SlideShare a Scribd company logo
1 of 201
Download to read offline
Luc_Faucheux_2020
Notes on Bachelier
1
Luc_Faucheux_2020
A quick summary
ยจ We are mostly using the book โ€œLouis Bachelierโ€™s Theory of Speculationโ€, Mark Davis and
Alison Etheridge
ยจ We use it as a starting point to explore some properties of Brownian motion, Gaussian
processes and option pricing concepts
ยจ It is trying to be as rigorous as possible without losing track of being pragmatic
ยจ Those notes are trying to offer you an overview of some of the concepts around option
mathematics, and allow you to be a reference , and an introduction to some of the methods
and sometimes โ€œtricksโ€ that end up being useful
ยจ Those notes tend to also be โ€œnon-linearโ€, meaning I will sometimes use a specific page from
the Bachelier book as a starting point to muse around Gaussian processes and option pricing
theory, hence the rather disorganized structure. I found out usually that at least for me this
is how I learn, by using a starting point and checking โ€œwhat-ifsโ€ and โ€œwhat-notsโ€ around it.
2
Luc_Faucheux_2020
Many disclaimers and apologies
ยจ Apologies for the lack of, or incomplete references. This is still a work in progress, and I
would welcome any comment, or kind readers pointing out omissions and glaring mistakes
ยจ I have tried to keep consistent notations throughout those notes. It is somewhat
impossible, because keeping with Bachelierโ€™s original notations is not possible with any
conventional notations we see in recent textbooks, so again many apologies
ยจ The structure of those notes is somewhat โ€œfree-flowingโ€, as they originated from reading
the original thesis, and going off on a tangent, writing down some notes or derivations, then
putting those down in Powerpoint
ยจ Apologies for the Powerpoint format, it is a result of working in Finance for too long, even
though I have to say that I have learnt to appreciate the PowerPoint Equation Editor
ยจ In many ways, those notes are nothing more than a rather pedestrian derivations in many
pages of what Bachelier did in a line or two, but they also present what I hope is a rather
extensive โ€œbag of tricksโ€ that one need to have handy when dealing with option theories.
ยจ Pages numbers usually refer the ones in the Davis & Etheridge book, but I am not to the
point where I can produce a rigorous index or references list
3
Luc_Faucheux_2020
When in doubt, go to the book
4
Luc_Faucheux_2020
Bachelierโ€™s thesis : March 29th, 1900
ยจ Louis Bachelier defended his Ph.D. thesis in front of Paul Appell, Henri Poincarre and Joseph
Boussinesq, a formidable trio of โ€œmousquetairesโ€.
ยจ It is also quite remarkable that the โ€œsecond oral presentationโ€ that Bachelier had to do was
on the matter of the โ€œResistance of a sphere in a liquidโ€ under Boussinesq supervision, 5
years before the seminal paper by Einstein that relates the thermal fluctuations to the
viscous dissipation (a precursor of the fluctuation-dissipation theorem) through the diffusion
constant: ๐ท =
!!.#
$%&'
, where ๐‘‡is here the temperature, ๐‘… the radius of the sphere, the fluid
viscosity ๐œ‚ and ๐‘˜( is the famous Boltzmann constant.
ยจ So the first part of Bachelier thesis dealt with stochastic processes in Finance
ยจ The second part dealt with stochastic processes in Physics
5
Luc_Faucheux_2020
A few humbling examples
ยจ I am using the pages of the Davis and Etheridge book
ยจ In page 16, Bachelier fully describes contango and backwardation
ยจ On page 34, Bachelier works out the continuous limit of a binomial process through the
Stirling formula
ยจ On page 40, Bachelier derives the heat equation (Fourier equation) through a Taylor
expansion of the probability flow
ยจ On page 44, Bachelier essentially derives the now celebrated Dupire formula (1994)
ยจ On page 45, Bachelier derives the now common proxy for at-the-money options
ยจ On page 66, Bachelier uses the Reflection principle to recover one of the most intriguing and
beautiful property of a Brownian motion: The probability that a price will be attained or
exceeded at time t is half the probability that the price will be attained or exceeded during
the interval of time up to t.
6
Luc_Faucheux_2020
A few humbling examples - II
ยจ On page 70, Bachelier looks at some properties around first passage time, and shows that
the expected value is infinite (a version of the Doob paradox of 1948)
ยจ On page 73, Bachelier uses the method of images from Lord Kelvin, essentially the backbone
for valuing simple barrier options (Carr, Reiner, Rubinstein, Haug) from the 1990
ยจ The examples are too numerous, and I would not do justice to the way it is presented in the
David and Etheridge book, especially Chapter III
7
Luc_Faucheux_2020
Oil prices went negative
8
Luc_Faucheux_2020
Rates have been negative for a while
9
Luc_Faucheux_2020
Also spread have also been negative for a while
ยจ Spread option pricing models allow for spreads (difference between two indices) to be
negative.
ยจ One of the most infamous was the curve inversion in June 2008 in Europe between the 2
year swap and the 30 year swap (units are in % on the right scale)
10
Luc_Faucheux_2020
Black-Sholes does not allow for negative prices
ยจ The lognormal distribution only allows for positive asset prices.
ยจ The Normal distribution allows for negative prices, hence when Black-Sholes was developed
in the context of stocks and bonds, the geometric Brownian motion (lognormal) was
favored.
ยจ Also it offered the advantage to lend itself nicely to change of numeraires, as the inverse of a
geometric process, powers, ratio and products will also be geometric. It does however,
because it is a non-linear function of a Brownian motion, require the full fledged Ito calculus
and Ito lemma (1951)
ยจ In the 1990s mostly out of Japan in the rate space, people started hitting the limits of
Lognormal models. The easy way out of it was shifted-lognormal implementations, which
essentially translate the variable
ยจ Just for completeness, I have included in the next slides the closed forms for Lognormal,
Normal and shifted lognormal (setting to 0 the rates, cost of carry, dividends,..) in order to
preserve the essence of the formula. Also of interest are the incremental PL in a Taylor
expansion and the Vega scaling (Greeks normalized to Vega), quite a crucial point when
trying to capture the impact of stochastic volatilities
11
Luc_Faucheux_2020
12
Some Equations (Lognormal Black-Scholes)
รฒยฅ-
-
=
-=
+=
-=
x
dexN
Tdd
T
T
KFLn
d
dNKdNFTKFC
x
p
s
s
s
s
x
..
2
1
)(
2
1)(
)(.)(.),,,(
)
2
1
(
12
1
21
2
Luc_Faucheux_2020
13
Greeks and Scaling in the Lognormal Model
Greeks Definition Black formula Units Incremental P/L Vega scaling
Delta
F
C
ยถ
ยถ
=D )( 1dN ($/bp) )( FdD
Gamma
2
2
F
C
ยถ
ยถ
=g )('
1
1dN
TFs
($/bp/bp) 2
)(
2
1
Fdg
TF s2
1
Theta
T
C
ยถ
ยถ
=Q )('
2
2dN
T
TKs ($/day) )( TdQ
T2
s
Vega
sยถ
ยถ
=
C
Vega )(' 2dNTK ($/%) )(dsVega 1
Vanna
sยถยถ
ยถ
=
F
C
Vanna
2
)('' 2dN
F
K
s
($/%/bp) ))(( dsdFVanna
TF
d
s
2-
Volga
2
2
sยถ
ยถ
=
C
Volga )('' 2
1
dNTK
d
s
-
($/%/%) 2
)(
2
1
dsVolga
s
21dd
Luc_Faucheux_2020
14
Normal Model
{ }
T
KF
d
dNddNTTKFC
N
NN
s
ss
)(
)(.)('),,,(
-
=
+=
Luc_Faucheux_2020
15
Greeks and Scaling in the Normal Model
Greeks Definition Black formula Units Incremental P/L Vega scaling
Delta
F
C
ยถ
ยถ
=D )(dN ($/bp) )( FdD
Gamma
2
2
F
C
ยถ
ยถ
=g )('
1
dN
TNs
($/bp/bp) 2
)(
2
1
Fdg
TNs
1
Theta
T
C
ยถ
ยถ
=Q )('
2
dN
T
TNs ($/day) )( TdQ
T
N
2
s
Vega
N
C
Vega
sยถ
ยถ
= )(' dNT ($/%) )( NVega ds 1
Vanna
NF
C
Vanna
sยถยถ
ยถ
=
2
)(''
1
dN
Ns
($/%/bp) ))(( NFVanna dsd
T
d
Ns
-
Volga
2
2
N
C
Volga
sยถ
ยถ
= )('' dNT
d
Ns
-
($/%/%) 2
)(
2
1
NVolga ds
N
d
s
2
Luc_Faucheux_2020
Shifted Lognormal Model
ยจ Shifted Lognormal model with shift ๐›ฝ:
ยจ ๐ถ ๐น, ๐พ, ๐‘‡, ๐œŽ)* = ๐น. ๐‘ ๐‘‘+ โˆ’ ๐พ. ๐‘(๐‘‘,)
ยจ ๐‘‘+ =
+
-"# #
๐ฟ๐‘›(
./0
1/0
) +
+
,
๐œŽ)* ๐‘‡
ยจ ๐‘‘, = ๐‘‘+ โˆ’ ๐œŽ)* ๐‘‡
16
Luc_Faucheux_2020
Greeks and Scaling in the shifted Lognormal Model
17
Greeks Definition Black formula Units Incremental P/L Vega scaling
Delta ($/bp)
Gamma ($/bp/bp)
Theta ($/day)
Vega ($/%) 1
Vanna ($/%/bp)
Volga ($/%/%)
F
C
ยถ
ยถ
=D )( 1dN )( FdD
2
2
F
C
ยถ
ยถ
=g
TF
dN
Ssb )(
)(' 1
+
2
)(
2
1
Fdg 2
)(
11
bs +FTS
T
C
ยถ
ยถ
=Q )('
2
)(
2dN
T
TK Ssb+
)( TdQ
T
S
2
s
S
C
Vega
sยถ
ยถ
= )(')( 2dNTK b+ )( SVega ds
SF
C
Vanna
sยถยถ
ยถ
=
2
)(''
1
)(
)(
2dN
F
K
Ssb
b
+
+
))(( SFVanna dsd
TF
d
Ssb
1
)(
2
+
-
2
2
S
C
Volga
sยถ
ยถ
= )('')( 2
1
dNTK
d
S
b
s
+
- 2
)(
2
1
SVolga ds
S
dd
s
21
Luc_Faucheux_2020
The Ph.D. thesis of Louis Bachelier
ยจ Reading the original thesis (both in French if you can and the excellent translation by Mark
Davis and Alison Etheridge) is humbling.
ยจ Without a strong well-developed theory of stochastic calculus (Ito lemma) that only came
about in the 1960s or so
ยจ Without a strong theoretical footing of what is a numeraire and how to price a derivative in
the risk-neutral probability associated to that numeraire (Pliska 1980 or so)
ยจ Without yet the strong connection between PDE (Partial Differential Equations) and SDE
(Stochastic Differential Equations) that really came about from the Feynman-Kac formula
(1950 roughly)
ยจ Louis Bachelier managed to not only built a theory of option pricing that is nowadays
coming back in fashion with a vengeance, but perusing through the rather short thesis, one
cannot but be amazed at the breadth of his genius, but also at his attention to details.
Bachelier at times go through numerical examples with the same precision and clarity of
thoughts that he displays in the other more theoretical parts of his thesis.
18
Luc_Faucheux_2020
De lโ€™equation de Kolmogorov a une
solution Gaussienne
19
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35)
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ is the probability that the price is in ๐‘ฅ, ๐‘ฅ + ๐‘‘๐‘ฅ at time ๐‘ก
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก+ . ๐‘ƒ ๐‘ง โˆ’ ๐‘ฅ, ๐‘ก, โˆ’ ๐‘ก+ . ๐‘‘๐‘ฅ. ๐‘‘๐‘ง is the probability that the price is (๐‘ฅ, ๐‘ก+) and (๐‘ง, ๐‘ก,)
ยจ ๐‘ƒ ๐‘ง, ๐‘ก,|๐‘ฅ, ๐‘ก+ = ๐‘ƒ ๐‘ง โˆ’ ๐‘ฅ, ๐‘ก, โˆ’ ๐‘ก+
ยจ Note that just writing something like the above implies lot of things:
ยจ Strong Markov property
ยจ The price process is memoryless
ยจ The price process is homogeneous in time and space
20
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) - b
ยจ What it is saying if you break it down is:
ยจ There must be a function ๐‘ƒ ๐‘ฅ, ๐‘ก that is the probability density to find the price (particle,
random walker, stochastic process) at ๐‘ฅ at time ๐‘ก
ยจ This assumes that it is a function, that we can find, and one which we can perform usual
calculus (not completely obvious)
ยจ It is then saying that before reaching the point (๐‘ฅ, ๐‘ก) the price might have reached another
level at some time before (rather obvious, but again has some mathematical consequences)
ยจ Bachelier for some typographical reasons used ๐‘ฅ and ๐‘ง, which we will stick to in some of the
following slides, but for ease of notations here:
ยจ The probability density to reach ๐‘ฅ, ๐‘ก is ๐‘ƒ ๐‘ฅ, ๐‘ก
ยจ The probability density to reach ๐‘ฅโ€ฒ, ๐‘กโ€ฒ is ALSO the same function ๐‘ƒ ๐‘ฅโ€ฒ, ๐‘กโ€ฒ
ยจ The conditional probability density to go from ๐‘ฅโ€ฒ, ๐‘กโ€ฒ to ๐‘ฅ, ๐‘ก is ALSO assumed to be some
function that we will note ๐‘ƒ๐‘… ๐‘ฅ2, ๐‘ก2, ๐‘ฅ, ๐‘ก
21
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) - c
ยจ In order to recover ๐‘ƒ ๐‘ฅ, ๐‘ก , we can sum over all the possible in-between states
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = โˆซ32456
324/6
โˆซ7$48
7$47
๐‘ƒ ๐‘ฅโ€ฒ, ๐‘กโ€ฒ . ๐‘ƒ๐‘… ๐‘ฅ2, ๐‘ก2, ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ2. ๐‘‘๐‘กโ€ฒ
ยจ Graphically this creates somewhat of a Feynman diagram
ยจ NOW (and again, either this is painfully obvious or rather deep and we need to pay attention
to), we can actually SEPARATE the space and the time variable (because we are dealing with
a well defined process ๐‘‹(๐‘ก)) (see next slide)
ยจ So for a given time ๐‘กโ€ฒ we suppose that we can write something like
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = โˆซ32456
324/6
๐‘ƒ ๐‘ฅโ€ฒ, ๐‘กโ€ฒ . ๐‘ƒ๐‘… ๐‘ฅ2, ๐‘ก2, ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅโ€™
ยจ NOW is the big one, we assume that we can write: ๐‘ƒ๐‘… ๐‘ฅ2, ๐‘ก2, ๐‘ฅ, ๐‘ก = ๐‘ƒ(๐‘ฅ โˆ’ ๐‘ฅ2, ๐‘ก โˆ’ ๐‘ก2)
ยจ This is actually again either obvious or not at all
22
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) - c-1
ยจ There is no traveling back in time, so
ยจ ๐‘ƒ๐‘… ๐‘ฅ2, ๐‘ก2, ๐‘ฅ, ๐‘ก = 0 if ๐‘ก2> ๐‘ก
ยจ Also no disappearing and โ€œre-apparateโ€
ยจ So for process from 0 to ๐‘ก, this process WILL have to go through every intermediate time ๐‘กโ€ฒ
23
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) - d
ยจ ๐‘ƒ๐‘… ๐‘ฅ2, ๐‘ก2, ๐‘ฅ, ๐‘ก = ๐‘ƒ(๐‘ฅ โˆ’ ๐‘ฅ2, ๐‘ก โˆ’ ๐‘ก2)
ยจ First of all this is assuming that the conditional probability is the same as the probability
density:
ยจ It does not matter where you are starting from, and at what time, the probability to end up
at a different level is only a function of the distance to the original starting point, and the
time lapsed
ยจ FURTHERMORE, that conditional probability is exactly the probability density we are looking
for
ยจ Strong Markov property
ยจ The price process is memoryless
ยจ The price process is homogeneous in time and space
ยจ No smile, no mean reversion, no time dependent volatility, and all functions are
mathematically well behaved
24
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) II
ยจ NOW Bachelier writes what is now known as the Chapman-Kolmogorov equation:
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก+ . ๐‘ƒ ๐‘ง โˆ’ ๐‘ฅ, ๐‘ก, โˆ’ ๐‘ก+ . ๐‘‘๐‘ฅ. ๐‘‘๐‘ง is the probability that the price is (๐‘ฅ, ๐‘ก+) and (๐‘ง, ๐‘ก,)
ยจ ๐‘ƒ ๐‘ง, ๐‘ก, = โˆซ3456
34/6
๐‘ƒ ๐‘ฅ, ๐‘ก+ . ๐‘ƒ ๐‘ง โˆ’ ๐‘ฅ, ๐‘ก, โˆ’ ๐‘ก+ . ๐‘‘๐‘ฅ
ยจ Bachelier actually changes the notation a little and writes it as
ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, = โˆซ3456
34/6
๐‘ƒ ๐‘ฅ, ๐‘ก+ . ๐‘ƒ ๐‘ง โˆ’ ๐‘ฅ, ๐‘ก, . ๐‘‘๐‘ฅ
ยจ We can take a lucky guess like Louis did and write ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐ด. ๐‘’๐‘ฅ๐‘(โˆ’๐ต,. ๐‘ฅ,)
ยจ To be more exact, ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐ด(๐‘ก). ๐‘’๐‘ฅ๐‘(โˆ’๐ต(๐‘ก),. ๐‘ฅ,)
ยจ Note that this does not guarantee the unicity of a solution, only the existence
ยจ Kolmogorov expressed 30 years later or so some Germanic displeasure with what he
perceived to be a lack of mathematical rigor from Louis
ยจ โ€œDass die Bachelierschen Betrachtungen jeder mathematischen Strenge ganzlich entbehrenโ€
25
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) III
ยจ A couple of notes on the function ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐ด. ๐‘’๐‘ฅ๐‘(โˆ’๐ต,. ๐‘ฅ,)
ยจ ๐ผ = (โˆซ56
/6
๐‘’593%
. ๐‘‘๐‘ฅ), = โˆซ56
/6
๐‘’593%
. ๐‘‘๐‘ฅ . โˆซ56
/6
๐‘’59:%
. ๐‘‘๐‘ฆ = โˆซ56
/6
โˆซ56
/6
๐‘‘๐‘ฅ๐‘‘๐‘ฆ ๐‘’59(3%/:%)
ยจ ๐ผ = โˆซ=48
=4,%
๐‘‘๐œƒ โˆซ>48
>46
๐œŒ. ๐‘‘๐œŒ . ๐‘’59>%
= 2๐œ‹. โˆซ>48
>46
๐œŒ. ๐‘‘๐œŒ . ๐‘’59>%
= 2๐œ‹.
5?&'(%
,9
=
,%
,9
=
%
9
ยจ ๐›ผ = ๐ต,
ยจ ๐ผ = (โˆซ56
/6
๐‘’593%
. ๐‘‘๐‘ฅ), so โˆซ56
/6
๐‘’593%
. ๐‘‘๐‘ฅ =
%
9
ยจ We want โˆซ56
/6
๐‘ƒ ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ = 1, or โˆซ56
/6
๐ด. ๐‘’๐‘ฅ๐‘(โˆ’๐ต,. ๐‘ฅ,) . ๐‘‘๐‘ฅ = 1, or ๐ด.
%
@% = 1
ยจ Soooโ€ฆ ๐ต = ๐ด. ๐œ‹
26
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) IV
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐ด. ๐‘’๐‘ฅ ๐‘ โˆ’๐ต,. ๐‘ฅ, = ๐ด. ๐‘’๐‘ฅ ๐‘ โˆ’๐œ‹๐ด,. ๐‘ฅ, because โˆซ56
/6
๐‘ƒ ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ = 1
ยจ For simplicity of notation, Bachelier writes ๐‘+ = ๐‘ƒ(๐‘ฅ = 0, ๐‘ก+)
ยจ ๐‘ƒ ๐‘ฅ = 0, ๐‘ก = ๐ด = ๐ด ๐‘ก
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก . exp{โˆ’๐œ‹. ๐‘ƒ ๐‘ฅ = 0, ๐‘ก , . ๐‘ฅ,}
ยจ This is true and quite elegant, and our friend ๐œ‹ appears somehow mysteriously
ยจ Usual Gaussian : โ„Ž ๐‘ฅ, ๐‘ก =
+
,%-%7
. exp(
53%
,-%7
)
ยจ โ„Ž ๐‘ฅ, ๐‘ก = โ„Ž 0, ๐‘ก . exp[โˆ’๐œ‹. โ„Ž 0, ๐‘ก ,. ๐‘ฅ,]
ยจ This is actually quite powerful, the Kolmogorov equation looks fairly general and obvious,
and we just proved that at least one solution of it HAS to verify:
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก . exp{โˆ’๐œ‹. ๐‘ƒ ๐‘ฅ = 0, ๐‘ก , . ๐‘ฅ,}
27
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) V
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก . exp{โˆ’๐œ‹. ๐‘ƒ ๐‘ฅ = 0, ๐‘ก , . ๐‘ฅ,}
ยจ ๐‘+ = ๐‘ƒ(๐‘ฅ = 0, ๐‘ก+)
ยจ ๐‘, = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก,
ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, = โˆซ3456
34/6
๐‘ƒ ๐‘ฅ, ๐‘ก+ . ๐‘ƒ ๐‘ง โˆ’ ๐‘ฅ, ๐‘ก, . ๐‘‘๐‘ฅ
ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, = โˆซ3456
34/6
๐‘+. exp โˆ’๐œ‹. ๐‘+
, . ๐‘ฅ, . ๐‘,. exp โˆ’๐œ‹. ๐‘,
, . (๐‘ง โˆ’ ๐‘ฅ), . ๐‘‘๐‘ฅ
ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, = ๐‘+ ๐‘, exp โˆ’๐œ‹. ๐‘,
, . ๐‘ง,
โˆซ3456
34/6
exp โˆ’๐œ‹. ๐‘+
, + ๐‘,
, . ๐‘ฅ, + 2๐œ‹๐‘,
, ๐‘ง๐‘ฅ . ๐‘‘๐‘ฅ
ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, = ๐‘+ ๐‘, exp โˆ’๐œ‹๐‘,
,
๐‘ง, . exp
%A%
).B%
A*
%/A%
% โˆซ56
/6
exp[โˆ’๐œ‹(๐‘ฅ ๐‘+
, + ๐‘,
, โˆ’
A%
%B
A*
%/A%
%
),]. ๐‘‘๐‘ฅ
28
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) VI
ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, = ๐‘+ ๐‘, exp โˆ’๐œ‹๐‘,
, ๐‘ง, . exp
%A%
).B%
A*
%/A%
% โˆซ56
/6
exp[โˆ’๐œ‹(๐‘ฅ ๐‘+
, + ๐‘,
, โˆ’
A%
%B
A*
%/A%
%
),]. ๐‘‘๐‘ฅ
ยจ We do the change of variable: ๐‘ข = ๐‘ฅ ๐‘+
, + ๐‘,
, โˆ’
A%
%B
A*
%/A%
%
, ๐‘‘๐‘ข = ๐‘‘๐‘ฅ. ๐‘+
, + ๐‘,
,
ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, =
A*A%
A*
%/A%
%
exp โˆ’๐œ‹๐‘,
,
๐‘ง, . exp
%A%
).B%
A*
%/A%
% โˆซC456
C4/6
exp[โˆ’๐œ‹๐‘ข,]. ๐‘‘๐‘ข
ยจ And โˆ’๐œ‹๐‘,
,
๐‘ง, +
%A%
).B%
A*
%/A%
% =
5%A%
)B%5%A%
%A*
%B%/%A%
).B%
A*
%/A%
% =
5%A%
%A*
%B%
A*
%/A%
%
ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, =
A*A%
A*
%/A%
%
exp
5%A%
%A*
%B%
A*
%/A%
% โˆซC456
C4/6
exp[โˆ’๐œ‹๐‘ข,]. ๐‘‘๐‘ข
29
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) VII
ยจ โˆซC456
C4/6
exp[โˆ’๐œ‹๐‘ข,]. ๐‘‘๐‘ข =
%
9
with ๐›ผ = ๐œ‹
ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, =
A*A%
A*
%/A%
%
exp
5%A%
%A*
%B%
A*
%/A%
%
ยจ And we know that
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก . exp{โˆ’๐œ‹. ๐‘ƒ ๐‘ฅ = 0, ๐‘ก , . ๐‘ฅ,}
ยจ ๐‘ƒ ๐‘ง, ๐‘ก = ๐‘ƒ ๐‘ง = 0, ๐‘ก+ + ๐‘ก, . exp{โˆ’๐œ‹. ๐‘ƒ ๐‘ง = 0, ๐‘ก+ + ๐‘ก,
, . ๐‘ง,}
ยจ ๐‘+ = ๐‘ƒ(๐‘ฅ = 0, ๐‘ก+) and ๐‘, = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก,
ยจ ๐‘ƒ ๐‘ง = 0, ๐‘ก+ + ๐‘ก,
, =
A%
%A%
%
A*
%/A%
% or keeping the notation: ๐‘+/,
, =
A%
%A%
%
A*
%/A%
%
ยจ Also quite an elegant formulation for the relationship between the peaks (maximum of
probability) for different times
30
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) VIII
ยจ ๐‘+/,
, =
A%
%A%
%
A*
%/A%
%, where ๐‘+ = ๐‘ƒ(๐‘ฅ = 0, ๐‘ก+), ๐‘, = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก,
ยจ So to make it simpler letโ€™s use the notation ๐‘ = ๐‘(๐‘ก)
ยจ ๐‘(๐‘ก+ + ๐‘ก,), = ๐‘+/,
,
=
A(7*)%A(7%)%
A(7*)%/A(7%)%
ยจ Method #1 : letโ€™s be lucky and guess that ๐‘ ๐‘ก = ๐ป. ๐‘ก โ„&*
% =
E
7
ยจ ๐‘(๐‘ก), =
E%
7
ยจ
A(7*)%A(7%)%
A(7*)%/A(7%)% =
(
+%
,*
)(
+%
,%
)
+%
,*
/(
+%
,%
)
= ๐ป,.
+
7*7%
.
+
*
,*
/
*
,%
= ๐ป,.
+
7*7%
.
7*7%
7*/7%
= ๐ป,.
+
7*/7%
= ๐‘(๐‘ก+ + ๐‘ก,),
ยจ It works !
31
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) VIII
ยจ ๐‘ ๐‘ก = ๐ป. ๐‘ก โ„&*
% =
E
7
= ๐‘ƒ(๐‘ฅ = 0, ๐‘ก)
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก . exp{โˆ’๐œ‹. ๐‘ƒ ๐‘ฅ = 0, ๐‘ก , . ๐‘ฅ,}
ยจ So we finally have what we are looking for:
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก =
E
7
. exp{โˆ’
%E%3%
7
}
ยจ We just need to normalize one more time: โˆซ56
/6
๐‘ƒ ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ = 1
ยจ We already know that : ๐ผ = (โˆซ56
/6
๐‘’593%
. ๐‘‘๐‘ฅ), =
%
9
so โˆซ56
/6
๐‘’593%
. ๐‘‘๐‘ฅ =
%
9
ยจ ๐›ผ =
%E%
7
, so โˆซ56
/6
๐‘ƒ ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ = โˆซ56
/6 E
7
. exp{โˆ’
%E%3%
7
} . ๐‘‘๐‘ฅ =
E
7
.
%
-+%
,
= 1
32
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) IX
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก =
E
7
. exp{โˆ’
%E%3%
7
} is already normalized
ยจ We still need to solve for the value of ๐ป
ยจ A couple of side notes first on ๐ผ9 = โˆซ56
/6
๐‘’593%
. ๐‘‘๐‘ฅ =
%
9
ยจ ๐‘ƒ9 ๐‘ฅ =
+
F'
. ๐‘’593%
is the normalized probability distribution
ยจ < ๐‘ฅ > = โˆซ56
/6
๐‘ฅ. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ = 0 because ๐‘ฅ. ๐‘ƒ9 ๐‘ฅ is an odd function
ยจ < ๐‘ฅ! > = โˆซ56
/6
๐‘ฅ!. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ = 0 because (๐‘ฅ!. ๐‘ƒ9 ๐‘ฅ ) is an odd function if ๐‘˜ is odd
33
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) X
ยจ < ๐‘ฅ, > = โˆซ56
/6
๐‘ฅ,. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ =
%
9
. โˆซ56
/6
๐‘ฅ,. ๐‘’593%
. ๐‘‘๐‘ฅ
ยจ Now:
G
G9
๐‘’593%
= โˆ’๐‘ฅ, ๐‘’593%
ยจ So: < ๐‘ฅ, > =
%
9
. โˆซ56
/6
๐‘ฅ,. ๐‘’593%
. ๐‘‘๐‘ฅ =
%
9
. โˆซ56
/6 5G
G9
๐‘’593%
. ๐‘‘๐‘ฅ =
%
9
.
5G
G9
[โˆซ56
/6
๐‘’593%
. ๐‘‘๐‘ฅ]
ยจ A little more formally:
ยจ < ๐‘ฅ, > =
5+
F'
.
GF'
G9
ยจ Replacing ๐ผ9 =
%
9
, we get < ๐‘ฅ, > =
5+
-
'
.
G
-
'
G9
= โˆ’ ๐›ผ.
G
G9
๐›ผ โ„&*
% =
+
,
. ๐›ผ โ„*
%. ๐›ผ โ„&.
% =
+
,9
34
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XI
ยจ < ๐‘ฅ, > =
+
,9
ยจ < ๐‘ฅ,! > =
+
F'
. โˆซ56
/6
๐‘ฅ,!. ๐‘’593%
. ๐‘‘๐‘ฅ and again ๐ผ9 = โˆซ56
/6
๐‘’593%
. ๐‘‘๐‘ฅ =
%
9
ยจ It is easy to see that (๐‘ฅ,!. ๐‘’593%
) =
G/
G9/ ๐‘’593%
. (โˆ’1)!
ยจ < ๐‘ฅ,! > =
+
F'
. โˆซ56
/6 G/
G9/ ๐‘’593%
. (โˆ’1)! . ๐‘‘๐‘ฅ =
+
F'
.
H/
H9/ ๐ผ9 . (โˆ’1)!
ยจ < ๐‘ฅ,! > =
+
F'
.
H/
H9/ ๐ผ9 . (โˆ’1)!=
+
F'
.
H/
H9/ ๐ผ9 . (โˆ’1)!= ๐›ผ โ„*
%.
H/
H9/ ๐›ผ โ„&*
% . (โˆ’1)!
ยจ
H/
H9/ ๐›ผ โ„&*
% = ๐›ผ โ„&*
%. ๐›ผ5!. โˆI4+
I4!
(
+
,
+ ๐‘— โˆ’ 1) . (โˆ’1)!
ยจ < ๐‘ฅ,! > = ๐›ผ5!. โˆI4+
I4!
(
+
,
+ ๐‘— โˆ’ 1), with ๐‘˜ = 1, we recover indeed < ๐‘ฅ, > =
+
,9
35
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XII
ยจ ๐ผ9 = โˆซ56
/6
๐‘’593%
. ๐‘‘๐‘ฅ =
%
9
ยจ ๐‘ƒ9 ๐‘ฅ =
+
F'
. ๐‘’593%
is the normalized probability distribution
ยจ < ๐‘ฅ! > = โˆซ56
/6
๐‘ฅ!. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ
ยจ < ๐‘ฅ,! > = ๐›ผ5!. โˆI4+
I4!
(
+
,
+ ๐‘— โˆ’ 1)
ยจ < ๐‘ฅ,!/+ > = 0
ยจ We will also look like Bachelier did at the positive part of the price distribution
ยจ < (๐‘ฅ!|๐‘ฅ > 0) > = โˆซ8
/6
๐‘ฅ!. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ
36
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XIII
ยจ < ๐‘ฅ,! > = ๐›ผ5!. โˆI4+
I4!
(
+
,
+ ๐‘— โˆ’ 1)
ยจ For the regular Gaussian โ„Ž ๐‘ฅ, ๐‘ก =
+
,%-%7
. exp(
53%
,-%7
) we have ๐›ผ =
+
,-%7
ยจ A somewhat useful notation:
ยจ ๐‘˜! = โˆI4+
I4!
๐‘— is the usual factorial
ยจ ๐‘˜!! = โˆI4+
I4!
๐‘— is called the โ€œdouble factorialโ€ and only includes in the product the terms that
have the SAME parity as ๐‘˜
ยจ In our specific case we can rewrite โˆI4+
I4!
(
+
,
+ ๐‘— โˆ’ 1) as:
ยจ โˆI4+
I4!
(
+
,
+ ๐‘— โˆ’ 1) = โˆI4+
I4!
(
,I5+
,
) = 25! โˆI4+
I4!
(2๐‘— โˆ’ 1) = 25!. 2๐‘˜ โˆ’ 1 โ€ผ
ยจ < ๐‘ฅ,! > = ๐›ผ5!. 25!. 2๐‘˜ โˆ’ 1 โ€ผ
37
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XIV
ยจ < ๐‘ฅ,! > = ๐›ผ5!. 25!. 2๐‘˜ โˆ’ 1 โ€ผ
ยจ In the case of the Gaussian, ๐›ผ =
+
,-%7
, so < ๐‘ฅ,! > = (2๐œŽ, ๐‘ก)!. 25!. 2๐‘˜ โˆ’ 1 โ€ผ
ยจ So : < ๐‘ฅ,! > = (๐œŽ, ๐‘ก)!. 2๐‘˜ โˆ’ 1 โ€ผ and < ๐‘ฅ,!/+ > = 0
ยจ Another cute way to express it is the following:
ยจ < ๐‘ฅJ > = (๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even, 0 otherwise
ยจ This is quite compact and beautiful
ยจ < ๐‘ฅJ|๐‘ฅ > 0 > =
+
,
(๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even, โ€œsomething elseโ€ otherwise
ยจ Letโ€™s try to calculate that โ€œsomething elseโ€
38
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XV
ยจ < ๐‘ฅ|๐‘ฅ > 0 > = โˆซ8
/6
๐‘ฅ. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ =
+
F'
. โˆซ8
/6
๐‘ฅ. ๐‘’593%
. ๐‘‘๐‘ฅ
ยจ
G
G9
๐‘’593%
= โˆ’๐‘ฅ,. ๐‘’593%
ยจ
G
G3
๐‘’593%
= โˆ’2๐‘ฅ๐›ผ. ๐‘’593%
ยจ < ๐‘ฅ|๐‘ฅ > 0 > =
+
F'
. โˆซ8
/6
๐‘ฅ. ๐‘’593%
. ๐‘‘๐‘ฅ =
+
F'
. โˆซ8
/6 +
,9
5G
G3
๐‘’593%
. ๐‘‘๐‘ฅ =
+
F'
.
+
,9
[โˆ’๐‘’593%
]348
346
ยจ < ๐‘ฅ|๐‘ฅ > 0 > =
+
F'
.
+
,9
โˆ’๐‘’593%
348
346
=
+
,9F'
and ๐ผ9 =
%
9
ยจ < ๐‘ฅ|๐‘ฅ > 0 > =
+
, %
. ๐›ผ โ„&*
% =
+
K%9
ยจ In the Gaussian case, ๐›ผ =
+
,-%7
and so : < ๐‘ฅ|๐‘ฅ > 0 > =
-%7
,%
(Bachelier page 38)
39
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XVI
ยจ For the regular Gaussian โ„Ž ๐‘ฅ, ๐‘ก =
+
,%-%7
. exp(
53%
,-%7
) we have ๐›ผ =
+
,-%7
ยจ Bachelier likes to use exp(
53%
K%!%7
) so ๐œŽ, = 2๐œ‹๐‘˜,
ยจ So โ„Ž ๐‘ฅ, ๐‘ก =
+
,%! 7
. exp(
53%
K%!%7
), a little more concise
ยจ Because now for example:
ยจ < ๐‘ฅ|๐‘ฅ > 0 > =
-%7
,%
= ๐‘˜ ๐‘ก, quite concise and beautiful !
ยจ Note also that < ๐‘ฅ > =< ๐‘ฅ ๐‘ฅ > 0 > +< โˆ’๐‘ฅ ๐‘ฅ < 0 > = 2. < ๐‘ฅ|๐‘ฅ > 0 >
ยจ And so: < ๐‘ฅ > = 2. ๐‘˜ ๐‘ก = 2.
-%7
,%
= ๐œŽ, ๐‘ก.
,
%
=
+
%9
40
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XVII
ยจ More generally:
ยจ < ๐‘ฅ,!| ๐‘ฅ > 0 > = โˆซ8
/6
๐‘ฅ,!. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ =
+
,
โˆซ56
/6
๐‘ฅ,!. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ
ยจ Because ๐‘ฅ,!. ๐‘ƒ9 ๐‘ฅ is an even function
ยจ If you are not convinced and want to do it the hard way:
ยจ < ๐‘ฅ,!| ๐‘ฅ > 0 > = โˆซ8
/6
๐‘ฅ,!. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ =
+
F'
. โˆซ8
/6
๐‘ฅ,!. ๐‘’593%
. ๐‘‘๐‘ฅ
ยจ
G
G9
๐‘’593%
= โˆ’๐‘ฅ,. ๐‘’593%
ยจ
G/
G9/ ๐‘’593%
= (โˆ’1)!. ๐‘ฅ,!. ๐‘’593%
ยจ < ๐‘ฅ,!| ๐‘ฅ > 0 > =
+
F'
. โˆซ8
/6
๐‘ฅ,!. ๐‘’593%
. ๐‘‘๐‘ฅ =
(5+)/
F'
. โˆซ8
/6 G/
G9/ ๐‘’593%
. ๐‘‘๐‘ฅ
41
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XVIII
ยจ < ๐‘ฅ,!| ๐‘ฅ > 0 > =
+
F'
. โˆซ8
/6
๐‘ฅ,!. ๐‘’593%
. ๐‘‘๐‘ฅ =
(5+)/
F'
. โˆซ8
/6 G/
G9/ ๐‘’593%
. ๐‘‘๐‘ฅ
ยจ < ๐‘ฅ,!| ๐‘ฅ > 0 > =
(5+)/
F'
.
H/
H9/ โˆซ8
/6
๐‘’593%
. ๐‘‘๐‘ฅ
ยจ And ๐ผ9 = โˆซ56
/6
๐‘’593%
. ๐‘‘๐‘ฅ =
%
9
ยจ Letโ€™s call ๐ผ9
/ = โˆซ8
/6
๐‘’593%
. ๐‘‘๐‘ฅ =
+
,
.
%
9
trivially, or ๐ผ9
/ =
+
,
. ๐ผ9
ยจ < ๐‘ฅ,!| ๐‘ฅ > 0 > =
(5+)/
F'
.
H/
H9/ โˆซ8
/6
๐‘’593%
. ๐‘‘๐‘ฅ =
(5+)/
F'
.
H/
H9/ ๐ผ9
/ =
+
,
.
(5+)/
F'
.
H/
H9/ ๐ผ9
ยจ So < (๐‘ฅ,! ๐‘ฅ > 0 > =
+
,
. < ๐‘ฅ,! >
42
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XIX
ยจ < ๐‘ฅ,!/+| ๐‘ฅ > 0 > =
+
F'
. โˆซ8
/6
๐‘ฅ,!/+. ๐‘’593%
. ๐‘‘๐‘ฅ =
+
F'
. โˆซ8
/6
๐‘ฅ,!. ๐‘ฅ. ๐‘’593%
. ๐‘‘๐‘ฅ
ยจ
G
G3
๐‘’593%
= โˆ’2๐‘ฅ๐›ผ. ๐‘’593%
ยจ < ๐‘ฅ,!/+| ๐‘ฅ > 0 > =
+
F'
. โˆซ8
/6
๐‘ฅ,!. ๐‘ฅ. ๐‘’593%
. ๐‘‘๐‘ฅ =
+
F'
. โˆซ8
/6
๐‘ฅ,!.
5+
,9
G
G3
๐‘’593%
. ๐‘‘๐‘ฅ
ยจ After integration by parts
ยจ < ๐‘ฅ,!/+| ๐‘ฅ > 0 > =
5+
,9F'
. ๐‘ฅ,!. ๐‘’593%
8
6
+
+
,9F'
. โˆซ8
/6
2๐‘˜ . ๐‘ฅ,!5+. ๐‘’593%
. ๐‘‘๐‘ฅ
ยจ < ๐‘ฅ,!/+| ๐‘ฅ > 0 > =
!
9F'
. โˆซ8
/6
๐‘ฅ,!5+. ๐‘’593%
. ๐‘‘๐‘ฅ
ยจ < ๐‘ฅ,!/+| ๐‘ฅ > 0 > =
!
9
. < ๐‘ฅ,!5+| ๐‘ฅ > 0 > and < ๐‘ฅ|๐‘ฅ > 0 > =
+
, %
. ๐›ผ โ„&*
% =
+
K%9
43
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XX
ยจ < ๐‘ฅ,!/+ ๐‘ฅ > 0 > =
!
9
. < ๐‘ฅ,!5+ ๐‘ฅ > 0 > =
,!
,9
. < ๐‘ฅ,!5+| ๐‘ฅ > 0 >
ยจ For	sake	of	notation	we	write	๐ด 2๐‘˜ + 1 =< ๐‘ฅ,!/+| ๐‘ฅ > 0 >
ยจ ๐ด 2๐‘˜ + 1 =
!
9
. ๐ด 2๐‘˜ โˆ’ 1
ยจ ๐ด 2๐‘˜ โˆ’ 1 =
!5+
9
. ๐ด 2๐‘˜ โˆ’ 3
ยจ ๐ด 2๐‘˜ โˆ’ 3 =
!5,
9
. ๐ด 2๐‘˜ โˆ’ 5 โ€ฆ.
ยจ ๐ด 3 =
+
9
. ๐ด 1 and	๐ด 1 =< ๐‘ฅ|๐‘ฅ > 0 > =
+
, %
. ๐›ผ โ„&*
% =
+
K%9
44
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XXI
ยจ < ๐‘ฅ,!/+ ๐‘ฅ > 0 > =
!
9
. < ๐‘ฅ,!5+ ๐‘ฅ > 0 > =
,!
,9
. < ๐‘ฅ,!5+| ๐‘ฅ > 0 >
ยจ For	sake	of	notation	we	write	๐ด 2๐‘˜ + 1 =< ๐‘ฅ,!/+| ๐‘ฅ > 0 >
ยจ Easier	to	see	that:
ยจ ๐ด 2๐‘˜ + 1 =
,!
,9
. ๐ด 2๐‘˜ โˆ’ 1
ยจ ๐ด 2๐‘˜ โˆ’ 1 =
,!5,
,9
. ๐ด 2๐‘˜ โˆ’ 3
ยจ ๐ด 2๐‘˜ โˆ’ 3 =
,!5K
,9
. ๐ด 2๐‘˜ โˆ’ 5 โ€ฆ.
ยจ ๐ด 3 =
,
,9
. ๐ด 1 and	๐ด 1 =< ๐‘ฅ|๐‘ฅ > 0 > =
+
, %
. ๐›ผ โ„&*
% =
+
K%9
ยจ ๐ด 2๐‘˜ + 1 =
,! โ€ผ
(,9)/ . ๐ด(1) where	 2๐‘˜ โ€ผ is	the	double	factorial
45
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XXII
ยจ ๐ด 2๐‘˜ + 1 =
,! โ€ผ
(,9)/ . ๐ด(1) where	 2๐‘˜ โ€ผ is	the	double	factorial
ยจ Rewriting	it	as	:	๐ด ๐‘ =< ๐‘ฅA| ๐‘ฅ > 0 > and	๐ด 1 =< ๐‘ฅ|๐‘ฅ > 0 > =
+
, %
. ๐›ผ โ„&*
% =
+
K%9
ยจ ๐ด ๐‘ =
A5+ โ€ผ
(,9)/ . ๐ด(1) where	 ๐‘ โˆ’ 1 โ€ผ is	the	double	factorial	AND	๐‘ = 2๐‘˜ + 1
ยจ In	the	Gaussian	case	:	๐›ผ =
+
,-%7
ยจ Using Bachelierโ€™s convention, ๐›ผ =
+
K%!%7
, or ๐œŽ, = 2๐œ‹๐‘˜, (careful Bachelier ๐‘˜ is NOT our
integer)
ยจ Recall that we had : < ๐‘ฅJ > = (๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even, 0 otherwise
ยจ So we are trying to express < ๐‘ฅJ| ๐‘ฅ > 0 > in a similar fashion
46
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XXIII
ยจ ๐ด ๐‘› =
J5+ โ€ผ
(,9)/ . ๐ด(1) where	 ๐‘ โˆ’ 1 โ€ผ is	the	double	factorial	AND	๐‘› = 2๐‘˜ + 1
ยจ In	the	Gaussian	case	:	๐›ผ =
+
,-%7
and ๐ด 1 =
+
K%9
=
+
,%
. (๐œŽ ๐‘ก)
ยจ < ๐‘ฅJ| ๐‘ฅ > 0 > = ๐‘› โˆ’ 1 โ€ผ 2๐›ผ 5!.
+
,%
. (๐œŽ ๐‘ก)
ยจ < ๐‘ฅJ| ๐‘ฅ > 0 > = ๐‘› โˆ’ 1 โ€ผ (๐œŽ, ๐‘ก)
0
%
5+
.
+
,%
. ๐œŽ ๐‘ก = ๐‘› โˆ’ 1 โ€ผ (๐œŽ ๐‘ก)J5
*
%.
+
,%
. (๐œŽ ๐‘ก)
ยจ < ๐‘ฅJ| ๐‘ฅ > 0 > = ๐‘› โˆ’ 1 โ€ผ ๐œŽ ๐‘ก
J
.
+
,%
=
+
,%
. < ๐‘ฅJ > (in the case of ๐‘› being odd)
ยจ ALSO < |๐‘ฅJ > = 2. < ๐‘ฅJ ๐‘ฅ > 0 > =
,
%
. ๐‘› โˆ’ 1 โ€ผ ๐œŽ ๐‘ก
J
(in the case of ๐‘› being odd)
47
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XXIV
ยจ Soโ€ฆ to recap...
ยจ < ๐‘ฅJ > = (๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even, 0 otherwise
ยจ < |๐‘ฅ|J > = (๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even, (๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ (
,
%
) otherwise
ยจ < ๐‘ฅJ| ๐‘ฅ > 0 > =
+
,
(๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even, (๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ (
+
,%
) otherwise
ยจ Super useful and quite elegant, once againโ€ฆand using Bachelier ๐œŽ, = 2๐œ‹๐‘˜,
ยจ < ๐‘ฅJ > = (๐‘˜ 2๐œ‹๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even, 0 otherwise
ยจ < ๐‘ฅJ| ๐‘ฅ > 0 > =
+
,
(๐‘˜ 2๐œ‹๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even,
+
,
(๐‘˜ 2๐œ‹๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ
,
%
otherwise
ยจ In particular for ๐‘› = 1, < ๐‘ฅ| ๐‘ฅ > 0 > = ๐‘˜ ๐‘ก
48
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) (VIII)-XXV
ยจ ๐‘+/,
, =
A%
%A%
%
A*
%/A%
%, where ๐‘+ = ๐‘ƒ(๐‘ฅ = 0, ๐‘ก+), ๐‘, = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก,
ยจ So to make it simpler letโ€™s use the notation ๐‘ = ๐‘(๐‘ก)
ยจ ๐‘(๐‘ก+ + ๐‘ก,), = ๐‘+/,
,
=
A(7*)%A(7%)%
A(7*)%/A(7%)%
ยจ Method #1 : letโ€™s be lucky and guess that ๐‘ ๐‘ก = ๐ป. ๐‘ก โ„&*
% =
E
7
ยจ ๐‘(๐‘ก), =
E%
7
ยจ
A(7*)%A(7%)%
A(7*)%/A(7%)% =
(
+%
,*
)(
+%
,%
)
+%
,*
/(
+%
,%
)
= ๐ป,.
+
7*7%
.
+
*
,*
/
*
,%
= ๐ป,.
+
7*7%
.
7*7%
7*/7%
= ๐ป,.
+
7*/7%
= ๐‘(๐‘ก+ + ๐‘ก,),
ยจ It works !
49
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XXVI
ยจ Letโ€™s redo it the way Bachelier did it, using ODE (Ordinary Differential Equations)
ยจ ๐‘(๐‘ก+ + ๐‘ก,), = ๐‘+/,
,
=
A(7*)%A(7%)%
A(7*)%/A(7%)% and letโ€™s take the partial derivatives to ๐‘ก+and ๐‘ก,
ยจ
G
G7*
yields:
ยจ 2๐‘2 ๐‘ก+ + ๐‘ก, ๐‘ ๐‘ก+ + ๐‘ก, = ๐‘ ๐‘ก,
,{
,A$ 7* A 7*
A 7*
%/A 7%
% +
5+ .A 7*
%.,A$ 7* A 7*
{A 7*
%/A 7%
%}% }
ยจ
G
G7%
yields:
ยจ 2๐‘2 ๐‘ก+ + ๐‘ก, ๐‘ ๐‘ก+ + ๐‘ก, = ๐‘ ๐‘ก+
,{
,A$ 7% A 7%
A 7*
%/A 7%
% +
5+ .A 7%
%.,A$ 7% A 7%
{A 7*
%/A 7%
%}% }
50
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XXVII
ยจ
G
G7*
yields:
ยจ 2๐‘2 ๐‘ก+ + ๐‘ก, ๐‘ ๐‘ก+ + ๐‘ก, = ๐‘ ๐‘ก,
,{
,A$ 7* A 7*
A 7*
%/A 7%
% +
5+ .A 7*
%.,A$ 7* A 7*
{A 7*
%/A 7%
%}% }
ยจ 2๐‘2 ๐‘ก+ + ๐‘ก, ๐‘ ๐‘ก+ + ๐‘ก, = ๐‘ ๐‘ก,
,{
,A$ 7* A 7* .A 7*
%/,A$ 7* A 7* .A 7%
%
{A 7*
%/A 7%
%}% +
5+ .A 7*
%.,A$ 7* A 7*
{A 7*
%/A 7%
%}% }
ยจ 2๐‘2 ๐‘ก+ + ๐‘ก, ๐‘ ๐‘ก+ + ๐‘ก, = ๐‘ ๐‘ก,
, ,A$ 7* A 7* .A 7%
%
{A 7*
%/A 7%
%}%
ยจ
G
G7%
yields: 2๐‘2 ๐‘ก+ + ๐‘ก, ๐‘ ๐‘ก+ + ๐‘ก, = ๐‘ ๐‘ก+
, ,A$ 7% A 7% .A 7*
%
{A 7*
%/A 7%
%}%
ยจ And so :
ยจ ๐‘ ๐‘ก,
, ,A$ 7* A 7* .A 7%
%
{A 7*
%/A 7%
%}% = ๐‘ ๐‘ก+
, ,A$ 7% A 7% .A 7*
%
{A 7*
%/A 7%
%}%
51
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XXVIII
ยจ ๐‘ ๐‘ก,
, ,A$ 7* A 7* .A 7%
%
{A 7*
%/A 7%
%}% = ๐‘ ๐‘ก+
, ,A$ 7% A 7% .A 7*
%
{A 7*
%/A 7%
%}%
ยจ ๐‘2 ๐‘ก+ ๐‘ ๐‘ก+ . ๐‘ ๐‘ก,
K = ๐‘2 ๐‘ก, ๐‘ ๐‘ก, . ๐‘ ๐‘ก+
K
ยจ
A$ 7*
A 7*
. =
A$ 7%
A 7%
. for all values of ๐‘ก+ and ๐‘ก,
ยจ So
A$ 7
A 7 . = ๐‘๐‘ก๐‘’ and
A$ 7
A 7 . = (
5+
,
)
H
H7
[
+
A 7 %]
ยจ So
H
H7
+
A 7 % = ๐‘๐‘ก๐‘’ = ๐›ผ and
+
A 7 % = ๐›ผ๐‘ก + ๐›ฝ
ยจ We can choose ๐›ฝ = 0 and rewrite
+
A 7 % = ๐›ผ๐‘ก as ๐‘ ๐‘ก = zE
7
ยจ And so we are back to the expression for the distribution with the explicit peak value
52
Luc_Faucheux_2020
Kolmogorov equation: Bachelier thesis (page 35) XXIX
ยจ ๐‘ ๐‘ก = ๐ป. ๐‘ก โ„&*
% =
E
7
= ๐‘ƒ(๐‘ฅ = 0, ๐‘ก)
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก . exp{โˆ’๐œ‹. ๐‘ƒ ๐‘ฅ = 0, ๐‘ก , . ๐‘ฅ,}
ยจ So we finally have what we are looking for:
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก =
E
7
. exp{โˆ’
%E%3%
7
}
ยจ Note how general the assumptions we made seem to be
ยจ Note also that we have the existence of a solution, but we have said nothing about unicity
53
Luc_Faucheux_2020
Discrete to continuous โ€“ Radiation of probability
Le Rayonement de Probabilities
(pages 39 โ€“ 40)
54
Luc_Faucheux_2020
From the coin toss to the random walker
ยจ Let us limit ourselves to a one-dimensional random walk
ยจ A random walker will jump to the right or the left by one unit ๐œ€ at equal time intervals ๐œ
ยจ We assume equal probability (1/2) to jump to the right or the left
ยจ ๐‘‹(๐‘ก) will be in bin [๐‘–], ๐‘‹(๐‘ก + ๐œ) will be in bin [๐‘– โˆ’ 1] or [๐‘– + 1] with equal probability 50%
ยจ Analogous to the coin toss
ยจ The random walk can be mapped to the coin toss for money, the position on the X axis is the
current amount of money that the player has while playing a simple strategy where one
amount of currency ($1) is won or lost if the coin lands on heads or tail
55
Xi i+1i-1
Luc_Faucheux_2020
The random walk properties โ€“ Markov
ยจ Markov property: The value of ๐‘‹(๐‘ก + ๐œ) only depends on the value ๐‘‹(๐‘ก)
ยจ The distribution of the value of the random variable ๐‘‹(๐‘ก + ๐œ) conditional upon all the past
events only depends on the previous value ๐‘‹(๐‘ก)
ยจ โ€œThe random walk has no memory beyond where it is nowโ€
ยจ Note: this does not mean that the expected value of ๐‘‹(๐‘ก + ๐œ) is ๐‘‹(๐‘ก)
56
Luc_Faucheux_2020
The random walk properties - Martingale
ยจ Martingale: the expected value of ๐‘‹(๐‘ก + ๐œ) is ๐‘‹(๐‘ก)
ยจ In terms of game:
โ€“ You know how much money you have (your current winnings)
โ€“ Your expected winnings after one more coin toss is your current winning
โ€“ By recurrence, your expected winnings after any number of coin toss is the value of your
current winnings (somewhat akin to the Tower property)
ยจ Note: this does not mean that your winnings are stuck at their current value, it is only the
expected value of your winnings that is equal to the current value
57
Luc_Faucheux_2020
Searching for the PDE for the PDF
ยจ ๐‘ƒ(๐‘–, ๐‘ž) is the probability to find our random walker in the bin (๐‘–) at the time (๐‘ž. ๐œ)
ยจ Remember that time and position are discrete and NOT continuous
ยจ Position is indexed by ๐‘– , and the size of the jump is ๐œ€, at every ๐œ in time.
ยจ Another way to think about it is to have a large number of random walkers, and so at time
๐‘ก = ๐‘ž. ๐œ the number of walkers in a specific bin indexed by (๐‘–) is ๐‘. ๐‘ƒ(๐‘–, ๐‘ž)
ยจ ๐‘ƒ ๐‘–, ๐‘ž + 1 =
+
,
. {๐‘ƒ ๐‘– โˆ’ 1, ๐‘ž + ๐‘ƒ ๐‘– + 1, ๐‘ž }
ยจ Because the random walker has no choice but to jump to one of the adjacent bins, the
probability after the jump to be in the bin [i] is half of the probability before the jump in the
left bin, and half of the probability before the jump in the right bin
ยจ This is sometime called Master Equation, or Fokker-Planck equation
58
Luc_Faucheux_2020
Taylor expansion
ยจ Even though we are in the discrete description, we are somewhat assuming that we can use
tools of continuous calculus like Taylor expansion on the function ๐‘ƒ ๐‘–, ๐‘ž
ยจ More rigorously, ๐‘ƒ ๐‘–, ๐‘ž is NOT a continuous function (just like BINOM.DIST was not either),
but we are looking for a continuous function โ€ข๐‘ƒ ๐‘ฅ, ๐‘ก , that would match the discrete values
of ๐‘ƒ ๐‘–, ๐‘ž , or is not โ€œtoo farโ€ from it.
ยจ Say it another way, we assuming that there is a limit for ๐‘ƒ ๐‘–, ๐‘ž that would be a regular
continuous function โ€ข๐‘ƒ ๐‘ฅ ๐‘– , ๐‘ž. ๐œ , and because we are not that rigorous, we just use the
same notation ๐‘ƒ ๐‘–, ๐‘ž and ๐‘ƒ ๐‘ฅ, ๐‘ก
59
Luc_Faucheux_2020
Taylor expansion II
ยจ So really we should have written
ยจ ๐‘ƒ ๐‘–, ๐‘ž + 1 is the discrete probability to find the random walker in the bin ๐‘– after (๐‘ž + 1)
jumps of size ๐œ€ every time interval ๐œ
ยจ We have a strong feeling that there might be a continuous function โ€ข๐‘ƒ ๐‘ฅ, ๐‘ก which is a
function of the two continuous variables position and time, which is such that the discrete
function โ€convergesโ€ to the continuous function under some limits
ยจ By โ€œconvergeโ€, what we mean is that there is a manner in which you can calculate the
โ€œdistanceโ€ between the continuous function and the discrete one, and we would like to say
something along the lines of โ€œas the size of the jump ๐œ€ goes to 0 and the period of the jump
๐œ also goes to zeroโ€
ยจ Note that we have not defined the โ€œdistanceโ€
ยจ Note that we have not defined โ€how we get to 0โ€
ยจ We are trying to be pragmatic without butchering the actual math too much, so really get to
the essence but alert you that there are a couple of trees in the forest that you should pay
attention to, and some others that are not that important
60
Luc_Faucheux_2020
Taylor expansion III
ยจ ๐‘ƒ ๐‘–, ๐‘ž + 1 =
+
,
. {๐‘ƒ ๐‘– โˆ’ 1, ๐‘ž + ๐‘ƒ ๐‘– + 1, ๐‘ž }
ยจ ๐‘ƒ ๐‘–, ๐‘ž + 1 = ๐‘ƒ ๐‘–, ๐‘ž + ๐œ.
G OP(3,7)
G7
+ ๐’ช(๐œ,)
ยจ ๐‘ƒ ๐‘– โˆ’ 1, ๐‘ž = ๐‘ƒ ๐‘–, ๐‘ž โˆ’ ๐œ€.
G OP(3,7)
G3
+
+
,
. ๐œ€,.
G% OP(3,7)
G3% + ๐’ช(๐œ€R)
ยจ ๐‘ƒ ๐‘– + 1, ๐‘ž = ๐‘ƒ ๐‘–, ๐‘ž + ๐œ€.
G OP(3,7)
G3
+
+
,
. ๐œ€,.
G% OP(3,7)
G3% + ๐’ช(๐œ€R)
ยจ ๐’ช(. . ) means โ€something of the order ofโ€, meaning all the higher orders that we are
neglecting in the Taylor expansion
ยจ You have to be careful to which order you go to, and also if the higher orders are indeed
negligible for what you are trying to achieve
61
Luc_Faucheux_2020
Taylor expansion IV
ยจ ๐‘ƒ ๐‘–, ๐‘ž + 1 =
+
,
. {๐‘ƒ ๐‘– โˆ’ 1, ๐‘ž + ๐‘ƒ ๐‘– + 1, ๐‘ž }
ยจ ๐‘ƒ ๐‘–, ๐‘ž + 1 = ๐‘ƒ ๐‘–, ๐‘ž + ๐œ.
G OP(3,7)
G7
+ ๐’ช(๐œ,)
ยจ ๐‘ƒ ๐‘– โˆ’ 1, ๐‘ž = ๐‘ƒ ๐‘–, ๐‘ž โˆ’ ๐œ€.
G OP(3,7)
G3
+
+
,
. ๐œ€,.
G% OP(3,7)
G3% + ๐’ช(๐œ€R)
ยจ ๐‘ƒ ๐‘– + 1, ๐‘ž = ๐‘ƒ ๐‘–, ๐‘ž + ๐œ€.
G OP(3,7)
G3
+
+
,
. ๐œ€,.
G% OP(3,7)
G3% + ๐’ช(๐œ€R)
ยจ ๐‘ƒ ๐‘–, ๐‘ž + ๐œ.
G OP(3,7)
G7
+ ๐’ช ๐œ, =
+
,
. {๐‘ƒ ๐‘–, ๐‘ž โˆ’ ๐œ€.
G OP(3,7)
G3
+
+
,
. ๐œ€,.
G% OP(3,7)
G3% + ๐’ช ๐œ€R + ๐‘ƒ ๐‘–, ๐‘ž +
๐œ€.
G OP(3,7)
G3
+
+
,
. ๐œ€,.
G% OP(3,7)
G3% + ๐’ช(๐œ€R)}
ยจ ๐œ.
G OP(3,7)
G7
+ ๐’ช ๐œ, =
+
,
๐œ€,.
G% OP(3,7)
G3% + ๐’ช ๐œ€R
62
Luc_Faucheux_2020
Taylor expansion V
ยจ ๐œ.
G OP(3,7)
G7
+ ๐’ช ๐œ, =
+
,
๐œ€,.
G% OP(3,7)
G3% + ๐’ช ๐œ€R
ยจ
G OP(3,7)
G7
=
S%
,T
.
G% OP(3,7)
G3%
ยจ Equation above is usually referred to as a โ€œheat equationโ€ or โ€œdiffusion equationโ€
ยจ The diffusion coefficient is defined as ๐ท =
S%
,T
ยจ This is the PDE (Partial Differential Equation) for the PDF (Probability Distribution Function)
ยจ Note that we were looking for a continuous limit when ๐œ€ โ€goes to zeroโ€ and ๐œ โ€œgoes to zeroโ€.
Obviously since we are dividing one by the other we are going to have to be a little careful
here.
63
Luc_Faucheux_2020
Conservation Equation
ยจ
G OP(3,7)
G7
= ๐ท
G% OP(3,7)
G3%
ยจ We can rewrite the above as
ยจ
G OP(3,7)
G7
= ๐ท
G% OP(3,7)
G3% =
G
G3
[๐ท
G OP(3,7)
G3
]
ยจ This is also known as a conservation equation, because it verifies the conservation of overall
probability (we do not lose any random walkers)
ยจ The overall probability is the integral over the position axis of the function โ€ข๐‘ƒ(๐‘ฅ, ๐‘ก)
ยจ
H
H7
. โˆซ โ€ข๐‘ƒ ๐‘ฅ, ๐‘ก = โˆซ
G
G7
โ€ข๐‘ƒ ๐‘ฅ, ๐‘ก = โˆซ
G
G3
[๐ท
G OP(3,7)
G3
] = 0
ยจ So the overall probability is โ€conservedโ€.
ยจ Please note that we were quite liberal in taking the diffusion coefficient ๐ท inside the partial
derivative, which can can only do if it has no dependence on the position. When it depends
on the position, this opens up the whole Ito-Stratonovitch can of worms
64
Luc_Faucheux_2020
Gradient and Diffusion current
ยจ
G OP(3,7)
G7
= ๐ท
G% OP(3,7)
G3% =
G
G3
[๐ท
G OP(3,7)
G3
]
ยจ The diffusion current is sometimes defined as: ๐ฝ ๐‘ฅ, ๐‘ก = โˆ’๐ท
G OP(3,7)
G3
ยจ The above equation is sometimes called the Ficksโ€™s law.
ยจ
G
G7
โ€ข๐‘ƒ = โˆ’
G
G3
๐ฝ
ยจ
G OP(3,7)
G7
= ๐ท
G% OP(3,7)
G3%
ยจ We know a solution of this equation : the Normal Distribution Function, or Gausssian.
ยจ ๐บ ๐‘ฅ, ๐‘ก =
+
K%U7
. ๐‘’๐‘ฅ๐‘(โˆ’
3%
KU7
)
65
Luc_Faucheux_2020
Propagator and Green function
ยจ ๐บ ๐‘ฅ, ๐‘ก =
+
K%U7
. ๐‘’๐‘ฅ๐‘(โˆ’
3%
KU7
) is one solution of the diffusion equation.
ยจ Because the diffusion equation is linear, a linear combination of solutions is ALSO a solution
ยจ The Gaussian function is self-similar, if you plot {๐บ ๐‘ฅ, ๐‘ก . 4๐œ‹๐ท๐‘ก} as a function of the
rescaled variable ๐‘ฆ =
3%
KU7
, you always get the same function ๐‘’๐‘ฅ๐‘(โˆ’๐‘ฆ,)
ยจ This is what we did in the spreadsheet with the BINOM.DIST function
ยจ When t=0, the Gaussian function above converges to the Dirac function. It is a function
equal to 0 everywhere except at x=0, where it goes to infinity but in such a way that the
integral of the Gaussian over the x-axis is always conserved and equal to 1 (conservation of
probability)
66
Luc_Faucheux_2020
Propagator and Green functions II
ยจ Take any arbitrary initial probability distribution function โ€ข๐‘ƒ(๐‘ฅ, ๐‘ก = 0)
ยจ This can be written formally as
ยจ โ€ข๐‘ƒ ๐‘ฅ, ๐‘ก = 0 = โˆซ โ€ข๐‘ƒ ๐‘ฅ2, ๐‘ก = 0 . ๐›ฟ ๐‘ฅ โˆ’ ๐‘ฅ2 . ๐‘‘๐‘ฅโ€ฒ
ยจ The initial โ€œpeakโ€ โ€ข๐‘ƒ ๐‘ฅ2, ๐‘ก = 0 . ๐›ฟ(๐‘ฅ โˆ’ ๐‘ฅ2) is centered around ๐‘ฅ with integral โ€ข๐‘ƒ ๐‘ฅ, ๐‘ก = 0
ยจ This peak will diffuse with the Gaussian ๐บ ๐‘ฅ, ๐‘ฅโ€ฒ, ๐‘ก =
+
K%U7
. ๐‘’๐‘ฅ๐‘(โˆ’
(353$)%
KU7
)
ยจ and so for any time t, the solution of the diffusion equation that satisfies โ€ข๐‘ƒ(๐‘ฅ, ๐‘ก = 0) will
be:
ยจ โ€ข๐‘ƒ ๐‘ฅ, ๐‘ก = โˆซ โ€ข๐‘ƒ ๐‘ฅ2, ๐‘ก = 0 . ๐บ ๐‘ฅ, ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ
ยจ ๐บ ๐‘ฅ, ๐‘ฅโ€ฒ, ๐‘ก is called the Green function, or the propagator
67
Luc_Faucheux_2020
Propagators and Green functions III
ยจ The propagator technique is hugely helpful when discounting payoff
ยจ The Black Sholes equation is a diffusion equation
ยจ Note : the probability distribution function for the random variable โ€œdiffuses forward in
timeโ€
ยจ Note : the option value as a function of the random variable โ€diffuses backward in timeโ€
from the terminal payoff.
ยจ The terminal payoff is sometimes called the โ€boundary conditionโ€ for the diffusion equation
followed by the option value
68
Luc_Faucheux_2020
Diffusion and convexity
ยจ
G
G7
๐‘ƒ(๐‘ฅ, ๐‘ก) = ๐ท
G%
G3% ๐‘ƒ(๐‘ฅ, ๐‘ก)
ยจ If the density probability has a โ€œsharp peakโ€,
G%
G3% ๐‘ƒ(๐‘ฅ, ๐‘ก) is a large negative number, and so
G
G7
๐‘ƒ(๐‘ฅ, ๐‘ก) is also a large negative number, and so the density probability at that spot will
decrease rapidly in time.
ยจ If the density probability has a โ€œsharp troughโ€,
G%
G3% ๐‘ƒ(๐‘ฅ, ๐‘ก) is a large positive number, and so
G
G7
๐‘ƒ(๐‘ฅ, ๐‘ก) is also a large positive number, and so the density probability at that spot will
increase rapidly in time.
ยจ The diffusion equation tends to โ€œsmooth outโ€ any irregularity of the density probability
(forward in time), any sharp โ€œkinksโ€ diffuses over time
ยจ Note: in regions of large convexity (Gamma), the time dependence (time decay) is also
maximum
69
Luc_Faucheux_2020
Diffusion and convexity II
ยจ The steady-state solution (also called equilibrium solution) of the diffusion equation is a
solution where there is no dependence in time.
ยจ In our simple case, it means
G%
G3% ๐‘ƒ ๐‘ฅ, ๐‘ก = โˆž =
G%
G3% ๐‘ƒ?VCWXW(YWCZ ๐‘ฅ = 0
ยจ That is a straight line
ยจ Any โ€œkinkโ€ (places where the second spatial derivative was non-zero) got smoothed out
70
Luc_Faucheux_2020
Another scaling argument (Bachelier page 69)
ยจ For a given ๐‘ฅ, the probability density function at a given time ๐‘ก is given by:
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก =
+
K%U7
. ๐‘’๐‘ฅ๐‘(โˆ’
3%
KU7
)
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = 0 = 0 and lim
7โ†’6
๐‘ƒ ๐‘ฅ, ๐‘ก = 0
ยจ For a given ๐‘ฅ, the function ๐‘ƒ ๐‘ฅ, ๐‘ก will exhibit a positive maximum for a given time ๐‘ก
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก =
+
K%U7
. ๐‘’๐‘ฅ๐‘(โˆ’
3%
KU7
)
ยจ
GP 3,7
G3
=
5+
,
.
+
K%U7
.
+
7
. ๐‘’๐‘ฅ ๐‘ โˆ’
3%
KU7
+
+
K%U7
. ๐‘’๐‘ฅ ๐‘ โˆ’
3%
KU7
. (
3%
KU
.
+
7%)
ยจ
GP 3,7
G3
= 0 at the maximum ๐‘ก = ๐‘ก implies ๐‘ก =
3%
,U
ยจ Again we see the neat scaling of the square of the distance to the first order in time appears
71
Luc_Faucheux_2020
A neat thing about the diffusion equation (Bachelier)
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก =
+
K%U7
. ๐‘’๐‘ฅ๐‘(โˆ’
3%
KU7
) is a solution of
G
G7
๐‘ƒ(๐‘ฅ, ๐‘ก) = ๐ท
G%
G3% ๐‘ƒ(๐‘ฅ, ๐‘ก)
ยจ We define ๐‘ ๐‘ฅ, ๐‘ก = โˆซ3
6
๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ as the probability to find the random variable at time ๐‘ก
at a distance greater than ๐‘ฅ
ยจ
G] 3,7
G7
= โˆซ3
6 GP 32,7
G7
. ๐‘‘๐‘ฅโ€ฒ = โˆซ3
6
๐ท
G%
G32% ๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ = ๐ท.
GP 3$,7
G3$
6
3$43 = โˆ’๐ท.
GP 3,7
G3
ยจ
G] 3,7
G7
= โˆ’๐ท.
GP 3,7
G3
ยจ ๐‘ ๐‘ฅ, ๐‘ก = โˆซ3
6
๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ and so
G] 3,7
G3
= โˆ’๐‘ƒ(๐‘ฅ, ๐‘ก)
ยจ And so the function ๐‘ ๐‘ฅ, ๐‘ก = โˆซ3
6
๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ ALSO follows the same equation diffusion as
๐‘ƒ(๐‘ฅ, ๐‘ก)
ยจ
G
G7
๐‘(๐‘ฅ, ๐‘ก) = ๐ท
G%
G3% ๐‘ ๐‘ฅ, ๐‘ก NOTE that ๐‘(๐‘ฅ, ๐‘ก) is NOT a Gaussian (unicity of solution)
72
Luc_Faucheux_2020
Bachelier on the rayonement de probabilite
ยจ Let us limit ourselves to a one-dimensional random walk
ยจ A random walker will jump to the right or the left by one unit ๐œ€ at equal time intervals ๐œ
ยจ We assume equal probability (1/2) to jump to the right or the left
ยจ ๐‘‹(๐‘ก) will be in bin [๐‘–], ๐‘‹(๐‘ก + ๐œ) will be in bin [๐‘– โˆ’ 1] or [๐‘– + 1] with equal probability 50%
ยจ Analogous to the coin toss
ยจ The random walk can be mapped to the coin toss for money, the position on the X axis is the
current amount of money that the player has while playing a simple strategy where one
amount of currency ($1) is won or lost if the coin lands on heads or tail
73
Xi i+1i-1
Luc_Faucheux_2020
Bachelierโ€™s argument is slighty different
ยจ ๐‘ƒ(๐‘–, ๐‘ž) is the probability to ๏ฌnd our random walker in the bin (๐‘–) at the tme (๐‘ž. ๐œ)
ยจ We define ๐‘ ๐‘–, ๐‘ž = โˆ‘I4W
6
๐‘ƒ(๐‘—, ๐‘ž)
ยจ ๐‘ ๐‘–, ๐‘ž is the probability to find the random walker on the right of the bin (๐‘–) at the tme
(๐‘ž. ๐œ)
ยจ Bachelier somehow was more interested in ๐‘ ๐‘–, ๐‘ž than ๐‘ƒ(๐‘–, ๐‘ž), because he was more
interested in pricing an option
ยจ ๐‘ ๐‘–, ๐‘ž = โˆ‘I4W
6
๐‘ƒ(๐‘—, ๐‘ž)
ยจ ๐‘ ๐‘– + 1, ๐‘ž = โˆ‘I4W/+
6
๐‘ƒ(๐‘—, ๐‘ž)
ยจ And so ๐‘ƒ ๐‘–, ๐‘ž = ๐‘ ๐‘–, ๐‘ž โˆ’ ๐‘ ๐‘– + 1, ๐‘ž
ยจ ๐‘ ๐‘– + 1, ๐‘ž = ๐‘ ๐‘–, ๐‘ž +
G]
G3
. ๐œ€ + ๐’ช(๐œ€,)
ยจ ๐‘ƒ ๐‘–, ๐‘ž = โˆ’
G]
G3
. ๐œ€ to the second order in ๐œ€
74
Luc_Faucheux_2020
Rayonement de probability (Bachelier page)
ยจ ๐‘ƒ ๐‘–, ๐‘ž = โˆ’
G]
G3
. ๐œ€
ยจ We also know that the random walker follows the jump dynamic of equal probability to the
right and the left at every discrete time increment
ยจ ๐‘ ๐‘–, ๐‘ž + 1 = ๐‘ ๐‘–, ๐‘ž โˆ’
+
,
. ๐‘ƒ ๐‘–, ๐‘ž +
+
,
. ๐‘ƒ ๐‘– โˆ’ 1, ๐‘ž
ยจ ๐‘ ๐‘–, ๐‘ž + 1 โˆ’ ๐‘ ๐‘–, ๐‘ž =
+
,
. {๐‘ƒ ๐‘– โˆ’ 1, ๐‘ž โˆ’ ๐‘ƒ(๐‘–, ๐‘ž)}
ยจ
G]
G7
. ๐œ =
+
,
. โˆ’
GP
G3
. ๐œ€ =
+
,
. ๐œ€,.
G%]
G3% or
G]
G7
=
S%
,T
.
G%]
G3%
ยจ This is the same diffusion equation or heat equation that we had for ๐‘ƒ.
ยจ Note that the two functions are quite different (there is no unicity of the diffusion equation)
ยจ Different Boundary conditions:
ยจ Note that we were a little liberal mixing ๐‘ƒ ๐‘–, ๐‘ž and โ€ข๐‘ƒ ๐‘ฅ ๐‘– , ๐‘ž. ๐œ for clarity sake
75
Luc_Faucheux_2020
Some concepts around time
(first passage,..)
76
Luc_Faucheux_2020
Some concepts around time
ยจ A typical Brownian motion would look something like that (thanks you Excel):
77
Luc_Faucheux_2020
Some concepts around time II
ยจ We can define for a given path a number of variables
ยจ ๐‘‹ ๐‘ก is the Brownian variable, ๐‘‡ is the last time, 0 โ‰ค ๐‘ก โ‰ค ๐‘‡
ยจ We can define the Maximum value of the path : ๐‘€๐ด๐‘‹ ๐‘‡ = MAX(๐‘‹ ๐‘ก , 0 โ‰ค ๐‘ก โ‰ค ๐‘‡)
ยจ We can define the โ€œFirst passage timeโ€, the first time that the Brownian motion reaches the
value ๐‘š, as ๐œ ๐‘š, ๐‘‡ = min(๐‘ก โ‰ฅ 0, ๐‘‹ ๐‘ก = ๐‘š)
ยจ It would be useful to be able to know the distribution probability for ๐œ ๐‘š, ๐‘‡
ยจ Bachelier devotes the last few pages of his thesis on this, and comes up with a number of
very useful โ€œrules of thumbโ€
ยจ Letโ€™s introduce now the reflection principle or symmetry principle.
ยจ Not only it is neat, but also it is used widely for example in reducing the CPU and time for
Monte Carlo simulations.
78
Luc_Faucheux_2020
Some concepts around time III
ยจ Letโ€™s do the following trick: As soon as ๐‘š gets reached at time ๐œ ๐‘š, ๐‘‡ by the Brownian
motion ๐‘‹ ๐‘ก (we then have ๐‘‹ ๐œ ๐‘š, ๐‘‡ = ๐‘š ), we create a symmetrical Brownian motion,
where starting at time ๐œ ๐‘š, ๐‘‡ , every time ๐‘‹ ๐‘ก goes up or down, ๐‘‹)^ ๐‘ก does exactly the
opposite, example below ๐‘š = 2, ๐œ ๐‘š, ๐‘‡ = 12, ๐‘‹ ๐‘ก solid orange line, ๐‘‹)^ ๐‘ก is the
dashed blue line
79
Luc_Faucheux_2020
Some concepts around time III-b
80
Maximum to date ๐‘€๐ด๐‘‹(๐‘‡)
End point ๐‘‹ ๐‘‡ = ๐‘‹#
End point reflected:
๐‘‹)^ ๐‘‡ = 2๐‘š โˆ’ ๐‘‹#
Level of first passage ๐‘š
Luc_Faucheux_2020
Some concepts around time III-c
81
Maximum to date ๐‘€๐ด๐‘‹(๐‘‡)
End point ๐‘‹ ๐‘‡ = ๐‘‹#
End point reflected:
๐‘‹)^ ๐‘‡ = 2๐‘š โˆ’ ๐‘‹#
Level of first passage ๐‘š
Luc_Faucheux_2020
Some concepts around time III-d
82
-2
0
2
4
6
8
10
Maximum to date ๐‘€๐ด๐‘‹(๐‘‡)
End point ๐‘‹ ๐‘‡ = ๐‘‹#
End point reflected:
๐‘‹)^ ๐‘‡ = 2๐‘š โˆ’ ๐‘‹#
Level of first passage ๐‘š
Luc_Faucheux_2020
Some concepts around time IV
ยจ If during the interval [0, ๐‘‡], ๐‘‹ ๐‘ก reaches ๐‘š, then we have a reflected path ๐‘‹)^ ๐‘ก
ยจ We have by construction: ABS(๐‘‹)^ ๐‘‡ โˆ’ ๐‘š) = ABS(๐‘‹ ๐‘ก โˆ’ ๐‘š)
ยจ So for all time ๐‘ก โ‰ฅ ๐œ ๐‘š, ๐‘‡ , ๐‘‹ ๐‘ก and ๐‘‹)^ ๐‘ก are symmetrical around ๐‘š
ยจ Letโ€™s now define in a more general fashion a new terminal variable ๐‘‹#
ยจ We now the probability that at time ๐‘ก = ๐‘‡, the Brownian motion will end with a value such
that ๐‘‹ ๐‘ก โ‰ฅ ๐‘‹#
ยจ This is the usual Gaussian distribution : โ„Ž ๐‘ฅ, ๐‘ก =
+
,%-%7
. exp(
53%
,-%7
)
ยจ So ๐‘ƒ ๐‘‹ ๐‘‡ โ‰ฅ ๐‘‹# = โˆซ34_1
346
1. โ„Ž ๐‘ฅ, ๐‘‡ . ๐‘‘๐‘ฅ
ยจ Letโ€™s try to figure out the cumulative probability distribution for ๐œ ๐‘š, ๐‘‡ , or more exactly:
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡
83
Luc_Faucheux_2020
Some concepts around time V
ยจ We can write what is known as the โ€œreflection formulaโ€
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹#
ยจ Because if ๐‘‹ ๐‘ก did reach ๐‘š at some point, for every path ๐‘‹ ๐‘ก after ๐‘ก = ๐œ ๐‘š, ๐‘‡ , there exist
a symmetrical path ๐‘‹)^ ๐‘ก around ๐‘š.
ยจ So the number of paths ๐‘‹ ๐‘ก that did reach ๐‘š at some point, and are now at a terminal
value ๐‘‹ ๐‘‡ โ‰ค ๐‘‹#, is the same number of paths ๐‘‹)^ ๐‘ก that are now at a terminal value
๐‘‹)^ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹#
ยจ Those paths ๐‘‹)^ ๐‘ก are โ€œvalidโ€ paths ๐‘‹ ๐‘ก , meaning that they are a specific realization of
the Brownian motion ๐‘‹ ๐‘ก
ยจ So re-stating again the above, the number of paths ๐‘‹ ๐‘ก that did reach ๐‘š at some point, and
are now at a terminal value ๐‘‹ ๐‘‡ โ‰ค ๐‘‹#, is the same number of paths ๐‘‹ ๐‘ก that are now at a
terminal value ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹#
ยจ This is the reflection principle (Desiree Andre, 1840-1917) or also sometimes called the
ballot problem (Joseph Louis Bertrand, 1887)
84
Luc_Faucheux_2020
Some concepts around time VI
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹#
ยจ Now letโ€™s use the specific example of ๐‘‹# = ๐‘š
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘š = ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š
ยจ But we also have
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘š + ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘š = 2. ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š
ยจ And if ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š, then obviously ๐‘‹ ๐‘ก did reach ๐‘š before ๐‘ก = ๐‘‡
ยจ So : ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. ๐‘ƒ ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š the usual Gaussian
ยจ The probability that the Brownian motion will be greater than a given level at maturity is
half the probability that this given level will be reached or exceeded during the time interval
up to maturity
85
Luc_Faucheux_2020
Some concepts around time VI-a
ยจ Note: Shrieve (p.112) looks at each Brownian motion path that reaches level ๐‘š prior to time
๐‘‡ but is at a level ๐‘‹# below ๐‘š at time ๐‘‡
ยจ In that case, since ๐‘‹# โ‰ค ๐‘š, we have automatically: (2๐‘š โˆ’ ๐‘‹#) โ‰ฅ ๐‘‹#
ยจ And so he writes from the start the reflection equality as:
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = ๐‘ƒ ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹# and stating ๐‘‹# โ‰ค ๐‘š, ๐‘š > 0
ยจ We only did it when equating ๐‘‹# = ๐‘š, and then of course:
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹# = ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š = ๐‘ƒ ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š
ยจ Do we have :
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹#
ยจ Even in the cases where ๐‘‹# โ‰ฅ ๐‘š, ๐‘š > 0 ?
86
Luc_Faucheux_2020
Some concepts around time VII
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. ๐‘ƒ ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. โˆซ34Z
346
1. โ„Ž ๐‘ฅ, ๐‘‡ . ๐‘‘๐‘ฅ
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. โˆซ34Z
346
1.
+
,%-%#
. exp(
53%
,-%#
). ๐‘‘๐‘ฅ
ยจ We can now compute things such as the average first passage time:
ยจ Note that ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ is the CUMULATIVE distribution function
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ is the probability that ๐‘‹ ๐‘ก will exceed ๐‘š over the time interval [0, ๐‘‡]
ยจ Between ๐‘‡ and (๐‘‡ + ๐‘‘๐‘‡), the density function is ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ =
GP T Z,# `#
G#
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = โˆซa48
a4#
๐‘ ๐œ ๐‘š, ๐œ‰ โ‰ค ๐œ‰ ). ๐‘‘๐œ‰
87
Luc_Faucheux_2020
Some concepts around time VIII
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ is the probability that ๐‘‹ ๐‘ก will exceed ๐‘š over the time interval [0, ๐‘‡]
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ + ๐‘‘๐‘‡ โ‰ค ๐‘‡ + ๐‘‘๐‘‡ is the probability that ๐‘‹ ๐‘ก will exceed ๐‘š over the time interval
[0, ๐‘‡ + ๐‘‘๐‘‡]
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ + ๐‘‘๐‘‡ โ‰ค ๐‘‡ + ๐‘‘๐‘‡ โˆ’ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ is thus the probability that ๐‘‹ ๐‘ก will exceed
๐‘š INSIDE the time interval [๐‘‡, ๐‘‡ + ๐‘‘๐‘‡]
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ + ๐‘‘๐‘‡ โ‰ค ๐‘‡ + ๐‘‘๐‘‡ โˆ’ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ is the probability that ๐œ ๐‘š, ๐‘‡ is within the
interval [๐‘‡, ๐‘‡ + ๐‘‘๐‘‡]
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ + ๐‘‘๐‘‡ โ‰ค ๐‘‡ + ๐‘‘๐‘‡ โˆ’ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ =
GP T Z,# `#
G#
. ๐‘‘๐‘‡
ยจ ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ =
GP T Z,# `#
G#
is the probability density to have ๐œ ๐‘š, ๐‘‡ at time ๐‘‡
ยจ So less confusing to rewrite it as ๐‘ ๐‘š, ๐‘‡ , probability that the Brownian motion ๐‘‹ ๐‘ก will
exceed ๐‘š at time ๐‘‡
ยจ It also makes things easier to grasp when you realize that ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ can only increase
with ๐‘‡ (if ๐‘š was reached, it is obviously still reached)
88
Luc_Faucheux_2020
Some concepts around time IX
ยจ Letโ€™s rewrite a little the cumulative probability:
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. โˆซ34Z
346
1.
+
,%-%#
. exp(
53%
,-%#
). ๐‘‘๐‘ฅ
ยจ We rescale using the change of variable: ๐‘ฆ, =
3%
-%#
ยจ ๐‘ฅ = ๐‘š corresponds to ๐‘ฆ =
Z
-%#
and ๐‘‘๐‘ฅ = ๐‘‘๐‘ฆ. ๐œŽ, ๐‘‡
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. โˆซ:4
2
3%1
:46 +
,%
. exp(
5:%
,
). ๐‘‘๐‘ฆ
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ =
,
,%
. โˆซ:4
2
3%1
:46
exp(
5:%
,
). ๐‘‘๐‘ฆ
89
Luc_Faucheux_2020
Some concepts around time X
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ =
,
,%
. โˆซ:4
2
3%1
:46
exp(
5:%
,
). ๐‘‘๐‘ฆ and writing ๐‘ฆZ =
Z
-%#
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ =
,
,%
. โˆซ:4:2
:46
exp(
5:%
,
). ๐‘‘๐‘ฆ
ยจ ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ =
GP T Z,# `#
G#
=
GP T Z,# `#
G:2
.
G:2
G#
ยจ ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ =
,
,%
. โˆ’1 . exp
5:2
%
,
. โˆ’
+
,
.
+
#
.
Z
-%#
ยจ ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ =
Z
# ,%-%#
. exp
5:2
%
,
ยจ ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ =
Z
# ,%-%#
. exp
5Z%
,-%#
= ๐‘(๐‘š, ๐‘‡)
90
Luc_Faucheux_2020
Some concepts around time X-a
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = ๐‘ƒ(๐‘š, ๐‘‡) =
,
,%
. โˆซ:4:2
:46
exp(
5:%
,
). ๐‘‘๐‘ฆ with ๐‘ฆZ =
Z
-%#
ยจ If ๐‘‡ โ†’ โˆž, ๐‘ฆZ โ†’ 0 and so ๐‘ƒ(๐‘š, ๐‘‡ = โˆž) =
,
,%
. โˆซ:48
:46
exp(
5:%
,
). ๐‘‘๐‘ฆ
ยจ We always go back to : ๐ผ9 = โˆซ56
/6
๐‘’593%
. ๐‘‘๐‘ฅ =
%
9
ยจ ๐‘ƒ ๐‘š, ๐‘‡ = โˆž =
,
,%
. โˆซ:48
:46
exp
5:%
,
. ๐‘‘๐‘ฆ =
,
,%
.
+
,
.
%
โ„*
%
= 1
ยจ ๐‘ƒ ๐‘š, ๐‘‡ = โˆž = 1 for all ๐‘š. So whatever the value of ๐‘š, it will be reached at some point in
time by the stochastic process ๐‘‹ ๐‘ก with probability 1
91
Luc_Faucheux_2020
A little paradox (Doob)
ยจ ๐‘ƒ ๐‘š, ๐‘‡ = โˆž = 1 for all ๐‘š. So whatever the value of ๐‘š, it will be reached at some point in
time by the stochastic process ๐‘‹ ๐‘ก with probability 1
ยจ A little detour through notations and martingale
ยจ We are looking at a stochastic process ๐‘†(๐‘ก) or in its discrete implementation ๐‘†! = ๐‘†(๐‘ก!)
ยจ (Because this is usually about stocks, so we are using the letter ๐‘†)
ยจ You see sometimes the notation โ„ฑ! which is sometimes referred to as a โ€œfiltrationโ€
ยจ Essentially it is the current set of information available on the world at time ๐‘ก!
ยจ It is a collection of stuff
ยจ You also sometimes see something that looks like this :
ยจ โ„ฑ! = โ„ฑ(๐‘ก!) โŠ‚ โ„ฑb = โ„ฑ(๐‘กb) for all 0 < ๐‘˜ < ๐‘ 
ยจ That means that the set of information increases with time
92
Luc_Faucheux_2020
A little paradox (Doob) - II
ยจ โ„ฑ! = โ„ฑ(๐‘ก!) โŠ‚ โ„ฑb = โ„ฑ(๐‘กb) for all 0 < ๐‘˜ < ๐‘ 
ยจ That means that the set of information increases with time
ยจ Any information available at time ๐‘ก! is still available at time ๐‘ก!/+
ยจ โ„ฑ! is sometimes called a ๐œŽ-field on ฮฉ (nothing to do with variance, it is just a name)
ยจ Now, just to be super-formal, a sequence of filtrations (collection of ๐œŽ-fields), is also called a
filtration if the stream of information is increasing
ยจ The collection (โ„ฑ!, ๐‘˜ > 0) of ๐œŽ-fields on ฮฉ is called a filtration if โ„ฑ! โŠ‚ โ„ฑb for all 0 < ๐‘˜ < ๐‘ 
ยจ If (โ„ฑ!, ๐‘˜ = 0,1, โ€ฆ ) is a sequence of ๐œŽ-fields on ฮฉ and โ„ฑ! โŠ‚ โ„ฑ!/+ for all ๐‘˜, we call (โ„ฑ!) a
filtration as well
93
Luc_Faucheux_2020
A little paradox (Doob) - III
ยจ A stochastic process ๐‘†! is said to be โ€œadapted to the filtrationโ€ (โ„ฑ!, ๐‘˜ > 0) if the value of ๐‘†!
is completely determined by the information in โ„ฑ!, which is to say that :
ยจ ๐‘†! = ๐ธ[๐‘†!|โ„ฑ!]
ยจ ๐ธ[๐‘†!|โ„ฑ!] is the conditional expectation of ๐‘†!
ยจ Conditional expectation is not the conditional probability
ยจ The conditional expectation is a weighted average of conditional probabilities
ยจ A filtration ๐’ฎโ„ฑ! is said to be โ€œgeneratedโ€ by the stochastic process (๐‘†8, ๐‘†+, ๐‘†,,โ€ฆ ๐‘†!) if it
contains all the information, and only the information (๐‘†8, ๐‘†+, ๐‘†,,โ€ฆ ๐‘†!), also sometimes
referred to as ๐œŽ(๐‘†I, ๐‘— โ‰ค ๐‘˜)
ยจ The stochastic process is said to be adapted to the filtrationโ€ (โ„ฑ!, ๐‘˜ > 0) if:
ยจ ๐œŽ(๐‘†!) โŠ‚ โ„ฑ! = โ„ฑ(๐‘ก!) for all ๐‘˜
ยจ It essentially means that the stochastic process does not carry more information than the
filtration, or ๐’ฎโ„ฑ! โŠ‚ โ„ฑ! for all ๐‘˜
94
Luc_Faucheux_2020
A little paradox (Doob) - IV
ยจ For example suppose that ๐’ฎโ„ฑ! is said to be โ€œgeneratedโ€ by the stochastic process
(๐‘†8, ๐‘†+, ๐‘†,,โ€ฆ ๐‘†!)
ยจ (๐‘†!) is adapted to ๐’ฎโ„ฑ!
ยจ (๐‘†!/๐‘†!5+) is adapted to ๐’ฎโ„ฑ!
ยจ (๐‘€๐ด๐‘‹(๐‘†I; ๐‘— < +๐‘˜)) is adapted to ๐’ฎโ„ฑ!
ยจ (๐‘†!/+) is NOT adapted to ๐’ฎโ„ฑ!, because it is an additional piece of information that was NOT
included in ๐’ฎโ„ฑ!, but will be included in ๐’ฎโ„ฑ!/+
ยจ Any โ€œtrading strategyโ€ is adapted to ๐’ฎโ„ฑ!
ยจ A โ€œtrading strategyโ€ on the stock ๐‘†! is a sequence of positions ๐‘…!on the stock ๐‘†!
ยจ At time ๐‘ก!, the investor places a bet of size ๐‘…!on the stock ๐‘†!
ยจ The trading strategy is adapted to ๐’ฎโ„ฑ! means that the ๐‘…!are being computed (decided) only
based on the information ๐’ฎโ„ฑ! = ๐œŽ(๐‘†I, ๐‘— โ‰ค ๐‘˜), or (๐‘†8, ๐‘†+, ๐‘†,,โ€ฆ ๐‘†!)
95
Luc_Faucheux_2020
A little paradox (Doob) - V
ยจ The trading strategy is said to be โ€œself-financingโ€ if the only gain or losses result from the
movements in the stochastic variable ๐‘†! (no one adds money or subtract money to the
account)
ยจ โ€œself-financingโ€ is not the same as โ€œreplicatingโ€
ยจ The total winnings up to time ๐‘†! are: ๐‘Œ! = ๐‘Œ!5+ + ๐‘…!5+. (๐‘†! โˆ’ ๐‘†!5+)
ยจ A stochastic process ๐‘†! is called a martingale with respect to โ„ฑ! in the following fashion:
ยจ 1) ๐ธ ๐‘Ž๐‘๐‘  ๐‘†! โ„ฑ!] < โˆž for all ๐‘˜
ยจ 2) ๐‘†! is adapted to โ„ฑ!
ยจ 3) ๐ธ[๐‘†!| โ„ฑI] = ๐‘†I for all 0 โ‰ค ๐‘— < ๐‘˜, meaning that ๐‘†I is the best predictor of ๐‘†! given โ„ฑI
ยจ In particular ๐ธ[๐‘†!/+| โ„ฑ!] = ๐‘†!
ยจ A martingale has the remarkable property that its expectation function is constant (and we
sometimes omit pointing out which exact filtration is being used)
96
Luc_Faucheux_2020
A little paradox (Doob) - VI
ยจ Any self-financing trading strategy of a martingale is also a martingale
ยจ The total winnings up to time ๐‘†! are: ๐‘Œ! = ๐‘Œ!5+ + ๐‘…!5+. (๐‘†! โˆ’ ๐‘†!5+)
ยจ ๐ธ[๐‘†!/+| โ„ฑ!] = ๐‘†!
ยจ ๐ธ[๐‘Œ!/+| โ„ฑ!] = ๐ธ[๐‘Œ! + ๐‘…!. (๐‘†!/+ โˆ’ ๐‘†!)| โ„ฑ!]
ยจ ๐ธ[๐‘Œ!/+| โ„ฑ!] = ๐‘Œ! + ๐‘…!. (๐ธ[๐‘†!/+| โ„ฑ!] โˆ’ ๐‘†!) = ๐‘Œ!
ยจ Martingales is also referred to as โ€œfair gameโ€
ยจ Originally, martingale is a French word referring something you put on a horse to drive
him/her
97
Luc_Faucheux_2020
A little paradox (Doob) - VII
ยจ Almost getting to the paradox, but we had to spend a little time on definitions first.
ยจ Suppose that a stochastic process (a stock) is a martingale, and that ๐‘†8 = 0
ยจ We define the following trading strategy: ๐‘…! = 1 if ๐‘†! < ๐‘š, 0 otherwise
ยจ Recall that: ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = ๐‘ƒ(๐‘š, ๐‘‡)
ยจ ๐œ ๐‘š, ๐‘‡ is here referred as the โ€œstopping timeโ€. As soon as ๐‘†! reached ๐‘š, ๐‘†!stays stuck on
that value
ยจ The trading strategy is ๐‘Œ! = ๐‘Œ!5+ + ๐‘…!5+. (๐‘†! โˆ’ ๐‘†!5+) with ๐‘…! = 1 if ๐‘†! < ๐‘š, 0 otherwise
ยจ So ๐‘Œ! = ๐‘†! if ๐‘ก! < ๐œ ๐‘š, ๐‘‡ and ๐‘Œ! = ๐‘š for all ๐‘ก! โ‰ฅ ๐œ ๐‘š, ๐‘‡
ยจ Now here is the paradox: from what is sometimes referred to as Doobโ€™s theorem (you
cannot make an expected non-zero profit with a trading strategy on a martingale), we know
that ๐ธ ๐‘Œ! = 0
ยจ HOWEVER we also know that ๐‘ƒ ๐‘š, ๐‘‡ = โˆž = 1 for all ๐‘š. So whatever the value of ๐‘š, it
will be reached at some point in time by the stochastic process ๐‘‹ ๐‘ก with probability 1
98
Luc_Faucheux_2020
A little paradox (Doob) - VIII
ยจ So if ๐‘ƒ ๐‘š, ๐‘‡ = โˆž = 1 for all ๐‘š, AND
ยจ ๐‘Œ! = ๐‘†! if ๐‘ก! < ๐œ ๐‘š, ๐‘‡ and ๐‘Œ! = ๐‘š for all ๐‘ก! โ‰ฅ ๐œ ๐‘š, ๐‘‡
ยจ We deduce that ๐‘Œ! = ๐‘š will be equal to ๐‘š with probability 1
ยจ And so we would like to say that ๐ธ[๐‘Œ!] will be equal to ๐‘š with probability 1
ยจ This obviously seems like a paradox.
ยจ The fact of the matter is that for any given time ๐‘‡ that is large enough, ๐‘Œ# is very likely to be
equal to ๐‘š, however there is enough probability that it has very large negative value that
the expected value is still 0
ยจ Also we will see in the following slides that the average first passage time is infinite, which
again seems somewhat confusing.
99
Luc_Faucheux_2020
A couple more example of martingales
ยจ A Brownian bridge is NOT a martingale
ยจ Ito integrals are martingale
ยจ Stratonovitch integrals are NOT martingale
100
Luc_Faucheux_2020
Some concepts around time XI
ยจ For the Gaussian case:
ยจ โ„Ž ๐‘ฅ, ๐‘ก =
+
,%-%7
. exp(
53%
,-%7
)
ยจ ๐‘ ๐‘š, ๐‘‡ =
Z
# ,%-%#
. exp
5Z%
,-%#
=
Z
#
. โ„Ž(๐‘š, ๐‘‡)
ยจ Be careful that those two probabilities are not equal, and that can be confusing.
ยจ โ„Ž ๐‘ฅ, ๐‘ก is the probability density for ๐‘‹ ๐‘ก , i.e. for a given time ๐‘ก, what is the probability to
find ๐‘‹ ๐‘ก in the interval [๐‘ฅ, ๐‘ฅ + ๐‘‘๐‘ฅ]
ยจ ๐‘ ๐‘š, ๐‘‡ is, for a given ๐‘š, the probability that the Brownian motion ๐‘‹ ๐‘ก will exceed ๐‘š in
the interval [๐‘‡, ๐‘‡ + ๐‘‘๐‘‡] for the first time
ยจ ๐‘ ๐‘š, ๐‘‡ is, for a given ๐‘š, the probability that the first passage time defined as :
๐œ ๐‘š, ๐‘‡ = min(๐‘ก โ‰ฅ 0, ๐‘‹ ๐‘ก = ๐‘š) can be found in the interval [๐‘‡, ๐‘‡ + ๐‘‘๐‘‡]
101
Luc_Faucheux_2020
Some concepts around time XI-b
ยจ ๐‘ ๐‘š, ๐‘‡ =
Z
# ,%-%#
. exp
5Z%
,-%#
=
Z
#
. โ„Ž(๐‘š, ๐‘‡)
ยจ ๐‘‡. ๐‘ ๐‘š, ๐‘‡ = ๐‘š. โ„Ž(๐‘š, ๐‘‡)
ยจ This is quite elegant and somewhat intuitive
ยจ โ„Ž(๐‘š, ๐‘‡) is the probability density for a given time ๐‘‡ to find the stochastic variable ๐‘‹ ๐‘ก at
the position ๐‘‹ ๐‘ก = ๐‘š
ยจ โ„Ž ๐‘š, ๐‘‡ . ๐‘‘๐‘š is the probability for a given time ๐‘‡ to find the stochastic variable ๐‘‹ ๐‘ก in the
interval [๐‘š, ๐‘š + ๐‘‘๐‘š]
ยจ โ„Ž(๐‘š, ๐‘‡) is normalized so that: โˆซZ456
Z4/6
โ„Ž ๐‘š, ๐‘‡ . ๐‘‘๐‘š = 1
ยจ So โ„Ž(๐‘š, ๐‘‡) has units of
[+]
[_]
102
Luc_Faucheux_2020
Some concepts around time XI-c
ยจ ๐‘‡. ๐‘ ๐‘š, ๐‘‡ = ๐‘š. โ„Ž(๐‘š, ๐‘‡)
ยจ ๐‘(๐‘š, ๐‘‡) is the probability density for a given time level ๐‘š to find the first passage time
๐œ ๐‘š, ๐‘‡ = min(๐‘ก โ‰ฅ 0, ๐‘‹ ๐‘ก = ๐‘š) at time ๐‘‡
ยจ ๐‘ ๐‘š, ๐‘‡ . ๐‘‘๐‘‡ is the probability for a given level ๐‘š to find the the first passage time ๐œ ๐‘š, ๐‘‡ =
min(๐‘ก โ‰ฅ 0, ๐‘‹ ๐‘ก = ๐‘š) in the interval ๐‘‡, ๐‘‡ + ๐‘‘๐‘‡
ยจ Is ๐‘(๐‘š, ๐‘‡) is normalized ? โˆซ#48
#4/6
๐‘ ๐‘š, ๐‘‡ . ๐‘‘๐‘‡ =?
ยจ So ๐‘(๐‘š, ๐‘‡) has units of
[+]
[#]
103
Luc_Faucheux_2020
Some concepts around time XI-d
ยจ ๐‘ ๐‘š, ๐‘‡ =
Z
# ,%-%#
. exp
5Z%
,-%#
=
Z
#
. โ„Ž(๐‘š, ๐‘‡)
ยจ The average time is then < ๐œ ๐‘š, ๐‘‡ > = โˆซ#48
#46
๐‘‡. ๐‘ ๐‘š, ๐‘‡ . ๐‘‘๐‘‡
ยจ < ๐œ ๐‘š, ๐‘‡ > = โˆซ#48
#46
๐‘‡.
Z
# ,%-%#
. exp
5Z%
,-%#
. ๐‘‘๐‘‡
ยจ < ๐œ ๐‘š, ๐‘‡ > = โˆซ#48
#46 Z
,%-%#
. exp
5Z%
,-%#
. ๐‘‘๐‘‡
ยจ When ๐‘‡ โ†’ โˆž, exp
5Z%
,-%#
โ†’ 1, and so the large ๐‘‡ integral looks like โˆซ#48
#46 +
#
. ๐‘‘๐‘‡ โ†’ โˆž
ยจ We will explore this in more details, but the average first passage time is infinite.
ยจ The stochastic process will reach any level with probability 1, but will take on average an
infinite amount of time to reach that level. This is a little weird.
104
Luc_Faucheux_2020
Some concepts around time XI-e
ยจ Because of the fact that the average first passage time is infinite, in the literature you will
find what is called the typical time
ยจ The typical time is the maximum of the function ๐‘ ๐‘š, ๐‘‡ as a function of time ๐‘‡
ยจ ๐‘ ๐‘š, ๐‘‡ =
Z
# ,%-%#
. exp
5Z%
,-%#
=
Z
#
. โ„Ž(๐‘š, ๐‘‡)
ยจ
GA(Z,#)
G#
=
5R
,
Z
## ,%-%#
. exp
5Z%
,-%#
+
Z%
,-%##
.
Z
# ,%-%#
. exp
5Z%
,-%#
ยจ
GA(Z,#)
G#
= 0 implies:
R
,
Z
## ,%-%#
=
Z%
,-%##
.
Z
# ,%-%#
ยจ
R
,
=
Z%
,-%#
, or again ๐‘‡ =
Z%
R-%, or using the diffusion notation ๐ท =
-%
,
we have ๐‘‡ =
Z%
$U
ยจ The typical time scales as the square of the level for the first passage time
105
Luc_Faucheux_2020
Another scaling argument - redux
ยจ
G OP(3,7)
G7
=
G% OP(3,7)
G3% , where we set (๐ท = 1) for simplicity sake
ยจ ๐บ ๐‘ฅ, ๐‘ก, ๐ท = 1 =
+
K%7
. ๐‘’๐‘ฅ๐‘(โˆ’
3%
K7
) is a solution
ยจ You can check that the following function is ALSO a solution of the heat equation
ยจ ๐‘ˆ ๐‘ฅ, ๐‘ก, ๐ท = 1 = โˆซ56
( e4
,
)
exp(โˆ’
a%
K
). ๐‘‘๐œ‰ = ๐‘ˆ(
3
7
)
ยจ This is another self-similarity argument, where again the position has to scale with the
square root of the time, but also where the integral of a solution to the diffusion equation
ALSO is a solution of the same diffusion equation.
ยจ Sometimes those kind of โ€œmappingโ€ are useful because it is easier to work in a given
(function, variable) space and then โ€œmapโ€ the results onto the final (function, variable)
space that you need to work in
106
Luc_Faucheux_2020
Another scaling argument โ€“ redux I-a
ยจ ๐‘ˆ ๐‘ฅ, ๐‘ก, ๐ท = 1 = โˆซ56
( e4
,
)
exp(โˆ’
a%
K
). ๐‘‘๐œ‰ = ๐‘ˆ(
3
7
)
ยจ
Gf(3,7)
G7
= exp โˆ’
3%
K7
. โˆ’
+
,
๐‘ฅ๐‘ก โ„&.
%
ยจ
Gf(3,7)
G3
= exp โˆ’
3%
K7
. ๐‘ก โ„&*
%
ยจ
G%f (3,7)
G3% = exp โˆ’
3%
K7
. ๐‘ก โ„&*
%. โˆ’
,3
K7
= exp โˆ’
3%
K7
. โˆ’
+
,
๐‘ฅ๐‘ก โ„&.
%
ยจ So we do have indeed ๐‘ˆ ๐‘ฅ, ๐‘ก, ๐ท = 1 solution of :
G%f (3,7)
G3% =
Gf(3,7)
G7
107
Luc_Faucheux_2020
Another scaling argument โ€“ redux II
ยจ ๐‘ˆ ๐‘ฅ, ๐‘ก, ๐ท = 1 = โˆซ56
( e4
,
)
exp(โˆ’
a%
K
). ๐‘‘๐œ‰ = ๐‘ˆ(
3
7
)
ยจ It is also a solution of the Heat equation
Gf (3,7)
G7
=
G%f(3,7)
G3%
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ =
,
,%
. โˆซ:4
2
3%1
:46
exp(
5:%
,
). ๐‘‘๐‘ฆ
ยจ So ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ looks like it could also a solution of a Heat equation, letโ€™s see what we
can do
ยจ
GP(Z,#)
G#
= ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = ๐‘ ๐‘š, ๐‘‡ =
Z
#
. โ„Ž ๐‘š, ๐‘‡ =
Z
# ,%-%#
. exp
5Z%
,-%#
ยจ
G%P (Z,#)
GZ% =
G%
GZ% {
,
,%
. โˆซ:4
2
3%1
:46
exp(
5:%
,
). ๐‘‘๐‘ฆ} =
,
,%
.
G
GZ
{
G:2
GZ
G
G:2
[โˆซ:4
2
3%1
:46
exp(
5:%
,
). ๐‘‘๐‘ฆ]}
ยจ With ๐‘ฆZ =
Z
-%#
and
G:2
GZ
=
+
-%#
108
Luc_Faucheux_2020
Another scaling argument โ€“ redux III
ยจ
G%P (Z,#)
GZ% =
G%
GZ% {
,
,%
. โˆซ:4
2
3%1
:46
exp(
5:%
,
). ๐‘‘๐‘ฆ} =
,
,%
.
G
GZ
{
G:2
GZ
G
G:2
[โˆซ:4:2
:46
exp(
5:%
,
). ๐‘‘๐‘ฆ]}
ยจ
G%P (Z,#)
GZ% =
,
,%
.
G
GZ
{
+
-%#
. โˆ’1 . exp
5:2
%
,
}
ยจ
G%P (Z,#)
GZ% = โˆ’
,
,%
.
+
-%#
.
G
GZ
exp
5:2
%
,
= โˆ’
,
,%
.
+
-%#
.
G:2
GZ
G
G:2
{exp
5:2
%
,
}
ยจ
G%P (Z,#)
GZ% = โˆ’
,
,%
.
+
-%#
.
+
-%#
. โˆ’
,:2
,
. exp
5:2
%
,
ยจ
G%P (Z,#)
GZ% = โˆ’
,
,%
.
+
-%#
.
+
-%#
. โˆ’
Z
-%#
. exp
5:2
%
,
=
:2
# ,%
. exp
5:2
%
,
. (
,
-%)
ยจ
GP(Z,#)
G#
=
Z
# ,%-%#
. exp
5Z%
,-%#
=
:2
# ,%
. exp
5:2
%
,
109
Luc_Faucheux_2020
Another scaling argument โ€“ redux IV
ยจ We then have :
ยจ
GP(Z,#)
G#
=
-%
,
G%P (Z,#)
GZ% with	๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ =
,
,%
. โˆซ:4
2
3%1
:46
exp(
5:%
,
). ๐‘‘๐‘ฆ
ยจ Recall that this was for a usual Gaussian: โ„Ž ๐‘ฅ, ๐‘ก =
+
,%-%7
. exp(
53%
,-%7
)
ยจ Which is the solution of the heat equation:
G
G7
โ„Ž(๐‘ฅ, ๐‘ก) =
-%
,
G%
G3% โ„Ž(๐‘ฅ, ๐‘ก)
ยจ In terms of the Diffusion equation, one has the notation:
ยจ
G
G7
๐‘ƒ(๐‘ฅ, ๐‘ก) = ๐ท
G%
G3% ๐‘ƒ(๐‘ฅ, ๐‘ก)
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก =
+
K%U7
. ๐‘’๐‘ฅ๐‘(โˆ’
3%
KU7
) with ๐ท = (๐œŽ,/2)
110
Luc_Faucheux_2020
Another scaling argument โ€“ redux V
ยจ This is kind of a neat result.
ยจ The cumulative distribution function for the random variable which is the first passage time:
๐œ ๐‘š, ๐‘‡ = min(๐‘ก โ‰ฅ 0, ๐‘‹ ๐‘ก = ๐‘š) is ๐‘ƒ ๐‘š, ๐‘‡ =
,
,%
. โˆซ:4
2
3%1
:46
exp(
5:%
,
). ๐‘‘๐‘ฆ
ยจ The underlying Brownian motion ๐‘‹ ๐‘ก follows โ„Ž ๐‘ฅ, ๐‘ก =
+
,%-%7
. exp(
53%
,-%7
)
ยจ โ„Ž ๐‘ฅ, ๐‘ก follows the diffusion equation:
G
G7
โ„Ž(๐‘ฅ, ๐‘ก) =
-%
,
G%
G3% โ„Ž(๐‘ฅ, ๐‘ก)
ยจ ๐‘ƒ ๐‘š, ๐‘‡ follows the diffusion equation:
GP(Z,#)
G#
=
-%
,
G%P (Z,#)
GZ%
ยจ ๐‘ƒ ๐‘š, ๐‘‡ diffuses in the space (๐‘š, ๐‘‡) with the SAME diffusion as โ„Ž ๐‘ฅ, ๐‘ก in (๐‘ฅ, ๐‘ก)
ยจ Note again that it can get confusing to compare those two probability functions, one is a
cumulative, the other one is a density function. Compare that to the next slide where the
density and the cumulative for ๐‘ฅ follows the SAME diffusion equation.
111
Luc_Faucheux_2020
Another scaling argument โ€“ redux VI
ยจ This is reminiscent of a Dupire like equation:
ยจ
GP(Z,#)
G#
=
-%
,
G%P (Z,#)
GZ%
ยจ ๐‘ ๐‘š, ๐‘‡ =
Z
# ,%-%#
. exp
5Z%
,-%#
=
Z
#
. โ„Ž ๐‘š, ๐‘‡ =
GP(Z,#)
G#
ยจ So:
ยจ โ„Ž ๐‘š, ๐‘‡ = (
#
Z
)
-%
,
G%P (Z,#)
GZ%
ยจ So if we know ๐‘ƒ(๐‘š, ๐‘‡), we can deduce the probability density : โ„Ž ๐‘š, ๐‘‡
ยจ Note: Dupire equation: if we know the Call options prices ๐ถ(๐‘š, ๐‘‡) we can deduce the
probability density (also Bachelier p. 51 of his thesis)
ยจ โ„Ž ๐‘š, ๐‘‡ =
G%g (Z,#)
GZ%
112
Luc_Faucheux_2020
A neat thing about the diffusion equation (Bachelier) -redux
ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก =
+
K%U7
. ๐‘’๐‘ฅ๐‘(โˆ’
3%
KU7
) is a solution of
G
G7
๐‘ƒ(๐‘ฅ, ๐‘ก) = ๐ท
G%
G3% ๐‘ƒ(๐‘ฅ, ๐‘ก)
ยจ We define ๐‘ ๐‘ฅ, ๐‘ก = โˆซ3
6
๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ as the probability to find the random variable at time ๐‘ก
at a distance greater than ๐‘ฅ
ยจ
G] 3,7
G7
= โˆซ3
6 GP 32,7
G7
. ๐‘‘๐‘ฅโ€ฒ = โˆซ3
6
๐ท
G%
G32% ๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ = ๐ท.
GP 3$,7
G3$
6
3$43 = โˆ’๐ท.
GP 3,7
G3
ยจ
G] 3,7
G7
= โˆ’๐ท.
GP 3,7
G3
ยจ ๐‘ ๐‘ฅ, ๐‘ก = โˆซ3
6
๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ and so
G] 3,7
G3
= โˆ’๐‘ƒ(๐‘ฅ, ๐‘ก)
ยจ And so the function ๐‘ ๐‘ฅ, ๐‘ก = โˆซ3
6
๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ ALSO follows the same equation diffusion as
๐‘ƒ(๐‘ฅ, ๐‘ก)
ยจ
G
G7
๐‘(๐‘ฅ, ๐‘ก) = ๐ท
G%
G3% ๐‘ ๐‘ฅ, ๐‘ก NOTE that ๐‘(๐‘ฅ, ๐‘ก) is NOT a Gaussian (unicity of solution)
113
Luc_Faucheux_2020
Another scaling argument โ€“ redux VI
ยจ
GP(Z,#)
G#
=
-%
,
G%P (Z,#)
GZ% with	๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ =
,
,%
. โˆซ:4
2
3%1
:46
exp(
5:%
,
). ๐‘‘๐‘ฆ
ยจ ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ =
GP T Z,# `#
G#
=
Z
# ,%-%#
. exp
5Z%
,-%#
=
Z
#
. โ„Ž(๐‘š, ๐‘‡)
ยจ Does ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ also follows a diffusion equation?
114
Luc_Faucheux_2020
Some more about the Maximum
ยจ Letโ€™s look again at the reflection principle
115
Maximum to date ๐‘€๐ด๐‘‹(๐‘‡)
End point ๐‘‹ ๐‘‡ = ๐‘‹#
End point reflected:
๐‘‹)^ ๐‘‡ = 2๐‘š โˆ’ ๐‘‹#
Level of first passage ๐‘š
Luc_Faucheux_2020
Some more about the Maximum - a
116
-2
0
2
4
6
8
10
Maximum to date ๐‘€๐ด๐‘‹(๐‘‡)
End point ๐‘‹ ๐‘‡ = ๐‘‹#
End point reflected:
๐‘‹)^ ๐‘‡ = 2๐‘š โˆ’ ๐‘‹#
Level of first passage ๐‘š
Luc_Faucheux_2020
Some more about the Maximum II
ยจ We can define the Maximum value of the path : ๐‘€๐ด๐‘‹ ๐‘‡ = MAX(๐‘‹ ๐‘ก , 0 โ‰ค ๐‘ก โ‰ค ๐‘‡)
ยจ For positive ๐‘š, we have ๐‘€๐ด๐‘‹ ๐‘‡ โ‰ฅ ๐‘š if and only if ๐œ ๐‘š, ๐‘‡ = min(๐‘ก โ‰ฅ 0, ๐‘‹ ๐‘ก = ๐‘š) is
such that ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡
ยจ (You cannot reach a maximum higher than the level ๐‘š if you have not reached that level yet)
ยจ The reflection equality was:
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹#
ยจ Now :
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = ๐‘ƒ ๐‘€๐ด๐‘‹ ๐‘‡ โ‰ฅ ๐‘š, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹#
ยจ So we have expressed something in terms of probabilities of ๐‘€๐ด๐‘‹ ๐‘‡ and ๐‘‹ ๐‘‡ being above
some levels. This indicates that we should be able to define and maybe calculate a joint
probability for {๐‘€๐ด๐‘‹ ๐‘‡ , ๐‘‹ ๐‘‡ } that we define as ๐‘“ ๐‘€๐ด๐‘‹ ๐‘‡ = ๐‘š, ๐‘‹ ๐‘‡ = ๐‘‹# = ๐‘“(๐‘€, ๐‘‹)
117
Luc_Faucheux_2020
Some more about the Maximum III
ยจ Here we use the following trick: we do not try to explicitly derive ๐‘“(๐‘€, ๐‘‹), but write
equations that ๐‘“(๐‘€, ๐‘‹) verifies, and from those try to derive ๐‘“(๐‘€, ๐‘‹)
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = ๐‘ƒ ๐‘€๐ด๐‘‹ ๐‘‡ โ‰ฅ ๐‘š, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹#
ยจ ๐‘ƒ ๐‘€๐ด๐‘‹ ๐‘‡ โ‰ฅ ๐‘š, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = โˆซ4Z
46
๐‘‘๐‘€ โˆซ_456
_4_1
๐‘‘๐‘‹ . ๐‘“(๐‘€, ๐‘‹)
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹# = โˆซ34,Z5_1
346
1. โ„Ž(๐‘ฅ, ๐‘ก). ๐‘‘๐‘ฅ
ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹# = โˆซ34,Z5_1
346
1.
+
,%-%#
. exp(
53%
,-%#
). ๐‘‘๐‘ฅ
ยจ Because if ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹#, then by construction ๐‘‹ ๐‘‡ has reached the level ๐‘š before ๐‘‡
ยจ Note that we follow here p. 114 of Shrieve (so ๐‘‹# < ๐‘š)
ยจ Will try to give a shot later at a more general formula
118
Luc_Faucheux_2020
Some more about the Maximum IV
ยจ So we have the following:
ยจ โˆซ4Z
46
๐‘‘๐‘€ โˆซ_456
_4_1
๐‘‘๐‘‹ . ๐‘“ ๐‘€, ๐‘‹ = โˆซ34,Z5_1
346
1.
+
,%-%#
. exp(
53%
,-%#
). ๐‘‘๐‘ฅ
ยจ Now bear in mind that we do not still know ๐‘“ ๐‘€, ๐‘‹
ยจ But we will take the derivative of the above equation with respect to ๐‘‹# and ๐‘š
ยจ
G
GZ
โˆซ4Z
46
๐‘‘๐‘€ โˆซ_456
_4_1
๐‘‘๐‘‹ . ๐‘“ ๐‘€, ๐‘‹ = โˆ’ โˆซ_456
_4_1
๐‘‘๐‘‹ . ๐‘“(๐‘š, ๐‘‹)
ยจ
G
GZ
โˆซ34,Z5_1
346
1.
+
,%-%#
. exp(
53%
,-%#
). ๐‘‘๐‘ฅ = โˆ’
+
,%-%#
. exp(
5(,Z5_1)%
,-%#
)
ยจ So we now have:
ยจ โˆซ_456
_4_1
๐‘‘๐‘‹ . ๐‘“ ๐‘š, ๐‘‹ =
+
,%-%#
. exp(
5(,Z5_1)%
,-%#
)
119
Luc_Faucheux_2020
Some more about the Maximum V
ยจ โˆซ_456
_4_1
๐‘‘๐‘‹ . ๐‘“ ๐‘š, ๐‘‹ =
+
,%-%#
. exp(
5(,Z5_1)%
,-%#
)
ยจ We now take the derivative with respect with ๐‘‹#
ยจ
G
G_1
โˆซ_456
_4_1
๐‘‘๐‘‹ . ๐‘“ ๐‘š, ๐‘‹ = ๐‘“(๐‘š, ๐‘‹#)
ยจ
G
G_1
+
,%-%#
. exp(
5(,Z5_1)%
,-%#
) =
+
,%-%#
. exp
5 ,Z5_1
%
,-%#
. 2. 2๐‘š โˆ’ ๐‘‹# .
+
,-%#
ยจ We have now determined for ๐‘‹# < ๐‘š
ยจ ๐‘“ ๐‘š, ๐‘‹# =
,Z5_1
-%#
.
+
,%-%#
. exp
5 ,Z5_1
%
,-%#
=
,Z5_1
-%#
. โ„Ž(2๐‘š โˆ’ ๐‘‹#, ๐‘‡)
ยจ โ„Ž(๐‘ฅ, ๐‘ก) is the regular Gaussian
ยจ ๐‘“ ๐‘š, ๐‘‹# is the joint probability density at time ๐‘‡ to have a maximum ๐‘š and terminal value
๐‘‹#
120
Luc_Faucheux_2020
Some more about the Maximum VI
ยจ The joint probability density to reach within the interval [0, ๐‘‡] a maximum value ๐‘€and
having a terminal value for the Brownian motion ๐‘‹# is:
ยจ ๐‘“ ๐‘€, ๐‘‹# =
,5_1
-%#
. โ„Ž(2๐‘€ โˆ’ ๐‘‹#, ๐‘‡)
ยจ ๐‘ ๐‘š, ๐‘‡ is the probability density function for the reaching the level ๐‘š for the first time at
time ๐‘‡
ยจ ๐‘ ๐‘š, ๐‘‡ . ๐‘‘๐‘‡ is the probability for a given level ๐‘š to find the the first passage time ๐œ ๐‘š, ๐‘‡ =
min(๐‘ก โ‰ฅ 0, ๐‘‹ ๐‘ก = ๐‘š) in the interval ๐‘‡, ๐‘‡ + ๐‘‘๐‘‡
ยจ ๐‘ ๐‘š, ๐‘‡ =
Z
#
. โ„Ž ๐‘š, ๐‘‡
121
Luc_Faucheux_2020
Some more about the Maximum VII
ยจ โ„Ž ๐‘š, ๐‘‡ has unit of
[+]
[_]
, โ„Ž ๐‘š, ๐‘ก =
+
,%-%7
. exp(
5Z%
,-%7
)
ยจ ๐‘ ๐‘š, ๐‘‡ has unit of
[+]
[#]
๐‘ ๐‘š, ๐‘‡ =
Z
#
. โ„Ž ๐‘š, ๐‘‡
ยจ ๐œŽ, ๐‘‡ has units of [๐‘‹,]
ยจ ๐‘“ ๐‘€, ๐‘‹# has units of
[+]
[_%]
๐‘“ ๐‘€, ๐‘‹# =
,5_1
-%#
. โ„Ž(2๐‘€ โˆ’ ๐‘‹#, ๐‘‡) with (๐‘‹#< ๐‘€)
ยจ What does that mean to set ๐‘‹# = ๐‘€ ?
ยจ ๐‘“ ๐‘€, ๐‘€ =

-%#
. โ„Ž(๐‘€, ๐‘‡)
ยจ ๐‘“ ๐‘š, ๐‘š =
Z
-%#
. โ„Ž ๐‘š, ๐‘‡ =
+
-% . ๐‘(๐‘š, ๐‘‡)
122
Luc_Faucheux_2020
Some more about the Maximum VII-b
ยจ ๐‘“ ๐‘š, ๐‘š =
Z
-%#
. โ„Ž ๐‘š, ๐‘‡ =
+
-% . ๐‘(๐‘š, ๐‘‡)
ยจ Units are still correct
ยจ ๐‘“ ๐‘š, ๐‘š has to be integrated of ๐‘‹ then again over ๐‘‹ to return a dimensionless number
ยจ ๐‘(๐‘š, ๐‘‡) has to be integrated over time to return a dimensionless number
ยจ The probability density to end up at time ๐‘‡ at a terminal value ๐‘š, with the time ๐‘‡ being the
first time that this value ๐‘š is reached (since it is the maximum, so was never reached
before), is equal to the probability density (in time) to have the first passage time for the
level ๐‘š at the terminal time ๐‘‡, scaled by the square of the volatility
ยจ ๐‘“ ๐‘š, ๐‘š . ๐œŽ, ๐‘‡ = ๐‘‡. ๐‘(๐‘š, ๐‘‡)
123
Luc_Faucheux_2020
Some more about the Maximum VIII
ยจ Joint density and conditional density
ยจ ๐‘“ ๐‘€, ๐‘‹# is the joint density to find the maximum within [๐‘€, ๐‘€ + ๐‘‘๐‘€] and the terminal
value within [๐‘‹#, ๐‘‹# + ๐‘‘๐‘‹#] (with for now the condition (๐‘‹#< ๐‘€)
ยจ Sometimes it is easier from a numerical point of view to simulate the Brownian motion
(process ๐‘‹(๐‘‡)) and THEN simulate another process for the maximum ๐‘€. This second step
requires a slightly different probability, we need to know in this case the distribution of the
maximum ๐‘€ between [0, ๐‘‡], conditioned on the value of ๐‘‹# = ๐‘‹(๐‘‡)
ยจ (Shrieve p.114)
ยจ The conditional density is the joint density divided by the marginal density of the
conditioning random variable.
ยจ We are looking for the conditional density ๐‘“ ๐‘€|๐‘‹#
ยจ ๐‘ƒ๐‘Ÿ๐‘œ๐‘ ๐‘€|๐‘‹# = ๐‘ƒ๐‘Ÿ๐‘œ๐‘ ๐‘€, ๐‘‹# /๐‘ƒ๐‘Ÿ๐‘œ๐‘ ๐‘‹#
ยจ ๐‘“ ๐‘€|๐‘‹# = ๐‘“ ๐‘€, ๐‘‹# /โ„Ž ๐‘‹#
124
Luc_Faucheux_2020
Some more about the Maximum IX
ยจ ๐‘“ ๐‘€|๐‘‹# = ๐‘“ ๐‘€, ๐‘‹# /โ„Ž ๐‘‹# and has unit of
[+]
[_]
ยจ โ„Ž ๐‘‹# = โ„Ž ๐‘‹#, ๐‘‡ =
+
,%-%#
. exp
5_1
%
,-%#
ยจ ๐‘“ ๐‘€, ๐‘‹# =
,5_1
-%#
. โ„Ž(2๐‘€ โˆ’ ๐‘‹#, ๐‘‡)
ยจ And so we get:
ยจ ๐‘“ ๐‘€|๐‘‹# =
,5_1
-%#
.
h ,5_1,#
h _1,#
=
,5_1
-%#
. exp
/_1
%
,-%#
. exp
5(,5_1)%
,-%#
ยจ We also have: โˆ’(2๐‘€ โˆ’ ๐‘‹#), + ๐‘‹#
,
= โˆ’4๐‘€, + 4๐‘€๐‘‹# = โˆ’4๐‘€(๐‘‹# โˆ’ ๐‘€)
ยจ ๐‘“ ๐‘€|๐‘‹# =
,5_1
-%#
. exp
5K(_15)
,-%#
ยจ That is kind of it, not sure if I can find any insightful thing to say about this
125
Luc_Faucheux_2020
Some more concepts about time โ€“ first return
ยจ We have looked at the first passage, now letโ€™s gain some intuition on the first return (and
also last return), first return in blue dot, successive returns in grey, last return in red for the
return to the origin
126
Luc_Faucheux_2020
Some more concepts about time โ€“ first return II
ยจ Following some of the convention we had before, let us define as ๐‘๐‘“๐‘Ÿ(0, ๐‘‡)the probability
density distribution for the first return time to the origin at time ๐‘‡
ยจ Note that we can always shift later the distribution around a โ€œnewโ€ origin, one of the nice
properties of a Kolmogorov-like process
ยจ ๐‘๐‘“๐‘Ÿ(0, ๐‘‡) is the probability density for the stochastic process ๐‘‹ ๐‘ก to return for the first
time back to the origin a time ๐‘‡
ยจ The cumulative function of ๐‘๐‘“๐‘Ÿ(0, ๐‘‡) is:
ยจ ๐‘ƒ๐‘…๐น 0, ๐‘‡ = โˆซ748
74#
๐‘๐‘“๐‘Ÿ 0, ๐‘ก ). ๐‘‘๐‘ก
ยจ ๐‘๐‘“๐‘Ÿ 0, ๐‘‡ =
GP.' 8,#
G#
ยจ ๐‘ƒ๐‘…๐น 0, ๐‘‡ is the cumulative probability that the stochastic process ๐‘‹ ๐‘ก has returned to the
origin (at least once) by the time ๐‘‡
127
Luc_Faucheux_2020
Some more concepts about time โ€“ first return III
ยจ ๐‘ƒ๐‘…๐น 0, ๐‘‡ is the cumulative probability that the stochastic process ๐‘‹ ๐‘ก has returned to the
origin (at least once) by the time ๐‘‡
ยจ {1 โˆ’ ๐‘ƒ๐‘…๐น 0, ๐‘‡ } is the cumulative survival probability noted ๐‘† 0, ๐‘‡ that the stochastic
process ๐‘‹ ๐‘ก has NOT returned to the origin by the time ๐‘‡
ยจ ๐‘๐‘“๐‘Ÿ 0, ๐‘‡ =
GP.' 8,#
G#
= โˆ’
G) 8,#
G#
ยจ In order to evaluate ๐‘† 0, ๐‘‡ , we need to enumerate all the paths that never returned to the
origin after time ๐‘‡ (or after ๐‘ steps where the time interval is ๐›ฟ๐‘ก = ๐‘‡/๐‘)
ยจ We need to calculate the probability that a path never returns to the origin.
ยจ This is a variant of the โ€œballot theoremโ€: in a ballot where candidates A and B have a and b
total votes respectively, what is the probability that when counting the votes, the tally for A
is always higher than B (A always leads the vote tally and there is no tie, and no time when B
is leading in the vote).
ยจ Desire Andre and Joseph Louis Francois Bertrand (1887)
128
Luc_Faucheux_2020
Some more concepts about time โ€“ first return IV
ยจ The remarkably simple result is that the probability of such a path is
(i5()
(i/()
ยจ There are a couple of ways we can convince ourselves of this result.
ยจ Proof by reflection, we suppose a>b (A is the winner, so the path always stays above 0)
ยจ Any sequence that starts with a B must reach a tie at some point because A wins.
ยจ Also any sequence that starts with B has B leading, so has to be excluded
ยจ So we are left with sequences that start with A
ยจ Some of those will never reach a tie, and some will
ยจ For those who do reach a tie, we will use the reflection trick again, by reflecting the votes up
to the point of first tie (๐‘‹ ๐‘ก crossing the origin again). The reflected new sequence will
start with a B
129
Luc_Faucheux_2020
Some more concepts about time โ€“ first return V
ยจ A sequence in space and its corresponding voting tally in AB
130
Luc_Faucheux_2020
Some more concepts about time โ€“ first return VI
ยจ A reflected sequence up to the first point of tie, reflected path in blue
131
-3
-2
-1
0
1
2
3
4
Luc_Faucheux_2020
Some more concepts about time โ€“ first return VII
ยจ Note: this is why it is sometime so helpful in gaining intuition to run simulations. It was very
hard to find a โ€œniceโ€ looking graphs.
ยจ A lot of graphs either has the first return very close to the origin, or never returned
ยจ This is somewhat counter-intuitive because a lot of people would expect that for a fair game,
each player would be on the winning side for about half the time, and that the lead will pass
not infrequently from one player to the other.
ยจ It is actually not the case, and we will show that actually first returns and last returns are
actually much more likely to occur either very early or very late in the random walk.
ยจ It is highly probable to remain on one side of the origin for nearly the entire walk, leading to
long waiting time before the tie
132
Luc_Faucheux_2020
Some more concepts about time โ€“ first return VIII
ยจ A couple of F9
133
-8
-6
-4
-2
0
2
4
6
-3
-2
-1
0
1
2
3
4
5
6
7
8
-4
-3
-2
-1
0
1
2
3
4
5
6
-6
-4
-2
0
2
4
6
8
0
2
4
6
8
10
12
14
Luc_Faucheux_2020
Some more concepts about time โ€“ first return IX
ยจ So to recap, looking at the survival probability for path that always stay above the origin
ยจ Every sequence that starts with B is excluded
ยจ Every sequence that starts with A, either ties or does not
ยจ If it does, we built the reflected path in blue, reflecting up to the point of the first tie. This
reflected sequence will start with B and will cross the origin (will tie)
ยจ Over ๐‘ votes, we have ๐‘Ž votes for A (or jump up in space) and ๐‘ votes for B (or jump down
in space)
ยจ Because of the reflection, the number of sequences that start with A and tie is equal to the
number of sequences starting with B and do also tie
ยจ Looking at the outcome with A being the winner (๐‘Ž > ๐‘), any sequence starting with B will
automatically tie at some point
ยจ So we are counting twice the number of sequences starting with B
ยจ The probability that a sequence starts with B is: โ„๐‘ (๐‘Ž + ๐‘)
134
Luc_Faucheux_2020
Some more concepts about time โ€“ first return X
ยจ So the survival probability that we are after is :
ยจ 1 โˆ’ 2. z๐‘ ๐‘Ž + ๐‘ =
i5(
i/(
ยจ Another way to look at it is by induction: suppose that the formula is true for (๐‘ โˆ’ 1) steps,
can we extend it to ๐‘ steps?
ยจ So for (๐‘ โˆ’ 1) , we had either (๐‘Ž โˆ’ 1, ๐‘) or (๐‘Ž, ๐‘ โˆ’ 1) votes for A and B
ยจ The probability of no tie in the case (๐‘ โˆ’ 1, ๐‘Ž โˆ’ 1, ๐‘) is
i5+5(
i5+/(
ยจ The probability of no tie in the case (๐‘ โˆ’ 1, ๐‘Ž, ๐‘ โˆ’ 1) is
i5(/+
i/(5+
ยจ Going into (๐‘) we need to count the last vote, the probability of a vote for A is
i
i/(
and the
probability of a vote for B is
(
i/(
(reverse the order and treat the last vote as the first one,
and read the sequence backward)
135
Luc_Faucheux_2020
Some more concepts about time โ€“ first return XI
ยจ The survival probability at the level (๐‘)is then:
ยจ
i
i/(
.
i5+5(
i5+/(
+
(
i/(
.
i5(/+
i/(5+
=
ii5i5i(/(i5((/(
(i/()(i/(5+)
=
(i/(5+)(i5()
(i/()(i/(5+)
=
(i5()
(i/()
ยจ Another notation would be ๐‘/ = ๐‘Ž and ๐‘5 = ๐‘, ๐‘/ + ๐‘5 = ๐‘
ยจ The total number of possible paths is
]!
]5!]&!
for a given set (๐‘, ๐‘/, ๐‘5)
ยจ The paths that end with positive end value are such that ๐‘/ > ๐‘5
ยจ The number of paths never crossing (never tie-ing) is the total number of paths multiplied by
the probability that a path will not tie
ยจ We will then have to sum all those numbers over the possible end points (because we have
it currently fixed by having a given set (๐‘, ๐‘/, ๐‘5), with those being above the origin, or
ensuring that (๐‘/ > ๐‘5)
ยจ Then multiply by the probability for one path which is (25]) in the binomial discrete model
136
Luc_Faucheux_2020
Some more concepts about time โ€“ first return XII
ยจ We then have for the survival probability:
ยจ ๐‘† 0, ๐‘‡ = ๐‘† 0, ๐‘ = (25]). โˆ‘]&48
]&k]5 ]!
]5!]&!
.
]55]&
]5/]&
and we have: ๐‘/+๐‘5= ๐‘
ยจ So ๐‘5 < ๐‘/ is equivalent to ๐‘5 < ๐‘ โˆ’ ๐‘5 or ๐‘5 < ๐‘/2
ยจ ๐‘† 0, ๐‘ = (25]). โˆ‘]&48
]&k
6
% ] !
(]5]&)!(]&)!
. (
]5,]&
]
)
ยจ (2]). ๐‘† 0, ๐‘ = โˆ‘]&48
]&k
6
%
[
] !
(]5]&)!(]&)!
โˆ’ 2
]&
]
.
] !
(]5]&)!(]&)!
]
ยจ (2]). ๐‘† 0, ๐‘ = โˆ‘]&48
]&k
6
%
[
] !
(]5]&)!(]&)!
โˆ’ 2 .
]5+ !
]5]& !(]&5+)!
]
137
Luc_Faucheux_2020
Some more concepts about time โ€“ first return XIII
ยจ We also use the result from the Pascal triangle
ยจ
] !
(]5]&)!(]&)!
=
]5+ !
(]5+5]&)!(]&)!
+
]5+ !
]5+5(]&5+) !(]&5+)!
or: ๐ถJ
A
= ๐ถJ5+
A
+ ๐ถJ5+
A5+
ยจ ๐ถJ5+
A
+ ๐ถJ5+
A5+
=
J5+ !
J5+5A !A!
+
J5+ !
J5+5 A5+ !(A5+)!
=
J5+ !
J5+5A !A!
+
J5+ !
J5A !(A5+)!
ยจ ๐ถJ5+
A
+ ๐ถJ5+
A5+
=
J5+ !
J5+5A !A!
+
J5+ !
J5A !(A5+)!
=
J5+ !(J5A)
J5A !A!
+
J5+ !A
J5A !(A)!
=
J5+ ! J5A / J5+ !A
J5A !A!
ยจ ๐ถJ5+
A
+ ๐ถJ5+
A5+
=
J5+ ! J5A / J5+ !A
J5A !A!
=
J5+ ! J5A/A
J5A !A!
=
J5+ ! J
J5A !A!
=
J !
J5A !A!
= ๐ถJ
A
ยจ So we can rewrite:
ยจ (2]). ๐‘† 0, ๐‘ = โˆ‘]&48
]&k
6
%
[
]5+ !
(]5+5]&)!(]&)!
+
]5+ !
]5+5(]&5+) !(]&5+)!
โˆ’ 2 .
]5+ !
]5]& !(]&5+)!
]
138
Luc_Faucheux_2020
Some more concepts about time โ€“ first return XIV
ยจ (2]). ๐‘† 0, ๐‘ = โˆ‘]&48
]&k
6
%
[
]5+ !
(]5+5]&)!(]&)!
+
]5+ !
]5]&) !(]&5+)!
โˆ’ 2 .
]5+ !
]5]& !(]&5+)!
]
ยจ (2]). ๐‘† 0, ๐‘ = โˆ‘]&48
]&k
6
%
[๐ถ]5+
]&
+ ๐ถ]5+
]&5+
โˆ’ 2 . ๐ถ]5+
]&5+
]
ยจ (2]). ๐‘† 0, ๐‘ = โˆ‘]&48
]&k
6
%
[๐ถ]5+
]&
+๐ถ]5+
]&5+
]
ยจ In the above sum, terms cancel each other out up until the last one
ยจ (2]). ๐‘† 0, ๐‘ = ๐ถ]5+
6
%
5+
ยจ We now make use of the Stirling approximation : ๐‘! ~ 2๐œ‹๐‘( โ„]
?)]~ 2๐œ‹๐‘exp(๐‘๐‘™๐‘›๐‘ โˆ’ ๐‘)
139
Luc_Faucheux_2020
Some more concepts about time โ€“ first return XV
ยจ (2]). ๐‘† 0, ๐‘ = 1 + โˆ‘]&4+
]&k
6
%
[
]5+ !
(]5+5]&)!(]&)!
โˆ’
]5+ !
]5]& !(]&5+)!
]
140
Luc_Faucheux_2020
Another look at first passage time
ยจ Letโ€™s look at the problem in a slightly different fashion
ยจ The underlying Brownian motion ๐‘‹ ๐‘ก follows โ„Ž ๐‘ฅ, ๐‘ก =
+
,%-%7
. exp(
5(35l7)%
,-%7
)
ยจ The normalization is: โˆซ3456
34/6
โ„Ž ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ = 1
ยจ โ„Ž ๐‘ฅ, ๐‘ก follows the diffusion equation:
G
G7
โ„Ž ๐‘ฅ, ๐‘ก =
-%
,
G%
G3% โ„Ž ๐‘ฅ, ๐‘ก โˆ’ ๐œ‡.
G
G3
โ„Ž ๐‘ฅ, ๐‘ก
ยจ The corresponding SDE is : ๐‘‘๐‘‹ = ๐œ‡. ๐‘‘๐‘ก + ๐œŽ. ๐‘‘๐‘Š
ยจ In general, we will look at SDE <-> PDE but the simple mapping is:
ยจ ๐‘‘๐‘‹ = ๐‘Ž. ๐‘‘๐‘ก + ๐‘. ๐‘‘๐‘Š
ยจ
G
G7
โ„Ž ๐‘ฅ, ๐‘ก = โˆ’
G
G3
[๐ด. โ„Ž ๐‘ฅ, ๐‘ก โˆ’
G
G3
(๐ต. โ„Ž ๐‘ฅ, ๐‘ก )] with ๐ด = ๐‘Ž and ๐ต =
+
,
. ๐‘,
141
Luc_Faucheux_2020
Another look at first passage time - II
ยจ Without any drift for now, this reads:
ยจ The underlying Brownian motion ๐‘‹ ๐‘ก follows โ„Ž ๐‘ฅ, ๐‘ก =
+
,%-%7
. exp(
53%
,-%7
)
ยจ The normalization is: โˆซ3456
34/6
โ„Ž ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ = 1
ยจ โ„Ž ๐‘ฅ, ๐‘ก follows the diffusion equation:
G
G7
โ„Ž ๐‘ฅ, ๐‘ก =
-%
,
G%
G3% โ„Ž ๐‘ฅ, ๐‘ก
ยจ The corresponding SDE is : ๐‘‘๐‘‹ = ๐œŽ. ๐‘‘๐‘Š
ยจ In general, we will look at SDE <-> PDE but the simple mapping is:
ยจ ๐‘‘๐‘‹ = ๐‘. ๐‘‘๐‘Š
ยจ
G
G7
โ„Ž ๐‘ฅ, ๐‘ก =
G
G3
[
G
G3
(๐ต. โ„Ž ๐‘ฅ, ๐‘ก )] with ๐ต =
+
,
. ๐‘,
142
Luc_Faucheux_2020
Another look at first passage time - III
ยจ The diffusion equation is a linear equation
ยจ Any linear combination of solutions will itself be a solution
ยจ We can identify a spanning set of solutions:
ยจ The underlying Brownian motion ๐‘‹ ๐‘ก follows โ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก =
+
,%-%7
. exp(
5(3537)%
,-%7
)
ยจ The normalization is: โˆซ3456
34/6
โ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก . ๐‘‘๐‘ฅ = 1
ยจ And the initial starting point: โ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก = 0 = ๐›ฟ(๐‘ฅ โˆ’ ๐‘ฅ8)
ยจ Letโ€™s consider what is sometimes referred to as the โ€œcliffโ€ problem: a random walker
diffuses from its initial position ๐‘ฅ8 up until it meets the โ€œcliffโ€ at position ๐‘ฅ = ๐‘š, and then
โ€œfalls off the cliffโ€ and disappears.
ยจ So we are looking for a solution โ€ขโ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก that obeys the diffusion equation in the interval
] โˆ’ โˆž, ๐‘š]
ยจ For all time we need to verify: โ€ขโ„Ž ๐‘ฅ = ๐‘š, ๐‘ฅ8, ๐‘ก = 0
143
Luc_Faucheux_2020
Another look at first passage time - IV
ยจ Note that the conservation of probability โˆซ3456
34/6 โ€ขโ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก . ๐‘‘๐‘ฅ = 1 obviously will not apply
ยจ If anything we will define the survival probability, which is the probability that the random
walker did not yet fall off the cliff
ยจ ๐‘†๐‘… ๐‘ก = โˆซ3456
34Z โ€ขโ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก . ๐‘‘๐‘ฅ
ยจ This probability is the probability that the random walker did not reach the level ๐‘ฅ = ๐‘š up
until the time ๐‘ก
ยจ And so the probability that the random walker would have met the level ๐‘ฅ = ๐‘š within the
time interval [0, ๐‘ก] is 1 โˆ’ ๐‘†๐‘… ๐‘ก = ๐‘ƒ ๐œ ๐‘š, ๐‘ก โ‰ค ๐‘ก in the previous notation
ยจ So now, either we know ๐‘ƒ ๐œ ๐‘š, ๐‘ก โ‰ค ๐‘ก and we can calculate the Survival Probability ๐‘†๐‘… ๐‘ก
ยจ Conversely, if we can find an easy way to calculate ๐‘†๐‘… ๐‘ก we know ๐‘ƒ ๐œ ๐‘š, ๐‘ก โ‰ค ๐‘ก
144
Luc_Faucheux_2020
Another look at first passage time - V
ยจ Note that the two processes are NOT the same.
ยจ In the case of the cliff problem, the density is not conserved and the random walker is
โ€œtaken outโ€ as soon as it hits the level ๐‘ฅ = ๐‘š
ยจ In the case of the regular diffusion we looked at, the process is not impacted when crossing
the level ๐‘ฅ = ๐‘š
ยจ However, for the purpose of calculating the First Passage Probability ๐‘ƒ ๐œ ๐‘š, ๐‘ก โ‰ค ๐‘ก we can
use either
ยจ So letโ€™s see if we can find an easy solution to the cliff problem
ยจ Remember that the diffusion equation is linear, so if we could find a linear combination of
Gaussians that matches โ€ขโ„Ž ๐‘ฅ = ๐‘š, ๐‘ฅ8, ๐‘ก = 0, we would have at least one solution to work
with (maybe not unique, but at least something we could use)
145
Luc_Faucheux_2020
Another look at first passage time โ€“ VI โ€“ Image method
ยจ Letโ€™s look at:
ยจ โ€ขโ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก =
+
,%-%7
. exp
5 3537
%
,-%7
โˆ’
+
,%-%7
. exp(
5(35(,Z537))%
,-%7
)
ยจ โ€ขโ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก = โ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก โˆ’ โ„Ž ๐‘ฅ, (2๐‘š โˆ’ ๐‘ฅ8), ๐‘ก
ยจ Note that we see the beautiful symmetry principle at work again here
ยจ โ€ขโ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก follows the diffusion equation
ยจ โ€ขโ„Ž ๐‘ฅ = ๐‘š, ๐‘ฅ8, ๐‘ก = 0 for all time ๐‘ก
ยจ We are in business
ยจ ๐‘†๐‘… ๐‘ก = โˆซ3456
34Z โ€ขโ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก . ๐‘‘๐‘ฅ = โˆซ3456
34Z
โ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก . ๐‘‘๐‘ฅ โˆ’ โˆซ3456
34Z
โ„Ž ๐‘ฅ, (2๐‘š โˆ’ ๐‘ฅ8), ๐‘ก . ๐‘‘๐‘ฅ
ยจ We also have: โˆซ3456
34Z
โ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก . ๐‘‘๐‘ฅ = โˆซ3456
34Z537
โ„Ž ๐‘ฅ, ๐‘ฅ8 = 0, ๐‘ก . ๐‘‘๐‘ฅ
146
Luc_Faucheux_2020
Another look at first passage time - VII
ยจ ๐‘†๐‘… ๐‘ก = โˆซ3456
34Z
โ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก . ๐‘‘๐‘ฅ โˆ’ โˆซ3456
34Z
โ„Ž ๐‘ฅ, (2๐‘š โˆ’ ๐‘ฅ8), ๐‘ก . ๐‘‘๐‘ฅ
ยจ ๐‘†๐‘… ๐‘ก = โˆซ3456
34Z537
โ„Ž ๐‘ฅ, 0, ๐‘ก . ๐‘‘๐‘ฅ โˆ’ โˆซ3456
34Z5(,Z537)
โ„Ž ๐‘ฅ, 0, ๐‘ก . ๐‘‘๐‘ฅ
ยจ ๐‘†๐‘… ๐‘ก = โˆซ3456
34Z537
โ„Ž ๐‘ฅ, 0, ๐‘ก . ๐‘‘๐‘ฅ โˆ’ โˆซ3456
34375Z
โ„Ž ๐‘ฅ, 0, ๐‘ก . ๐‘‘๐‘ฅ
ยจ ๐‘†๐‘… ๐‘ก = โˆซ34375Z
34Z537
โ„Ž ๐‘ฅ, 0, ๐‘ก . ๐‘‘๐‘ฅ = โˆซ34375Z
34Z537 +
,%-%7
. exp
53%
,-%7
. ๐‘‘๐‘ฅ
ยจ ๐‘†๐‘… ๐‘ก = โˆซ
34
47&2
%3%,
34
2&47
%3%, +
%
. exp โˆ’๐œ‰, . ๐‘‘๐œ‰ with ๐œ‰ =
3
,-%7
and ๐‘‘๐‘ฅ = 2๐œŽ, ๐‘ก. ๐‘‘๐œ‰
ยจ ๐‘†๐‘… ๐‘ก = erf
Z537
,-%7
= erf(
Z537
KU7
)
ยจ Using the diffusion notation, ๐ท =
-%
,
147
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier
Lf 2020 bachelier

More Related Content

What's hot

Chapter 5:Risk and Return
Chapter 5:Risk and ReturnChapter 5:Risk and Return
Chapter 5:Risk and ReturnInocentshuja Ahmad
ย 
The Cost of Capital, Corporation Finance, and the Theory of Investment: Comments
The Cost of Capital, Corporation Finance, and the Theory of Investment: CommentsThe Cost of Capital, Corporation Finance, and the Theory of Investment: Comments
The Cost of Capital, Corporation Finance, and the Theory of Investment: CommentsSudarshan Kadariya
ย 
Notes for Volatility Modeling lectures, Antoine Savine at Copenhagen University
Notes for Volatility Modeling lectures, Antoine Savine at Copenhagen UniversityNotes for Volatility Modeling lectures, Antoine Savine at Copenhagen University
Notes for Volatility Modeling lectures, Antoine Savine at Copenhagen UniversityAntoine Savine
ย 
Chap 12 Cours ร  Terme Et Futures Transparents
Chap 12 Cours ร  Terme Et Futures   TransparentsChap 12 Cours ร  Terme Et Futures   Transparents
Chap 12 Cours ร  Terme Et Futures TransparentsLouis Pinto
ย 
Intraday liquidity risk โ€“ are you prepared?
Intraday liquidity risk โ€“ are you prepared?Intraday liquidity risk โ€“ are you prepared?
Intraday liquidity risk โ€“ are you prepared?EY
ย 
Prospective Analysis.ppt
Prospective Analysis.pptProspective Analysis.ppt
Prospective Analysis.pptEnJoe1
ย 
Portfolio Risk Management And Suitability PowerPoint Presentation Slides
Portfolio Risk Management And Suitability PowerPoint Presentation Slides Portfolio Risk Management And Suitability PowerPoint Presentation Slides
Portfolio Risk Management And Suitability PowerPoint Presentation Slides SlideTeam
ย 
Introduction to Interest Rate Models by Antoine Savine
Introduction to Interest Rate Models by Antoine SavineIntroduction to Interest Rate Models by Antoine Savine
Introduction to Interest Rate Models by Antoine SavineAntoine Savine
ย 
DIY Quant Strategies on Quantopian
DIY Quant Strategies on QuantopianDIY Quant Strategies on Quantopian
DIY Quant Strategies on QuantopianJess Stauth
ย 
Gestion des risques bancaires
Gestion des risques bancairesGestion des risques bancaires
Gestion des risques bancairesZouhair Aitelhaj
ย 
Le modรจle de Black Scholes
Le modรจle de Black ScholesLe modรจle de Black Scholes
Le modรจle de Black ScholesAmal Eljadiri
ย 
Performance evaluation & portfolio management
Performance evaluation & portfolio managementPerformance evaluation & portfolio management
Performance evaluation & portfolio managementQuantInsti
ย 
Efficient market hypothesis
Efficient market hypothesisEfficient market hypothesis
Efficient market hypothesisPawan Kawan
ย 
Le risque de taux et la gestion Actif/Passif
Le risque de taux et la gestion Actif/PassifLe risque de taux et la gestion Actif/Passif
Le risque de taux et la gestion Actif/Passifyouness chougrani
ย 
Credit scoring, l'octroi des cartes bancaires
Credit scoring, l'octroi des cartes bancairesCredit scoring, l'octroi des cartes bancaires
Credit scoring, l'octroi des cartes bancairesMarwen Allaguy
ย 
Introduction gestion des risques
Introduction gestion des risquesIntroduction gestion des risques
Introduction gestion des risquesJรฉrรฉmy Morvan
ย 
Cours de gestion de portefeuille et des risques Pr Falloul
Cours de gestion de portefeuille et des risques Pr Falloul Cours de gestion de portefeuille et des risques Pr Falloul
Cours de gestion de portefeuille et des risques Pr Falloul Professeur Falloul
ย 
Fundamentals of Market Risk Management by Dr. Emmanuel Moore ABOLO
Fundamentals of Market Risk Management by Dr. Emmanuel Moore ABOLOFundamentals of Market Risk Management by Dr. Emmanuel Moore ABOLO
Fundamentals of Market Risk Management by Dr. Emmanuel Moore ABOLODr. Emmanuel ABOLO, fica,fnimn,ficn,sirm
ย 
LC's Forex Trading System
LC's Forex Trading SystemLC's Forex Trading System
LC's Forex Trading Systemlcchong76
ย 

What's hot (20)

Chapter 5:Risk and Return
Chapter 5:Risk and ReturnChapter 5:Risk and Return
Chapter 5:Risk and Return
ย 
The Cost of Capital, Corporation Finance, and the Theory of Investment: Comments
The Cost of Capital, Corporation Finance, and the Theory of Investment: CommentsThe Cost of Capital, Corporation Finance, and the Theory of Investment: Comments
The Cost of Capital, Corporation Finance, and the Theory of Investment: Comments
ย 
Notes for Volatility Modeling lectures, Antoine Savine at Copenhagen University
Notes for Volatility Modeling lectures, Antoine Savine at Copenhagen UniversityNotes for Volatility Modeling lectures, Antoine Savine at Copenhagen University
Notes for Volatility Modeling lectures, Antoine Savine at Copenhagen University
ย 
Chap 12 Cours ร  Terme Et Futures Transparents
Chap 12 Cours ร  Terme Et Futures   TransparentsChap 12 Cours ร  Terme Et Futures   Transparents
Chap 12 Cours ร  Terme Et Futures Transparents
ย 
Intraday liquidity risk โ€“ are you prepared?
Intraday liquidity risk โ€“ are you prepared?Intraday liquidity risk โ€“ are you prepared?
Intraday liquidity risk โ€“ are you prepared?
ย 
Prospective Analysis.ppt
Prospective Analysis.pptProspective Analysis.ppt
Prospective Analysis.ppt
ย 
5 c du crรฉdit
5 c du crรฉdit5 c du crรฉdit
5 c du crรฉdit
ย 
Portfolio Risk Management And Suitability PowerPoint Presentation Slides
Portfolio Risk Management And Suitability PowerPoint Presentation Slides Portfolio Risk Management And Suitability PowerPoint Presentation Slides
Portfolio Risk Management And Suitability PowerPoint Presentation Slides
ย 
Introduction to Interest Rate Models by Antoine Savine
Introduction to Interest Rate Models by Antoine SavineIntroduction to Interest Rate Models by Antoine Savine
Introduction to Interest Rate Models by Antoine Savine
ย 
DIY Quant Strategies on Quantopian
DIY Quant Strategies on QuantopianDIY Quant Strategies on Quantopian
DIY Quant Strategies on Quantopian
ย 
Gestion des risques bancaires
Gestion des risques bancairesGestion des risques bancaires
Gestion des risques bancaires
ย 
Le modรจle de Black Scholes
Le modรจle de Black ScholesLe modรจle de Black Scholes
Le modรจle de Black Scholes
ย 
Performance evaluation & portfolio management
Performance evaluation & portfolio managementPerformance evaluation & portfolio management
Performance evaluation & portfolio management
ย 
Efficient market hypothesis
Efficient market hypothesisEfficient market hypothesis
Efficient market hypothesis
ย 
Le risque de taux et la gestion Actif/Passif
Le risque de taux et la gestion Actif/PassifLe risque de taux et la gestion Actif/Passif
Le risque de taux et la gestion Actif/Passif
ย 
Credit scoring, l'octroi des cartes bancaires
Credit scoring, l'octroi des cartes bancairesCredit scoring, l'octroi des cartes bancaires
Credit scoring, l'octroi des cartes bancaires
ย 
Introduction gestion des risques
Introduction gestion des risquesIntroduction gestion des risques
Introduction gestion des risques
ย 
Cours de gestion de portefeuille et des risques Pr Falloul
Cours de gestion de portefeuille et des risques Pr Falloul Cours de gestion de portefeuille et des risques Pr Falloul
Cours de gestion de portefeuille et des risques Pr Falloul
ย 
Fundamentals of Market Risk Management by Dr. Emmanuel Moore ABOLO
Fundamentals of Market Risk Management by Dr. Emmanuel Moore ABOLOFundamentals of Market Risk Management by Dr. Emmanuel Moore ABOLO
Fundamentals of Market Risk Management by Dr. Emmanuel Moore ABOLO
ย 
LC's Forex Trading System
LC's Forex Trading SystemLC's Forex Trading System
LC's Forex Trading System
ย 

Similar to Lf 2020 bachelier

Lf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-iLf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-iluc faucheux
ย 
Calc i derivatives
Calc i derivativesCalc i derivatives
Calc i derivativesViorica Tonu
ย 
A Note on the Generalization of the Mean Value Theorem
A Note on the Generalization of the Mean Value TheoremA Note on the Generalization of the Mean Value Theorem
A Note on the Generalization of the Mean Value Theoremijtsrd
ย 
Polynomials ( PDFDrive ).pdf
Polynomials ( PDFDrive ).pdfPolynomials ( PDFDrive ).pdf
Polynomials ( PDFDrive ).pdfMridul Dey
ย 
A gentle intruduction to category theory
A gentle intruduction to category theoryA gentle intruduction to category theory
A gentle intruduction to category theoryJeff Jampa
ย 
SESSION-12 PPT.pptx
SESSION-12 PPT.pptxSESSION-12 PPT.pptx
SESSION-12 PPT.pptxNaniSarath
ย 

Similar to Lf 2020 bachelier (10)

Abstract algebra i
Abstract algebra iAbstract algebra i
Abstract algebra i
ย 
Lf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-iLf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-i
ย 
Miller
MillerMiller
Miller
ย 
Calc i derivatives
Calc i derivativesCalc i derivatives
Calc i derivatives
ย 
A Note on the Generalization of the Mean Value Theorem
A Note on the Generalization of the Mean Value TheoremA Note on the Generalization of the Mean Value Theorem
A Note on the Generalization of the Mean Value Theorem
ย 
Polynomials ( PDFDrive ).pdf
Polynomials ( PDFDrive ).pdfPolynomials ( PDFDrive ).pdf
Polynomials ( PDFDrive ).pdf
ย 
Walras ref168
Walras ref168Walras ref168
Walras ref168
ย 
Advanced_Calculus
Advanced_CalculusAdvanced_Calculus
Advanced_Calculus
ย 
A gentle intruduction to category theory
A gentle intruduction to category theoryA gentle intruduction to category theory
A gentle intruduction to category theory
ย 
SESSION-12 PPT.pptx
SESSION-12 PPT.pptxSESSION-12 PPT.pptx
SESSION-12 PPT.pptx
ย 

More from luc faucheux

Marcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdfMarcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdfluc faucheux
ย 
Selection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdfSelection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdfluc faucheux
ย 
Binary_Potential.pdf
Binary_Potential.pdfBinary_Potential.pdf
Binary_Potential.pdfluc faucheux
ย 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdfluc faucheux
ย 
ConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdfConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdfluc faucheux
ย 
Optical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdfOptical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdfluc faucheux
ย 
Lf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-aLf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-aluc faucheux
ย 
Lf 2021 stochastic_calculus_ito-iii
Lf 2021 stochastic_calculus_ito-iiiLf 2021 stochastic_calculus_ito-iii
Lf 2021 stochastic_calculus_ito-iiiluc faucheux
ย 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101luc faucheux
ย 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101luc faucheux
ย 
Lf 2021 rates_viii_a
Lf 2021 rates_viii_aLf 2021 rates_viii_a
Lf 2021 rates_viii_aluc faucheux
ย 
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irmaLf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irmaluc faucheux
ย 
Lf 2021 rates_viii
Lf 2021 rates_viiiLf 2021 rates_viii
Lf 2021 rates_viiiluc faucheux
ย 
Lf 2021 rates_vii
Lf 2021 rates_viiLf 2021 rates_vii
Lf 2021 rates_viiluc faucheux
ย 
Lf 2021 rates_vi
Lf 2021 rates_viLf 2021 rates_vi
Lf 2021 rates_viluc faucheux
ย 
Lf 2021 rates_v_b2
Lf 2021 rates_v_b2Lf 2021 rates_v_b2
Lf 2021 rates_v_b2luc faucheux
ย 
Lf 2021 rates_v_a
Lf 2021 rates_v_aLf 2021 rates_v_a
Lf 2021 rates_v_aluc faucheux
ย 
Lf 2020 rates_v_a
Lf 2020 rates_v_aLf 2020 rates_v_a
Lf 2020 rates_v_aluc faucheux
ย 
Lf 2020 rates_iv
Lf 2020 rates_ivLf 2020 rates_iv
Lf 2020 rates_ivluc faucheux
ย 
Lf 2020 rates_iii
Lf 2020 rates_iiiLf 2020 rates_iii
Lf 2020 rates_iiiluc faucheux
ย 

More from luc faucheux (20)

Marcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdfMarcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdf
ย 
Selection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdfSelection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdf
ย 
Binary_Potential.pdf
Binary_Potential.pdfBinary_Potential.pdf
Binary_Potential.pdf
ย 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdf
ย 
ConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdfConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdf
ย 
Optical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdfOptical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdf
ย 
Lf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-aLf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-a
ย 
Lf 2021 stochastic_calculus_ito-iii
Lf 2021 stochastic_calculus_ito-iiiLf 2021 stochastic_calculus_ito-iii
Lf 2021 stochastic_calculus_ito-iii
ย 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101
ย 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101
ย 
Lf 2021 rates_viii_a
Lf 2021 rates_viii_aLf 2021 rates_viii_a
Lf 2021 rates_viii_a
ย 
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irmaLf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
ย 
Lf 2021 rates_viii
Lf 2021 rates_viiiLf 2021 rates_viii
Lf 2021 rates_viii
ย 
Lf 2021 rates_vii
Lf 2021 rates_viiLf 2021 rates_vii
Lf 2021 rates_vii
ย 
Lf 2021 rates_vi
Lf 2021 rates_viLf 2021 rates_vi
Lf 2021 rates_vi
ย 
Lf 2021 rates_v_b2
Lf 2021 rates_v_b2Lf 2021 rates_v_b2
Lf 2021 rates_v_b2
ย 
Lf 2021 rates_v_a
Lf 2021 rates_v_aLf 2021 rates_v_a
Lf 2021 rates_v_a
ย 
Lf 2020 rates_v_a
Lf 2020 rates_v_aLf 2020 rates_v_a
Lf 2020 rates_v_a
ย 
Lf 2020 rates_iv
Lf 2020 rates_ivLf 2020 rates_iv
Lf 2020 rates_iv
ย 
Lf 2020 rates_iii
Lf 2020 rates_iiiLf 2020 rates_iii
Lf 2020 rates_iii
ย 

Recently uploaded

Top Rated Pune Call Girls Shikrapur โŸŸ 6297143586 โŸŸ Call Me For Genuine Sex S...
Top Rated  Pune Call Girls Shikrapur โŸŸ 6297143586 โŸŸ Call Me For Genuine Sex S...Top Rated  Pune Call Girls Shikrapur โŸŸ 6297143586 โŸŸ Call Me For Genuine Sex S...
Top Rated Pune Call Girls Shikrapur โŸŸ 6297143586 โŸŸ Call Me For Genuine Sex S...Call Girls in Nagpur High Profile
ย 
VIP Independent Call Girls in Andheri ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts...
VIP Independent Call Girls in Andheri ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts...VIP Independent Call Girls in Andheri ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts...
VIP Independent Call Girls in Andheri ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts...dipikadinghjn ( Why You Choose Us? ) Escorts
ย 
Bandra High Profile Sexy Call Girls,9833754194-Khar Road Speciality Call Girl...
Bandra High Profile Sexy Call Girls,9833754194-Khar Road Speciality Call Girl...Bandra High Profile Sexy Call Girls,9833754194-Khar Road Speciality Call Girl...
Bandra High Profile Sexy Call Girls,9833754194-Khar Road Speciality Call Girl...priyasharma62062
ย 
7 tips trading Deriv Accumulator Options
7 tips trading Deriv Accumulator Options7 tips trading Deriv Accumulator Options
7 tips trading Deriv Accumulator OptionsVince Stanzione
ย 
Call Girls Service Pune โ‚น7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...
Call Girls Service Pune โ‚น7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...Call Girls Service Pune โ‚น7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...
Call Girls Service Pune โ‚น7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...roshnidevijkn ( Why You Choose Us? ) Escorts
ย 
falcon-invoice-discounting-unlocking-prime-investment-opportunities
falcon-invoice-discounting-unlocking-prime-investment-opportunitiesfalcon-invoice-discounting-unlocking-prime-investment-opportunities
falcon-invoice-discounting-unlocking-prime-investment-opportunitiesFalcon Invoice Discounting
ย 
CBD Belapur Expensive Housewife Call Girls Number-๐Ÿ“ž๐Ÿ“ž9833754194 No 1 Vipp HIgh...
CBD Belapur Expensive Housewife Call Girls Number-๐Ÿ“ž๐Ÿ“ž9833754194 No 1 Vipp HIgh...CBD Belapur Expensive Housewife Call Girls Number-๐Ÿ“ž๐Ÿ“ž9833754194 No 1 Vipp HIgh...
CBD Belapur Expensive Housewife Call Girls Number-๐Ÿ“ž๐Ÿ“ž9833754194 No 1 Vipp HIgh...priyasharma62062
ย 
Vasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbai
Vasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbaiVasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbai
Vasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbaipriyasharma62062
ย 
Call Girls in New Friends Colony Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escort...
Call Girls in New Friends Colony Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escort...Call Girls in New Friends Colony Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escort...
Call Girls in New Friends Colony Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escort...Delhi Call girls
ย 
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
ย 
VIP Independent Call Girls in Bandra West ๐ŸŒน 9920725232 ( Call Me ) Mumbai Esc...
VIP Independent Call Girls in Bandra West ๐ŸŒน 9920725232 ( Call Me ) Mumbai Esc...VIP Independent Call Girls in Bandra West ๐ŸŒน 9920725232 ( Call Me ) Mumbai Esc...
VIP Independent Call Girls in Bandra West ๐ŸŒน 9920725232 ( Call Me ) Mumbai Esc...dipikadinghjn ( Why You Choose Us? ) Escorts
ย 
call girls in Sant Nagar (DELHI) ๐Ÿ” >เผ’9953056974 ๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Sant Nagar (DELHI) ๐Ÿ” >เผ’9953056974 ๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Sant Nagar (DELHI) ๐Ÿ” >เผ’9953056974 ๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Sant Nagar (DELHI) ๐Ÿ” >เผ’9953056974 ๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Stock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdfStock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdfMichael Silva
ย 
Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...
Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...
Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...priyasharma62062
ย 
VIP Independent Call Girls in Mumbai ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...
VIP Independent Call Girls in Mumbai ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...VIP Independent Call Girls in Mumbai ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...
VIP Independent Call Girls in Mumbai ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...dipikadinghjn ( Why You Choose Us? ) Escorts
ย 
Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...
Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...
Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...priyasharma62062
ย 
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
ย 
VIP Independent Call Girls in Taloja ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...
VIP Independent Call Girls in Taloja ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...VIP Independent Call Girls in Taloja ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...
VIP Independent Call Girls in Taloja ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...dipikadinghjn ( Why You Choose Us? ) Escorts
ย 

Recently uploaded (20)

Top Rated Pune Call Girls Shikrapur โŸŸ 6297143586 โŸŸ Call Me For Genuine Sex S...
Top Rated  Pune Call Girls Shikrapur โŸŸ 6297143586 โŸŸ Call Me For Genuine Sex S...Top Rated  Pune Call Girls Shikrapur โŸŸ 6297143586 โŸŸ Call Me For Genuine Sex S...
Top Rated Pune Call Girls Shikrapur โŸŸ 6297143586 โŸŸ Call Me For Genuine Sex S...
ย 
VIP Independent Call Girls in Andheri ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts...
VIP Independent Call Girls in Andheri ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts...VIP Independent Call Girls in Andheri ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts...
VIP Independent Call Girls in Andheri ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts...
ย 
Bandra High Profile Sexy Call Girls,9833754194-Khar Road Speciality Call Girl...
Bandra High Profile Sexy Call Girls,9833754194-Khar Road Speciality Call Girl...Bandra High Profile Sexy Call Girls,9833754194-Khar Road Speciality Call Girl...
Bandra High Profile Sexy Call Girls,9833754194-Khar Road Speciality Call Girl...
ย 
7 tips trading Deriv Accumulator Options
7 tips trading Deriv Accumulator Options7 tips trading Deriv Accumulator Options
7 tips trading Deriv Accumulator Options
ย 
Call Girls Service Pune โ‚น7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...
Call Girls Service Pune โ‚น7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...Call Girls Service Pune โ‚น7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...
Call Girls Service Pune โ‚น7.5k Pick Up & Drop With Cash Payment 9352852248 Cal...
ย 
falcon-invoice-discounting-unlocking-prime-investment-opportunities
falcon-invoice-discounting-unlocking-prime-investment-opportunitiesfalcon-invoice-discounting-unlocking-prime-investment-opportunities
falcon-invoice-discounting-unlocking-prime-investment-opportunities
ย 
CBD Belapur Expensive Housewife Call Girls Number-๐Ÿ“ž๐Ÿ“ž9833754194 No 1 Vipp HIgh...
CBD Belapur Expensive Housewife Call Girls Number-๐Ÿ“ž๐Ÿ“ž9833754194 No 1 Vipp HIgh...CBD Belapur Expensive Housewife Call Girls Number-๐Ÿ“ž๐Ÿ“ž9833754194 No 1 Vipp HIgh...
CBD Belapur Expensive Housewife Call Girls Number-๐Ÿ“ž๐Ÿ“ž9833754194 No 1 Vipp HIgh...
ย 
Call Girls in New Ashok Nagar, (delhi) call me [9953056974] escort service 24X7
Call Girls in New Ashok Nagar, (delhi) call me [9953056974] escort service 24X7Call Girls in New Ashok Nagar, (delhi) call me [9953056974] escort service 24X7
Call Girls in New Ashok Nagar, (delhi) call me [9953056974] escort service 24X7
ย 
Vasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbai
Vasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbaiVasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbai
Vasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbai
ย 
Call Girls in New Friends Colony Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escort...
Call Girls in New Friends Colony Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escort...Call Girls in New Friends Colony Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escort...
Call Girls in New Friends Colony Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escort...
ย 
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...
ย 
VIP Independent Call Girls in Bandra West ๐ŸŒน 9920725232 ( Call Me ) Mumbai Esc...
VIP Independent Call Girls in Bandra West ๐ŸŒน 9920725232 ( Call Me ) Mumbai Esc...VIP Independent Call Girls in Bandra West ๐ŸŒน 9920725232 ( Call Me ) Mumbai Esc...
VIP Independent Call Girls in Bandra West ๐ŸŒน 9920725232 ( Call Me ) Mumbai Esc...
ย 
call girls in Sant Nagar (DELHI) ๐Ÿ” >เผ’9953056974 ๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Sant Nagar (DELHI) ๐Ÿ” >เผ’9953056974 ๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Sant Nagar (DELHI) ๐Ÿ” >เผ’9953056974 ๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Sant Nagar (DELHI) ๐Ÿ” >เผ’9953056974 ๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
ย 
(INDIRA) Call Girl Srinagar Call Now 8617697112 Srinagar Escorts 24x7
(INDIRA) Call Girl Srinagar Call Now 8617697112 Srinagar Escorts 24x7(INDIRA) Call Girl Srinagar Call Now 8617697112 Srinagar Escorts 24x7
(INDIRA) Call Girl Srinagar Call Now 8617697112 Srinagar Escorts 24x7
ย 
Stock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdfStock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdf
ย 
Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...
Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...
Kopar Khairane Russian Call Girls Number-9833754194-Navi Mumbai Fantastic Unl...
ย 
VIP Independent Call Girls in Mumbai ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...
VIP Independent Call Girls in Mumbai ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...VIP Independent Call Girls in Mumbai ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...
VIP Independent Call Girls in Mumbai ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...
ย 
Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...
Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...
Navi Mumbai Cooperetive Housewife Call Girls-9833754194-Natural Panvel Enjoye...
ย 
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Koregaon Park Call Me 7737669865 Budget Friendly No Advance Booking
ย 
VIP Independent Call Girls in Taloja ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...
VIP Independent Call Girls in Taloja ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...VIP Independent Call Girls in Taloja ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...
VIP Independent Call Girls in Taloja ๐ŸŒน 9920725232 ( Call Me ) Mumbai Escorts ...
ย 

Lf 2020 bachelier

  • 2. Luc_Faucheux_2020 A quick summary ยจ We are mostly using the book โ€œLouis Bachelierโ€™s Theory of Speculationโ€, Mark Davis and Alison Etheridge ยจ We use it as a starting point to explore some properties of Brownian motion, Gaussian processes and option pricing concepts ยจ It is trying to be as rigorous as possible without losing track of being pragmatic ยจ Those notes are trying to offer you an overview of some of the concepts around option mathematics, and allow you to be a reference , and an introduction to some of the methods and sometimes โ€œtricksโ€ that end up being useful ยจ Those notes tend to also be โ€œnon-linearโ€, meaning I will sometimes use a specific page from the Bachelier book as a starting point to muse around Gaussian processes and option pricing theory, hence the rather disorganized structure. I found out usually that at least for me this is how I learn, by using a starting point and checking โ€œwhat-ifsโ€ and โ€œwhat-notsโ€ around it. 2
  • 3. Luc_Faucheux_2020 Many disclaimers and apologies ยจ Apologies for the lack of, or incomplete references. This is still a work in progress, and I would welcome any comment, or kind readers pointing out omissions and glaring mistakes ยจ I have tried to keep consistent notations throughout those notes. It is somewhat impossible, because keeping with Bachelierโ€™s original notations is not possible with any conventional notations we see in recent textbooks, so again many apologies ยจ The structure of those notes is somewhat โ€œfree-flowingโ€, as they originated from reading the original thesis, and going off on a tangent, writing down some notes or derivations, then putting those down in Powerpoint ยจ Apologies for the Powerpoint format, it is a result of working in Finance for too long, even though I have to say that I have learnt to appreciate the PowerPoint Equation Editor ยจ In many ways, those notes are nothing more than a rather pedestrian derivations in many pages of what Bachelier did in a line or two, but they also present what I hope is a rather extensive โ€œbag of tricksโ€ that one need to have handy when dealing with option theories. ยจ Pages numbers usually refer the ones in the Davis & Etheridge book, but I am not to the point where I can produce a rigorous index or references list 3
  • 5. Luc_Faucheux_2020 Bachelierโ€™s thesis : March 29th, 1900 ยจ Louis Bachelier defended his Ph.D. thesis in front of Paul Appell, Henri Poincarre and Joseph Boussinesq, a formidable trio of โ€œmousquetairesโ€. ยจ It is also quite remarkable that the โ€œsecond oral presentationโ€ that Bachelier had to do was on the matter of the โ€œResistance of a sphere in a liquidโ€ under Boussinesq supervision, 5 years before the seminal paper by Einstein that relates the thermal fluctuations to the viscous dissipation (a precursor of the fluctuation-dissipation theorem) through the diffusion constant: ๐ท = !!.# $%&' , where ๐‘‡is here the temperature, ๐‘… the radius of the sphere, the fluid viscosity ๐œ‚ and ๐‘˜( is the famous Boltzmann constant. ยจ So the first part of Bachelier thesis dealt with stochastic processes in Finance ยจ The second part dealt with stochastic processes in Physics 5
  • 6. Luc_Faucheux_2020 A few humbling examples ยจ I am using the pages of the Davis and Etheridge book ยจ In page 16, Bachelier fully describes contango and backwardation ยจ On page 34, Bachelier works out the continuous limit of a binomial process through the Stirling formula ยจ On page 40, Bachelier derives the heat equation (Fourier equation) through a Taylor expansion of the probability flow ยจ On page 44, Bachelier essentially derives the now celebrated Dupire formula (1994) ยจ On page 45, Bachelier derives the now common proxy for at-the-money options ยจ On page 66, Bachelier uses the Reflection principle to recover one of the most intriguing and beautiful property of a Brownian motion: The probability that a price will be attained or exceeded at time t is half the probability that the price will be attained or exceeded during the interval of time up to t. 6
  • 7. Luc_Faucheux_2020 A few humbling examples - II ยจ On page 70, Bachelier looks at some properties around first passage time, and shows that the expected value is infinite (a version of the Doob paradox of 1948) ยจ On page 73, Bachelier uses the method of images from Lord Kelvin, essentially the backbone for valuing simple barrier options (Carr, Reiner, Rubinstein, Haug) from the 1990 ยจ The examples are too numerous, and I would not do justice to the way it is presented in the David and Etheridge book, especially Chapter III 7
  • 9. Luc_Faucheux_2020 Rates have been negative for a while 9
  • 10. Luc_Faucheux_2020 Also spread have also been negative for a while ยจ Spread option pricing models allow for spreads (difference between two indices) to be negative. ยจ One of the most infamous was the curve inversion in June 2008 in Europe between the 2 year swap and the 30 year swap (units are in % on the right scale) 10
  • 11. Luc_Faucheux_2020 Black-Sholes does not allow for negative prices ยจ The lognormal distribution only allows for positive asset prices. ยจ The Normal distribution allows for negative prices, hence when Black-Sholes was developed in the context of stocks and bonds, the geometric Brownian motion (lognormal) was favored. ยจ Also it offered the advantage to lend itself nicely to change of numeraires, as the inverse of a geometric process, powers, ratio and products will also be geometric. It does however, because it is a non-linear function of a Brownian motion, require the full fledged Ito calculus and Ito lemma (1951) ยจ In the 1990s mostly out of Japan in the rate space, people started hitting the limits of Lognormal models. The easy way out of it was shifted-lognormal implementations, which essentially translate the variable ยจ Just for completeness, I have included in the next slides the closed forms for Lognormal, Normal and shifted lognormal (setting to 0 the rates, cost of carry, dividends,..) in order to preserve the essence of the formula. Also of interest are the incremental PL in a Taylor expansion and the Vega scaling (Greeks normalized to Vega), quite a crucial point when trying to capture the impact of stochastic volatilities 11
  • 12. Luc_Faucheux_2020 12 Some Equations (Lognormal Black-Scholes) รฒยฅ- - = -= += -= x dexN Tdd T T KFLn d dNKdNFTKFC x p s s s s x .. 2 1 )( 2 1)( )(.)(.),,,( ) 2 1 ( 12 1 21 2
  • 13. Luc_Faucheux_2020 13 Greeks and Scaling in the Lognormal Model Greeks Definition Black formula Units Incremental P/L Vega scaling Delta F C ยถ ยถ =D )( 1dN ($/bp) )( FdD Gamma 2 2 F C ยถ ยถ =g )(' 1 1dN TFs ($/bp/bp) 2 )( 2 1 Fdg TF s2 1 Theta T C ยถ ยถ =Q )(' 2 2dN T TKs ($/day) )( TdQ T2 s Vega sยถ ยถ = C Vega )(' 2dNTK ($/%) )(dsVega 1 Vanna sยถยถ ยถ = F C Vanna 2 )('' 2dN F K s ($/%/bp) ))(( dsdFVanna TF d s 2- Volga 2 2 sยถ ยถ = C Volga )('' 2 1 dNTK d s - ($/%/%) 2 )( 2 1 dsVolga s 21dd
  • 15. Luc_Faucheux_2020 15 Greeks and Scaling in the Normal Model Greeks Definition Black formula Units Incremental P/L Vega scaling Delta F C ยถ ยถ =D )(dN ($/bp) )( FdD Gamma 2 2 F C ยถ ยถ =g )(' 1 dN TNs ($/bp/bp) 2 )( 2 1 Fdg TNs 1 Theta T C ยถ ยถ =Q )(' 2 dN T TNs ($/day) )( TdQ T N 2 s Vega N C Vega sยถ ยถ = )(' dNT ($/%) )( NVega ds 1 Vanna NF C Vanna sยถยถ ยถ = 2 )('' 1 dN Ns ($/%/bp) ))(( NFVanna dsd T d Ns - Volga 2 2 N C Volga sยถ ยถ = )('' dNT d Ns - ($/%/%) 2 )( 2 1 NVolga ds N d s 2
  • 16. Luc_Faucheux_2020 Shifted Lognormal Model ยจ Shifted Lognormal model with shift ๐›ฝ: ยจ ๐ถ ๐น, ๐พ, ๐‘‡, ๐œŽ)* = ๐น. ๐‘ ๐‘‘+ โˆ’ ๐พ. ๐‘(๐‘‘,) ยจ ๐‘‘+ = + -"# # ๐ฟ๐‘›( ./0 1/0 ) + + , ๐œŽ)* ๐‘‡ ยจ ๐‘‘, = ๐‘‘+ โˆ’ ๐œŽ)* ๐‘‡ 16
  • 17. Luc_Faucheux_2020 Greeks and Scaling in the shifted Lognormal Model 17 Greeks Definition Black formula Units Incremental P/L Vega scaling Delta ($/bp) Gamma ($/bp/bp) Theta ($/day) Vega ($/%) 1 Vanna ($/%/bp) Volga ($/%/%) F C ยถ ยถ =D )( 1dN )( FdD 2 2 F C ยถ ยถ =g TF dN Ssb )( )(' 1 + 2 )( 2 1 Fdg 2 )( 11 bs +FTS T C ยถ ยถ =Q )(' 2 )( 2dN T TK Ssb+ )( TdQ T S 2 s S C Vega sยถ ยถ = )(')( 2dNTK b+ )( SVega ds SF C Vanna sยถยถ ยถ = 2 )('' 1 )( )( 2dN F K Ssb b + + ))(( SFVanna dsd TF d Ssb 1 )( 2 + - 2 2 S C Volga sยถ ยถ = )('')( 2 1 dNTK d S b s + - 2 )( 2 1 SVolga ds S dd s 21
  • 18. Luc_Faucheux_2020 The Ph.D. thesis of Louis Bachelier ยจ Reading the original thesis (both in French if you can and the excellent translation by Mark Davis and Alison Etheridge) is humbling. ยจ Without a strong well-developed theory of stochastic calculus (Ito lemma) that only came about in the 1960s or so ยจ Without a strong theoretical footing of what is a numeraire and how to price a derivative in the risk-neutral probability associated to that numeraire (Pliska 1980 or so) ยจ Without yet the strong connection between PDE (Partial Differential Equations) and SDE (Stochastic Differential Equations) that really came about from the Feynman-Kac formula (1950 roughly) ยจ Louis Bachelier managed to not only built a theory of option pricing that is nowadays coming back in fashion with a vengeance, but perusing through the rather short thesis, one cannot but be amazed at the breadth of his genius, but also at his attention to details. Bachelier at times go through numerical examples with the same precision and clarity of thoughts that he displays in the other more theoretical parts of his thesis. 18
  • 19. Luc_Faucheux_2020 De lโ€™equation de Kolmogorov a une solution Gaussienne 19
  • 20. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ is the probability that the price is in ๐‘ฅ, ๐‘ฅ + ๐‘‘๐‘ฅ at time ๐‘ก ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก+ . ๐‘ƒ ๐‘ง โˆ’ ๐‘ฅ, ๐‘ก, โˆ’ ๐‘ก+ . ๐‘‘๐‘ฅ. ๐‘‘๐‘ง is the probability that the price is (๐‘ฅ, ๐‘ก+) and (๐‘ง, ๐‘ก,) ยจ ๐‘ƒ ๐‘ง, ๐‘ก,|๐‘ฅ, ๐‘ก+ = ๐‘ƒ ๐‘ง โˆ’ ๐‘ฅ, ๐‘ก, โˆ’ ๐‘ก+ ยจ Note that just writing something like the above implies lot of things: ยจ Strong Markov property ยจ The price process is memoryless ยจ The price process is homogeneous in time and space 20
  • 21. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) - b ยจ What it is saying if you break it down is: ยจ There must be a function ๐‘ƒ ๐‘ฅ, ๐‘ก that is the probability density to find the price (particle, random walker, stochastic process) at ๐‘ฅ at time ๐‘ก ยจ This assumes that it is a function, that we can find, and one which we can perform usual calculus (not completely obvious) ยจ It is then saying that before reaching the point (๐‘ฅ, ๐‘ก) the price might have reached another level at some time before (rather obvious, but again has some mathematical consequences) ยจ Bachelier for some typographical reasons used ๐‘ฅ and ๐‘ง, which we will stick to in some of the following slides, but for ease of notations here: ยจ The probability density to reach ๐‘ฅ, ๐‘ก is ๐‘ƒ ๐‘ฅ, ๐‘ก ยจ The probability density to reach ๐‘ฅโ€ฒ, ๐‘กโ€ฒ is ALSO the same function ๐‘ƒ ๐‘ฅโ€ฒ, ๐‘กโ€ฒ ยจ The conditional probability density to go from ๐‘ฅโ€ฒ, ๐‘กโ€ฒ to ๐‘ฅ, ๐‘ก is ALSO assumed to be some function that we will note ๐‘ƒ๐‘… ๐‘ฅ2, ๐‘ก2, ๐‘ฅ, ๐‘ก 21
  • 22. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) - c ยจ In order to recover ๐‘ƒ ๐‘ฅ, ๐‘ก , we can sum over all the possible in-between states ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = โˆซ32456 324/6 โˆซ7$48 7$47 ๐‘ƒ ๐‘ฅโ€ฒ, ๐‘กโ€ฒ . ๐‘ƒ๐‘… ๐‘ฅ2, ๐‘ก2, ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ2. ๐‘‘๐‘กโ€ฒ ยจ Graphically this creates somewhat of a Feynman diagram ยจ NOW (and again, either this is painfully obvious or rather deep and we need to pay attention to), we can actually SEPARATE the space and the time variable (because we are dealing with a well defined process ๐‘‹(๐‘ก)) (see next slide) ยจ So for a given time ๐‘กโ€ฒ we suppose that we can write something like ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = โˆซ32456 324/6 ๐‘ƒ ๐‘ฅโ€ฒ, ๐‘กโ€ฒ . ๐‘ƒ๐‘… ๐‘ฅ2, ๐‘ก2, ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅโ€™ ยจ NOW is the big one, we assume that we can write: ๐‘ƒ๐‘… ๐‘ฅ2, ๐‘ก2, ๐‘ฅ, ๐‘ก = ๐‘ƒ(๐‘ฅ โˆ’ ๐‘ฅ2, ๐‘ก โˆ’ ๐‘ก2) ยจ This is actually again either obvious or not at all 22
  • 23. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) - c-1 ยจ There is no traveling back in time, so ยจ ๐‘ƒ๐‘… ๐‘ฅ2, ๐‘ก2, ๐‘ฅ, ๐‘ก = 0 if ๐‘ก2> ๐‘ก ยจ Also no disappearing and โ€œre-apparateโ€ ยจ So for process from 0 to ๐‘ก, this process WILL have to go through every intermediate time ๐‘กโ€ฒ 23
  • 24. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) - d ยจ ๐‘ƒ๐‘… ๐‘ฅ2, ๐‘ก2, ๐‘ฅ, ๐‘ก = ๐‘ƒ(๐‘ฅ โˆ’ ๐‘ฅ2, ๐‘ก โˆ’ ๐‘ก2) ยจ First of all this is assuming that the conditional probability is the same as the probability density: ยจ It does not matter where you are starting from, and at what time, the probability to end up at a different level is only a function of the distance to the original starting point, and the time lapsed ยจ FURTHERMORE, that conditional probability is exactly the probability density we are looking for ยจ Strong Markov property ยจ The price process is memoryless ยจ The price process is homogeneous in time and space ยจ No smile, no mean reversion, no time dependent volatility, and all functions are mathematically well behaved 24
  • 25. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) II ยจ NOW Bachelier writes what is now known as the Chapman-Kolmogorov equation: ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก+ . ๐‘ƒ ๐‘ง โˆ’ ๐‘ฅ, ๐‘ก, โˆ’ ๐‘ก+ . ๐‘‘๐‘ฅ. ๐‘‘๐‘ง is the probability that the price is (๐‘ฅ, ๐‘ก+) and (๐‘ง, ๐‘ก,) ยจ ๐‘ƒ ๐‘ง, ๐‘ก, = โˆซ3456 34/6 ๐‘ƒ ๐‘ฅ, ๐‘ก+ . ๐‘ƒ ๐‘ง โˆ’ ๐‘ฅ, ๐‘ก, โˆ’ ๐‘ก+ . ๐‘‘๐‘ฅ ยจ Bachelier actually changes the notation a little and writes it as ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, = โˆซ3456 34/6 ๐‘ƒ ๐‘ฅ, ๐‘ก+ . ๐‘ƒ ๐‘ง โˆ’ ๐‘ฅ, ๐‘ก, . ๐‘‘๐‘ฅ ยจ We can take a lucky guess like Louis did and write ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐ด. ๐‘’๐‘ฅ๐‘(โˆ’๐ต,. ๐‘ฅ,) ยจ To be more exact, ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐ด(๐‘ก). ๐‘’๐‘ฅ๐‘(โˆ’๐ต(๐‘ก),. ๐‘ฅ,) ยจ Note that this does not guarantee the unicity of a solution, only the existence ยจ Kolmogorov expressed 30 years later or so some Germanic displeasure with what he perceived to be a lack of mathematical rigor from Louis ยจ โ€œDass die Bachelierschen Betrachtungen jeder mathematischen Strenge ganzlich entbehrenโ€ 25
  • 26. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) III ยจ A couple of notes on the function ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐ด. ๐‘’๐‘ฅ๐‘(โˆ’๐ต,. ๐‘ฅ,) ยจ ๐ผ = (โˆซ56 /6 ๐‘’593% . ๐‘‘๐‘ฅ), = โˆซ56 /6 ๐‘’593% . ๐‘‘๐‘ฅ . โˆซ56 /6 ๐‘’59:% . ๐‘‘๐‘ฆ = โˆซ56 /6 โˆซ56 /6 ๐‘‘๐‘ฅ๐‘‘๐‘ฆ ๐‘’59(3%/:%) ยจ ๐ผ = โˆซ=48 =4,% ๐‘‘๐œƒ โˆซ>48 >46 ๐œŒ. ๐‘‘๐œŒ . ๐‘’59>% = 2๐œ‹. โˆซ>48 >46 ๐œŒ. ๐‘‘๐œŒ . ๐‘’59>% = 2๐œ‹. 5?&'(% ,9 = ,% ,9 = % 9 ยจ ๐›ผ = ๐ต, ยจ ๐ผ = (โˆซ56 /6 ๐‘’593% . ๐‘‘๐‘ฅ), so โˆซ56 /6 ๐‘’593% . ๐‘‘๐‘ฅ = % 9 ยจ We want โˆซ56 /6 ๐‘ƒ ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ = 1, or โˆซ56 /6 ๐ด. ๐‘’๐‘ฅ๐‘(โˆ’๐ต,. ๐‘ฅ,) . ๐‘‘๐‘ฅ = 1, or ๐ด. % @% = 1 ยจ Soooโ€ฆ ๐ต = ๐ด. ๐œ‹ 26
  • 27. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) IV ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐ด. ๐‘’๐‘ฅ ๐‘ โˆ’๐ต,. ๐‘ฅ, = ๐ด. ๐‘’๐‘ฅ ๐‘ โˆ’๐œ‹๐ด,. ๐‘ฅ, because โˆซ56 /6 ๐‘ƒ ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ = 1 ยจ For simplicity of notation, Bachelier writes ๐‘+ = ๐‘ƒ(๐‘ฅ = 0, ๐‘ก+) ยจ ๐‘ƒ ๐‘ฅ = 0, ๐‘ก = ๐ด = ๐ด ๐‘ก ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก . exp{โˆ’๐œ‹. ๐‘ƒ ๐‘ฅ = 0, ๐‘ก , . ๐‘ฅ,} ยจ This is true and quite elegant, and our friend ๐œ‹ appears somehow mysteriously ยจ Usual Gaussian : โ„Ž ๐‘ฅ, ๐‘ก = + ,%-%7 . exp( 53% ,-%7 ) ยจ โ„Ž ๐‘ฅ, ๐‘ก = โ„Ž 0, ๐‘ก . exp[โˆ’๐œ‹. โ„Ž 0, ๐‘ก ,. ๐‘ฅ,] ยจ This is actually quite powerful, the Kolmogorov equation looks fairly general and obvious, and we just proved that at least one solution of it HAS to verify: ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก . exp{โˆ’๐œ‹. ๐‘ƒ ๐‘ฅ = 0, ๐‘ก , . ๐‘ฅ,} 27
  • 28. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) V ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก . exp{โˆ’๐œ‹. ๐‘ƒ ๐‘ฅ = 0, ๐‘ก , . ๐‘ฅ,} ยจ ๐‘+ = ๐‘ƒ(๐‘ฅ = 0, ๐‘ก+) ยจ ๐‘, = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก, ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, = โˆซ3456 34/6 ๐‘ƒ ๐‘ฅ, ๐‘ก+ . ๐‘ƒ ๐‘ง โˆ’ ๐‘ฅ, ๐‘ก, . ๐‘‘๐‘ฅ ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, = โˆซ3456 34/6 ๐‘+. exp โˆ’๐œ‹. ๐‘+ , . ๐‘ฅ, . ๐‘,. exp โˆ’๐œ‹. ๐‘, , . (๐‘ง โˆ’ ๐‘ฅ), . ๐‘‘๐‘ฅ ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, = ๐‘+ ๐‘, exp โˆ’๐œ‹. ๐‘, , . ๐‘ง, โˆซ3456 34/6 exp โˆ’๐œ‹. ๐‘+ , + ๐‘, , . ๐‘ฅ, + 2๐œ‹๐‘, , ๐‘ง๐‘ฅ . ๐‘‘๐‘ฅ ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, = ๐‘+ ๐‘, exp โˆ’๐œ‹๐‘, , ๐‘ง, . exp %A% ).B% A* %/A% % โˆซ56 /6 exp[โˆ’๐œ‹(๐‘ฅ ๐‘+ , + ๐‘, , โˆ’ A% %B A* %/A% % ),]. ๐‘‘๐‘ฅ 28
  • 29. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) VI ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, = ๐‘+ ๐‘, exp โˆ’๐œ‹๐‘, , ๐‘ง, . exp %A% ).B% A* %/A% % โˆซ56 /6 exp[โˆ’๐œ‹(๐‘ฅ ๐‘+ , + ๐‘, , โˆ’ A% %B A* %/A% % ),]. ๐‘‘๐‘ฅ ยจ We do the change of variable: ๐‘ข = ๐‘ฅ ๐‘+ , + ๐‘, , โˆ’ A% %B A* %/A% % , ๐‘‘๐‘ข = ๐‘‘๐‘ฅ. ๐‘+ , + ๐‘, , ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, = A*A% A* %/A% % exp โˆ’๐œ‹๐‘, , ๐‘ง, . exp %A% ).B% A* %/A% % โˆซC456 C4/6 exp[โˆ’๐œ‹๐‘ข,]. ๐‘‘๐‘ข ยจ And โˆ’๐œ‹๐‘, , ๐‘ง, + %A% ).B% A* %/A% % = 5%A% )B%5%A% %A* %B%/%A% ).B% A* %/A% % = 5%A% %A* %B% A* %/A% % ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, = A*A% A* %/A% % exp 5%A% %A* %B% A* %/A% % โˆซC456 C4/6 exp[โˆ’๐œ‹๐‘ข,]. ๐‘‘๐‘ข 29
  • 30. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) VII ยจ โˆซC456 C4/6 exp[โˆ’๐œ‹๐‘ข,]. ๐‘‘๐‘ข = % 9 with ๐›ผ = ๐œ‹ ยจ ๐‘ƒ ๐‘ง, ๐‘ก+ + ๐‘ก, = A*A% A* %/A% % exp 5%A% %A* %B% A* %/A% % ยจ And we know that ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก . exp{โˆ’๐œ‹. ๐‘ƒ ๐‘ฅ = 0, ๐‘ก , . ๐‘ฅ,} ยจ ๐‘ƒ ๐‘ง, ๐‘ก = ๐‘ƒ ๐‘ง = 0, ๐‘ก+ + ๐‘ก, . exp{โˆ’๐œ‹. ๐‘ƒ ๐‘ง = 0, ๐‘ก+ + ๐‘ก, , . ๐‘ง,} ยจ ๐‘+ = ๐‘ƒ(๐‘ฅ = 0, ๐‘ก+) and ๐‘, = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก, ยจ ๐‘ƒ ๐‘ง = 0, ๐‘ก+ + ๐‘ก, , = A% %A% % A* %/A% % or keeping the notation: ๐‘+/, , = A% %A% % A* %/A% % ยจ Also quite an elegant formulation for the relationship between the peaks (maximum of probability) for different times 30
  • 31. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) VIII ยจ ๐‘+/, , = A% %A% % A* %/A% %, where ๐‘+ = ๐‘ƒ(๐‘ฅ = 0, ๐‘ก+), ๐‘, = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก, ยจ So to make it simpler letโ€™s use the notation ๐‘ = ๐‘(๐‘ก) ยจ ๐‘(๐‘ก+ + ๐‘ก,), = ๐‘+/, , = A(7*)%A(7%)% A(7*)%/A(7%)% ยจ Method #1 : letโ€™s be lucky and guess that ๐‘ ๐‘ก = ๐ป. ๐‘ก โ„&* % = E 7 ยจ ๐‘(๐‘ก), = E% 7 ยจ A(7*)%A(7%)% A(7*)%/A(7%)% = ( +% ,* )( +% ,% ) +% ,* /( +% ,% ) = ๐ป,. + 7*7% . + * ,* / * ,% = ๐ป,. + 7*7% . 7*7% 7*/7% = ๐ป,. + 7*/7% = ๐‘(๐‘ก+ + ๐‘ก,), ยจ It works ! 31
  • 32. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) VIII ยจ ๐‘ ๐‘ก = ๐ป. ๐‘ก โ„&* % = E 7 = ๐‘ƒ(๐‘ฅ = 0, ๐‘ก) ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก . exp{โˆ’๐œ‹. ๐‘ƒ ๐‘ฅ = 0, ๐‘ก , . ๐‘ฅ,} ยจ So we finally have what we are looking for: ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = E 7 . exp{โˆ’ %E%3% 7 } ยจ We just need to normalize one more time: โˆซ56 /6 ๐‘ƒ ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ = 1 ยจ We already know that : ๐ผ = (โˆซ56 /6 ๐‘’593% . ๐‘‘๐‘ฅ), = % 9 so โˆซ56 /6 ๐‘’593% . ๐‘‘๐‘ฅ = % 9 ยจ ๐›ผ = %E% 7 , so โˆซ56 /6 ๐‘ƒ ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ = โˆซ56 /6 E 7 . exp{โˆ’ %E%3% 7 } . ๐‘‘๐‘ฅ = E 7 . % -+% , = 1 32
  • 33. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) IX ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = E 7 . exp{โˆ’ %E%3% 7 } is already normalized ยจ We still need to solve for the value of ๐ป ยจ A couple of side notes first on ๐ผ9 = โˆซ56 /6 ๐‘’593% . ๐‘‘๐‘ฅ = % 9 ยจ ๐‘ƒ9 ๐‘ฅ = + F' . ๐‘’593% is the normalized probability distribution ยจ < ๐‘ฅ > = โˆซ56 /6 ๐‘ฅ. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ = 0 because ๐‘ฅ. ๐‘ƒ9 ๐‘ฅ is an odd function ยจ < ๐‘ฅ! > = โˆซ56 /6 ๐‘ฅ!. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ = 0 because (๐‘ฅ!. ๐‘ƒ9 ๐‘ฅ ) is an odd function if ๐‘˜ is odd 33
  • 34. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) X ยจ < ๐‘ฅ, > = โˆซ56 /6 ๐‘ฅ,. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ = % 9 . โˆซ56 /6 ๐‘ฅ,. ๐‘’593% . ๐‘‘๐‘ฅ ยจ Now: G G9 ๐‘’593% = โˆ’๐‘ฅ, ๐‘’593% ยจ So: < ๐‘ฅ, > = % 9 . โˆซ56 /6 ๐‘ฅ,. ๐‘’593% . ๐‘‘๐‘ฅ = % 9 . โˆซ56 /6 5G G9 ๐‘’593% . ๐‘‘๐‘ฅ = % 9 . 5G G9 [โˆซ56 /6 ๐‘’593% . ๐‘‘๐‘ฅ] ยจ A little more formally: ยจ < ๐‘ฅ, > = 5+ F' . GF' G9 ยจ Replacing ๐ผ9 = % 9 , we get < ๐‘ฅ, > = 5+ - ' . G - ' G9 = โˆ’ ๐›ผ. G G9 ๐›ผ โ„&* % = + , . ๐›ผ โ„* %. ๐›ผ โ„&. % = + ,9 34
  • 35. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XI ยจ < ๐‘ฅ, > = + ,9 ยจ < ๐‘ฅ,! > = + F' . โˆซ56 /6 ๐‘ฅ,!. ๐‘’593% . ๐‘‘๐‘ฅ and again ๐ผ9 = โˆซ56 /6 ๐‘’593% . ๐‘‘๐‘ฅ = % 9 ยจ It is easy to see that (๐‘ฅ,!. ๐‘’593% ) = G/ G9/ ๐‘’593% . (โˆ’1)! ยจ < ๐‘ฅ,! > = + F' . โˆซ56 /6 G/ G9/ ๐‘’593% . (โˆ’1)! . ๐‘‘๐‘ฅ = + F' . H/ H9/ ๐ผ9 . (โˆ’1)! ยจ < ๐‘ฅ,! > = + F' . H/ H9/ ๐ผ9 . (โˆ’1)!= + F' . H/ H9/ ๐ผ9 . (โˆ’1)!= ๐›ผ โ„* %. H/ H9/ ๐›ผ โ„&* % . (โˆ’1)! ยจ H/ H9/ ๐›ผ โ„&* % = ๐›ผ โ„&* %. ๐›ผ5!. โˆI4+ I4! ( + , + ๐‘— โˆ’ 1) . (โˆ’1)! ยจ < ๐‘ฅ,! > = ๐›ผ5!. โˆI4+ I4! ( + , + ๐‘— โˆ’ 1), with ๐‘˜ = 1, we recover indeed < ๐‘ฅ, > = + ,9 35
  • 36. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XII ยจ ๐ผ9 = โˆซ56 /6 ๐‘’593% . ๐‘‘๐‘ฅ = % 9 ยจ ๐‘ƒ9 ๐‘ฅ = + F' . ๐‘’593% is the normalized probability distribution ยจ < ๐‘ฅ! > = โˆซ56 /6 ๐‘ฅ!. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ ยจ < ๐‘ฅ,! > = ๐›ผ5!. โˆI4+ I4! ( + , + ๐‘— โˆ’ 1) ยจ < ๐‘ฅ,!/+ > = 0 ยจ We will also look like Bachelier did at the positive part of the price distribution ยจ < (๐‘ฅ!|๐‘ฅ > 0) > = โˆซ8 /6 ๐‘ฅ!. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ 36
  • 37. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XIII ยจ < ๐‘ฅ,! > = ๐›ผ5!. โˆI4+ I4! ( + , + ๐‘— โˆ’ 1) ยจ For the regular Gaussian โ„Ž ๐‘ฅ, ๐‘ก = + ,%-%7 . exp( 53% ,-%7 ) we have ๐›ผ = + ,-%7 ยจ A somewhat useful notation: ยจ ๐‘˜! = โˆI4+ I4! ๐‘— is the usual factorial ยจ ๐‘˜!! = โˆI4+ I4! ๐‘— is called the โ€œdouble factorialโ€ and only includes in the product the terms that have the SAME parity as ๐‘˜ ยจ In our specific case we can rewrite โˆI4+ I4! ( + , + ๐‘— โˆ’ 1) as: ยจ โˆI4+ I4! ( + , + ๐‘— โˆ’ 1) = โˆI4+ I4! ( ,I5+ , ) = 25! โˆI4+ I4! (2๐‘— โˆ’ 1) = 25!. 2๐‘˜ โˆ’ 1 โ€ผ ยจ < ๐‘ฅ,! > = ๐›ผ5!. 25!. 2๐‘˜ โˆ’ 1 โ€ผ 37
  • 38. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XIV ยจ < ๐‘ฅ,! > = ๐›ผ5!. 25!. 2๐‘˜ โˆ’ 1 โ€ผ ยจ In the case of the Gaussian, ๐›ผ = + ,-%7 , so < ๐‘ฅ,! > = (2๐œŽ, ๐‘ก)!. 25!. 2๐‘˜ โˆ’ 1 โ€ผ ยจ So : < ๐‘ฅ,! > = (๐œŽ, ๐‘ก)!. 2๐‘˜ โˆ’ 1 โ€ผ and < ๐‘ฅ,!/+ > = 0 ยจ Another cute way to express it is the following: ยจ < ๐‘ฅJ > = (๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even, 0 otherwise ยจ This is quite compact and beautiful ยจ < ๐‘ฅJ|๐‘ฅ > 0 > = + , (๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even, โ€œsomething elseโ€ otherwise ยจ Letโ€™s try to calculate that โ€œsomething elseโ€ 38
  • 39. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XV ยจ < ๐‘ฅ|๐‘ฅ > 0 > = โˆซ8 /6 ๐‘ฅ. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ = + F' . โˆซ8 /6 ๐‘ฅ. ๐‘’593% . ๐‘‘๐‘ฅ ยจ G G9 ๐‘’593% = โˆ’๐‘ฅ,. ๐‘’593% ยจ G G3 ๐‘’593% = โˆ’2๐‘ฅ๐›ผ. ๐‘’593% ยจ < ๐‘ฅ|๐‘ฅ > 0 > = + F' . โˆซ8 /6 ๐‘ฅ. ๐‘’593% . ๐‘‘๐‘ฅ = + F' . โˆซ8 /6 + ,9 5G G3 ๐‘’593% . ๐‘‘๐‘ฅ = + F' . + ,9 [โˆ’๐‘’593% ]348 346 ยจ < ๐‘ฅ|๐‘ฅ > 0 > = + F' . + ,9 โˆ’๐‘’593% 348 346 = + ,9F' and ๐ผ9 = % 9 ยจ < ๐‘ฅ|๐‘ฅ > 0 > = + , % . ๐›ผ โ„&* % = + K%9 ยจ In the Gaussian case, ๐›ผ = + ,-%7 and so : < ๐‘ฅ|๐‘ฅ > 0 > = -%7 ,% (Bachelier page 38) 39
  • 40. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XVI ยจ For the regular Gaussian โ„Ž ๐‘ฅ, ๐‘ก = + ,%-%7 . exp( 53% ,-%7 ) we have ๐›ผ = + ,-%7 ยจ Bachelier likes to use exp( 53% K%!%7 ) so ๐œŽ, = 2๐œ‹๐‘˜, ยจ So โ„Ž ๐‘ฅ, ๐‘ก = + ,%! 7 . exp( 53% K%!%7 ), a little more concise ยจ Because now for example: ยจ < ๐‘ฅ|๐‘ฅ > 0 > = -%7 ,% = ๐‘˜ ๐‘ก, quite concise and beautiful ! ยจ Note also that < ๐‘ฅ > =< ๐‘ฅ ๐‘ฅ > 0 > +< โˆ’๐‘ฅ ๐‘ฅ < 0 > = 2. < ๐‘ฅ|๐‘ฅ > 0 > ยจ And so: < ๐‘ฅ > = 2. ๐‘˜ ๐‘ก = 2. -%7 ,% = ๐œŽ, ๐‘ก. , % = + %9 40
  • 41. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XVII ยจ More generally: ยจ < ๐‘ฅ,!| ๐‘ฅ > 0 > = โˆซ8 /6 ๐‘ฅ,!. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ = + , โˆซ56 /6 ๐‘ฅ,!. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ ยจ Because ๐‘ฅ,!. ๐‘ƒ9 ๐‘ฅ is an even function ยจ If you are not convinced and want to do it the hard way: ยจ < ๐‘ฅ,!| ๐‘ฅ > 0 > = โˆซ8 /6 ๐‘ฅ,!. ๐‘ƒ9 ๐‘ฅ . ๐‘‘๐‘ฅ = + F' . โˆซ8 /6 ๐‘ฅ,!. ๐‘’593% . ๐‘‘๐‘ฅ ยจ G G9 ๐‘’593% = โˆ’๐‘ฅ,. ๐‘’593% ยจ G/ G9/ ๐‘’593% = (โˆ’1)!. ๐‘ฅ,!. ๐‘’593% ยจ < ๐‘ฅ,!| ๐‘ฅ > 0 > = + F' . โˆซ8 /6 ๐‘ฅ,!. ๐‘’593% . ๐‘‘๐‘ฅ = (5+)/ F' . โˆซ8 /6 G/ G9/ ๐‘’593% . ๐‘‘๐‘ฅ 41
  • 42. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XVIII ยจ < ๐‘ฅ,!| ๐‘ฅ > 0 > = + F' . โˆซ8 /6 ๐‘ฅ,!. ๐‘’593% . ๐‘‘๐‘ฅ = (5+)/ F' . โˆซ8 /6 G/ G9/ ๐‘’593% . ๐‘‘๐‘ฅ ยจ < ๐‘ฅ,!| ๐‘ฅ > 0 > = (5+)/ F' . H/ H9/ โˆซ8 /6 ๐‘’593% . ๐‘‘๐‘ฅ ยจ And ๐ผ9 = โˆซ56 /6 ๐‘’593% . ๐‘‘๐‘ฅ = % 9 ยจ Letโ€™s call ๐ผ9 / = โˆซ8 /6 ๐‘’593% . ๐‘‘๐‘ฅ = + , . % 9 trivially, or ๐ผ9 / = + , . ๐ผ9 ยจ < ๐‘ฅ,!| ๐‘ฅ > 0 > = (5+)/ F' . H/ H9/ โˆซ8 /6 ๐‘’593% . ๐‘‘๐‘ฅ = (5+)/ F' . H/ H9/ ๐ผ9 / = + , . (5+)/ F' . H/ H9/ ๐ผ9 ยจ So < (๐‘ฅ,! ๐‘ฅ > 0 > = + , . < ๐‘ฅ,! > 42
  • 43. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XIX ยจ < ๐‘ฅ,!/+| ๐‘ฅ > 0 > = + F' . โˆซ8 /6 ๐‘ฅ,!/+. ๐‘’593% . ๐‘‘๐‘ฅ = + F' . โˆซ8 /6 ๐‘ฅ,!. ๐‘ฅ. ๐‘’593% . ๐‘‘๐‘ฅ ยจ G G3 ๐‘’593% = โˆ’2๐‘ฅ๐›ผ. ๐‘’593% ยจ < ๐‘ฅ,!/+| ๐‘ฅ > 0 > = + F' . โˆซ8 /6 ๐‘ฅ,!. ๐‘ฅ. ๐‘’593% . ๐‘‘๐‘ฅ = + F' . โˆซ8 /6 ๐‘ฅ,!. 5+ ,9 G G3 ๐‘’593% . ๐‘‘๐‘ฅ ยจ After integration by parts ยจ < ๐‘ฅ,!/+| ๐‘ฅ > 0 > = 5+ ,9F' . ๐‘ฅ,!. ๐‘’593% 8 6 + + ,9F' . โˆซ8 /6 2๐‘˜ . ๐‘ฅ,!5+. ๐‘’593% . ๐‘‘๐‘ฅ ยจ < ๐‘ฅ,!/+| ๐‘ฅ > 0 > = ! 9F' . โˆซ8 /6 ๐‘ฅ,!5+. ๐‘’593% . ๐‘‘๐‘ฅ ยจ < ๐‘ฅ,!/+| ๐‘ฅ > 0 > = ! 9 . < ๐‘ฅ,!5+| ๐‘ฅ > 0 > and < ๐‘ฅ|๐‘ฅ > 0 > = + , % . ๐›ผ โ„&* % = + K%9 43
  • 44. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XX ยจ < ๐‘ฅ,!/+ ๐‘ฅ > 0 > = ! 9 . < ๐‘ฅ,!5+ ๐‘ฅ > 0 > = ,! ,9 . < ๐‘ฅ,!5+| ๐‘ฅ > 0 > ยจ For sake of notation we write ๐ด 2๐‘˜ + 1 =< ๐‘ฅ,!/+| ๐‘ฅ > 0 > ยจ ๐ด 2๐‘˜ + 1 = ! 9 . ๐ด 2๐‘˜ โˆ’ 1 ยจ ๐ด 2๐‘˜ โˆ’ 1 = !5+ 9 . ๐ด 2๐‘˜ โˆ’ 3 ยจ ๐ด 2๐‘˜ โˆ’ 3 = !5, 9 . ๐ด 2๐‘˜ โˆ’ 5 โ€ฆ. ยจ ๐ด 3 = + 9 . ๐ด 1 and ๐ด 1 =< ๐‘ฅ|๐‘ฅ > 0 > = + , % . ๐›ผ โ„&* % = + K%9 44
  • 45. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XXI ยจ < ๐‘ฅ,!/+ ๐‘ฅ > 0 > = ! 9 . < ๐‘ฅ,!5+ ๐‘ฅ > 0 > = ,! ,9 . < ๐‘ฅ,!5+| ๐‘ฅ > 0 > ยจ For sake of notation we write ๐ด 2๐‘˜ + 1 =< ๐‘ฅ,!/+| ๐‘ฅ > 0 > ยจ Easier to see that: ยจ ๐ด 2๐‘˜ + 1 = ,! ,9 . ๐ด 2๐‘˜ โˆ’ 1 ยจ ๐ด 2๐‘˜ โˆ’ 1 = ,!5, ,9 . ๐ด 2๐‘˜ โˆ’ 3 ยจ ๐ด 2๐‘˜ โˆ’ 3 = ,!5K ,9 . ๐ด 2๐‘˜ โˆ’ 5 โ€ฆ. ยจ ๐ด 3 = , ,9 . ๐ด 1 and ๐ด 1 =< ๐‘ฅ|๐‘ฅ > 0 > = + , % . ๐›ผ โ„&* % = + K%9 ยจ ๐ด 2๐‘˜ + 1 = ,! โ€ผ (,9)/ . ๐ด(1) where 2๐‘˜ โ€ผ is the double factorial 45
  • 46. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XXII ยจ ๐ด 2๐‘˜ + 1 = ,! โ€ผ (,9)/ . ๐ด(1) where 2๐‘˜ โ€ผ is the double factorial ยจ Rewriting it as : ๐ด ๐‘ =< ๐‘ฅA| ๐‘ฅ > 0 > and ๐ด 1 =< ๐‘ฅ|๐‘ฅ > 0 > = + , % . ๐›ผ โ„&* % = + K%9 ยจ ๐ด ๐‘ = A5+ โ€ผ (,9)/ . ๐ด(1) where ๐‘ โˆ’ 1 โ€ผ is the double factorial AND ๐‘ = 2๐‘˜ + 1 ยจ In the Gaussian case : ๐›ผ = + ,-%7 ยจ Using Bachelierโ€™s convention, ๐›ผ = + K%!%7 , or ๐œŽ, = 2๐œ‹๐‘˜, (careful Bachelier ๐‘˜ is NOT our integer) ยจ Recall that we had : < ๐‘ฅJ > = (๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even, 0 otherwise ยจ So we are trying to express < ๐‘ฅJ| ๐‘ฅ > 0 > in a similar fashion 46
  • 47. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XXIII ยจ ๐ด ๐‘› = J5+ โ€ผ (,9)/ . ๐ด(1) where ๐‘ โˆ’ 1 โ€ผ is the double factorial AND ๐‘› = 2๐‘˜ + 1 ยจ In the Gaussian case : ๐›ผ = + ,-%7 and ๐ด 1 = + K%9 = + ,% . (๐œŽ ๐‘ก) ยจ < ๐‘ฅJ| ๐‘ฅ > 0 > = ๐‘› โˆ’ 1 โ€ผ 2๐›ผ 5!. + ,% . (๐œŽ ๐‘ก) ยจ < ๐‘ฅJ| ๐‘ฅ > 0 > = ๐‘› โˆ’ 1 โ€ผ (๐œŽ, ๐‘ก) 0 % 5+ . + ,% . ๐œŽ ๐‘ก = ๐‘› โˆ’ 1 โ€ผ (๐œŽ ๐‘ก)J5 * %. + ,% . (๐œŽ ๐‘ก) ยจ < ๐‘ฅJ| ๐‘ฅ > 0 > = ๐‘› โˆ’ 1 โ€ผ ๐œŽ ๐‘ก J . + ,% = + ,% . < ๐‘ฅJ > (in the case of ๐‘› being odd) ยจ ALSO < |๐‘ฅJ > = 2. < ๐‘ฅJ ๐‘ฅ > 0 > = , % . ๐‘› โˆ’ 1 โ€ผ ๐œŽ ๐‘ก J (in the case of ๐‘› being odd) 47
  • 48. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XXIV ยจ Soโ€ฆ to recap... ยจ < ๐‘ฅJ > = (๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even, 0 otherwise ยจ < |๐‘ฅ|J > = (๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even, (๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ ( , % ) otherwise ยจ < ๐‘ฅJ| ๐‘ฅ > 0 > = + , (๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even, (๐œŽ ๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ ( + ,% ) otherwise ยจ Super useful and quite elegant, once againโ€ฆand using Bachelier ๐œŽ, = 2๐œ‹๐‘˜, ยจ < ๐‘ฅJ > = (๐‘˜ 2๐œ‹๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even, 0 otherwise ยจ < ๐‘ฅJ| ๐‘ฅ > 0 > = + , (๐‘˜ 2๐œ‹๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ if ๐‘› is even, + , (๐‘˜ 2๐œ‹๐‘ก)J. ๐‘› โˆ’ 1 โ€ผ , % otherwise ยจ In particular for ๐‘› = 1, < ๐‘ฅ| ๐‘ฅ > 0 > = ๐‘˜ ๐‘ก 48
  • 49. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) (VIII)-XXV ยจ ๐‘+/, , = A% %A% % A* %/A% %, where ๐‘+ = ๐‘ƒ(๐‘ฅ = 0, ๐‘ก+), ๐‘, = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก, ยจ So to make it simpler letโ€™s use the notation ๐‘ = ๐‘(๐‘ก) ยจ ๐‘(๐‘ก+ + ๐‘ก,), = ๐‘+/, , = A(7*)%A(7%)% A(7*)%/A(7%)% ยจ Method #1 : letโ€™s be lucky and guess that ๐‘ ๐‘ก = ๐ป. ๐‘ก โ„&* % = E 7 ยจ ๐‘(๐‘ก), = E% 7 ยจ A(7*)%A(7%)% A(7*)%/A(7%)% = ( +% ,* )( +% ,% ) +% ,* /( +% ,% ) = ๐ป,. + 7*7% . + * ,* / * ,% = ๐ป,. + 7*7% . 7*7% 7*/7% = ๐ป,. + 7*/7% = ๐‘(๐‘ก+ + ๐‘ก,), ยจ It works ! 49
  • 50. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XXVI ยจ Letโ€™s redo it the way Bachelier did it, using ODE (Ordinary Differential Equations) ยจ ๐‘(๐‘ก+ + ๐‘ก,), = ๐‘+/, , = A(7*)%A(7%)% A(7*)%/A(7%)% and letโ€™s take the partial derivatives to ๐‘ก+and ๐‘ก, ยจ G G7* yields: ยจ 2๐‘2 ๐‘ก+ + ๐‘ก, ๐‘ ๐‘ก+ + ๐‘ก, = ๐‘ ๐‘ก, ,{ ,A$ 7* A 7* A 7* %/A 7% % + 5+ .A 7* %.,A$ 7* A 7* {A 7* %/A 7% %}% } ยจ G G7% yields: ยจ 2๐‘2 ๐‘ก+ + ๐‘ก, ๐‘ ๐‘ก+ + ๐‘ก, = ๐‘ ๐‘ก+ ,{ ,A$ 7% A 7% A 7* %/A 7% % + 5+ .A 7% %.,A$ 7% A 7% {A 7* %/A 7% %}% } 50
  • 51. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XXVII ยจ G G7* yields: ยจ 2๐‘2 ๐‘ก+ + ๐‘ก, ๐‘ ๐‘ก+ + ๐‘ก, = ๐‘ ๐‘ก, ,{ ,A$ 7* A 7* A 7* %/A 7% % + 5+ .A 7* %.,A$ 7* A 7* {A 7* %/A 7% %}% } ยจ 2๐‘2 ๐‘ก+ + ๐‘ก, ๐‘ ๐‘ก+ + ๐‘ก, = ๐‘ ๐‘ก, ,{ ,A$ 7* A 7* .A 7* %/,A$ 7* A 7* .A 7% % {A 7* %/A 7% %}% + 5+ .A 7* %.,A$ 7* A 7* {A 7* %/A 7% %}% } ยจ 2๐‘2 ๐‘ก+ + ๐‘ก, ๐‘ ๐‘ก+ + ๐‘ก, = ๐‘ ๐‘ก, , ,A$ 7* A 7* .A 7% % {A 7* %/A 7% %}% ยจ G G7% yields: 2๐‘2 ๐‘ก+ + ๐‘ก, ๐‘ ๐‘ก+ + ๐‘ก, = ๐‘ ๐‘ก+ , ,A$ 7% A 7% .A 7* % {A 7* %/A 7% %}% ยจ And so : ยจ ๐‘ ๐‘ก, , ,A$ 7* A 7* .A 7% % {A 7* %/A 7% %}% = ๐‘ ๐‘ก+ , ,A$ 7% A 7% .A 7* % {A 7* %/A 7% %}% 51
  • 52. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XXVIII ยจ ๐‘ ๐‘ก, , ,A$ 7* A 7* .A 7% % {A 7* %/A 7% %}% = ๐‘ ๐‘ก+ , ,A$ 7% A 7% .A 7* % {A 7* %/A 7% %}% ยจ ๐‘2 ๐‘ก+ ๐‘ ๐‘ก+ . ๐‘ ๐‘ก, K = ๐‘2 ๐‘ก, ๐‘ ๐‘ก, . ๐‘ ๐‘ก+ K ยจ A$ 7* A 7* . = A$ 7% A 7% . for all values of ๐‘ก+ and ๐‘ก, ยจ So A$ 7 A 7 . = ๐‘๐‘ก๐‘’ and A$ 7 A 7 . = ( 5+ , ) H H7 [ + A 7 %] ยจ So H H7 + A 7 % = ๐‘๐‘ก๐‘’ = ๐›ผ and + A 7 % = ๐›ผ๐‘ก + ๐›ฝ ยจ We can choose ๐›ฝ = 0 and rewrite + A 7 % = ๐›ผ๐‘ก as ๐‘ ๐‘ก = zE 7 ยจ And so we are back to the expression for the distribution with the explicit peak value 52
  • 53. Luc_Faucheux_2020 Kolmogorov equation: Bachelier thesis (page 35) XXIX ยจ ๐‘ ๐‘ก = ๐ป. ๐‘ก โ„&* % = E 7 = ๐‘ƒ(๐‘ฅ = 0, ๐‘ก) ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = ๐‘ƒ ๐‘ฅ = 0, ๐‘ก . exp{โˆ’๐œ‹. ๐‘ƒ ๐‘ฅ = 0, ๐‘ก , . ๐‘ฅ,} ยจ So we finally have what we are looking for: ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = E 7 . exp{โˆ’ %E%3% 7 } ยจ Note how general the assumptions we made seem to be ยจ Note also that we have the existence of a solution, but we have said nothing about unicity 53
  • 54. Luc_Faucheux_2020 Discrete to continuous โ€“ Radiation of probability Le Rayonement de Probabilities (pages 39 โ€“ 40) 54
  • 55. Luc_Faucheux_2020 From the coin toss to the random walker ยจ Let us limit ourselves to a one-dimensional random walk ยจ A random walker will jump to the right or the left by one unit ๐œ€ at equal time intervals ๐œ ยจ We assume equal probability (1/2) to jump to the right or the left ยจ ๐‘‹(๐‘ก) will be in bin [๐‘–], ๐‘‹(๐‘ก + ๐œ) will be in bin [๐‘– โˆ’ 1] or [๐‘– + 1] with equal probability 50% ยจ Analogous to the coin toss ยจ The random walk can be mapped to the coin toss for money, the position on the X axis is the current amount of money that the player has while playing a simple strategy where one amount of currency ($1) is won or lost if the coin lands on heads or tail 55 Xi i+1i-1
  • 56. Luc_Faucheux_2020 The random walk properties โ€“ Markov ยจ Markov property: The value of ๐‘‹(๐‘ก + ๐œ) only depends on the value ๐‘‹(๐‘ก) ยจ The distribution of the value of the random variable ๐‘‹(๐‘ก + ๐œ) conditional upon all the past events only depends on the previous value ๐‘‹(๐‘ก) ยจ โ€œThe random walk has no memory beyond where it is nowโ€ ยจ Note: this does not mean that the expected value of ๐‘‹(๐‘ก + ๐œ) is ๐‘‹(๐‘ก) 56
  • 57. Luc_Faucheux_2020 The random walk properties - Martingale ยจ Martingale: the expected value of ๐‘‹(๐‘ก + ๐œ) is ๐‘‹(๐‘ก) ยจ In terms of game: โ€“ You know how much money you have (your current winnings) โ€“ Your expected winnings after one more coin toss is your current winning โ€“ By recurrence, your expected winnings after any number of coin toss is the value of your current winnings (somewhat akin to the Tower property) ยจ Note: this does not mean that your winnings are stuck at their current value, it is only the expected value of your winnings that is equal to the current value 57
  • 58. Luc_Faucheux_2020 Searching for the PDE for the PDF ยจ ๐‘ƒ(๐‘–, ๐‘ž) is the probability to find our random walker in the bin (๐‘–) at the time (๐‘ž. ๐œ) ยจ Remember that time and position are discrete and NOT continuous ยจ Position is indexed by ๐‘– , and the size of the jump is ๐œ€, at every ๐œ in time. ยจ Another way to think about it is to have a large number of random walkers, and so at time ๐‘ก = ๐‘ž. ๐œ the number of walkers in a specific bin indexed by (๐‘–) is ๐‘. ๐‘ƒ(๐‘–, ๐‘ž) ยจ ๐‘ƒ ๐‘–, ๐‘ž + 1 = + , . {๐‘ƒ ๐‘– โˆ’ 1, ๐‘ž + ๐‘ƒ ๐‘– + 1, ๐‘ž } ยจ Because the random walker has no choice but to jump to one of the adjacent bins, the probability after the jump to be in the bin [i] is half of the probability before the jump in the left bin, and half of the probability before the jump in the right bin ยจ This is sometime called Master Equation, or Fokker-Planck equation 58
  • 59. Luc_Faucheux_2020 Taylor expansion ยจ Even though we are in the discrete description, we are somewhat assuming that we can use tools of continuous calculus like Taylor expansion on the function ๐‘ƒ ๐‘–, ๐‘ž ยจ More rigorously, ๐‘ƒ ๐‘–, ๐‘ž is NOT a continuous function (just like BINOM.DIST was not either), but we are looking for a continuous function โ€ข๐‘ƒ ๐‘ฅ, ๐‘ก , that would match the discrete values of ๐‘ƒ ๐‘–, ๐‘ž , or is not โ€œtoo farโ€ from it. ยจ Say it another way, we assuming that there is a limit for ๐‘ƒ ๐‘–, ๐‘ž that would be a regular continuous function โ€ข๐‘ƒ ๐‘ฅ ๐‘– , ๐‘ž. ๐œ , and because we are not that rigorous, we just use the same notation ๐‘ƒ ๐‘–, ๐‘ž and ๐‘ƒ ๐‘ฅ, ๐‘ก 59
  • 60. Luc_Faucheux_2020 Taylor expansion II ยจ So really we should have written ยจ ๐‘ƒ ๐‘–, ๐‘ž + 1 is the discrete probability to find the random walker in the bin ๐‘– after (๐‘ž + 1) jumps of size ๐œ€ every time interval ๐œ ยจ We have a strong feeling that there might be a continuous function โ€ข๐‘ƒ ๐‘ฅ, ๐‘ก which is a function of the two continuous variables position and time, which is such that the discrete function โ€convergesโ€ to the continuous function under some limits ยจ By โ€œconvergeโ€, what we mean is that there is a manner in which you can calculate the โ€œdistanceโ€ between the continuous function and the discrete one, and we would like to say something along the lines of โ€œas the size of the jump ๐œ€ goes to 0 and the period of the jump ๐œ also goes to zeroโ€ ยจ Note that we have not defined the โ€œdistanceโ€ ยจ Note that we have not defined โ€how we get to 0โ€ ยจ We are trying to be pragmatic without butchering the actual math too much, so really get to the essence but alert you that there are a couple of trees in the forest that you should pay attention to, and some others that are not that important 60
  • 61. Luc_Faucheux_2020 Taylor expansion III ยจ ๐‘ƒ ๐‘–, ๐‘ž + 1 = + , . {๐‘ƒ ๐‘– โˆ’ 1, ๐‘ž + ๐‘ƒ ๐‘– + 1, ๐‘ž } ยจ ๐‘ƒ ๐‘–, ๐‘ž + 1 = ๐‘ƒ ๐‘–, ๐‘ž + ๐œ. G OP(3,7) G7 + ๐’ช(๐œ,) ยจ ๐‘ƒ ๐‘– โˆ’ 1, ๐‘ž = ๐‘ƒ ๐‘–, ๐‘ž โˆ’ ๐œ€. G OP(3,7) G3 + + , . ๐œ€,. G% OP(3,7) G3% + ๐’ช(๐œ€R) ยจ ๐‘ƒ ๐‘– + 1, ๐‘ž = ๐‘ƒ ๐‘–, ๐‘ž + ๐œ€. G OP(3,7) G3 + + , . ๐œ€,. G% OP(3,7) G3% + ๐’ช(๐œ€R) ยจ ๐’ช(. . ) means โ€something of the order ofโ€, meaning all the higher orders that we are neglecting in the Taylor expansion ยจ You have to be careful to which order you go to, and also if the higher orders are indeed negligible for what you are trying to achieve 61
  • 62. Luc_Faucheux_2020 Taylor expansion IV ยจ ๐‘ƒ ๐‘–, ๐‘ž + 1 = + , . {๐‘ƒ ๐‘– โˆ’ 1, ๐‘ž + ๐‘ƒ ๐‘– + 1, ๐‘ž } ยจ ๐‘ƒ ๐‘–, ๐‘ž + 1 = ๐‘ƒ ๐‘–, ๐‘ž + ๐œ. G OP(3,7) G7 + ๐’ช(๐œ,) ยจ ๐‘ƒ ๐‘– โˆ’ 1, ๐‘ž = ๐‘ƒ ๐‘–, ๐‘ž โˆ’ ๐œ€. G OP(3,7) G3 + + , . ๐œ€,. G% OP(3,7) G3% + ๐’ช(๐œ€R) ยจ ๐‘ƒ ๐‘– + 1, ๐‘ž = ๐‘ƒ ๐‘–, ๐‘ž + ๐œ€. G OP(3,7) G3 + + , . ๐œ€,. G% OP(3,7) G3% + ๐’ช(๐œ€R) ยจ ๐‘ƒ ๐‘–, ๐‘ž + ๐œ. G OP(3,7) G7 + ๐’ช ๐œ, = + , . {๐‘ƒ ๐‘–, ๐‘ž โˆ’ ๐œ€. G OP(3,7) G3 + + , . ๐œ€,. G% OP(3,7) G3% + ๐’ช ๐œ€R + ๐‘ƒ ๐‘–, ๐‘ž + ๐œ€. G OP(3,7) G3 + + , . ๐œ€,. G% OP(3,7) G3% + ๐’ช(๐œ€R)} ยจ ๐œ. G OP(3,7) G7 + ๐’ช ๐œ, = + , ๐œ€,. G% OP(3,7) G3% + ๐’ช ๐œ€R 62
  • 63. Luc_Faucheux_2020 Taylor expansion V ยจ ๐œ. G OP(3,7) G7 + ๐’ช ๐œ, = + , ๐œ€,. G% OP(3,7) G3% + ๐’ช ๐œ€R ยจ G OP(3,7) G7 = S% ,T . G% OP(3,7) G3% ยจ Equation above is usually referred to as a โ€œheat equationโ€ or โ€œdiffusion equationโ€ ยจ The diffusion coefficient is defined as ๐ท = S% ,T ยจ This is the PDE (Partial Differential Equation) for the PDF (Probability Distribution Function) ยจ Note that we were looking for a continuous limit when ๐œ€ โ€goes to zeroโ€ and ๐œ โ€œgoes to zeroโ€. Obviously since we are dividing one by the other we are going to have to be a little careful here. 63
  • 64. Luc_Faucheux_2020 Conservation Equation ยจ G OP(3,7) G7 = ๐ท G% OP(3,7) G3% ยจ We can rewrite the above as ยจ G OP(3,7) G7 = ๐ท G% OP(3,7) G3% = G G3 [๐ท G OP(3,7) G3 ] ยจ This is also known as a conservation equation, because it verifies the conservation of overall probability (we do not lose any random walkers) ยจ The overall probability is the integral over the position axis of the function โ€ข๐‘ƒ(๐‘ฅ, ๐‘ก) ยจ H H7 . โˆซ โ€ข๐‘ƒ ๐‘ฅ, ๐‘ก = โˆซ G G7 โ€ข๐‘ƒ ๐‘ฅ, ๐‘ก = โˆซ G G3 [๐ท G OP(3,7) G3 ] = 0 ยจ So the overall probability is โ€conservedโ€. ยจ Please note that we were quite liberal in taking the diffusion coefficient ๐ท inside the partial derivative, which can can only do if it has no dependence on the position. When it depends on the position, this opens up the whole Ito-Stratonovitch can of worms 64
  • 65. Luc_Faucheux_2020 Gradient and Diffusion current ยจ G OP(3,7) G7 = ๐ท G% OP(3,7) G3% = G G3 [๐ท G OP(3,7) G3 ] ยจ The diffusion current is sometimes defined as: ๐ฝ ๐‘ฅ, ๐‘ก = โˆ’๐ท G OP(3,7) G3 ยจ The above equation is sometimes called the Ficksโ€™s law. ยจ G G7 โ€ข๐‘ƒ = โˆ’ G G3 ๐ฝ ยจ G OP(3,7) G7 = ๐ท G% OP(3,7) G3% ยจ We know a solution of this equation : the Normal Distribution Function, or Gausssian. ยจ ๐บ ๐‘ฅ, ๐‘ก = + K%U7 . ๐‘’๐‘ฅ๐‘(โˆ’ 3% KU7 ) 65
  • 66. Luc_Faucheux_2020 Propagator and Green function ยจ ๐บ ๐‘ฅ, ๐‘ก = + K%U7 . ๐‘’๐‘ฅ๐‘(โˆ’ 3% KU7 ) is one solution of the diffusion equation. ยจ Because the diffusion equation is linear, a linear combination of solutions is ALSO a solution ยจ The Gaussian function is self-similar, if you plot {๐บ ๐‘ฅ, ๐‘ก . 4๐œ‹๐ท๐‘ก} as a function of the rescaled variable ๐‘ฆ = 3% KU7 , you always get the same function ๐‘’๐‘ฅ๐‘(โˆ’๐‘ฆ,) ยจ This is what we did in the spreadsheet with the BINOM.DIST function ยจ When t=0, the Gaussian function above converges to the Dirac function. It is a function equal to 0 everywhere except at x=0, where it goes to infinity but in such a way that the integral of the Gaussian over the x-axis is always conserved and equal to 1 (conservation of probability) 66
  • 67. Luc_Faucheux_2020 Propagator and Green functions II ยจ Take any arbitrary initial probability distribution function โ€ข๐‘ƒ(๐‘ฅ, ๐‘ก = 0) ยจ This can be written formally as ยจ โ€ข๐‘ƒ ๐‘ฅ, ๐‘ก = 0 = โˆซ โ€ข๐‘ƒ ๐‘ฅ2, ๐‘ก = 0 . ๐›ฟ ๐‘ฅ โˆ’ ๐‘ฅ2 . ๐‘‘๐‘ฅโ€ฒ ยจ The initial โ€œpeakโ€ โ€ข๐‘ƒ ๐‘ฅ2, ๐‘ก = 0 . ๐›ฟ(๐‘ฅ โˆ’ ๐‘ฅ2) is centered around ๐‘ฅ with integral โ€ข๐‘ƒ ๐‘ฅ, ๐‘ก = 0 ยจ This peak will diffuse with the Gaussian ๐บ ๐‘ฅ, ๐‘ฅโ€ฒ, ๐‘ก = + K%U7 . ๐‘’๐‘ฅ๐‘(โˆ’ (353$)% KU7 ) ยจ and so for any time t, the solution of the diffusion equation that satisfies โ€ข๐‘ƒ(๐‘ฅ, ๐‘ก = 0) will be: ยจ โ€ข๐‘ƒ ๐‘ฅ, ๐‘ก = โˆซ โ€ข๐‘ƒ ๐‘ฅ2, ๐‘ก = 0 . ๐บ ๐‘ฅ, ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ ยจ ๐บ ๐‘ฅ, ๐‘ฅโ€ฒ, ๐‘ก is called the Green function, or the propagator 67
  • 68. Luc_Faucheux_2020 Propagators and Green functions III ยจ The propagator technique is hugely helpful when discounting payoff ยจ The Black Sholes equation is a diffusion equation ยจ Note : the probability distribution function for the random variable โ€œdiffuses forward in timeโ€ ยจ Note : the option value as a function of the random variable โ€diffuses backward in timeโ€ from the terminal payoff. ยจ The terminal payoff is sometimes called the โ€boundary conditionโ€ for the diffusion equation followed by the option value 68
  • 69. Luc_Faucheux_2020 Diffusion and convexity ยจ G G7 ๐‘ƒ(๐‘ฅ, ๐‘ก) = ๐ท G% G3% ๐‘ƒ(๐‘ฅ, ๐‘ก) ยจ If the density probability has a โ€œsharp peakโ€, G% G3% ๐‘ƒ(๐‘ฅ, ๐‘ก) is a large negative number, and so G G7 ๐‘ƒ(๐‘ฅ, ๐‘ก) is also a large negative number, and so the density probability at that spot will decrease rapidly in time. ยจ If the density probability has a โ€œsharp troughโ€, G% G3% ๐‘ƒ(๐‘ฅ, ๐‘ก) is a large positive number, and so G G7 ๐‘ƒ(๐‘ฅ, ๐‘ก) is also a large positive number, and so the density probability at that spot will increase rapidly in time. ยจ The diffusion equation tends to โ€œsmooth outโ€ any irregularity of the density probability (forward in time), any sharp โ€œkinksโ€ diffuses over time ยจ Note: in regions of large convexity (Gamma), the time dependence (time decay) is also maximum 69
  • 70. Luc_Faucheux_2020 Diffusion and convexity II ยจ The steady-state solution (also called equilibrium solution) of the diffusion equation is a solution where there is no dependence in time. ยจ In our simple case, it means G% G3% ๐‘ƒ ๐‘ฅ, ๐‘ก = โˆž = G% G3% ๐‘ƒ?VCWXW(YWCZ ๐‘ฅ = 0 ยจ That is a straight line ยจ Any โ€œkinkโ€ (places where the second spatial derivative was non-zero) got smoothed out 70
  • 71. Luc_Faucheux_2020 Another scaling argument (Bachelier page 69) ยจ For a given ๐‘ฅ, the probability density function at a given time ๐‘ก is given by: ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = + K%U7 . ๐‘’๐‘ฅ๐‘(โˆ’ 3% KU7 ) ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = 0 = 0 and lim 7โ†’6 ๐‘ƒ ๐‘ฅ, ๐‘ก = 0 ยจ For a given ๐‘ฅ, the function ๐‘ƒ ๐‘ฅ, ๐‘ก will exhibit a positive maximum for a given time ๐‘ก ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = + K%U7 . ๐‘’๐‘ฅ๐‘(โˆ’ 3% KU7 ) ยจ GP 3,7 G3 = 5+ , . + K%U7 . + 7 . ๐‘’๐‘ฅ ๐‘ โˆ’ 3% KU7 + + K%U7 . ๐‘’๐‘ฅ ๐‘ โˆ’ 3% KU7 . ( 3% KU . + 7%) ยจ GP 3,7 G3 = 0 at the maximum ๐‘ก = ๐‘ก implies ๐‘ก = 3% ,U ยจ Again we see the neat scaling of the square of the distance to the first order in time appears 71
  • 72. Luc_Faucheux_2020 A neat thing about the diffusion equation (Bachelier) ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = + K%U7 . ๐‘’๐‘ฅ๐‘(โˆ’ 3% KU7 ) is a solution of G G7 ๐‘ƒ(๐‘ฅ, ๐‘ก) = ๐ท G% G3% ๐‘ƒ(๐‘ฅ, ๐‘ก) ยจ We define ๐‘ ๐‘ฅ, ๐‘ก = โˆซ3 6 ๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ as the probability to find the random variable at time ๐‘ก at a distance greater than ๐‘ฅ ยจ G] 3,7 G7 = โˆซ3 6 GP 32,7 G7 . ๐‘‘๐‘ฅโ€ฒ = โˆซ3 6 ๐ท G% G32% ๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ = ๐ท. GP 3$,7 G3$ 6 3$43 = โˆ’๐ท. GP 3,7 G3 ยจ G] 3,7 G7 = โˆ’๐ท. GP 3,7 G3 ยจ ๐‘ ๐‘ฅ, ๐‘ก = โˆซ3 6 ๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ and so G] 3,7 G3 = โˆ’๐‘ƒ(๐‘ฅ, ๐‘ก) ยจ And so the function ๐‘ ๐‘ฅ, ๐‘ก = โˆซ3 6 ๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ ALSO follows the same equation diffusion as ๐‘ƒ(๐‘ฅ, ๐‘ก) ยจ G G7 ๐‘(๐‘ฅ, ๐‘ก) = ๐ท G% G3% ๐‘ ๐‘ฅ, ๐‘ก NOTE that ๐‘(๐‘ฅ, ๐‘ก) is NOT a Gaussian (unicity of solution) 72
  • 73. Luc_Faucheux_2020 Bachelier on the rayonement de probabilite ยจ Let us limit ourselves to a one-dimensional random walk ยจ A random walker will jump to the right or the left by one unit ๐œ€ at equal time intervals ๐œ ยจ We assume equal probability (1/2) to jump to the right or the left ยจ ๐‘‹(๐‘ก) will be in bin [๐‘–], ๐‘‹(๐‘ก + ๐œ) will be in bin [๐‘– โˆ’ 1] or [๐‘– + 1] with equal probability 50% ยจ Analogous to the coin toss ยจ The random walk can be mapped to the coin toss for money, the position on the X axis is the current amount of money that the player has while playing a simple strategy where one amount of currency ($1) is won or lost if the coin lands on heads or tail 73 Xi i+1i-1
  • 74. Luc_Faucheux_2020 Bachelierโ€™s argument is slighty different ยจ ๐‘ƒ(๐‘–, ๐‘ž) is the probability to ๏ฌnd our random walker in the bin (๐‘–) at the tme (๐‘ž. ๐œ) ยจ We define ๐‘ ๐‘–, ๐‘ž = โˆ‘I4W 6 ๐‘ƒ(๐‘—, ๐‘ž) ยจ ๐‘ ๐‘–, ๐‘ž is the probability to find the random walker on the right of the bin (๐‘–) at the tme (๐‘ž. ๐œ) ยจ Bachelier somehow was more interested in ๐‘ ๐‘–, ๐‘ž than ๐‘ƒ(๐‘–, ๐‘ž), because he was more interested in pricing an option ยจ ๐‘ ๐‘–, ๐‘ž = โˆ‘I4W 6 ๐‘ƒ(๐‘—, ๐‘ž) ยจ ๐‘ ๐‘– + 1, ๐‘ž = โˆ‘I4W/+ 6 ๐‘ƒ(๐‘—, ๐‘ž) ยจ And so ๐‘ƒ ๐‘–, ๐‘ž = ๐‘ ๐‘–, ๐‘ž โˆ’ ๐‘ ๐‘– + 1, ๐‘ž ยจ ๐‘ ๐‘– + 1, ๐‘ž = ๐‘ ๐‘–, ๐‘ž + G] G3 . ๐œ€ + ๐’ช(๐œ€,) ยจ ๐‘ƒ ๐‘–, ๐‘ž = โˆ’ G] G3 . ๐œ€ to the second order in ๐œ€ 74
  • 75. Luc_Faucheux_2020 Rayonement de probability (Bachelier page) ยจ ๐‘ƒ ๐‘–, ๐‘ž = โˆ’ G] G3 . ๐œ€ ยจ We also know that the random walker follows the jump dynamic of equal probability to the right and the left at every discrete time increment ยจ ๐‘ ๐‘–, ๐‘ž + 1 = ๐‘ ๐‘–, ๐‘ž โˆ’ + , . ๐‘ƒ ๐‘–, ๐‘ž + + , . ๐‘ƒ ๐‘– โˆ’ 1, ๐‘ž ยจ ๐‘ ๐‘–, ๐‘ž + 1 โˆ’ ๐‘ ๐‘–, ๐‘ž = + , . {๐‘ƒ ๐‘– โˆ’ 1, ๐‘ž โˆ’ ๐‘ƒ(๐‘–, ๐‘ž)} ยจ G] G7 . ๐œ = + , . โˆ’ GP G3 . ๐œ€ = + , . ๐œ€,. G%] G3% or G] G7 = S% ,T . G%] G3% ยจ This is the same diffusion equation or heat equation that we had for ๐‘ƒ. ยจ Note that the two functions are quite different (there is no unicity of the diffusion equation) ยจ Different Boundary conditions: ยจ Note that we were a little liberal mixing ๐‘ƒ ๐‘–, ๐‘ž and โ€ข๐‘ƒ ๐‘ฅ ๐‘– , ๐‘ž. ๐œ for clarity sake 75
  • 76. Luc_Faucheux_2020 Some concepts around time (first passage,..) 76
  • 77. Luc_Faucheux_2020 Some concepts around time ยจ A typical Brownian motion would look something like that (thanks you Excel): 77
  • 78. Luc_Faucheux_2020 Some concepts around time II ยจ We can define for a given path a number of variables ยจ ๐‘‹ ๐‘ก is the Brownian variable, ๐‘‡ is the last time, 0 โ‰ค ๐‘ก โ‰ค ๐‘‡ ยจ We can define the Maximum value of the path : ๐‘€๐ด๐‘‹ ๐‘‡ = MAX(๐‘‹ ๐‘ก , 0 โ‰ค ๐‘ก โ‰ค ๐‘‡) ยจ We can define the โ€œFirst passage timeโ€, the first time that the Brownian motion reaches the value ๐‘š, as ๐œ ๐‘š, ๐‘‡ = min(๐‘ก โ‰ฅ 0, ๐‘‹ ๐‘ก = ๐‘š) ยจ It would be useful to be able to know the distribution probability for ๐œ ๐‘š, ๐‘‡ ยจ Bachelier devotes the last few pages of his thesis on this, and comes up with a number of very useful โ€œrules of thumbโ€ ยจ Letโ€™s introduce now the reflection principle or symmetry principle. ยจ Not only it is neat, but also it is used widely for example in reducing the CPU and time for Monte Carlo simulations. 78
  • 79. Luc_Faucheux_2020 Some concepts around time III ยจ Letโ€™s do the following trick: As soon as ๐‘š gets reached at time ๐œ ๐‘š, ๐‘‡ by the Brownian motion ๐‘‹ ๐‘ก (we then have ๐‘‹ ๐œ ๐‘š, ๐‘‡ = ๐‘š ), we create a symmetrical Brownian motion, where starting at time ๐œ ๐‘š, ๐‘‡ , every time ๐‘‹ ๐‘ก goes up or down, ๐‘‹)^ ๐‘ก does exactly the opposite, example below ๐‘š = 2, ๐œ ๐‘š, ๐‘‡ = 12, ๐‘‹ ๐‘ก solid orange line, ๐‘‹)^ ๐‘ก is the dashed blue line 79
  • 80. Luc_Faucheux_2020 Some concepts around time III-b 80 Maximum to date ๐‘€๐ด๐‘‹(๐‘‡) End point ๐‘‹ ๐‘‡ = ๐‘‹# End point reflected: ๐‘‹)^ ๐‘‡ = 2๐‘š โˆ’ ๐‘‹# Level of first passage ๐‘š
  • 81. Luc_Faucheux_2020 Some concepts around time III-c 81 Maximum to date ๐‘€๐ด๐‘‹(๐‘‡) End point ๐‘‹ ๐‘‡ = ๐‘‹# End point reflected: ๐‘‹)^ ๐‘‡ = 2๐‘š โˆ’ ๐‘‹# Level of first passage ๐‘š
  • 82. Luc_Faucheux_2020 Some concepts around time III-d 82 -2 0 2 4 6 8 10 Maximum to date ๐‘€๐ด๐‘‹(๐‘‡) End point ๐‘‹ ๐‘‡ = ๐‘‹# End point reflected: ๐‘‹)^ ๐‘‡ = 2๐‘š โˆ’ ๐‘‹# Level of first passage ๐‘š
  • 83. Luc_Faucheux_2020 Some concepts around time IV ยจ If during the interval [0, ๐‘‡], ๐‘‹ ๐‘ก reaches ๐‘š, then we have a reflected path ๐‘‹)^ ๐‘ก ยจ We have by construction: ABS(๐‘‹)^ ๐‘‡ โˆ’ ๐‘š) = ABS(๐‘‹ ๐‘ก โˆ’ ๐‘š) ยจ So for all time ๐‘ก โ‰ฅ ๐œ ๐‘š, ๐‘‡ , ๐‘‹ ๐‘ก and ๐‘‹)^ ๐‘ก are symmetrical around ๐‘š ยจ Letโ€™s now define in a more general fashion a new terminal variable ๐‘‹# ยจ We now the probability that at time ๐‘ก = ๐‘‡, the Brownian motion will end with a value such that ๐‘‹ ๐‘ก โ‰ฅ ๐‘‹# ยจ This is the usual Gaussian distribution : โ„Ž ๐‘ฅ, ๐‘ก = + ,%-%7 . exp( 53% ,-%7 ) ยจ So ๐‘ƒ ๐‘‹ ๐‘‡ โ‰ฅ ๐‘‹# = โˆซ34_1 346 1. โ„Ž ๐‘ฅ, ๐‘‡ . ๐‘‘๐‘ฅ ยจ Letโ€™s try to figure out the cumulative probability distribution for ๐œ ๐‘š, ๐‘‡ , or more exactly: ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ 83
  • 84. Luc_Faucheux_2020 Some concepts around time V ยจ We can write what is known as the โ€œreflection formulaโ€ ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹# ยจ Because if ๐‘‹ ๐‘ก did reach ๐‘š at some point, for every path ๐‘‹ ๐‘ก after ๐‘ก = ๐œ ๐‘š, ๐‘‡ , there exist a symmetrical path ๐‘‹)^ ๐‘ก around ๐‘š. ยจ So the number of paths ๐‘‹ ๐‘ก that did reach ๐‘š at some point, and are now at a terminal value ๐‘‹ ๐‘‡ โ‰ค ๐‘‹#, is the same number of paths ๐‘‹)^ ๐‘ก that are now at a terminal value ๐‘‹)^ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹# ยจ Those paths ๐‘‹)^ ๐‘ก are โ€œvalidโ€ paths ๐‘‹ ๐‘ก , meaning that they are a specific realization of the Brownian motion ๐‘‹ ๐‘ก ยจ So re-stating again the above, the number of paths ๐‘‹ ๐‘ก that did reach ๐‘š at some point, and are now at a terminal value ๐‘‹ ๐‘‡ โ‰ค ๐‘‹#, is the same number of paths ๐‘‹ ๐‘ก that are now at a terminal value ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹# ยจ This is the reflection principle (Desiree Andre, 1840-1917) or also sometimes called the ballot problem (Joseph Louis Bertrand, 1887) 84
  • 85. Luc_Faucheux_2020 Some concepts around time VI ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹# ยจ Now letโ€™s use the specific example of ๐‘‹# = ๐‘š ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘š = ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š ยจ But we also have ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘š + ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘š = 2. ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š ยจ And if ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š, then obviously ๐‘‹ ๐‘ก did reach ๐‘š before ๐‘ก = ๐‘‡ ยจ So : ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. ๐‘ƒ ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š the usual Gaussian ยจ The probability that the Brownian motion will be greater than a given level at maturity is half the probability that this given level will be reached or exceeded during the time interval up to maturity 85
  • 86. Luc_Faucheux_2020 Some concepts around time VI-a ยจ Note: Shrieve (p.112) looks at each Brownian motion path that reaches level ๐‘š prior to time ๐‘‡ but is at a level ๐‘‹# below ๐‘š at time ๐‘‡ ยจ In that case, since ๐‘‹# โ‰ค ๐‘š, we have automatically: (2๐‘š โˆ’ ๐‘‹#) โ‰ฅ ๐‘‹# ยจ And so he writes from the start the reflection equality as: ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = ๐‘ƒ ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹# and stating ๐‘‹# โ‰ค ๐‘š, ๐‘š > 0 ยจ We only did it when equating ๐‘‹# = ๐‘š, and then of course: ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹# = ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š = ๐‘ƒ ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š ยจ Do we have : ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹# ยจ Even in the cases where ๐‘‹# โ‰ฅ ๐‘š, ๐‘š > 0 ? 86
  • 87. Luc_Faucheux_2020 Some concepts around time VII ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. ๐‘ƒ ๐‘‹ ๐‘‡ โ‰ฅ ๐‘š ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. โˆซ34Z 346 1. โ„Ž ๐‘ฅ, ๐‘‡ . ๐‘‘๐‘ฅ ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. โˆซ34Z 346 1. + ,%-%# . exp( 53% ,-%# ). ๐‘‘๐‘ฅ ยจ We can now compute things such as the average first passage time: ยจ Note that ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ is the CUMULATIVE distribution function ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ is the probability that ๐‘‹ ๐‘ก will exceed ๐‘š over the time interval [0, ๐‘‡] ยจ Between ๐‘‡ and (๐‘‡ + ๐‘‘๐‘‡), the density function is ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = GP T Z,# `# G# ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = โˆซa48 a4# ๐‘ ๐œ ๐‘š, ๐œ‰ โ‰ค ๐œ‰ ). ๐‘‘๐œ‰ 87
  • 88. Luc_Faucheux_2020 Some concepts around time VIII ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ is the probability that ๐‘‹ ๐‘ก will exceed ๐‘š over the time interval [0, ๐‘‡] ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ + ๐‘‘๐‘‡ โ‰ค ๐‘‡ + ๐‘‘๐‘‡ is the probability that ๐‘‹ ๐‘ก will exceed ๐‘š over the time interval [0, ๐‘‡ + ๐‘‘๐‘‡] ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ + ๐‘‘๐‘‡ โ‰ค ๐‘‡ + ๐‘‘๐‘‡ โˆ’ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ is thus the probability that ๐‘‹ ๐‘ก will exceed ๐‘š INSIDE the time interval [๐‘‡, ๐‘‡ + ๐‘‘๐‘‡] ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ + ๐‘‘๐‘‡ โ‰ค ๐‘‡ + ๐‘‘๐‘‡ โˆ’ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ is the probability that ๐œ ๐‘š, ๐‘‡ is within the interval [๐‘‡, ๐‘‡ + ๐‘‘๐‘‡] ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ + ๐‘‘๐‘‡ โ‰ค ๐‘‡ + ๐‘‘๐‘‡ โˆ’ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = GP T Z,# `# G# . ๐‘‘๐‘‡ ยจ ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = GP T Z,# `# G# is the probability density to have ๐œ ๐‘š, ๐‘‡ at time ๐‘‡ ยจ So less confusing to rewrite it as ๐‘ ๐‘š, ๐‘‡ , probability that the Brownian motion ๐‘‹ ๐‘ก will exceed ๐‘š at time ๐‘‡ ยจ It also makes things easier to grasp when you realize that ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ can only increase with ๐‘‡ (if ๐‘š was reached, it is obviously still reached) 88
  • 89. Luc_Faucheux_2020 Some concepts around time IX ยจ Letโ€™s rewrite a little the cumulative probability: ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. โˆซ34Z 346 1. + ,%-%# . exp( 53% ,-%# ). ๐‘‘๐‘ฅ ยจ We rescale using the change of variable: ๐‘ฆ, = 3% -%# ยจ ๐‘ฅ = ๐‘š corresponds to ๐‘ฆ = Z -%# and ๐‘‘๐‘ฅ = ๐‘‘๐‘ฆ. ๐œŽ, ๐‘‡ ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = 2. โˆซ:4 2 3%1 :46 + ,% . exp( 5:% , ). ๐‘‘๐‘ฆ ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = , ,% . โˆซ:4 2 3%1 :46 exp( 5:% , ). ๐‘‘๐‘ฆ 89
  • 90. Luc_Faucheux_2020 Some concepts around time X ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = , ,% . โˆซ:4 2 3%1 :46 exp( 5:% , ). ๐‘‘๐‘ฆ and writing ๐‘ฆZ = Z -%# ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = , ,% . โˆซ:4:2 :46 exp( 5:% , ). ๐‘‘๐‘ฆ ยจ ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = GP T Z,# `# G# = GP T Z,# `# G:2 . G:2 G# ยจ ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = , ,% . โˆ’1 . exp 5:2 % , . โˆ’ + , . + # . Z -%# ยจ ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = Z # ,%-%# . exp 5:2 % , ยจ ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = Z # ,%-%# . exp 5Z% ,-%# = ๐‘(๐‘š, ๐‘‡) 90
  • 91. Luc_Faucheux_2020 Some concepts around time X-a ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = ๐‘ƒ(๐‘š, ๐‘‡) = , ,% . โˆซ:4:2 :46 exp( 5:% , ). ๐‘‘๐‘ฆ with ๐‘ฆZ = Z -%# ยจ If ๐‘‡ โ†’ โˆž, ๐‘ฆZ โ†’ 0 and so ๐‘ƒ(๐‘š, ๐‘‡ = โˆž) = , ,% . โˆซ:48 :46 exp( 5:% , ). ๐‘‘๐‘ฆ ยจ We always go back to : ๐ผ9 = โˆซ56 /6 ๐‘’593% . ๐‘‘๐‘ฅ = % 9 ยจ ๐‘ƒ ๐‘š, ๐‘‡ = โˆž = , ,% . โˆซ:48 :46 exp 5:% , . ๐‘‘๐‘ฆ = , ,% . + , . % โ„* % = 1 ยจ ๐‘ƒ ๐‘š, ๐‘‡ = โˆž = 1 for all ๐‘š. So whatever the value of ๐‘š, it will be reached at some point in time by the stochastic process ๐‘‹ ๐‘ก with probability 1 91
  • 92. Luc_Faucheux_2020 A little paradox (Doob) ยจ ๐‘ƒ ๐‘š, ๐‘‡ = โˆž = 1 for all ๐‘š. So whatever the value of ๐‘š, it will be reached at some point in time by the stochastic process ๐‘‹ ๐‘ก with probability 1 ยจ A little detour through notations and martingale ยจ We are looking at a stochastic process ๐‘†(๐‘ก) or in its discrete implementation ๐‘†! = ๐‘†(๐‘ก!) ยจ (Because this is usually about stocks, so we are using the letter ๐‘†) ยจ You see sometimes the notation โ„ฑ! which is sometimes referred to as a โ€œfiltrationโ€ ยจ Essentially it is the current set of information available on the world at time ๐‘ก! ยจ It is a collection of stuff ยจ You also sometimes see something that looks like this : ยจ โ„ฑ! = โ„ฑ(๐‘ก!) โŠ‚ โ„ฑb = โ„ฑ(๐‘กb) for all 0 < ๐‘˜ < ๐‘  ยจ That means that the set of information increases with time 92
  • 93. Luc_Faucheux_2020 A little paradox (Doob) - II ยจ โ„ฑ! = โ„ฑ(๐‘ก!) โŠ‚ โ„ฑb = โ„ฑ(๐‘กb) for all 0 < ๐‘˜ < ๐‘  ยจ That means that the set of information increases with time ยจ Any information available at time ๐‘ก! is still available at time ๐‘ก!/+ ยจ โ„ฑ! is sometimes called a ๐œŽ-field on ฮฉ (nothing to do with variance, it is just a name) ยจ Now, just to be super-formal, a sequence of filtrations (collection of ๐œŽ-fields), is also called a filtration if the stream of information is increasing ยจ The collection (โ„ฑ!, ๐‘˜ > 0) of ๐œŽ-fields on ฮฉ is called a filtration if โ„ฑ! โŠ‚ โ„ฑb for all 0 < ๐‘˜ < ๐‘  ยจ If (โ„ฑ!, ๐‘˜ = 0,1, โ€ฆ ) is a sequence of ๐œŽ-fields on ฮฉ and โ„ฑ! โŠ‚ โ„ฑ!/+ for all ๐‘˜, we call (โ„ฑ!) a filtration as well 93
  • 94. Luc_Faucheux_2020 A little paradox (Doob) - III ยจ A stochastic process ๐‘†! is said to be โ€œadapted to the filtrationโ€ (โ„ฑ!, ๐‘˜ > 0) if the value of ๐‘†! is completely determined by the information in โ„ฑ!, which is to say that : ยจ ๐‘†! = ๐ธ[๐‘†!|โ„ฑ!] ยจ ๐ธ[๐‘†!|โ„ฑ!] is the conditional expectation of ๐‘†! ยจ Conditional expectation is not the conditional probability ยจ The conditional expectation is a weighted average of conditional probabilities ยจ A filtration ๐’ฎโ„ฑ! is said to be โ€œgeneratedโ€ by the stochastic process (๐‘†8, ๐‘†+, ๐‘†,,โ€ฆ ๐‘†!) if it contains all the information, and only the information (๐‘†8, ๐‘†+, ๐‘†,,โ€ฆ ๐‘†!), also sometimes referred to as ๐œŽ(๐‘†I, ๐‘— โ‰ค ๐‘˜) ยจ The stochastic process is said to be adapted to the filtrationโ€ (โ„ฑ!, ๐‘˜ > 0) if: ยจ ๐œŽ(๐‘†!) โŠ‚ โ„ฑ! = โ„ฑ(๐‘ก!) for all ๐‘˜ ยจ It essentially means that the stochastic process does not carry more information than the filtration, or ๐’ฎโ„ฑ! โŠ‚ โ„ฑ! for all ๐‘˜ 94
  • 95. Luc_Faucheux_2020 A little paradox (Doob) - IV ยจ For example suppose that ๐’ฎโ„ฑ! is said to be โ€œgeneratedโ€ by the stochastic process (๐‘†8, ๐‘†+, ๐‘†,,โ€ฆ ๐‘†!) ยจ (๐‘†!) is adapted to ๐’ฎโ„ฑ! ยจ (๐‘†!/๐‘†!5+) is adapted to ๐’ฎโ„ฑ! ยจ (๐‘€๐ด๐‘‹(๐‘†I; ๐‘— < +๐‘˜)) is adapted to ๐’ฎโ„ฑ! ยจ (๐‘†!/+) is NOT adapted to ๐’ฎโ„ฑ!, because it is an additional piece of information that was NOT included in ๐’ฎโ„ฑ!, but will be included in ๐’ฎโ„ฑ!/+ ยจ Any โ€œtrading strategyโ€ is adapted to ๐’ฎโ„ฑ! ยจ A โ€œtrading strategyโ€ on the stock ๐‘†! is a sequence of positions ๐‘…!on the stock ๐‘†! ยจ At time ๐‘ก!, the investor places a bet of size ๐‘…!on the stock ๐‘†! ยจ The trading strategy is adapted to ๐’ฎโ„ฑ! means that the ๐‘…!are being computed (decided) only based on the information ๐’ฎโ„ฑ! = ๐œŽ(๐‘†I, ๐‘— โ‰ค ๐‘˜), or (๐‘†8, ๐‘†+, ๐‘†,,โ€ฆ ๐‘†!) 95
  • 96. Luc_Faucheux_2020 A little paradox (Doob) - V ยจ The trading strategy is said to be โ€œself-financingโ€ if the only gain or losses result from the movements in the stochastic variable ๐‘†! (no one adds money or subtract money to the account) ยจ โ€œself-financingโ€ is not the same as โ€œreplicatingโ€ ยจ The total winnings up to time ๐‘†! are: ๐‘Œ! = ๐‘Œ!5+ + ๐‘…!5+. (๐‘†! โˆ’ ๐‘†!5+) ยจ A stochastic process ๐‘†! is called a martingale with respect to โ„ฑ! in the following fashion: ยจ 1) ๐ธ ๐‘Ž๐‘๐‘  ๐‘†! โ„ฑ!] < โˆž for all ๐‘˜ ยจ 2) ๐‘†! is adapted to โ„ฑ! ยจ 3) ๐ธ[๐‘†!| โ„ฑI] = ๐‘†I for all 0 โ‰ค ๐‘— < ๐‘˜, meaning that ๐‘†I is the best predictor of ๐‘†! given โ„ฑI ยจ In particular ๐ธ[๐‘†!/+| โ„ฑ!] = ๐‘†! ยจ A martingale has the remarkable property that its expectation function is constant (and we sometimes omit pointing out which exact filtration is being used) 96
  • 97. Luc_Faucheux_2020 A little paradox (Doob) - VI ยจ Any self-financing trading strategy of a martingale is also a martingale ยจ The total winnings up to time ๐‘†! are: ๐‘Œ! = ๐‘Œ!5+ + ๐‘…!5+. (๐‘†! โˆ’ ๐‘†!5+) ยจ ๐ธ[๐‘†!/+| โ„ฑ!] = ๐‘†! ยจ ๐ธ[๐‘Œ!/+| โ„ฑ!] = ๐ธ[๐‘Œ! + ๐‘…!. (๐‘†!/+ โˆ’ ๐‘†!)| โ„ฑ!] ยจ ๐ธ[๐‘Œ!/+| โ„ฑ!] = ๐‘Œ! + ๐‘…!. (๐ธ[๐‘†!/+| โ„ฑ!] โˆ’ ๐‘†!) = ๐‘Œ! ยจ Martingales is also referred to as โ€œfair gameโ€ ยจ Originally, martingale is a French word referring something you put on a horse to drive him/her 97
  • 98. Luc_Faucheux_2020 A little paradox (Doob) - VII ยจ Almost getting to the paradox, but we had to spend a little time on definitions first. ยจ Suppose that a stochastic process (a stock) is a martingale, and that ๐‘†8 = 0 ยจ We define the following trading strategy: ๐‘…! = 1 if ๐‘†! < ๐‘š, 0 otherwise ยจ Recall that: ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = ๐‘ƒ(๐‘š, ๐‘‡) ยจ ๐œ ๐‘š, ๐‘‡ is here referred as the โ€œstopping timeโ€. As soon as ๐‘†! reached ๐‘š, ๐‘†!stays stuck on that value ยจ The trading strategy is ๐‘Œ! = ๐‘Œ!5+ + ๐‘…!5+. (๐‘†! โˆ’ ๐‘†!5+) with ๐‘…! = 1 if ๐‘†! < ๐‘š, 0 otherwise ยจ So ๐‘Œ! = ๐‘†! if ๐‘ก! < ๐œ ๐‘š, ๐‘‡ and ๐‘Œ! = ๐‘š for all ๐‘ก! โ‰ฅ ๐œ ๐‘š, ๐‘‡ ยจ Now here is the paradox: from what is sometimes referred to as Doobโ€™s theorem (you cannot make an expected non-zero profit with a trading strategy on a martingale), we know that ๐ธ ๐‘Œ! = 0 ยจ HOWEVER we also know that ๐‘ƒ ๐‘š, ๐‘‡ = โˆž = 1 for all ๐‘š. So whatever the value of ๐‘š, it will be reached at some point in time by the stochastic process ๐‘‹ ๐‘ก with probability 1 98
  • 99. Luc_Faucheux_2020 A little paradox (Doob) - VIII ยจ So if ๐‘ƒ ๐‘š, ๐‘‡ = โˆž = 1 for all ๐‘š, AND ยจ ๐‘Œ! = ๐‘†! if ๐‘ก! < ๐œ ๐‘š, ๐‘‡ and ๐‘Œ! = ๐‘š for all ๐‘ก! โ‰ฅ ๐œ ๐‘š, ๐‘‡ ยจ We deduce that ๐‘Œ! = ๐‘š will be equal to ๐‘š with probability 1 ยจ And so we would like to say that ๐ธ[๐‘Œ!] will be equal to ๐‘š with probability 1 ยจ This obviously seems like a paradox. ยจ The fact of the matter is that for any given time ๐‘‡ that is large enough, ๐‘Œ# is very likely to be equal to ๐‘š, however there is enough probability that it has very large negative value that the expected value is still 0 ยจ Also we will see in the following slides that the average first passage time is infinite, which again seems somewhat confusing. 99
  • 100. Luc_Faucheux_2020 A couple more example of martingales ยจ A Brownian bridge is NOT a martingale ยจ Ito integrals are martingale ยจ Stratonovitch integrals are NOT martingale 100
  • 101. Luc_Faucheux_2020 Some concepts around time XI ยจ For the Gaussian case: ยจ โ„Ž ๐‘ฅ, ๐‘ก = + ,%-%7 . exp( 53% ,-%7 ) ยจ ๐‘ ๐‘š, ๐‘‡ = Z # ,%-%# . exp 5Z% ,-%# = Z # . โ„Ž(๐‘š, ๐‘‡) ยจ Be careful that those two probabilities are not equal, and that can be confusing. ยจ โ„Ž ๐‘ฅ, ๐‘ก is the probability density for ๐‘‹ ๐‘ก , i.e. for a given time ๐‘ก, what is the probability to find ๐‘‹ ๐‘ก in the interval [๐‘ฅ, ๐‘ฅ + ๐‘‘๐‘ฅ] ยจ ๐‘ ๐‘š, ๐‘‡ is, for a given ๐‘š, the probability that the Brownian motion ๐‘‹ ๐‘ก will exceed ๐‘š in the interval [๐‘‡, ๐‘‡ + ๐‘‘๐‘‡] for the first time ยจ ๐‘ ๐‘š, ๐‘‡ is, for a given ๐‘š, the probability that the first passage time defined as : ๐œ ๐‘š, ๐‘‡ = min(๐‘ก โ‰ฅ 0, ๐‘‹ ๐‘ก = ๐‘š) can be found in the interval [๐‘‡, ๐‘‡ + ๐‘‘๐‘‡] 101
  • 102. Luc_Faucheux_2020 Some concepts around time XI-b ยจ ๐‘ ๐‘š, ๐‘‡ = Z # ,%-%# . exp 5Z% ,-%# = Z # . โ„Ž(๐‘š, ๐‘‡) ยจ ๐‘‡. ๐‘ ๐‘š, ๐‘‡ = ๐‘š. โ„Ž(๐‘š, ๐‘‡) ยจ This is quite elegant and somewhat intuitive ยจ โ„Ž(๐‘š, ๐‘‡) is the probability density for a given time ๐‘‡ to find the stochastic variable ๐‘‹ ๐‘ก at the position ๐‘‹ ๐‘ก = ๐‘š ยจ โ„Ž ๐‘š, ๐‘‡ . ๐‘‘๐‘š is the probability for a given time ๐‘‡ to find the stochastic variable ๐‘‹ ๐‘ก in the interval [๐‘š, ๐‘š + ๐‘‘๐‘š] ยจ โ„Ž(๐‘š, ๐‘‡) is normalized so that: โˆซZ456 Z4/6 โ„Ž ๐‘š, ๐‘‡ . ๐‘‘๐‘š = 1 ยจ So โ„Ž(๐‘š, ๐‘‡) has units of [+] [_] 102
  • 103. Luc_Faucheux_2020 Some concepts around time XI-c ยจ ๐‘‡. ๐‘ ๐‘š, ๐‘‡ = ๐‘š. โ„Ž(๐‘š, ๐‘‡) ยจ ๐‘(๐‘š, ๐‘‡) is the probability density for a given time level ๐‘š to find the first passage time ๐œ ๐‘š, ๐‘‡ = min(๐‘ก โ‰ฅ 0, ๐‘‹ ๐‘ก = ๐‘š) at time ๐‘‡ ยจ ๐‘ ๐‘š, ๐‘‡ . ๐‘‘๐‘‡ is the probability for a given level ๐‘š to find the the first passage time ๐œ ๐‘š, ๐‘‡ = min(๐‘ก โ‰ฅ 0, ๐‘‹ ๐‘ก = ๐‘š) in the interval ๐‘‡, ๐‘‡ + ๐‘‘๐‘‡ ยจ Is ๐‘(๐‘š, ๐‘‡) is normalized ? โˆซ#48 #4/6 ๐‘ ๐‘š, ๐‘‡ . ๐‘‘๐‘‡ =? ยจ So ๐‘(๐‘š, ๐‘‡) has units of [+] [#] 103
  • 104. Luc_Faucheux_2020 Some concepts around time XI-d ยจ ๐‘ ๐‘š, ๐‘‡ = Z # ,%-%# . exp 5Z% ,-%# = Z # . โ„Ž(๐‘š, ๐‘‡) ยจ The average time is then < ๐œ ๐‘š, ๐‘‡ > = โˆซ#48 #46 ๐‘‡. ๐‘ ๐‘š, ๐‘‡ . ๐‘‘๐‘‡ ยจ < ๐œ ๐‘š, ๐‘‡ > = โˆซ#48 #46 ๐‘‡. Z # ,%-%# . exp 5Z% ,-%# . ๐‘‘๐‘‡ ยจ < ๐œ ๐‘š, ๐‘‡ > = โˆซ#48 #46 Z ,%-%# . exp 5Z% ,-%# . ๐‘‘๐‘‡ ยจ When ๐‘‡ โ†’ โˆž, exp 5Z% ,-%# โ†’ 1, and so the large ๐‘‡ integral looks like โˆซ#48 #46 + # . ๐‘‘๐‘‡ โ†’ โˆž ยจ We will explore this in more details, but the average first passage time is infinite. ยจ The stochastic process will reach any level with probability 1, but will take on average an infinite amount of time to reach that level. This is a little weird. 104
  • 105. Luc_Faucheux_2020 Some concepts around time XI-e ยจ Because of the fact that the average first passage time is infinite, in the literature you will find what is called the typical time ยจ The typical time is the maximum of the function ๐‘ ๐‘š, ๐‘‡ as a function of time ๐‘‡ ยจ ๐‘ ๐‘š, ๐‘‡ = Z # ,%-%# . exp 5Z% ,-%# = Z # . โ„Ž(๐‘š, ๐‘‡) ยจ GA(Z,#) G# = 5R , Z ## ,%-%# . exp 5Z% ,-%# + Z% ,-%## . Z # ,%-%# . exp 5Z% ,-%# ยจ GA(Z,#) G# = 0 implies: R , Z ## ,%-%# = Z% ,-%## . Z # ,%-%# ยจ R , = Z% ,-%# , or again ๐‘‡ = Z% R-%, or using the diffusion notation ๐ท = -% , we have ๐‘‡ = Z% $U ยจ The typical time scales as the square of the level for the first passage time 105
  • 106. Luc_Faucheux_2020 Another scaling argument - redux ยจ G OP(3,7) G7 = G% OP(3,7) G3% , where we set (๐ท = 1) for simplicity sake ยจ ๐บ ๐‘ฅ, ๐‘ก, ๐ท = 1 = + K%7 . ๐‘’๐‘ฅ๐‘(โˆ’ 3% K7 ) is a solution ยจ You can check that the following function is ALSO a solution of the heat equation ยจ ๐‘ˆ ๐‘ฅ, ๐‘ก, ๐ท = 1 = โˆซ56 ( e4 , ) exp(โˆ’ a% K ). ๐‘‘๐œ‰ = ๐‘ˆ( 3 7 ) ยจ This is another self-similarity argument, where again the position has to scale with the square root of the time, but also where the integral of a solution to the diffusion equation ALSO is a solution of the same diffusion equation. ยจ Sometimes those kind of โ€œmappingโ€ are useful because it is easier to work in a given (function, variable) space and then โ€œmapโ€ the results onto the final (function, variable) space that you need to work in 106
  • 107. Luc_Faucheux_2020 Another scaling argument โ€“ redux I-a ยจ ๐‘ˆ ๐‘ฅ, ๐‘ก, ๐ท = 1 = โˆซ56 ( e4 , ) exp(โˆ’ a% K ). ๐‘‘๐œ‰ = ๐‘ˆ( 3 7 ) ยจ Gf(3,7) G7 = exp โˆ’ 3% K7 . โˆ’ + , ๐‘ฅ๐‘ก โ„&. % ยจ Gf(3,7) G3 = exp โˆ’ 3% K7 . ๐‘ก โ„&* % ยจ G%f (3,7) G3% = exp โˆ’ 3% K7 . ๐‘ก โ„&* %. โˆ’ ,3 K7 = exp โˆ’ 3% K7 . โˆ’ + , ๐‘ฅ๐‘ก โ„&. % ยจ So we do have indeed ๐‘ˆ ๐‘ฅ, ๐‘ก, ๐ท = 1 solution of : G%f (3,7) G3% = Gf(3,7) G7 107
  • 108. Luc_Faucheux_2020 Another scaling argument โ€“ redux II ยจ ๐‘ˆ ๐‘ฅ, ๐‘ก, ๐ท = 1 = โˆซ56 ( e4 , ) exp(โˆ’ a% K ). ๐‘‘๐œ‰ = ๐‘ˆ( 3 7 ) ยจ It is also a solution of the Heat equation Gf (3,7) G7 = G%f(3,7) G3% ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = , ,% . โˆซ:4 2 3%1 :46 exp( 5:% , ). ๐‘‘๐‘ฆ ยจ So ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ looks like it could also a solution of a Heat equation, letโ€™s see what we can do ยจ GP(Z,#) G# = ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = ๐‘ ๐‘š, ๐‘‡ = Z # . โ„Ž ๐‘š, ๐‘‡ = Z # ,%-%# . exp 5Z% ,-%# ยจ G%P (Z,#) GZ% = G% GZ% { , ,% . โˆซ:4 2 3%1 :46 exp( 5:% , ). ๐‘‘๐‘ฆ} = , ,% . G GZ { G:2 GZ G G:2 [โˆซ:4 2 3%1 :46 exp( 5:% , ). ๐‘‘๐‘ฆ]} ยจ With ๐‘ฆZ = Z -%# and G:2 GZ = + -%# 108
  • 109. Luc_Faucheux_2020 Another scaling argument โ€“ redux III ยจ G%P (Z,#) GZ% = G% GZ% { , ,% . โˆซ:4 2 3%1 :46 exp( 5:% , ). ๐‘‘๐‘ฆ} = , ,% . G GZ { G:2 GZ G G:2 [โˆซ:4:2 :46 exp( 5:% , ). ๐‘‘๐‘ฆ]} ยจ G%P (Z,#) GZ% = , ,% . G GZ { + -%# . โˆ’1 . exp 5:2 % , } ยจ G%P (Z,#) GZ% = โˆ’ , ,% . + -%# . G GZ exp 5:2 % , = โˆ’ , ,% . + -%# . G:2 GZ G G:2 {exp 5:2 % , } ยจ G%P (Z,#) GZ% = โˆ’ , ,% . + -%# . + -%# . โˆ’ ,:2 , . exp 5:2 % , ยจ G%P (Z,#) GZ% = โˆ’ , ,% . + -%# . + -%# . โˆ’ Z -%# . exp 5:2 % , = :2 # ,% . exp 5:2 % , . ( , -%) ยจ GP(Z,#) G# = Z # ,%-%# . exp 5Z% ,-%# = :2 # ,% . exp 5:2 % , 109
  • 110. Luc_Faucheux_2020 Another scaling argument โ€“ redux IV ยจ We then have : ยจ GP(Z,#) G# = -% , G%P (Z,#) GZ% with ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = , ,% . โˆซ:4 2 3%1 :46 exp( 5:% , ). ๐‘‘๐‘ฆ ยจ Recall that this was for a usual Gaussian: โ„Ž ๐‘ฅ, ๐‘ก = + ,%-%7 . exp( 53% ,-%7 ) ยจ Which is the solution of the heat equation: G G7 โ„Ž(๐‘ฅ, ๐‘ก) = -% , G% G3% โ„Ž(๐‘ฅ, ๐‘ก) ยจ In terms of the Diffusion equation, one has the notation: ยจ G G7 ๐‘ƒ(๐‘ฅ, ๐‘ก) = ๐ท G% G3% ๐‘ƒ(๐‘ฅ, ๐‘ก) ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = + K%U7 . ๐‘’๐‘ฅ๐‘(โˆ’ 3% KU7 ) with ๐ท = (๐œŽ,/2) 110
  • 111. Luc_Faucheux_2020 Another scaling argument โ€“ redux V ยจ This is kind of a neat result. ยจ The cumulative distribution function for the random variable which is the first passage time: ๐œ ๐‘š, ๐‘‡ = min(๐‘ก โ‰ฅ 0, ๐‘‹ ๐‘ก = ๐‘š) is ๐‘ƒ ๐‘š, ๐‘‡ = , ,% . โˆซ:4 2 3%1 :46 exp( 5:% , ). ๐‘‘๐‘ฆ ยจ The underlying Brownian motion ๐‘‹ ๐‘ก follows โ„Ž ๐‘ฅ, ๐‘ก = + ,%-%7 . exp( 53% ,-%7 ) ยจ โ„Ž ๐‘ฅ, ๐‘ก follows the diffusion equation: G G7 โ„Ž(๐‘ฅ, ๐‘ก) = -% , G% G3% โ„Ž(๐‘ฅ, ๐‘ก) ยจ ๐‘ƒ ๐‘š, ๐‘‡ follows the diffusion equation: GP(Z,#) G# = -% , G%P (Z,#) GZ% ยจ ๐‘ƒ ๐‘š, ๐‘‡ diffuses in the space (๐‘š, ๐‘‡) with the SAME diffusion as โ„Ž ๐‘ฅ, ๐‘ก in (๐‘ฅ, ๐‘ก) ยจ Note again that it can get confusing to compare those two probability functions, one is a cumulative, the other one is a density function. Compare that to the next slide where the density and the cumulative for ๐‘ฅ follows the SAME diffusion equation. 111
  • 112. Luc_Faucheux_2020 Another scaling argument โ€“ redux VI ยจ This is reminiscent of a Dupire like equation: ยจ GP(Z,#) G# = -% , G%P (Z,#) GZ% ยจ ๐‘ ๐‘š, ๐‘‡ = Z # ,%-%# . exp 5Z% ,-%# = Z # . โ„Ž ๐‘š, ๐‘‡ = GP(Z,#) G# ยจ So: ยจ โ„Ž ๐‘š, ๐‘‡ = ( # Z ) -% , G%P (Z,#) GZ% ยจ So if we know ๐‘ƒ(๐‘š, ๐‘‡), we can deduce the probability density : โ„Ž ๐‘š, ๐‘‡ ยจ Note: Dupire equation: if we know the Call options prices ๐ถ(๐‘š, ๐‘‡) we can deduce the probability density (also Bachelier p. 51 of his thesis) ยจ โ„Ž ๐‘š, ๐‘‡ = G%g (Z,#) GZ% 112
  • 113. Luc_Faucheux_2020 A neat thing about the diffusion equation (Bachelier) -redux ยจ ๐‘ƒ ๐‘ฅ, ๐‘ก = + K%U7 . ๐‘’๐‘ฅ๐‘(โˆ’ 3% KU7 ) is a solution of G G7 ๐‘ƒ(๐‘ฅ, ๐‘ก) = ๐ท G% G3% ๐‘ƒ(๐‘ฅ, ๐‘ก) ยจ We define ๐‘ ๐‘ฅ, ๐‘ก = โˆซ3 6 ๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ as the probability to find the random variable at time ๐‘ก at a distance greater than ๐‘ฅ ยจ G] 3,7 G7 = โˆซ3 6 GP 32,7 G7 . ๐‘‘๐‘ฅโ€ฒ = โˆซ3 6 ๐ท G% G32% ๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ = ๐ท. GP 3$,7 G3$ 6 3$43 = โˆ’๐ท. GP 3,7 G3 ยจ G] 3,7 G7 = โˆ’๐ท. GP 3,7 G3 ยจ ๐‘ ๐‘ฅ, ๐‘ก = โˆซ3 6 ๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ and so G] 3,7 G3 = โˆ’๐‘ƒ(๐‘ฅ, ๐‘ก) ยจ And so the function ๐‘ ๐‘ฅ, ๐‘ก = โˆซ3 6 ๐‘ƒ ๐‘ฅโ€ฒ, ๐‘ก . ๐‘‘๐‘ฅโ€ฒ ALSO follows the same equation diffusion as ๐‘ƒ(๐‘ฅ, ๐‘ก) ยจ G G7 ๐‘(๐‘ฅ, ๐‘ก) = ๐ท G% G3% ๐‘ ๐‘ฅ, ๐‘ก NOTE that ๐‘(๐‘ฅ, ๐‘ก) is NOT a Gaussian (unicity of solution) 113
  • 114. Luc_Faucheux_2020 Another scaling argument โ€“ redux VI ยจ GP(Z,#) G# = -% , G%P (Z,#) GZ% with ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = , ,% . โˆซ:4 2 3%1 :46 exp( 5:% , ). ๐‘‘๐‘ฆ ยจ ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ = GP T Z,# `# G# = Z # ,%-%# . exp 5Z% ,-%# = Z # . โ„Ž(๐‘š, ๐‘‡) ยจ Does ๐‘ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ also follows a diffusion equation? 114
  • 115. Luc_Faucheux_2020 Some more about the Maximum ยจ Letโ€™s look again at the reflection principle 115 Maximum to date ๐‘€๐ด๐‘‹(๐‘‡) End point ๐‘‹ ๐‘‡ = ๐‘‹# End point reflected: ๐‘‹)^ ๐‘‡ = 2๐‘š โˆ’ ๐‘‹# Level of first passage ๐‘š
  • 116. Luc_Faucheux_2020 Some more about the Maximum - a 116 -2 0 2 4 6 8 10 Maximum to date ๐‘€๐ด๐‘‹(๐‘‡) End point ๐‘‹ ๐‘‡ = ๐‘‹# End point reflected: ๐‘‹)^ ๐‘‡ = 2๐‘š โˆ’ ๐‘‹# Level of first passage ๐‘š
  • 117. Luc_Faucheux_2020 Some more about the Maximum II ยจ We can define the Maximum value of the path : ๐‘€๐ด๐‘‹ ๐‘‡ = MAX(๐‘‹ ๐‘ก , 0 โ‰ค ๐‘ก โ‰ค ๐‘‡) ยจ For positive ๐‘š, we have ๐‘€๐ด๐‘‹ ๐‘‡ โ‰ฅ ๐‘š if and only if ๐œ ๐‘š, ๐‘‡ = min(๐‘ก โ‰ฅ 0, ๐‘‹ ๐‘ก = ๐‘š) is such that ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡ ยจ (You cannot reach a maximum higher than the level ๐‘š if you have not reached that level yet) ยจ The reflection equality was: ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹# ยจ Now : ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = ๐‘ƒ ๐‘€๐ด๐‘‹ ๐‘‡ โ‰ฅ ๐‘š, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# ยจ So we have expressed something in terms of probabilities of ๐‘€๐ด๐‘‹ ๐‘‡ and ๐‘‹ ๐‘‡ being above some levels. This indicates that we should be able to define and maybe calculate a joint probability for {๐‘€๐ด๐‘‹ ๐‘‡ , ๐‘‹ ๐‘‡ } that we define as ๐‘“ ๐‘€๐ด๐‘‹ ๐‘‡ = ๐‘š, ๐‘‹ ๐‘‡ = ๐‘‹# = ๐‘“(๐‘€, ๐‘‹) 117
  • 118. Luc_Faucheux_2020 Some more about the Maximum III ยจ Here we use the following trick: we do not try to explicitly derive ๐‘“(๐‘€, ๐‘‹), but write equations that ๐‘“(๐‘€, ๐‘‹) verifies, and from those try to derive ๐‘“(๐‘€, ๐‘‹) ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = ๐‘ƒ ๐‘€๐ด๐‘‹ ๐‘‡ โ‰ฅ ๐‘š, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# ยจ ๐‘ƒ ๐‘€๐ด๐‘‹ ๐‘‡ โ‰ฅ ๐‘š, ๐‘‹ ๐‘‡ โ‰ค ๐‘‹# = โˆซ4Z 46 ๐‘‘๐‘€ โˆซ_456 _4_1 ๐‘‘๐‘‹ . ๐‘“(๐‘€, ๐‘‹) ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹# = โˆซ34,Z5_1 346 1. โ„Ž(๐‘ฅ, ๐‘ก). ๐‘‘๐‘ฅ ยจ ๐‘ƒ ๐œ ๐‘š, ๐‘‡ โ‰ค ๐‘‡, ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹# = โˆซ34,Z5_1 346 1. + ,%-%# . exp( 53% ,-%# ). ๐‘‘๐‘ฅ ยจ Because if ๐‘‹ ๐‘‡ โ‰ฅ 2๐‘š โˆ’ ๐‘‹#, then by construction ๐‘‹ ๐‘‡ has reached the level ๐‘š before ๐‘‡ ยจ Note that we follow here p. 114 of Shrieve (so ๐‘‹# < ๐‘š) ยจ Will try to give a shot later at a more general formula 118
  • 119. Luc_Faucheux_2020 Some more about the Maximum IV ยจ So we have the following: ยจ โˆซ4Z 46 ๐‘‘๐‘€ โˆซ_456 _4_1 ๐‘‘๐‘‹ . ๐‘“ ๐‘€, ๐‘‹ = โˆซ34,Z5_1 346 1. + ,%-%# . exp( 53% ,-%# ). ๐‘‘๐‘ฅ ยจ Now bear in mind that we do not still know ๐‘“ ๐‘€, ๐‘‹ ยจ But we will take the derivative of the above equation with respect to ๐‘‹# and ๐‘š ยจ G GZ โˆซ4Z 46 ๐‘‘๐‘€ โˆซ_456 _4_1 ๐‘‘๐‘‹ . ๐‘“ ๐‘€, ๐‘‹ = โˆ’ โˆซ_456 _4_1 ๐‘‘๐‘‹ . ๐‘“(๐‘š, ๐‘‹) ยจ G GZ โˆซ34,Z5_1 346 1. + ,%-%# . exp( 53% ,-%# ). ๐‘‘๐‘ฅ = โˆ’ + ,%-%# . exp( 5(,Z5_1)% ,-%# ) ยจ So we now have: ยจ โˆซ_456 _4_1 ๐‘‘๐‘‹ . ๐‘“ ๐‘š, ๐‘‹ = + ,%-%# . exp( 5(,Z5_1)% ,-%# ) 119
  • 120. Luc_Faucheux_2020 Some more about the Maximum V ยจ โˆซ_456 _4_1 ๐‘‘๐‘‹ . ๐‘“ ๐‘š, ๐‘‹ = + ,%-%# . exp( 5(,Z5_1)% ,-%# ) ยจ We now take the derivative with respect with ๐‘‹# ยจ G G_1 โˆซ_456 _4_1 ๐‘‘๐‘‹ . ๐‘“ ๐‘š, ๐‘‹ = ๐‘“(๐‘š, ๐‘‹#) ยจ G G_1 + ,%-%# . exp( 5(,Z5_1)% ,-%# ) = + ,%-%# . exp 5 ,Z5_1 % ,-%# . 2. 2๐‘š โˆ’ ๐‘‹# . + ,-%# ยจ We have now determined for ๐‘‹# < ๐‘š ยจ ๐‘“ ๐‘š, ๐‘‹# = ,Z5_1 -%# . + ,%-%# . exp 5 ,Z5_1 % ,-%# = ,Z5_1 -%# . โ„Ž(2๐‘š โˆ’ ๐‘‹#, ๐‘‡) ยจ โ„Ž(๐‘ฅ, ๐‘ก) is the regular Gaussian ยจ ๐‘“ ๐‘š, ๐‘‹# is the joint probability density at time ๐‘‡ to have a maximum ๐‘š and terminal value ๐‘‹# 120
  • 121. Luc_Faucheux_2020 Some more about the Maximum VI ยจ The joint probability density to reach within the interval [0, ๐‘‡] a maximum value ๐‘€and having a terminal value for the Brownian motion ๐‘‹# is: ยจ ๐‘“ ๐‘€, ๐‘‹# = ,5_1 -%# . โ„Ž(2๐‘€ โˆ’ ๐‘‹#, ๐‘‡) ยจ ๐‘ ๐‘š, ๐‘‡ is the probability density function for the reaching the level ๐‘š for the first time at time ๐‘‡ ยจ ๐‘ ๐‘š, ๐‘‡ . ๐‘‘๐‘‡ is the probability for a given level ๐‘š to find the the first passage time ๐œ ๐‘š, ๐‘‡ = min(๐‘ก โ‰ฅ 0, ๐‘‹ ๐‘ก = ๐‘š) in the interval ๐‘‡, ๐‘‡ + ๐‘‘๐‘‡ ยจ ๐‘ ๐‘š, ๐‘‡ = Z # . โ„Ž ๐‘š, ๐‘‡ 121
  • 122. Luc_Faucheux_2020 Some more about the Maximum VII ยจ โ„Ž ๐‘š, ๐‘‡ has unit of [+] [_] , โ„Ž ๐‘š, ๐‘ก = + ,%-%7 . exp( 5Z% ,-%7 ) ยจ ๐‘ ๐‘š, ๐‘‡ has unit of [+] [#] ๐‘ ๐‘š, ๐‘‡ = Z # . โ„Ž ๐‘š, ๐‘‡ ยจ ๐œŽ, ๐‘‡ has units of [๐‘‹,] ยจ ๐‘“ ๐‘€, ๐‘‹# has units of [+] [_%] ๐‘“ ๐‘€, ๐‘‹# = ,5_1 -%# . โ„Ž(2๐‘€ โˆ’ ๐‘‹#, ๐‘‡) with (๐‘‹#< ๐‘€) ยจ What does that mean to set ๐‘‹# = ๐‘€ ? ยจ ๐‘“ ๐‘€, ๐‘€ = -%# . โ„Ž(๐‘€, ๐‘‡) ยจ ๐‘“ ๐‘š, ๐‘š = Z -%# . โ„Ž ๐‘š, ๐‘‡ = + -% . ๐‘(๐‘š, ๐‘‡) 122
  • 123. Luc_Faucheux_2020 Some more about the Maximum VII-b ยจ ๐‘“ ๐‘š, ๐‘š = Z -%# . โ„Ž ๐‘š, ๐‘‡ = + -% . ๐‘(๐‘š, ๐‘‡) ยจ Units are still correct ยจ ๐‘“ ๐‘š, ๐‘š has to be integrated of ๐‘‹ then again over ๐‘‹ to return a dimensionless number ยจ ๐‘(๐‘š, ๐‘‡) has to be integrated over time to return a dimensionless number ยจ The probability density to end up at time ๐‘‡ at a terminal value ๐‘š, with the time ๐‘‡ being the first time that this value ๐‘š is reached (since it is the maximum, so was never reached before), is equal to the probability density (in time) to have the first passage time for the level ๐‘š at the terminal time ๐‘‡, scaled by the square of the volatility ยจ ๐‘“ ๐‘š, ๐‘š . ๐œŽ, ๐‘‡ = ๐‘‡. ๐‘(๐‘š, ๐‘‡) 123
  • 124. Luc_Faucheux_2020 Some more about the Maximum VIII ยจ Joint density and conditional density ยจ ๐‘“ ๐‘€, ๐‘‹# is the joint density to find the maximum within [๐‘€, ๐‘€ + ๐‘‘๐‘€] and the terminal value within [๐‘‹#, ๐‘‹# + ๐‘‘๐‘‹#] (with for now the condition (๐‘‹#< ๐‘€) ยจ Sometimes it is easier from a numerical point of view to simulate the Brownian motion (process ๐‘‹(๐‘‡)) and THEN simulate another process for the maximum ๐‘€. This second step requires a slightly different probability, we need to know in this case the distribution of the maximum ๐‘€ between [0, ๐‘‡], conditioned on the value of ๐‘‹# = ๐‘‹(๐‘‡) ยจ (Shrieve p.114) ยจ The conditional density is the joint density divided by the marginal density of the conditioning random variable. ยจ We are looking for the conditional density ๐‘“ ๐‘€|๐‘‹# ยจ ๐‘ƒ๐‘Ÿ๐‘œ๐‘ ๐‘€|๐‘‹# = ๐‘ƒ๐‘Ÿ๐‘œ๐‘ ๐‘€, ๐‘‹# /๐‘ƒ๐‘Ÿ๐‘œ๐‘ ๐‘‹# ยจ ๐‘“ ๐‘€|๐‘‹# = ๐‘“ ๐‘€, ๐‘‹# /โ„Ž ๐‘‹# 124
  • 125. Luc_Faucheux_2020 Some more about the Maximum IX ยจ ๐‘“ ๐‘€|๐‘‹# = ๐‘“ ๐‘€, ๐‘‹# /โ„Ž ๐‘‹# and has unit of [+] [_] ยจ โ„Ž ๐‘‹# = โ„Ž ๐‘‹#, ๐‘‡ = + ,%-%# . exp 5_1 % ,-%# ยจ ๐‘“ ๐‘€, ๐‘‹# = ,5_1 -%# . โ„Ž(2๐‘€ โˆ’ ๐‘‹#, ๐‘‡) ยจ And so we get: ยจ ๐‘“ ๐‘€|๐‘‹# = ,5_1 -%# . h ,5_1,# h _1,# = ,5_1 -%# . exp /_1 % ,-%# . exp 5(,5_1)% ,-%# ยจ We also have: โˆ’(2๐‘€ โˆ’ ๐‘‹#), + ๐‘‹# , = โˆ’4๐‘€, + 4๐‘€๐‘‹# = โˆ’4๐‘€(๐‘‹# โˆ’ ๐‘€) ยจ ๐‘“ ๐‘€|๐‘‹# = ,5_1 -%# . exp 5K(_15) ,-%# ยจ That is kind of it, not sure if I can find any insightful thing to say about this 125
  • 126. Luc_Faucheux_2020 Some more concepts about time โ€“ first return ยจ We have looked at the first passage, now letโ€™s gain some intuition on the first return (and also last return), first return in blue dot, successive returns in grey, last return in red for the return to the origin 126
  • 127. Luc_Faucheux_2020 Some more concepts about time โ€“ first return II ยจ Following some of the convention we had before, let us define as ๐‘๐‘“๐‘Ÿ(0, ๐‘‡)the probability density distribution for the first return time to the origin at time ๐‘‡ ยจ Note that we can always shift later the distribution around a โ€œnewโ€ origin, one of the nice properties of a Kolmogorov-like process ยจ ๐‘๐‘“๐‘Ÿ(0, ๐‘‡) is the probability density for the stochastic process ๐‘‹ ๐‘ก to return for the first time back to the origin a time ๐‘‡ ยจ The cumulative function of ๐‘๐‘“๐‘Ÿ(0, ๐‘‡) is: ยจ ๐‘ƒ๐‘…๐น 0, ๐‘‡ = โˆซ748 74# ๐‘๐‘“๐‘Ÿ 0, ๐‘ก ). ๐‘‘๐‘ก ยจ ๐‘๐‘“๐‘Ÿ 0, ๐‘‡ = GP.' 8,# G# ยจ ๐‘ƒ๐‘…๐น 0, ๐‘‡ is the cumulative probability that the stochastic process ๐‘‹ ๐‘ก has returned to the origin (at least once) by the time ๐‘‡ 127
  • 128. Luc_Faucheux_2020 Some more concepts about time โ€“ first return III ยจ ๐‘ƒ๐‘…๐น 0, ๐‘‡ is the cumulative probability that the stochastic process ๐‘‹ ๐‘ก has returned to the origin (at least once) by the time ๐‘‡ ยจ {1 โˆ’ ๐‘ƒ๐‘…๐น 0, ๐‘‡ } is the cumulative survival probability noted ๐‘† 0, ๐‘‡ that the stochastic process ๐‘‹ ๐‘ก has NOT returned to the origin by the time ๐‘‡ ยจ ๐‘๐‘“๐‘Ÿ 0, ๐‘‡ = GP.' 8,# G# = โˆ’ G) 8,# G# ยจ In order to evaluate ๐‘† 0, ๐‘‡ , we need to enumerate all the paths that never returned to the origin after time ๐‘‡ (or after ๐‘ steps where the time interval is ๐›ฟ๐‘ก = ๐‘‡/๐‘) ยจ We need to calculate the probability that a path never returns to the origin. ยจ This is a variant of the โ€œballot theoremโ€: in a ballot where candidates A and B have a and b total votes respectively, what is the probability that when counting the votes, the tally for A is always higher than B (A always leads the vote tally and there is no tie, and no time when B is leading in the vote). ยจ Desire Andre and Joseph Louis Francois Bertrand (1887) 128
  • 129. Luc_Faucheux_2020 Some more concepts about time โ€“ first return IV ยจ The remarkably simple result is that the probability of such a path is (i5() (i/() ยจ There are a couple of ways we can convince ourselves of this result. ยจ Proof by reflection, we suppose a>b (A is the winner, so the path always stays above 0) ยจ Any sequence that starts with a B must reach a tie at some point because A wins. ยจ Also any sequence that starts with B has B leading, so has to be excluded ยจ So we are left with sequences that start with A ยจ Some of those will never reach a tie, and some will ยจ For those who do reach a tie, we will use the reflection trick again, by reflecting the votes up to the point of first tie (๐‘‹ ๐‘ก crossing the origin again). The reflected new sequence will start with a B 129
  • 130. Luc_Faucheux_2020 Some more concepts about time โ€“ first return V ยจ A sequence in space and its corresponding voting tally in AB 130
  • 131. Luc_Faucheux_2020 Some more concepts about time โ€“ first return VI ยจ A reflected sequence up to the first point of tie, reflected path in blue 131 -3 -2 -1 0 1 2 3 4
  • 132. Luc_Faucheux_2020 Some more concepts about time โ€“ first return VII ยจ Note: this is why it is sometime so helpful in gaining intuition to run simulations. It was very hard to find a โ€œniceโ€ looking graphs. ยจ A lot of graphs either has the first return very close to the origin, or never returned ยจ This is somewhat counter-intuitive because a lot of people would expect that for a fair game, each player would be on the winning side for about half the time, and that the lead will pass not infrequently from one player to the other. ยจ It is actually not the case, and we will show that actually first returns and last returns are actually much more likely to occur either very early or very late in the random walk. ยจ It is highly probable to remain on one side of the origin for nearly the entire walk, leading to long waiting time before the tie 132
  • 133. Luc_Faucheux_2020 Some more concepts about time โ€“ first return VIII ยจ A couple of F9 133 -8 -6 -4 -2 0 2 4 6 -3 -2 -1 0 1 2 3 4 5 6 7 8 -4 -3 -2 -1 0 1 2 3 4 5 6 -6 -4 -2 0 2 4 6 8 0 2 4 6 8 10 12 14
  • 134. Luc_Faucheux_2020 Some more concepts about time โ€“ first return IX ยจ So to recap, looking at the survival probability for path that always stay above the origin ยจ Every sequence that starts with B is excluded ยจ Every sequence that starts with A, either ties or does not ยจ If it does, we built the reflected path in blue, reflecting up to the point of the first tie. This reflected sequence will start with B and will cross the origin (will tie) ยจ Over ๐‘ votes, we have ๐‘Ž votes for A (or jump up in space) and ๐‘ votes for B (or jump down in space) ยจ Because of the reflection, the number of sequences that start with A and tie is equal to the number of sequences starting with B and do also tie ยจ Looking at the outcome with A being the winner (๐‘Ž > ๐‘), any sequence starting with B will automatically tie at some point ยจ So we are counting twice the number of sequences starting with B ยจ The probability that a sequence starts with B is: โ„๐‘ (๐‘Ž + ๐‘) 134
  • 135. Luc_Faucheux_2020 Some more concepts about time โ€“ first return X ยจ So the survival probability that we are after is : ยจ 1 โˆ’ 2. z๐‘ ๐‘Ž + ๐‘ = i5( i/( ยจ Another way to look at it is by induction: suppose that the formula is true for (๐‘ โˆ’ 1) steps, can we extend it to ๐‘ steps? ยจ So for (๐‘ โˆ’ 1) , we had either (๐‘Ž โˆ’ 1, ๐‘) or (๐‘Ž, ๐‘ โˆ’ 1) votes for A and B ยจ The probability of no tie in the case (๐‘ โˆ’ 1, ๐‘Ž โˆ’ 1, ๐‘) is i5+5( i5+/( ยจ The probability of no tie in the case (๐‘ โˆ’ 1, ๐‘Ž, ๐‘ โˆ’ 1) is i5(/+ i/(5+ ยจ Going into (๐‘) we need to count the last vote, the probability of a vote for A is i i/( and the probability of a vote for B is ( i/( (reverse the order and treat the last vote as the first one, and read the sequence backward) 135
  • 136. Luc_Faucheux_2020 Some more concepts about time โ€“ first return XI ยจ The survival probability at the level (๐‘)is then: ยจ i i/( . i5+5( i5+/( + ( i/( . i5(/+ i/(5+ = ii5i5i(/(i5((/( (i/()(i/(5+) = (i/(5+)(i5() (i/()(i/(5+) = (i5() (i/() ยจ Another notation would be ๐‘/ = ๐‘Ž and ๐‘5 = ๐‘, ๐‘/ + ๐‘5 = ๐‘ ยจ The total number of possible paths is ]! ]5!]&! for a given set (๐‘, ๐‘/, ๐‘5) ยจ The paths that end with positive end value are such that ๐‘/ > ๐‘5 ยจ The number of paths never crossing (never tie-ing) is the total number of paths multiplied by the probability that a path will not tie ยจ We will then have to sum all those numbers over the possible end points (because we have it currently fixed by having a given set (๐‘, ๐‘/, ๐‘5), with those being above the origin, or ensuring that (๐‘/ > ๐‘5) ยจ Then multiply by the probability for one path which is (25]) in the binomial discrete model 136
  • 137. Luc_Faucheux_2020 Some more concepts about time โ€“ first return XII ยจ We then have for the survival probability: ยจ ๐‘† 0, ๐‘‡ = ๐‘† 0, ๐‘ = (25]). โˆ‘]&48 ]&k]5 ]! ]5!]&! . ]55]& ]5/]& and we have: ๐‘/+๐‘5= ๐‘ ยจ So ๐‘5 < ๐‘/ is equivalent to ๐‘5 < ๐‘ โˆ’ ๐‘5 or ๐‘5 < ๐‘/2 ยจ ๐‘† 0, ๐‘ = (25]). โˆ‘]&48 ]&k 6 % ] ! (]5]&)!(]&)! . ( ]5,]& ] ) ยจ (2]). ๐‘† 0, ๐‘ = โˆ‘]&48 ]&k 6 % [ ] ! (]5]&)!(]&)! โˆ’ 2 ]& ] . ] ! (]5]&)!(]&)! ] ยจ (2]). ๐‘† 0, ๐‘ = โˆ‘]&48 ]&k 6 % [ ] ! (]5]&)!(]&)! โˆ’ 2 . ]5+ ! ]5]& !(]&5+)! ] 137
  • 138. Luc_Faucheux_2020 Some more concepts about time โ€“ first return XIII ยจ We also use the result from the Pascal triangle ยจ ] ! (]5]&)!(]&)! = ]5+ ! (]5+5]&)!(]&)! + ]5+ ! ]5+5(]&5+) !(]&5+)! or: ๐ถJ A = ๐ถJ5+ A + ๐ถJ5+ A5+ ยจ ๐ถJ5+ A + ๐ถJ5+ A5+ = J5+ ! J5+5A !A! + J5+ ! J5+5 A5+ !(A5+)! = J5+ ! J5+5A !A! + J5+ ! J5A !(A5+)! ยจ ๐ถJ5+ A + ๐ถJ5+ A5+ = J5+ ! J5+5A !A! + J5+ ! J5A !(A5+)! = J5+ !(J5A) J5A !A! + J5+ !A J5A !(A)! = J5+ ! J5A / J5+ !A J5A !A! ยจ ๐ถJ5+ A + ๐ถJ5+ A5+ = J5+ ! J5A / J5+ !A J5A !A! = J5+ ! J5A/A J5A !A! = J5+ ! J J5A !A! = J ! J5A !A! = ๐ถJ A ยจ So we can rewrite: ยจ (2]). ๐‘† 0, ๐‘ = โˆ‘]&48 ]&k 6 % [ ]5+ ! (]5+5]&)!(]&)! + ]5+ ! ]5+5(]&5+) !(]&5+)! โˆ’ 2 . ]5+ ! ]5]& !(]&5+)! ] 138
  • 139. Luc_Faucheux_2020 Some more concepts about time โ€“ first return XIV ยจ (2]). ๐‘† 0, ๐‘ = โˆ‘]&48 ]&k 6 % [ ]5+ ! (]5+5]&)!(]&)! + ]5+ ! ]5]&) !(]&5+)! โˆ’ 2 . ]5+ ! ]5]& !(]&5+)! ] ยจ (2]). ๐‘† 0, ๐‘ = โˆ‘]&48 ]&k 6 % [๐ถ]5+ ]& + ๐ถ]5+ ]&5+ โˆ’ 2 . ๐ถ]5+ ]&5+ ] ยจ (2]). ๐‘† 0, ๐‘ = โˆ‘]&48 ]&k 6 % [๐ถ]5+ ]& +๐ถ]5+ ]&5+ ] ยจ In the above sum, terms cancel each other out up until the last one ยจ (2]). ๐‘† 0, ๐‘ = ๐ถ]5+ 6 % 5+ ยจ We now make use of the Stirling approximation : ๐‘! ~ 2๐œ‹๐‘( โ„] ?)]~ 2๐œ‹๐‘exp(๐‘๐‘™๐‘›๐‘ โˆ’ ๐‘) 139
  • 140. Luc_Faucheux_2020 Some more concepts about time โ€“ first return XV ยจ (2]). ๐‘† 0, ๐‘ = 1 + โˆ‘]&4+ ]&k 6 % [ ]5+ ! (]5+5]&)!(]&)! โˆ’ ]5+ ! ]5]& !(]&5+)! ] 140
  • 141. Luc_Faucheux_2020 Another look at first passage time ยจ Letโ€™s look at the problem in a slightly different fashion ยจ The underlying Brownian motion ๐‘‹ ๐‘ก follows โ„Ž ๐‘ฅ, ๐‘ก = + ,%-%7 . exp( 5(35l7)% ,-%7 ) ยจ The normalization is: โˆซ3456 34/6 โ„Ž ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ = 1 ยจ โ„Ž ๐‘ฅ, ๐‘ก follows the diffusion equation: G G7 โ„Ž ๐‘ฅ, ๐‘ก = -% , G% G3% โ„Ž ๐‘ฅ, ๐‘ก โˆ’ ๐œ‡. G G3 โ„Ž ๐‘ฅ, ๐‘ก ยจ The corresponding SDE is : ๐‘‘๐‘‹ = ๐œ‡. ๐‘‘๐‘ก + ๐œŽ. ๐‘‘๐‘Š ยจ In general, we will look at SDE <-> PDE but the simple mapping is: ยจ ๐‘‘๐‘‹ = ๐‘Ž. ๐‘‘๐‘ก + ๐‘. ๐‘‘๐‘Š ยจ G G7 โ„Ž ๐‘ฅ, ๐‘ก = โˆ’ G G3 [๐ด. โ„Ž ๐‘ฅ, ๐‘ก โˆ’ G G3 (๐ต. โ„Ž ๐‘ฅ, ๐‘ก )] with ๐ด = ๐‘Ž and ๐ต = + , . ๐‘, 141
  • 142. Luc_Faucheux_2020 Another look at first passage time - II ยจ Without any drift for now, this reads: ยจ The underlying Brownian motion ๐‘‹ ๐‘ก follows โ„Ž ๐‘ฅ, ๐‘ก = + ,%-%7 . exp( 53% ,-%7 ) ยจ The normalization is: โˆซ3456 34/6 โ„Ž ๐‘ฅ, ๐‘ก . ๐‘‘๐‘ฅ = 1 ยจ โ„Ž ๐‘ฅ, ๐‘ก follows the diffusion equation: G G7 โ„Ž ๐‘ฅ, ๐‘ก = -% , G% G3% โ„Ž ๐‘ฅ, ๐‘ก ยจ The corresponding SDE is : ๐‘‘๐‘‹ = ๐œŽ. ๐‘‘๐‘Š ยจ In general, we will look at SDE <-> PDE but the simple mapping is: ยจ ๐‘‘๐‘‹ = ๐‘. ๐‘‘๐‘Š ยจ G G7 โ„Ž ๐‘ฅ, ๐‘ก = G G3 [ G G3 (๐ต. โ„Ž ๐‘ฅ, ๐‘ก )] with ๐ต = + , . ๐‘, 142
  • 143. Luc_Faucheux_2020 Another look at first passage time - III ยจ The diffusion equation is a linear equation ยจ Any linear combination of solutions will itself be a solution ยจ We can identify a spanning set of solutions: ยจ The underlying Brownian motion ๐‘‹ ๐‘ก follows โ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก = + ,%-%7 . exp( 5(3537)% ,-%7 ) ยจ The normalization is: โˆซ3456 34/6 โ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก . ๐‘‘๐‘ฅ = 1 ยจ And the initial starting point: โ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก = 0 = ๐›ฟ(๐‘ฅ โˆ’ ๐‘ฅ8) ยจ Letโ€™s consider what is sometimes referred to as the โ€œcliffโ€ problem: a random walker diffuses from its initial position ๐‘ฅ8 up until it meets the โ€œcliffโ€ at position ๐‘ฅ = ๐‘š, and then โ€œfalls off the cliffโ€ and disappears. ยจ So we are looking for a solution โ€ขโ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก that obeys the diffusion equation in the interval ] โˆ’ โˆž, ๐‘š] ยจ For all time we need to verify: โ€ขโ„Ž ๐‘ฅ = ๐‘š, ๐‘ฅ8, ๐‘ก = 0 143
  • 144. Luc_Faucheux_2020 Another look at first passage time - IV ยจ Note that the conservation of probability โˆซ3456 34/6 โ€ขโ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก . ๐‘‘๐‘ฅ = 1 obviously will not apply ยจ If anything we will define the survival probability, which is the probability that the random walker did not yet fall off the cliff ยจ ๐‘†๐‘… ๐‘ก = โˆซ3456 34Z โ€ขโ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก . ๐‘‘๐‘ฅ ยจ This probability is the probability that the random walker did not reach the level ๐‘ฅ = ๐‘š up until the time ๐‘ก ยจ And so the probability that the random walker would have met the level ๐‘ฅ = ๐‘š within the time interval [0, ๐‘ก] is 1 โˆ’ ๐‘†๐‘… ๐‘ก = ๐‘ƒ ๐œ ๐‘š, ๐‘ก โ‰ค ๐‘ก in the previous notation ยจ So now, either we know ๐‘ƒ ๐œ ๐‘š, ๐‘ก โ‰ค ๐‘ก and we can calculate the Survival Probability ๐‘†๐‘… ๐‘ก ยจ Conversely, if we can find an easy way to calculate ๐‘†๐‘… ๐‘ก we know ๐‘ƒ ๐œ ๐‘š, ๐‘ก โ‰ค ๐‘ก 144
  • 145. Luc_Faucheux_2020 Another look at first passage time - V ยจ Note that the two processes are NOT the same. ยจ In the case of the cliff problem, the density is not conserved and the random walker is โ€œtaken outโ€ as soon as it hits the level ๐‘ฅ = ๐‘š ยจ In the case of the regular diffusion we looked at, the process is not impacted when crossing the level ๐‘ฅ = ๐‘š ยจ However, for the purpose of calculating the First Passage Probability ๐‘ƒ ๐œ ๐‘š, ๐‘ก โ‰ค ๐‘ก we can use either ยจ So letโ€™s see if we can find an easy solution to the cliff problem ยจ Remember that the diffusion equation is linear, so if we could find a linear combination of Gaussians that matches โ€ขโ„Ž ๐‘ฅ = ๐‘š, ๐‘ฅ8, ๐‘ก = 0, we would have at least one solution to work with (maybe not unique, but at least something we could use) 145
  • 146. Luc_Faucheux_2020 Another look at first passage time โ€“ VI โ€“ Image method ยจ Letโ€™s look at: ยจ โ€ขโ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก = + ,%-%7 . exp 5 3537 % ,-%7 โˆ’ + ,%-%7 . exp( 5(35(,Z537))% ,-%7 ) ยจ โ€ขโ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก = โ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก โˆ’ โ„Ž ๐‘ฅ, (2๐‘š โˆ’ ๐‘ฅ8), ๐‘ก ยจ Note that we see the beautiful symmetry principle at work again here ยจ โ€ขโ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก follows the diffusion equation ยจ โ€ขโ„Ž ๐‘ฅ = ๐‘š, ๐‘ฅ8, ๐‘ก = 0 for all time ๐‘ก ยจ We are in business ยจ ๐‘†๐‘… ๐‘ก = โˆซ3456 34Z โ€ขโ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก . ๐‘‘๐‘ฅ = โˆซ3456 34Z โ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก . ๐‘‘๐‘ฅ โˆ’ โˆซ3456 34Z โ„Ž ๐‘ฅ, (2๐‘š โˆ’ ๐‘ฅ8), ๐‘ก . ๐‘‘๐‘ฅ ยจ We also have: โˆซ3456 34Z โ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก . ๐‘‘๐‘ฅ = โˆซ3456 34Z537 โ„Ž ๐‘ฅ, ๐‘ฅ8 = 0, ๐‘ก . ๐‘‘๐‘ฅ 146
  • 147. Luc_Faucheux_2020 Another look at first passage time - VII ยจ ๐‘†๐‘… ๐‘ก = โˆซ3456 34Z โ„Ž ๐‘ฅ, ๐‘ฅ8, ๐‘ก . ๐‘‘๐‘ฅ โˆ’ โˆซ3456 34Z โ„Ž ๐‘ฅ, (2๐‘š โˆ’ ๐‘ฅ8), ๐‘ก . ๐‘‘๐‘ฅ ยจ ๐‘†๐‘… ๐‘ก = โˆซ3456 34Z537 โ„Ž ๐‘ฅ, 0, ๐‘ก . ๐‘‘๐‘ฅ โˆ’ โˆซ3456 34Z5(,Z537) โ„Ž ๐‘ฅ, 0, ๐‘ก . ๐‘‘๐‘ฅ ยจ ๐‘†๐‘… ๐‘ก = โˆซ3456 34Z537 โ„Ž ๐‘ฅ, 0, ๐‘ก . ๐‘‘๐‘ฅ โˆ’ โˆซ3456 34375Z โ„Ž ๐‘ฅ, 0, ๐‘ก . ๐‘‘๐‘ฅ ยจ ๐‘†๐‘… ๐‘ก = โˆซ34375Z 34Z537 โ„Ž ๐‘ฅ, 0, ๐‘ก . ๐‘‘๐‘ฅ = โˆซ34375Z 34Z537 + ,%-%7 . exp 53% ,-%7 . ๐‘‘๐‘ฅ ยจ ๐‘†๐‘… ๐‘ก = โˆซ 34 47&2 %3%, 34 2&47 %3%, + % . exp โˆ’๐œ‰, . ๐‘‘๐œ‰ with ๐œ‰ = 3 ,-%7 and ๐‘‘๐‘ฅ = 2๐œŽ, ๐‘ก. ๐‘‘๐œ‰ ยจ ๐‘†๐‘… ๐‘ก = erf Z537 ,-%7 = erf( Z537 KU7 ) ยจ Using the diffusion notation, ๐ท = -% , 147