐ โˆซ ;)/ ;)( ๐œ‰ ๐‘  . ๐‘‘๐‘Š ๐‘  50
  • 51. Luc_Faucheux_2021 Another way to look at Ho-Lee - XX ยจ Finally, we know that ยจ S P (,(,(' S P /,/,(' = @โ„ค((') @โ„š ๐‘ก and thus has to be a RN (radon-Nikodym) derivative. ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก + ๐œ‰ ๐‘ก . ๐‘‘๐‘ก ยจ @โ„ค (' @โ„š (๐‘ก) = โ„ฐ โˆซ ;)/ ;)( (โˆ’๐œ‰ ๐‘  ). ๐‘‘๐‘Šโ„š ๐‘  ยจ Cranking the ITO handle back down to the SDE will return: ยจ ๐‘‘ @โ„ค (' @โ„š ๐‘ก = โˆ’๐œ‰ ๐‘ก . { @โ„ค (' @โ„š (๐‘ก)}. [ . ๐‘‘๐‘Šโ„š ๐‘ก ยจ ๐‘‘ S P (,(,(' S P /,/,(' = โˆ’๐œ‰ ๐‘ก . { S P (,(,(' S P /,/,(' (๐‘ก)}. [ . ๐‘‘๐‘Šโ„š ๐‘ก 51
  • 52. Luc_Faucheux_2021 Another way to look at Ho-Lee - XXI ยจ ๐‘‘ S P (,(,(' S P /,/,(' = โˆ’๐œ‰ ๐‘ก . { S P (,(,(' S P /,/,(' (๐‘ก)}. [ . ๐‘‘๐‘Šโ„š ๐‘ก ยจ ๐‘‘ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = โˆ’๐œ‰ ๐‘ก . Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. . [ . ๐‘‘๐‘Šโ„š ๐‘ก ยจ Where: ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก + ๐œ‰ ๐‘ก . ๐‘‘๐‘ก ยจ This is somewhat of a general result: ยจ The deflated Zeros are a martingale in the Risk-free measure ยจ The SDE for the deflated Zeros is of the form: ยจ ๐‘‘ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = โˆ’๐œ‰ ๐‘ก . Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. . [ . ๐‘‘๐‘Šโ„š ๐‘ก ยจ The volatility coefficient for the deflated Zeros is the drift between the risk-free โ„š-Brownian motion and the terminal โ„ค(๐‘ก.)-Brownian motion ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก + ๐œ‰ ๐‘ก . ๐‘‘๐‘ก 52
  • 53. Luc_Faucheux_2021 Another way to look at Ho-Lee - XXII ยจ In the case of Ho-Lee: ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก โˆ’ ๐œŽ. ๐‘ก. โˆ’ ๐‘ก . ๐‘‘๐‘ก ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„š ๐‘ก + ๐œ‰ ๐‘ก . ๐‘‘๐‘ก ยจ ๐œ‰ ๐‘ก = โˆ’๐œŽ. ๐‘ก. โˆ’ ๐‘ก ยจ ๐‘‘ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = โˆ’๐œ‰ ๐‘ก . Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. . [ . ๐‘‘๐‘Šโ„š ๐‘ก ยจ ๐‘‘ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = ๐œŽ. ๐‘ก. โˆ’ ๐‘ก . Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. . [ . ๐‘‘๐‘Šโ„š ๐‘ก 53
  • 54. Luc_Faucheux_2021 Another way to look at Ho-Lee โ€“ XXIII ยจ Letโ€™s see if we can do something more general with this (it seems that we sould be able to do it). ยจ The deflated Zeros are the ratio of two numeraires. ยจ So they are also the RN derivative between the two measures ยจ In particular, they are always a martingale (driftless process) in the measure associated to the bottom (denominator) numeraire. ยจ Because the Zeros are the numeraire of the terminal measure under which the instantaneous forward rate is martingale (driftless process), that leaves us as โ€œdegrees of freedomโ€ what kind of process we can write for the instantaneous forward rates in the risk- free measure (since we do not have much choice in the terminal measure, it is driftless). ยจ We follow here somewhat Baxter p.144 see if we can write something a little more general than the specific Ho-Lee case. 54
  • 55. Luc_Faucheux_2021 Something a little more general about the Deflated Zeros and the Instantaneous Forward Rates 55
  • 56. Luc_Faucheux_2021 Another way to look at Ho-Lee โ€“ a little more general - I ยจ Letโ€™s see if we can do something more general with this (it seems that we sould be able to do it). ยจ The deflated Zeros are the ratio of two numeraires. ยจ So they are also the RN derivative between the two measures ยจ In particular, they are always a martingale (driftless process) in the measure associated to the bottom (denominator) numeraire. ยจ Because the Zeros are the numeraire of the terminal measure under which the instantaneous forward rate is martingale (driftless process), that leaves us as โ€œdegrees of freedomโ€ what kind of process we can write for the instantaneous forward rates in the risk- free measure (since we do not have much choice in the terminal measure, it is driftless). ยจ We follow here somewhat Baxter p.144 see if we can write something a little more general than the specific Ho-Lee case. 56
  • 57. Luc_Faucheux_2021 Another way to look at Ho-Lee โ€“ a little more general - II ยจ In the terminal measure: ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค((') ๐‘ก ยจ In the risk free measure, letโ€™s assume that we can write something like: ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐‘Ž. ๐‘‘๐‘ก + ๐‘. ๐‘‘๐‘Šโ„š ๐‘ก ยจ Where: ยจ ๐‘Ž = ๐‘Ž(๐”‰ ๐‘ก , ๐‘ก.) ยจ ๐‘ = ๐‘(๐”‰ ๐‘ก , ๐‘ก.) ยจ Those functions (advection/drift and volatilities) can depend on the history of the Brownian motion ๐‘Šโ„š ๐‘ก and the rates themselves up to time ๐‘ก, and also depends on the terminal time ๐‘ก. ยจ Note that here we are dealing with a single factor model for ease of notation 57
  • 58. Luc_Faucheux_2021 Another way to look at Ho-Lee โ€“ a little more general - III ยจ Couple of โ€œmathyโ€ conditions on the advection and the volatility, from the original HJM paper, essentially, this is ensuring โ€well-behavedโ€ functions, and somewhat simplified: ยจ ๐‘Ž = ๐‘Ž(๐”‰ ๐‘ก , ๐‘ก.) ยจ ๐‘ = ๐‘(๐”‰ ๐‘ก , ๐‘ก.) ยจ โˆซ ;)/ ;)( |๐‘Ž(๐”‰ ๐‘  , ๐‘ก.) | . ๐‘‘๐‘  < โˆž ยจ โˆซ ;)/ ;)( ๐‘(๐”‰ ๐‘  , ๐‘ก.) % . ๐‘‘๐‘  < โˆž ยจ โˆซ ;)/ ;)( |๐‘…(0, ๐‘ , ๐‘ , )| . ๐‘‘๐‘  < โˆž ยจ โˆซ ;)/ ;)( ๐‘‘๐‘  {โˆซ <)/ <); |๐‘Ž(๐”‰ ๐‘ข , ๐‘ก.) | . ๐‘‘๐‘ข} < โˆž meaning that we can do Fubini ยจ ๐”ผ( โ„š {โˆซ ;)/ ;)( ๐‘‘๐‘  {โˆซ <)/ <); ๐‘ ๐”‰ ๐‘ข , ๐‘ก. . ({). ๐‘‘๐‘Šโ„š ๐‘ข }|๐”‰ 0 } < โˆž 58
  • 59. Luc_Faucheux_2021 Another way to look at Ho-Lee โ€“ a little more general - IV ยจ Actually am trying to keep those decks under 150 slides or so, so will move that section in the next deck 59
  • 60. Luc_Faucheux_2021 A little quiz on martingales 60
  • 61. Luc_Faucheux_2021 A little quiz on martingales โ€“ prep before the quiz ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = ๐”ผ(' โ„ค((') ๐‘…(๐‘ก., ๐‘ก., ๐‘ก.) ๐”‰ ๐‘ก ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. is a martingale under the terminal measure โ„ค(๐‘ก.) ยจ ๐‘… ๐‘ก, ๐‘ก., ๐‘ก. is a driftless process ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก., ๐‘ก. = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค((') ๐‘ก ยจ The numeraire associated to the terminal measure is the Zero ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. 61
  • 62. Luc_Faucheux_2021 A little quiz on martingales - II ยจ The deflated Zeros are the ratio of the Zeros to the rolling numeraire ยจ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = P (,(,(' Q(() ยจ S P (,(,(' S P /,/,(' is a martingale under the Risk-Free measure โ„š ยจ { S P (,(,(' S P /,/,(' }G$ is a martingale under the Terminal measure โ„ค(๐‘ก.) 62
  • 63. Luc_Faucheux_2021 A little quiz on martingales - III ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(2 โ„ค((2) ๐‘‰(๐‘กR, $๐ฟ ๐‘ก., ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(' โ„ค((') ๐‘‰ ๐‘ก., $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ(' โ„ค((') ๐‘(๐‘ก., ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก ยจ Simply compounded FORWARD at time ๐‘ก: ๐‘๐ถ ๐‘ก, ๐‘ก., ๐‘กR = $ $0T (,(',(2 .U (,(',(2 ยจ Simply compounded FORWARD at time ๐‘ก. : ๐‘๐ถ ๐‘ก., ๐‘ก., ๐‘กR = $ $0T (',(',(2 .U (',(',(2 63
  • 64. Luc_Faucheux_2021 A little quiz on martingales - IV ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(2 โ„ค((2) ๐‘‰(๐‘กR, $๐ฟ ๐‘ก., ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก ยจ The simply compounded forward ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR spanning the period [๐‘ก., ๐‘กR] is a martingale in the forward (๐‘กR -terminal measure) โ„ค(๐‘กR) 64
  • 65. Luc_Faucheux_2021 A little quiz on martingales - V ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(' โ„ค((') ๐‘‰ ๐‘ก., $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ(' โ„ค((') ๐‘(๐‘ก., ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก ยจ The Zeros ๐‘ ๐‘ก, ๐‘ก., ๐‘กR spanning the period [๐‘ก., ๐‘กR] is a martingale in the early/tree/discount (๐‘ก. - Terminal measure) โ„ค(๐‘ก.) ยจ The fixed swaplet payment { $ $0T (,(',(2 .U (,(',(2 } is a martingale in the early/tree/discount (๐‘ก. - Terminal measure) โ„ค(๐‘ก.) ยจ The floating swaplet payment { T (,(',(2 .U (,(',(2 $0T (,(',(2 .U (,(',(2 } is a martingale in the early/tree/discount (๐‘ก. - Terminal measure) โ„ค(๐‘ก.) 65
  • 66. Luc_Faucheux_2021 A little quiz on martingales - VI ยจ Just to be a little safe but maybe pedantic, because in Finance, it is always claims that we are looking at and WHEN they are paid (this is the first principle of the time value of money) ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(' โ„ค((') ๐‘‰ ๐‘ก., $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ(' โ„ค((') ๐‘(๐‘ก., ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(' โ„ค((') ๐‘‰ ๐‘ก., $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ(' โ„ค((') ๐‘‰ ๐‘ก., $๐‘(๐‘ก, ๐‘ก., ๐‘กR), ๐‘ก., ๐‘ก. ๐”‰ ๐‘ก ยจ { $ $0T (,(',(2 .U (,(',(2 } = ๐”ผ(' โ„ค((') ๐‘‰ ๐‘ก., ${ $ $0T (,(',(2 .U (,(',(2 }, ๐‘ก., ๐‘ก. ๐”‰ ๐‘ก ยจ { T (,(',(2 .U (,(',(2 $0T (,(',(2 .U (,(',(2 } = ๐”ผ(' โ„ค((') ๐‘‰ ๐‘ก., ${ T (,(',(2 .U (,(',(2 $0T (,(',(2 .U (,(',(2 }, ๐‘ก., ๐‘ก. ๐”‰ ๐‘ก 66
  • 67. Luc_Faucheux_2021 A little quiz on martingales โ€“ VI-a ยจ I think that part of the confusion comes from going between a variable and a claim. ยจ Saying that ๐‘‹(๐‘ก) is a martingale under the measure โ„š$ associated ๐‘Šโ„š&(๐‘ก)Brownian motion ยจ ๐‘‘๐‘‹ ๐‘ก = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . [ . ๐‘‘๐‘Šโ„š&(๐‘ก) ยจ Or using the expectation formalism: ยจ ๐‘‹ ๐‘  = ๐”ผ( โ„š& ๐‘‹ ๐‘ก ๐”‰ ๐‘  ยจ When going to a claim, the only thing that you can build from above is the value at time ๐‘ก of a claim that pays ๐‘‹ ๐‘ก set at time ๐‘ก and paid at time ๐‘ก. This is really the only thing that you can deduce on the valuation of claims from the fact that a variable is a martingale. Anything gets out of sync (fixing time, payment time, valuation time of the claim) and you really cannot say anything at all ยจ ๐‘‰(๐‘ , $๐‘‹ ๐‘  , ๐‘ , ๐‘ ) = ๐”ผ( โ„š& ๐‘‰(๐‘ก, $๐‘‹ ๐‘ก , ๐‘ก, ๐‘ก) ๐”‰ ๐‘  67
  • 68. Luc_Faucheux_2021 A little quiz on martingales - VII ยจ We have to do a little refresher on the notation (because remember unlike in Physics, what matters really in Finance is WHEN you get paid, not when you observe/fix/set the payment) ยจ ๐‘‰(๐‘ก) = ๐‘‰ ๐‘ก, $๐ป(๐‘ก), ๐‘ก., ๐‘กR 68 ๐‘ƒ๐‘Ž๐‘–๐‘‘ ๐‘Ž๐‘ก ๐‘ก๐‘–๐‘š๐‘’ ๐‘กR ๐น๐‘–๐‘ฅ๐‘’๐‘‘ ๐‘œ๐‘Ÿ ๐‘ ๐‘’๐‘ก ๐‘Ž๐‘ก ๐‘ก๐‘–๐‘š๐‘’ ๐‘ก. ๐บ๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ ๐‘ƒ๐‘Ž๐‘ฆ๐‘œ๐‘“๐‘“ ๐ป ๐‘ก ๐‘–๐‘› ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘๐‘ฆ $ ๐‘‰๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ฆ๐‘œ๐‘“๐‘“ ๐‘œ๐‘๐‘ ๐‘’๐‘Ÿ๐‘ฃ๐‘’๐‘‘ ๐‘Ž๐‘ก ๐‘ก๐‘–๐‘š๐‘’ ๐‘ก
  • 69. Luc_Faucheux_2021 A little quiz on martingales - VIII ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(2 โ„ค((2) ๐‘‰(๐‘กR, $๐ฟ ๐‘ก., ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(2 โ„ค((2) ๐‘‰(๐‘กR, $๐ฟ ๐‘ก, ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ< โ„ค((2) ๐‘‰(๐‘ข, $๐ฟ ๐‘ข, ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก with ๐‘ก < ๐‘ข < ๐‘ก. < ๐‘กR ยจ BUT ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR โ‰  ๐”ผ< โ„ค((2) ๐‘‰(๐‘ข, $๐ฟ ๐‘ข, ๐‘ก., ๐‘กR , ๐‘ก., ๐‘ก.) ๐”‰ ๐‘ก ยจ The simply compounded forward rates HAS to be paid AT THE END of the period [๐‘ก., ๐‘กR] at the time ๐‘กR ยจ OTHERWISE that is a LIBOR-IN-ARREARS trade 69
  • 70. Luc_Faucheux_2021 A little quiz on martingales - IX ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(' โ„ค((') ๐‘‰ ๐‘ก., $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ(' โ„ค((') ๐‘(๐‘ก., ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ< โ„ค((') ๐‘‰ ๐‘ข, $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ< โ„ค((') ๐‘(๐‘ข, ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก ยจ with ๐‘ก < ๐‘ข < ๐‘ก. < ๐‘กR ยจ ๐‘ ๐‘ข, ๐‘ข, ๐‘กR = ๐‘ ๐‘ข, ๐‘ข, ๐‘ก. . ๐‘(๐‘ข, ๐‘ก., ๐‘กR) 70
  • 72. Luc_Faucheux_2021 Quiz, letโ€™s see how you do..some notations firstโ€ฆ ยจ ๐‘Šโ„ค((') ๐‘ก is the Brownian motion associated to the terminal measure โ„ค(๐‘ก.) which is associated with the Zero ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. ยจ ๐‘Šโ„š ๐‘ก is the Brownian motion associated to the risk-free measure โ„š which is associated with the rolling numeraire ๐ต ๐‘ก = exp[โˆซ ;)/ ;)( ๐‘… ๐‘ , ๐‘ , ๐‘  . ๐‘‘๐‘ ] ยจ โ„š$ is a measure with an associated ๐‘Šโ„š&(๐‘ก)Brownian motion ยจ โ„š% is a measure with an associated ๐‘Šโ„š!(๐‘ก)Brownian motion ยจ The simply compounded forward is defined through the usual bootstrapping formula: ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = P (,(,('%& P (,(,(' = $ $0T (,(',('%& .U (,(',('%& ยจ The deflated Zeros are: ยจ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. = P (,(,(' Q ( 72
  • 73. Luc_Faucheux_2021 Quiz time โ€ฆ.right/wrongโ€ฆ ยจ ๐‘‹ ๐‘ก = 1 is a martingale under the risk free measure โ„š ยจ ๐‘Šโ„š ๐‘ก is a martingale under the risk free measure โ„š ยจ {๐‘Šโ„š ๐‘ก }% is a martingale under the risk free measure โ„š ยจ {๐‘Šโ„š ๐‘ก }%V0$ is a martingale under the risk free measure โ„š ยจ ๐ผ ๐‘ก = โˆซ ;)/ ;)( ๐‘‘๐‘Šโ„š ๐‘  is a martingale under the risk free measure โ„š ยจ ๐ผ ๐‘ก = โˆซ ;)/ ;)( ๐œ‰ ๐‘  . ([). ๐‘‘๐‘Šโ„š ๐‘  is a martingale under the risk free measure โ„š ยจ ๐ผ ๐‘ก = โˆซ ;)/ ;)( ๐‘Šโ„š ๐‘  . ([). ๐‘‘๐‘Šโ„š ๐‘  is a martingale under the risk free measure โ„š ยจ ๐ผ ๐‘ก = โˆซ ;)/ ;)( {๐‘Šโ„š ๐‘ก }%. ([). ๐‘‘๐‘Šโ„š ๐‘  is a martingale under the risk free measure โ„š ยจ ๐ผ ๐‘ก = โˆซ ;)/ ;)( {๐‘Šโ„š ๐‘ก }7. ([). ๐‘‘๐‘Šโ„š ๐‘  is a martingale under the risk free measure โ„š 73
  • 74. Luc_Faucheux_2021 Quiz time โ€ฆ.right/wrongโ€ฆII ยจ @โ„š! @โ„š& ๐‘ก is a martingale under the โ„š$-measure ยจ @โ„š& @โ„š! ๐‘ก is a martingale under the โ„š%-measure ยจ @โ„š! @โ„š& ๐‘ก is a martingale under the โ„š%-measure ยจ @โ„š& @โ„š! ๐‘ก is a martingale under the โ„š$-measure 74
  • 75. Luc_Faucheux_2021 Quiz time โ€ฆ.right/wrongโ€ฆIII ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.0$) measure ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.) measure ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก) measure ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the risk free measure โ„š ยจ {๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ }% is a martingale under the โ„ค(๐‘ก.0$) measure ยจ $ $0T'.U (,(',('%& is a martingale under the โ„ค(๐‘ก.) measure ยจ T'.U (,(',('%& $0T'.U (,(',('%& is a martingale under the โ„ค(๐‘ก.) measure ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.) measure ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ G$ is a martingale under the โ„ค(๐‘ก.0$) measure 75
  • 76. Luc_Faucheux_2021 Quiz time โ€ฆ.right/wrongโ€ฆIV ยจ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. is a martingale under the โ„ค(๐‘ก.0$) measure ยจ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. is a martingale under the risk free measure โ„š ยจ Z ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. is a martingale under the โ„ค(๐‘ก.) measure ยจ $ S P (,(,(' is a martingale under the โ„ค(๐‘ก.0$) measure ยจ $ S P (,(,(' is a martingale under the risk free measure โ„š ยจ $ S P (,(,(' is a martingale under the โ„ค(๐‘ก.) measure 76
  • 77. Luc_Faucheux_2021 Quiz time โ€ฆ.right/wrongโ€ฆV ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.) measure ยจ ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. is a martingale under the โ„ค(๐‘ก.) measure ยจ ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.) measure ยจ ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.0$) measure ยจ ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก) measure ยจ $ P (,(',('%& is a martingale under the โ„ค(๐‘ก.0$) measure ยจ $ P (,(',('%& is a martingale under the โ„ค(๐‘ก.) measure ยจ $ P (,(',('%& is a martingale under the risk free measure โ„š 77
  • 78. Luc_Faucheux_2021 Quiz time โ€ฆ.right/wrongโ€ฆVI ยจ T'.U (,(',('%& $0T'.U (,(',('%& is a martingale under the โ„ค(๐‘ก.) measure ยจ T'.U (,(',('%& $0T'.U (,(',('%& is a martingale under the โ„ค(๐‘ก.0$) measure ยจ {T'.U (,(',('%& }! $0T'.U (,(',('%& is a martingale under the โ„ค(๐‘ก.) measure ยจ {T'.U (,(',('%& }! $0T'.U (,(',('%& is a martingale under the โ„ค(๐‘ก.0$) measure ยจ T'.U (,(',('%& $0T'.U (,(',('%& is a martingale under the risk free measure โ„š 78
  • 80. Luc_Faucheux_2021 Bootstrapping the measures. ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(' โ„ค((') ๐‘‰ ๐‘ก., $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ(' โ„ค((') ๐‘(๐‘ก., ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก ยจ The Zeros ๐‘ ๐‘ก, ๐‘ก., ๐‘กR spanning the period [๐‘ก., ๐‘กR] is a martingale in the early/tree/discount (๐‘ก. - Terminal measure) โ„ค(๐‘ก.) ยจ Since we are going to use those to value successive swaplets, we will encounter first the important case ๐‘— = ๐‘– + 1 ยจ Here we assume that we have indexed the time buckets say along the periods of a swap or derivative that we want to value. ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = P (,(,('%& P (,(,(' = $ $0T (,(',('%& .U (,(',('%& ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the terminal (forward) measure โ„ค(๐‘ก.0$) ยจ So the SDE looks something like: ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘” . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก 80
  • 81. Luc_Faucheux_2021 Bootstrapping the measures - II ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the terminal (forward) measure โ„ค(๐‘ก.0$) ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘”_๐ฟ . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale in the the terminal (forward) measure โ„ค(๐‘ก.) ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘”_๐‘ . ๐‘‘๐‘Šโ„ค((') ๐‘ก ยจ And we have the relationship: ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = P (,(,('%& P (,(,(' = $ $0T (,(',('%& .U (,(',('%& ยจ So the idea is that we should be able to say something about how to go from โ„ค(๐‘ก.0$) to โ„ค(๐‘ก.) because we need to verify those 3 relationships. ยจ That is the idea behind the LMM (Libor Market Model) 81
  • 82. Luc_Faucheux_2021 Bootstrapping the measures - III ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = P (,(,('%& P (,(,(' = $ $0T (,(',('%& .U (,(',('%& ยจ We use ITO lemma on this. ยจ ๐›ฟ๐‘“ = !" !# . ๐›ฟ๐‘‹ + $ % . !!" !#! . (๐›ฟ๐‘‹)% ยจ With: ๐‘‹ = ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ and ๐‘“(๐‘ฅ) = 1/(1 + ๐œ ๐‘ก, ๐‘ก., ๐‘ก.0$ . ๐‘ฅ) ยจ !" !# = GT (,(',('%& ($0T (,(',('%& .#)! ยจ !!" !#! = %.T (,(',('%& ! ($0T (,(',('%& .#)3 ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = GT (,(',('%& ($0T (,(',('%& .U (,(',('%& )! . ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ + $ % . %.T (,(',('%& ! ($0T (,(',('%& .#)3 . (๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ )% 82
  • 83. Luc_Faucheux_2021 Bootstrapping the measures - IV ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = GT (,(',('%& ($0T (,(',('%& .U (,(',('%& )! . ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ + $ % . %.T (,(',('%& ! ($0T (,(',('%& .#)3 . (๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ )% ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ = 0 . ๐‘‘๐‘ก + ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘”_๐ฟ . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก ยจ If we choose a function : ยจ ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘”_๐ฟ = ๐‘{๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ , ๐”‰ ๐‘ก } that could be function of the rate at all times prior to time ๐‘ก, that we note ๐‘ just for ease of notation ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ = 0 . ๐‘‘๐‘ก + ๐‘. ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก ยจ (๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ )%= ๐‘%. ๐‘‘๐‘ก ยจ Note that if the function ๐‘{๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ , ๐”‰ ๐‘ก } has dependency on the stochastic variable, we need to make sure that we are working in the ITO calculus ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ = 0 . ๐‘‘๐‘ก + ๐‘. [ . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก ยจ (๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ )%= ๐‘%. ๐‘‘๐‘ก 83
  • 84. Luc_Faucheux_2021 Bootstrapping the measures - V ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = GT (,(',('%& ($0T (,(',('%& .U (,(',('%& )! . ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ + $ % . %.T (,(',('%& ! ($0T (,(',('%& .#)3 . (๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ )% ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ = ๐‘. [ . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก ยจ (๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ )%= ๐‘%. ๐‘‘๐‘ก ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = GT (,(',('%& ($0T (,(',('%& .U (,(',('%& )! . ๐‘. [ . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก + $ % . %.T (,(',('%& ! ($0T (,(',('%& .U (,(',('%& )3 . ๐‘%. ๐‘‘๐‘ก ยจ Following Piterbarg (p. 595), letโ€™s just simplify a little the daycount fraction by writing: ยจ ๐œ ๐‘ก, ๐‘ก., ๐‘ก.0$ = ๐œ. ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = GT' ($0T'.U (,(',('%& )! . ๐‘. [ . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก + $ % . %.T' ! ($0T'.U (,(',('%& )3 . ๐‘%. ๐‘‘๐‘ก ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = GT'.& ($0T'.U (,(',('%& )! . { [ . ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’ T' ($0T'.U (,(',('%& ) . ๐‘. ๐‘‘๐‘ก} 84
  • 85. Luc_Faucheux_2021 Bootstrapping the measures - VI ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = GT'.& ($0T'.U (,(',('%& )! . { [ . ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’ T' ($0T'.U (,(',('%& ) . ๐‘. ๐‘‘๐‘ก} ยจ But we also know that: ยจ ๐‘‘๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘”_๐‘ . ๐‘‘๐‘Šโ„ค((') ๐‘ก ยจ So the only way that works is: ยจ ๐‘ ๐‘œ๐‘š๐‘’๐‘กโ„Ž๐‘–๐‘›๐‘”_๐‘ = GT'.& ($0T'.U (,(',('%& )! ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’ T' ($0T'.U (,(',('%& ) . ๐‘. ๐‘‘๐‘ก ยจ So this is how we can go from the โ„ค ๐‘ก.0$ terminal measure to the โ„ค(๐‘ก.) terminal measure 85
  • 86. Luc_Faucheux_2021 Bootstrapping the measures - VII ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ = ๐‘{๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ , ๐”‰ ๐‘ก }. [ . ๐‘‘๐‘Šโ„ค(('%&) ๐‘ก ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’ T' ($0T'.U (,(',('%& ) . ๐‘{๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ , ๐”‰ ๐‘ก }. ๐‘‘๐‘ก ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก.G$, ๐‘ก. = ๐‘{๐ฟ ๐‘ก, ๐‘ก.G$, ๐‘ก. , ๐”‰ ๐‘ก }. [ . ๐‘‘๐‘Šโ„ค((') ๐‘ก ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก.G$, ๐‘ก. = ๐‘ ๐ฟ ๐‘ก, ๐‘ก.G$, ๐‘ก. , ๐”‰ ๐‘ก . [ . {๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’ T'.&{U (,(',('%& ,๐”‰ ( } ($0T'.U (,(',('%& ) . ๐‘‘๐‘ก} ยจ This illustrates that if ๐ฟ ๐‘ก, ๐‘ก.G$, ๐‘ก. is a martingale in the โ„ค(๐‘ก.) terminal measure, it is NOT a martingale in the โ„ค(๐‘ก.0$) terminal measure, and the drift can be quite a complicated formula: ยจ ๐‘‘๐ฟ ๐‘ก, ๐‘ก.G$, ๐‘ก. = โˆ’ T'.& U (,(',('%& ,๐”‰ ( .& U (,('4&,(' ,๐”‰ ( $0T'.U (,(',('%& . ๐‘‘๐‘ก + ๐‘ ๐ฟ ๐‘ก, ๐‘ก.G$, ๐‘ก. , ๐”‰ ๐‘ก . [ ๐‘‘๐‘Šโ„ค ('%& ๐‘ก 86
  • 87. Luc_Faucheux_2021 Bootstrapping the measures - VIII ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’ T' ($0T'.U (,(',('%& ) . ๐‘. ๐‘‘๐‘ก ยจ ๐‘‘๐‘Šโ„ค ('%& ๐‘ก = ๐‘‘๐‘Šโ„ค((') ๐‘ก + T' ($0T'.U (,(',('%& ) . ๐‘. ๐‘‘๐‘ก ยจ Remember that: ยจ ๐‘ = ๐‘ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ , ๐”‰ ๐‘ก = ๐‘(๐‘–) ยจ We can go down by recurrence ยจ ๐‘‘๐‘Šโ„ค ('%& ๐‘ก = ๐‘‘๐‘Šโ„ค((') ๐‘ก + T' $0T'.U (,(',('%& . ๐‘(๐‘–). ๐‘‘๐‘ก ยจ ๐‘‘๐‘Šโ„ค (' ๐‘ก = ๐‘‘๐‘Šโ„ค(('4&) ๐‘ก + T'4& $0T'4&.U (,('4&,(' . ๐‘(๐‘– โˆ’ 1). ๐‘‘๐‘ก ยจ ๐‘‘๐‘Šโ„ค (2 ๐‘ก = ๐‘‘๐‘Šโ„ค((') ๐‘ก + โˆ‘7). 7)RG$ T$4& $0T$4&.U (,($4&,($ . ๐‘(๐‘˜ โˆ’ 1). ๐‘‘๐‘ก 87
  • 88. Luc_Faucheux_2021 Bootstrapping the measures โ€“ VIII - a ยจ Letโ€™s leave this one like that for now, but note that we are laying down the foundations to derive the LMM (Libor Market Model). Hopefully will do that in deck VIII. 88
  • 89. Luc_Faucheux_2021 Bootstrapping the measures - IX ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’ T' ($0T'.U (,(',('%& ) . ๐‘. ๐‘‘๐‘ก ยจ Letโ€™s tie that to the RN derivative 89
  • 90. Luc_Faucheux_2021 Bootstrapping the measures - X ยจ If โ„š$ is a measure with an associated ๐‘Šโ„š&(๐‘ก)Brownian motion (a โ„š$-Brownian motion) ยจ If โ„š% is a measure with an associated ๐‘Šโ„š!(๐‘ก)Brownian motion (a โ„š%-Brownian motion) ยจ We have (under the famous Novikov condition..) ยจ If there is a process ๐œ‰ ๐‘ก such that it is reasonably well-behaved ยจ @โ„š! @โ„š& = exp โˆ’ โˆซ / ( ๐œ‰ ๐‘  . ๐‘‘๐‘Š ๐‘  โˆ’ โˆซ / ( $ % ๐œ‰ ๐‘  %. ๐‘‘๐‘  = โ„ฐ โˆซ / ( (โˆ’๐œ‰ ๐‘  ). ๐‘‘๐‘Š ๐‘  ยจ ๐‘Šโ„š! ๐‘ก = ๐‘Šโ„š& ๐‘ก + โˆซ / ( ๐œ‰ ๐‘  . ๐‘‘๐‘  ยจ ๐‘‘๐‘Šโ„š! ๐‘ก = ๐‘‘๐‘Šโ„š& ๐‘ก + ๐œ‰ ๐‘ก . ๐‘‘๐‘ก ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’ T' ($0T'.U (,(',('%& ) . ๐‘. ๐‘‘๐‘ก 90
  • 91. Luc_Faucheux_2021 Bootstrapping the measures - XI ยจ ๐‘‘๐‘Šโ„š! ๐‘ก = ๐‘‘๐‘Šโ„š& ๐‘ก + ๐œ‰ ๐‘ก . ๐‘‘๐‘ก ยจ ๐‘‘๐‘Šโ„ค((') ๐‘ก = ๐‘‘๐‘Šโ„ค ('%& ๐‘ก โˆ’ T' ($0T'.U (,(',('%& ) . ๐‘. ๐‘‘๐‘ก ยจ The โ„š% measure here is the โ„ค(๐‘ก.), associated with the numeraire ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. ยจ The โ„š$ measure here is the โ„ค(๐‘ก.0$), associated with the numeraire ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.0$ ยจ ๐œ‰ ๐‘ก = โˆ’ T' ($0T'.U (,(',('%& ) . ๐‘ ยจ @โ„š! @โ„š& = exp โˆ’ โˆซ / ( ๐œ‰ ๐‘  . ๐‘‘๐‘Š ๐‘  โˆ’ โˆซ / ( $ % ๐œ‰ ๐‘  %. ๐‘‘๐‘  = โ„ฐ โˆซ / ( (โˆ’๐œ‰ ๐‘  ). ๐‘‘๐‘Š ๐‘  91
  • 92. Luc_Faucheux_2021 Bootstrapping the measures - XII ยจ X ๐‘โ„š& ๐‘ก = ๐‘โ„š& (๐‘ก)/๐‘โ„š& (0) ยจ X ๐‘โ„š! ๐‘ก = ๐‘โ„š! (๐‘ก)/๐‘โ„š! (0) ยจ We obtain the celebrated formula: ยจ @โ„š! @โ„š& ๐‘ก = Y 6โ„š! ( Y 6โ„š& ( ยจ ๐‘โ„š! (๐‘ก) = ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. ยจ ๐‘โ„š& (๐‘ก) = ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.0$ ยจ @โ„š! @โ„š& ๐‘ก = @โ„ค((') @โ„ค(('%&) ๐‘ก = Y 6โ„š! ( Y 6โ„š& ( = P (,(,(' /P /,/,(' P (,(,('%& /P /,/,('%& ยจ @โ„ค((') @โ„ค(('%&) ๐‘ก = P (,(,(' /P /,/,(' P (,(,('%& /P /,/,('%& = P /,/,('%& P /,/,(' . {1 + ๐œ.. ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ } 92
  • 93. Luc_Faucheux_2021 Bootstrapping the measures - XIII ยจ @โ„ค((') @โ„ค(('%&) ๐‘ก = P /,/,('%& P /,/,(' . {1 + ๐œ.. ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ } ยจ We also know that: ยจ @โ„š! @โ„š& ๐‘ก is a martingale under the โ„š$-measure ยจ @โ„š& @โ„š! ๐‘ก is a martingale under the โ„š%-measure ยจ And since the RN derivative is a ratio of numeraire: ยจ @โ„š& @โ„š! ๐‘ก = { @โ„š! @โ„š& ๐‘ก }G$ 93
  • 94. Luc_Faucheux_2021 Bootstrapping the measures - XIV ยจ The โ„š% = โ„ค(๐‘ก.), associated with the numeraire ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. ยจ The โ„š$ = โ„ค(๐‘ก.0$), associated with the numeraire ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.0$ ยจ @โ„ค((') @โ„ค(('%&) ๐‘ก = P /,/,('%& P /,/,(' . {1 + ๐œ.. ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ } ยจ @โ„š! @โ„š& ๐‘ก is a martingale under the โ„š$-measure ยจ BECOMES: ยจ @โ„ค((') @โ„ค(('%&) ๐‘ก = P /,/,('%& P /,/,(' . {1 + ๐œ.. ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ } is a martingale under the โ„ค(๐‘ก.0$) measure ยจ And thus: ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.0$) measure 94
  • 95. Luc_Faucheux_2021 Bootstrapping the measures - XV ยจ @โ„š& @โ„š! ๐‘ก is a martingale under the โ„š%-measure ยจ BECOMES: ยจ @โ„ค(('%&) @โ„ค((') ๐‘ก = { @โ„ค((') @โ„ค(('%&) ๐‘ก }G$= { P /,/,('%& P /,/,(' . {1 + ๐œ.. ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ }}G$ is a martingale under the โ„ค(๐‘ก.) measure ยจ And thus: ยจ $ $0T'.U (,(',('%& is a martingale under the โ„ค(๐‘ก.) measure ยจ T'.U (,(',('%& $0T'.U (,(',('%& is a martingale under the โ„ค(๐‘ก.) measure ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.) measure 95
  • 96. Luc_Faucheux_2021 Bootstrapping the measures - XVI ยจ So we could have really started from that angle (like in some textbooks) if we knew a lot to start with RN derivative, and changes of measures, we could have said: ยจ The โ„ค(๐‘ก.)-measure is associated with the numeraire ๐‘ ๐‘ก, ๐‘ก, ๐‘ก. ยจ The โ„ค(๐‘ก.0$)-measure is associated with the numeraire ๐‘ ๐‘ก, ๐‘ก, ๐‘ก.0$ ยจ So by construction, since ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ = P (,(,('%& P (,(,(' = $ $0T (,(',('%& .U (,(',('%& ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.0$) measure ยจ $ $0T'.U (,(',('%& is a martingale under the โ„ค(๐‘ก.) measure ยจ T'.U (,(',('%& $0T'.U (,(',('%& is a martingale under the โ„ค(๐‘ก.) measure ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.) measure ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘ก.0$ G$ is a martingale under the โ„ค(๐‘ก.0$) measure 96
  • 97. Luc_Faucheux_2021 Bootstrapping the measures - XVII ยจ That would have been so much easier but maybe not that intuitive ยจ AS ALWAYS in Finance, when dealing with Terminal measures, when we say that ๐‘‹(๐‘ก)is a martingale, when talking about the value of a claim, that is the value at time ๐‘ก that pays $๐‘‹ ๐‘ก at time ๐‘‡ associated with that measure (when the Numeraire is ๐‘ ๐‘ก, ๐‘ก, ๐‘‡ = ๐‘ ๐‘‡, ๐‘‡, ๐‘‡ = 1) ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ is a martingale under the โ„ค(๐‘ก.0$) measure ยจ When talking about a payment equal to it: ยจ ๐‘‰(๐‘ก, $๐ฟ ๐‘ก, ๐‘ก., ๐‘ก.0$ , ๐‘ก., ๐‘ก.0$) is a martingale under the โ„ค(๐‘ก.0$) measure ยจ $ $0T'.U (,(',('%& is a martingale under the โ„ค(๐‘ก.) measure ยจ When talking about a payment equal to it: ยจ ๐‘‰(๐‘ก, $ $ $0T'.U (,(',('%& , ๐‘ก., ๐‘ก.) is a martingale under the โ„ค(๐‘ก.) measure 97
  • 98. Luc_Faucheux_2021 Bootstrapping the measures - XVIII ยจ So in a sense we always start with the claim, and then when the timing coincide we can say something about the actual variable: ยจ ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(2 โ„ค((2) ๐‘‰(๐‘กR, $๐ฟ ๐‘ก., ๐‘ก., ๐‘กR , ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก ยจ ๐‘ ๐‘ก, ๐‘ก., ๐‘กR = ๐”ผ(' โ„ค((') ๐‘‰ ๐‘ก., $1, ๐‘ก., ๐‘กR ๐”‰ ๐‘ก = ๐”ผ(' โ„ค((') ๐‘(๐‘ก., ๐‘ก., ๐‘กR) ๐”‰ ๐‘ก ยจ Simply compounded FORWARD at time ๐‘ก: ๐‘๐ถ ๐‘ก, ๐‘ก., ๐‘กR = $ $0T (,(',(2 .U (,(',(2 ยจ Simply compounded FORWARD at time ๐‘ก. : ๐‘๐ถ ๐‘ก., ๐‘ก., ๐‘กR = $ $0T (',(',(2 .U (',(',(2 98
  • 99. Luc_Faucheux_2021 Bootstrapping the measures - XIX ยจ In the next deck, we will revisit those slides, and start building the LMM model, where we will explicitly derive the drift for all the forwards ๐ฟ ๐‘ก, ๐‘ก., ๐‘กR in the same measure, following the derivation from Piterbarg and also Tuckman which builds more intuition. 99
  • 101. Luc_Faucheux_2021 Career advices from Uncle Luc ยจ So, not sure if this is the New Moon or Mercury going retrograde, or if it is the season of bonuses, but Uncle Luc is feeling extra gloomy and wants to impart some of his wisdom on the young generations on what they should do for their careers in finance ยจ So gather around the campfire (am the one with the laptop in the picture below) 101
  • 102. Luc_Faucheux_2021 Never ever work in Rates Derivatives on the Sell side ยจ It is too hard ยจ There is no juice in it ยจ The reporting requirements for regulators are quite stringent ยจ The need for computing power is quite big ยจ The theory is really complicated. Most textbooks start with equity, and they either say that the rate is equal to zero or a constant, not even a deterministic function of time. It is only after some serious math that you can start talking about modeling rates ยจ Unlike Equity for example, the arbitrage-free conditions that you need to enforce create some non-trivial constraints on the curve construction and stochastic processes 102
  • 103. Luc_Faucheux_2021 Never ever work in Rates Derivatives on the Sell side - II ยจ There is no juice in it. ยจ People get excited about basis points. ยจ 1 basis point = 1% / 100 ยจ 1% = 1/100 ยจ 1 basis point = 1/100/100 = 1/10,000 ยจ Bid offer is usually around a quarter of a basis point if that. ยจ Daily move is usually a couple of basis points if that. ยจ People would arb each other for half a basis point. 103
  • 104. Luc_Faucheux_2021 Never ever work in Rates Derivatives on the Sell side - III ยจ Peter Carr in the jacket for the Pieterbarg book said it quite nicely: ยจ โ€œIn the complex and highly liquid interest rate derivatives market, the requirements for model accuracy and realism are inordinately demanding.โ€ ยจ Yeah, could not agree more, the need for precision, computing power, accuracy, speed, complexity of the modeling to accurately capture the markets, with the reporting requirements, the trading requirements (on a SEF, not on a SEF, MAT, not MAT, cleared, not cleared, bla bla bla..) are INORDINATELY DEMANDING !!! And all that for not even half a basis point, and for a trade that most likely is going to stay on your books for the whole duration, eating up VAR, RWA, Cost of Risk, cost to run the risk, CPUs, emails,โ€ฆ. ยจ So trust me, if that was to do it again I would not. ยจ I was Quixotic in my youth trying to understand what I thought was complicated and worthy of my time and effort. I know better now, and hopefully you will heed my advice. 104
  • 105. Luc_Faucheux_2021 Never ever work in Rates Derivatives on the Sell side - IV ยจ To be fair when you run any kind of financial endeavior, it all comes down to funding and time value of money, so interest rates are at the core of any bank, and you cannot really avoid it. ยจ So this is a necessary evil, and usually once you have done Interest-Rate derivatives, there is really nothing that you cannot branch into. So I might be a tad overboard on the gloominess. 105
  • 106. Luc_Faucheux_2021 Never ever work in Rates Derivatives on the Sell side - V ยจ People get overly excited over changes in BASIS POINTS ยจ https://www.risk.net/derivatives/7739631/funds-steering-clear-of-bets-on-libor-timeline- after-losses ยจ Here is the graph everyone is getting excited about: a 4 basis point move at most 106
  • 107. Luc_Faucheux_2021 Never ever work in Rates Derivatives on the Sell side - VI ยจ Meanwhile on the equity side: 107
  • 108. Luc_Faucheux_2021 Never ever work in Rates Derivatives on the Sell side - VII ยจ Or on the currency side: 108
  • 109. Luc_Faucheux_2021 Never ever work in Rates Derivatives on the Sell side - VIII ยจ So letโ€™s recap. ยจ On the Interest-Rates side, people get super excited about a move of 4 basis points, when valuing the difference over 5 years of a swap paying 3month-LIBOR on one side, set quarterly, compounded flat and paid semi-annually versus 6month-LIBOR on the other side, set semi-annually and paid semi-annually. This is super hard to model and value. ยจ 4 basis points. ยจ Fine I will be nice to you and give you 10 basis points. ยจ 10 basis points = (10/100) % = 0.1% ยจ On the equity side, GameStop moved from $49 to $490 in a couple of days. ยจ That is a move of 1,000% ! ยจ That is a move 10,000 greater than the 5year 3s6s basis, for a security that is easy to book and needs no curve construction, bi-curve, discounting, rates modeling or such 109
  • 110. Luc_Faucheux_2021 Never ever work in Rates Derivatives on the Sell side - IX ยจ Ok, on the currency side, since Bitcoin is as legitimate a currency as any fiat currency according to Elon: ยจ Bitcoin moved from $10,000 to $50,000 in a little less than 5 months. ยจ That is a 500% move, again for something that does not require the full HJM/measure/Girsanov theorem/arbitrage-free/martingale/thousands of powerpoint slides before you can make sense of anything/army of Russian and French PhD to compute even the simplest future contract or convexity adjustment ยจ So yeah congratsโ€ฆno juice in it for an โ€œinordinateโ€ amount of effort and time.. 110
  • 111. Luc_Faucheux_2021 My career advice #1 ยจ In my next life I want to be a baseball player ยจ You get paid a lot ยจ You live a pretty healthy lifestyle (they force you to exercise) ยจ You do not travel as much and as often as tennis players, basketball players, you do not have jetlags as usually a series stays in one town for a week or so ยจ You are part of a team so you share expenses unlike golf players ยจ You do not damage your body like football soccer tennis ยจ You can play until you have grandkids ยจ It starts to rain, snow, or get too cold, you stop playing ยจ Spring โ€trainingโ€ is on Floridaโ€ฆyeahhh ยจ So yeahโ€ฆproblem is that it is quite boring, but hey that is the only minus I seeโ€ฆ 111
  • 112. Luc_Faucheux_2021 My career advice #2 ยจ If you cannot make it as a baseball player, I highly recommend being a credit trader on the sell side and selling all the credit protection that you can ยจ This is viewed as patriotic because you are bullish your clients and the market ยจ If something blows up, it is because someone else screwed up, not you. Let me elaborate. ยจ You pay fixed in 10year swap and the market rally, you lost money, you get yelled at ยจ You sell protection on ENRON, Parmalat, Worldcom, Wework, Theranos,โ€ฆ.and then the company goes belly-up, that is not something you did, it is fraud/accounting/wrong management AT the company, certainly not something that you did wrong, so you do not get yelled at as much, because you were supporting a key client of the bank. Psychologically subtle but trueโ€ฆ ยจ Oh hey also when you blow up, everyone usually blow up together you relatively speaking you are still doing OK ยจ You also get paid for the carry before the blow-up, with usually no reserve whatsoever, so life is good. Also there is more juice in Credit, moves in points, not in basis points 112
  • 113. Luc_Faucheux_2021 My career advice #3 ยจ If you cannot do #1 or #2, am starting to feel sorry for you. ยจ I have some other advice ยจ Become an equity option trader and sell all the long dated options that you can. ยจ Similar to credit, you are fulfilling a patriotic duty to support the market and key clients of the bank ยจ Similar to credit, when you blow up, chances are everyone is blowing up at the same time, so you can find another job, in the meantime you collected a nice carry, โ€œclipping the couponsโ€ as they say 113
  • 114. Luc_Faucheux_2021 My career advice #4 ยจ All right so you could not do any of the above so far. ยจ I have one for youโ€ฆBig data and Machine Learning ยจ CPUs is cheaper every year ยจ You have tons of data to play with ยจ So far the field of big data / ML / AI is just a big Excel GoalSeek, nothing more. ยจ Am still waiting for the qualitative jump that Douglas Hoffstadter predicted in the field of AI. ยจ So far no singularity, no emergence, no qualitative jump, just a lot more of number crunching and burning of CPUs ยจ So use words like virtuous vortex of connectivity, deep learning, ML on BigData cloud based, make sure that your project is way too ambitious to ever be measurable against the goalโ€ฆet voila !! You get yourself a nice cushy job, and while the CPUs that you are burning gently warm up the planet, maybe you have some time to write some Powerpoint slides on more eternal and timeless issues like Ito versus Stratanovitch 114
  • 116. Luc_Faucheux_2021 Things I still want to do ยจ Redo the Ho-Lee deck with the following models ยจ Ho-Lee with time-dependent volatility: ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก, ๐‘ก = ๐œƒ ๐‘ก . ๐‘‘๐‘ก โˆ’ ๐œŽ(๐‘ก). ([). ๐‘‘๐‘Š(๐‘ก) ยจ Hull-White: ยจ ๐‘‘๐‘… ๐‘ก, ๐‘ก, ๐‘ก = {๐œƒ ๐‘ก โˆ’ ๐‘˜. ๐‘…(๐‘ก, ๐‘ก, ๐‘ก)}. ๐‘‘๐‘ก โˆ’ ๐œŽ(๐‘ก). ([). ๐‘‘๐‘Š(๐‘ก) ยจ Langevin equation: ยจ ๐‘‘๐‘‰ ๐‘ก = โˆ’๐‘˜. ๐‘‰(๐‘ก). ๐‘‘๐‘ก + ๐œŽ. ([). ๐‘‘๐‘Š(๐‘ก) ยจ So we can use a lot of the materials of the Langevin deck. 116
  • 117. Luc_Faucheux_2021 Things I still want to do - II ยจ Caplet numeraire ยจ Swaption numeraire ยจ Normal BS derivation ยจ Finish the binary section ยจ Derive Gaussian from MaxEnt principle and Lagrange multipliers ยจ CLT ยจ Master equation -> Gaussian (Van Kampen book) ยจ Numeraire change ยจ Arcsin law ยจ Eris swap future contract ยจ CMS convexity adjustment 117
  • 118. Luc_Faucheux_2021 Things I still want to do - III ยจ Add to yield curve section the work of Tom Coleman, the Sultan of Spline ยจ Do the efficient frontier and CAPM line ยจ C=int(delta,dS) -> P=C-delta.S -> E(P)=0 ยจ Add to forward versus spot risk ยจ Expand with spreadsheet the MPT example in part I ยจ Add fast curve / slow curve section ยจ Expand on โ€œit is it 0 at time t it is 0 at all timeโ€ wrong for CMS and Libor in arrrears ยจ Section on local versus global arbitrage in trees ยจ Derive the LMM drifts in both terminal, spot and risk free measures ยจ Tie out Tuckman with Piterbarg (the art of drift) 118
  • 119. Luc_Faucheux_2021 So at least for nowโ€ฆ.. 119