SlideShare a Scribd company logo
1 of 158
Download to read offline
Luc_Faucheux_2020
Stochastic Calculus – ITO – IV
The example of the Langevin equation
1
Luc_Faucheux_2020
Couple of notes on those slides
š Those are part IV of the the slides on stochastic calculus
¹ Since they are mostly devoted to the Langevin equation, they are somewhat “stand-alone”
and I have tried to keep them independent from the other as much as possible
š Some of the results are demonstrated in the other slide decks, but are used in this deck
sometimes without redoing the derivation
2
Luc_Faucheux_2020
A useful example
The Langevin equation (1908)
3
Luc_Faucheux_2020
A useful example – Langevin
š In 1908 Langevin introduced the Langevin equation in order to describe the velocity of a
particle in a viscous fluid, subject to random collisions from the surrounding fluid (thermal
noise)
š 𝑑𝑉 𝑡 = 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 𝑏 𝑉 𝑡 , 𝑡 . 𝑑𝑊
š 𝑎 𝑉 𝑡 , 𝑡 = −𝑘𝑉
š 𝑏 𝑉 𝑡 , 𝑡 = 𝜎
š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊
š In 1930 Ornstein and Uhlenbeck put the equation on a firmer basis and explored a slightly
more general class of SDE known as OU processes
š OU processes have very nice properties (stationary, Gaussian, Markovian)
š In particular, unlike the Geometric Brownian motion, the Langevin process has stable
dynamics of moments
4
Luc_Faucheux_2020
Paul Langevin
5
Luc_Faucheux_2020
A useful example – Langevin - II
š 𝑑𝑉 𝑡 = 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 𝑏 𝑉 𝑡 , 𝑡 . 𝑑𝑊
š 𝑎 𝑉 𝑡 , 𝑡 = −𝑘𝑉
š 𝑏 𝑉 𝑡 , 𝑡 = 𝜎
š Note that here we looking at the velocity 𝑉 𝑡 of the particle as the stochastic variable 𝑋 𝑡
š Hopefully we are mentally flexible enough to do the jump
š The issue once again is how do you interpret: 𝑏 𝑉 𝑡 , 𝑡 . 𝑑𝑊
6
Luc_Faucheux_2020
A useful example – Langevin - III
š With the ITO convention:
š 𝑑𝑉 𝑡 = 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 𝑏 𝑉 𝑡 , 𝑡 . 𝑑𝑊 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊
š 𝑑𝑉 𝑡 = 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 𝑏 𝑉 𝑡 , 𝑡 . [ . 𝑑𝑊 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. [ . 𝑑𝑊
š So the PDF for the particle velocity follows the FORWARD ITO PDE:
š
!"($,&|(!,&!)
!&
= −
!
!$
𝑎 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 𝑉*, 𝑡* −
!
!$
[
+
,
. [𝑏(𝑣, 𝑡), . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)]
š
!"($,&|(!,&!)
!&
= −
!
!$
(−𝑘𝑣). 𝑝 𝑣, 𝑡 𝑉*, 𝑡* −
!
!$
[
+
,
. [𝜎, . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)]
7
Luc_Faucheux_2020
A useful example – Langevin - IV
š With the STRATO convention:
š 𝑑𝑉 𝑡 = 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 𝑏 𝑉 𝑡 , 𝑡 . 𝑑𝑊 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊
š 𝑑𝑉 𝑡 = 6𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 7𝑏 𝑉 𝑡 , 𝑡 . ∘ . 𝑑𝑊 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. ∘ . 𝑑𝑊
š So the PDF for the particle velocity follows the FORWARD STRATO PDE:
š
!"($,&|(!,&!)
!&
= −
!
!$
9
:
{6𝑎 𝑣, 𝑡 +
+
,
. 7𝑏 𝑣, 𝑡 .
!
!$
7𝑏 𝑣, 𝑡 }. 𝑝 𝑣, 𝑡 𝑉*, 𝑡* −
!
!$
[
+
,
. [7𝑏(𝑣, 𝑡), . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)]
š And since:
!
!(
7𝑏 𝑣, 𝑡 = 0
š
!"($,&|(!,&!)
!&
= −
!
!$
(−𝑘𝑣). 𝑝 𝑣, 𝑡 𝑉*, 𝑡* −
!
!$
[
+
,
. [𝜎, . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)]
8
Luc_Faucheux_2020
A useful example – Langevin - V
š So BOTH ITO and STRATO interpretation of the Langevin equation will return the SAME PDE
(forward Fokker Planck) for the PDF:
š
!"($,&|(!,&!)
!&
= −
!
!$
(−𝑘𝑣). 𝑝 𝑣, 𝑡 𝑉*, 𝑡* −
!
!(
[
+
,
. [𝜎, . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)]
š Again no real surprise there, this is to be expected since
!
!$
7𝑏 𝑡, 𝑉 𝑡 = 0
š So :
š 𝑎 𝑣, 𝑡 = 6𝑎 𝑣, 𝑡 +
+
,
. 7𝑏 𝑣, 𝑡 .
!
!$
7𝑏 𝑣, 𝑡 = 6𝑎 𝑣, 𝑡
š 𝑏 𝑣, 𝑡 = 7𝑏 𝑣, 𝑡
š So both ITO and STRATO are equivalent for homogeneous diffusion coefficients
9
Luc_Faucheux_2020
A useful example – Langevin - VI
š Let us know look at a function of the velocity, in both ITO and STRATO
š We will look at the kinetic energy 𝜉 =
-("
,
š Because this function is NOT a linear function of the velocity, we would expect to observe a
divergence between the ITO and the STRATO treatments
š Let us show that either one you choose, you will still get the same PDE and same PDF, as
long as you are consistent within your choice (if you choose ITO, you have to use ITO lemma)
10
Luc_Faucheux_2020
A useful example – Langevin - VII
¹ Let’s use ITO interpretation and ITO calculus and ITO lemma
š 𝑑𝑉 𝑡 = 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 𝑏 𝑉 𝑡 , 𝑡 . [ . 𝑑𝑊(𝑡) = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. ([). 𝑑𝑊
š Note: from time to time we need to remember ourselves that this is really:
š We really are writing an SIE, because random processes are NOT differentiable
š 𝑉 𝑡. − 𝑉 𝑡* = ∫&/&*
&/&.
𝑑𝑉 𝑡 = ∫&/&*
&/&.
𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + ∫&/&*
&/&.
𝑏 𝑉 𝑡 , 𝑡 . ([). 𝑑𝑊(𝑡)
š 𝑉 𝑡. − 𝑉 𝑡* = ∫&/&*
&/&.
𝑑𝑉 𝑡 = ∫&/&*
&/&.
(−𝑘𝑉(𝑡)). 𝑑𝑡 + ∫&/&*
&/&.
𝜎. ([). 𝑑𝑊(𝑡)
š 𝜉 =
-("
,
š ITO lemma is given by:
š 𝑓 𝑉 𝑡. − 𝑓 𝑉 𝑡* = ∫&/&*
&/&. !0
!(
. ([). 𝑑𝑉(𝑡) +
+
,
∫&/&*
&/&. !"1
!(" . 𝑑𝑉 𝑡
,
+ ∫&/&*
&/&. !0
!&
. 𝑑𝑡
11
Luc_Faucheux_2020
A useful example – Langevin - VIII
š 𝑑𝑓 =
!0
!(
. [ . 𝑑𝑉 +
+
,
.
!"1
!(" . 𝑑𝑉,
¹ Let’s apply this to the energy:
š 𝜉 =
-("
,
š
!2
!(
= 𝑚𝑉
š
!"2
!(" = 𝑚
š
!2
!&
= 0
š 𝑑𝜉 = 𝑚𝑉. [ . 𝑑𝑉 +
+
,
. 𝑚. 𝜎, 𝑑𝑡 = 𝑚𝑉. [ . (−𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. ([). 𝑑𝑊) +
+
,
. 𝑚. 𝜎, 𝑑𝑡
š 𝑑𝜉 = −𝑘𝑚𝑉,. 𝑑𝑡 + 𝑚𝑉 𝜎. ([). 𝑑𝑊 +
+
,
. 𝑚. 𝜎, 𝑑𝑡
12
Luc_Faucheux_2020
A useful example – Langevin - IX
š 𝑑𝜉 = −𝑘𝑚𝑉,. 𝑑𝑡 + 𝑚𝑉 𝜎. ([). 𝑑𝑊 +
+
,
. 𝑚. 𝜎, 𝑑𝑡
š Expressing this equation in terms of 𝜉 =
-("
,
š 𝑑𝜉 = −2𝑘𝜉,. 𝑑𝑡 +
+
,
. 𝑚. 𝜎, 𝑑𝑡 + 𝜎 2𝑚𝜉. [ . 𝑑𝑊
š Of the form:
š 𝑑𝜉 = 𝑎 𝜉, 𝑡 . 𝑑𝑡 + 𝑏 𝜉, 𝑡 . [ . 𝑑𝑊
š With
š 𝑎 𝜉, 𝑡 = −2𝑘𝜉, +
+
,
. 𝑚. 𝜎,
š 𝑏 𝜉, 𝑡 = 𝜎 2𝑚𝜉
š 𝑏 𝜉, 𝑡 , = 2𝑚𝜉𝜎,
13
Luc_Faucheux_2020
A useful example – Langevin - X
š So the PDF for the energy should follow the ITO FORWARD PDE:
š
!"(2,&|3!,&!)
!&
= −
!
!2
𝑎 𝜉 𝑡 , 𝑡 . 𝑝 𝜉, 𝑡 𝜉*, 𝑡* −
!
!2
[
+
,
. [𝑏(𝜉 𝑡 , 𝑡), . 𝑝(𝜉, 𝑡|𝜉*, 𝑡*)]
š
!"
!&
= −
!
!2
(−2𝑘𝜉, +
+
,
𝑚𝜎,). 𝑝 −
!
!2
[𝑚𝜉𝜎,. 𝑝]
14
Luc_Faucheux_2020
A useful example – Langevin - XI
¹ Let’s use STRATO interpretation and STRATO calculus and STRATO lemma
š 𝑑𝑉 𝑡 = 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 𝑏 𝑉 𝑡 , 𝑡 . ∘ . 𝑑𝑊(𝑡) = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. (∘). 𝑑𝑊(𝑡)
š Note: from time to time we need to remember ourselves that this is really:
š We really are writing an SIE, because random processes are NOT differentiable
š 𝑉 𝑡. − 𝑉 𝑡* = ∫&/&*
&/&.
𝑑𝑉 𝑡 = ∫&/&*
&/&.
𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + ∫&/&*
&/&.
𝑏 𝑉 𝑡 , 𝑡 . (∘). 𝑑𝑊(𝑡)
š 𝑉 𝑡. − 𝑉 𝑡* = ∫&/&*
&/&.
𝑑𝑉 𝑡 = ∫&/&*
&/&.
(−𝑘𝑉(𝑡)). 𝑑𝑡 + ∫&/&*
&/&.
𝜎. (∘). 𝑑𝑊(𝑡)
š 𝜉 =
-("
,
š STRATO lemma is given by:
š 𝑓 𝑉 𝑡. − 𝑓 𝑉 𝑡* = ∫&/&*
&/&. !0
!(
. (∘). 𝑑𝑉(𝑡) + ∫&/&*
&/&. !0
!&
. 𝑑𝑡
15
Luc_Faucheux_2020
A useful example – Langevin - XII
š 𝑑𝑓 =
!0
!(
. ∘ . 𝑑𝑉
¹ Let’s apply this to the energy:
š 𝜉 =
-("
,
š
!2
!(
= 𝑚𝑉
š
!2
!&
= 0
š 𝑑𝜉 = 𝑚𝑉. ∘ . 𝑑𝑉 = 𝑚𝑉. ∘ . (−𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. (∘). 𝑑𝑊)
š 𝑑𝜉 = −𝑘𝑚𝑉,. 𝑑𝑡 + 𝑚𝑉𝜎. (∘). 𝑑𝑊
16
Luc_Faucheux_2020
A useful example – Langevin - XIII
š 𝑑𝜉 = −𝑘𝑚𝑉,. 𝑑𝑡 + 𝑚𝑉𝜎. (∘). 𝑑𝑊
š Expressing this equation in terms of 𝜉 =
-("
,
š 𝑑𝜉 = −2𝑘𝜉,. 𝑑𝑡 + 𝜎 2𝑚𝜉. ∘ . 𝑑𝑊
š Remember this is really writing:
š 𝜉 𝑡. − 𝜉 𝑡* = ∫&/&*
&/&.
𝑑𝜉 𝑡 = ∫&/&*
&/&.
(−2𝑘𝜉,). 𝑑𝑡 + ∫&/&*
&/&.
𝜎 2𝑚𝜉. (∘). 𝑑𝑊(𝑡)
š This has the form: 𝑑𝜉 𝑡 = 6𝑎 𝜉 𝑡 , 𝑡 . 𝑑𝑡 + 7𝑏 𝜉 𝑡 , 𝑡 . (∘). 𝑑𝑊
š With : 6𝑎 𝜉, 𝑡 = (−2𝑘𝜉,)
š 7𝑏 𝜉, 𝑡 = 𝜎 2𝑚𝜉
š And:
!
!2
7𝑏 𝜉, 𝑡 = 𝜎 2𝑚𝜉.
+
,
. 𝜉4+
17
Luc_Faucheux_2020
A useful example – Langevin - XIV
š This implies that the PDF for the energy follows the FORWARD STRATO Kolmogorov PDE
š
!"(2,&|2!,&!)
!&
= −
!
!2
9
:
6𝑎 𝜉, 𝑡 . 𝑝 𝑥, 𝑡 𝜉*, 𝑡* +
+
,
. 7𝑏 𝜉, 𝑡 .
!
!2
7𝑏 𝜉, 𝑡 . 𝑝 𝑥, 𝑡 𝜉*, 𝑡* −
!
!2
[
+
,
. [7𝑏(𝜉, 𝑡), . 𝑝(𝜉, 𝑡|𝜉*, 𝑡*)]
š
!"
!&
= −
!
!2
6𝑎𝑝 +
+
,
. 7𝑏.
!
!2
7𝑏. 𝑝 −
!
!2
(
+
,
7𝑏, . 𝑝)
š
!"
!&
= −
!
!2
−2𝑘𝜉, 𝑝 +
+
,
. 𝜎 2𝑚𝜉.
!
!2
(𝜎 2𝑚𝜉). 𝑝 −
!
!2
(
+
,
𝜎, 2𝑚𝜉
,
. 𝑝)
š
!"
!&
= −
!
!2
−2𝑘𝜉, 𝑝 +
+
,
. 𝜎, 2𝑚 𝜉.
!
!2
( 𝜉). 𝑝 −
!
!2
(𝑚𝜎, 𝜉𝑝)
š
!"
!&
= −
!
!2
−2𝑘𝜉, 𝑝 +
+
,
. 𝜎, 𝑚. 𝑝 −
!
!2
(𝑚𝜎, 𝜉𝑝)
18
Luc_Faucheux_2020
A useful example – Langevin - XV
š Now by construction the STRATO PDF and the ITO PDF should be the same
š ITO:
!"
!&
= −
!
!2
(−2𝑘𝜉, +
+
,
𝑚𝜎,). 𝑝 −
!
!2
[𝑚𝜉𝜎,. 𝑝
š STRATO:
!"
!&
= −
!
!2
−2𝑘𝜉, 𝑝 +
+
,
. 𝜎, 𝑚. 𝑝 −
!
!2
(𝑚𝜎, 𝜉𝑝)
š There is no surprise there, we are getting the same result. If we start with a well defined
equation (using one convention and sticking with it), we are free to apply non-linear
transformations to the variable.
š We are just proving that the results are consistent.
š There is an advantage in using STRATO in that the formal rules of calculus are formally
preserved, so we should be able to map the PDF for the velocity into the PDF for the energy.
š This is a neat trick that we can apply from time to time (Van Kampen page 194), put yourself
in Stratonovitch calculus, where you have convinced yourself that you can apply (formally)
the usual rules of calculus, and derive the PDE
19
Luc_Faucheux_2020
Auto correlation function
20
Luc_Faucheux_2020
Langevin Auto Correlation function
š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊
š Let’s define 7𝑉 𝑡 = exp 𝑘𝑡 . 𝑉(𝑡)
š 𝑑 7𝑉 =
!5(
!(
. [ . 𝑑𝑉 +
+
,
.
!"5(
!(" . 𝑑𝑉, +
!5(
!&
. [ . 𝑑𝑡
š
!5(
!&
= 𝑘𝑡. 𝑉 𝑡
š
!5(
!(
= exp(𝑘𝑡)
š
!"5(
!(" = 0
š 𝑑 7𝑉 = exp 𝑘𝑡 . ([). 𝑑𝑉 + 𝑘𝑡. 𝑉 𝑡 . ([). 𝑑𝑡
š 𝑑 7𝑉 = exp 𝑘𝑡 . ([). (−𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊) + 𝑘𝑡. 𝑉 𝑡 . ([). 𝑑𝑡 = exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊
21
Luc_Faucheux_2020
Langevin Auto Correlation function - II
š 𝑑 7𝑉 = exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊
š Which we should really write as an SIE anyways:
š 7𝑉 𝑡. − 7𝑉 𝑡* = ∫&/&*
&/&.
𝑑 7𝑉 𝑡 = ∫&/&*
&/&.
exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊(𝑡)
š exp 𝑘𝑡. . 𝑉 𝑡. − exp 𝑘𝑡* . 𝑉 𝑡* = ∫&/&*
&/&.
exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊(𝑡)
š 𝑉 𝑡. = exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&*
&/&.
exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 }
š In stochastic processes, and especially regarding physical systems, it is quite useful to define
and use the autocorrelation function: If it includes the variance it is also referred to as the
auto-covariance function. If normalized by the variance, it is the auto-correlation.
š 𝐶 𝑡., 𝑡* = < 𝑉 𝑡. − < 𝑉 𝑡. > . 𝑉 𝑡* − < 𝑉 𝑡* > >
š 𝐶 𝑡., 𝑡* = 𝔌{[𝑉 𝑡. − 𝔌{𝑉 𝑡. }]. { 𝑉 𝑡* − 𝔌 𝑉 𝑡* }
22
Luc_Faucheux_2020
Langevin Auto Correlation function -III
š When 𝑡. = 𝑡* this is the expectation of the second moment:
š 𝐶 𝑡., 𝑡. = < 𝑉 𝑡. − < 𝑉 𝑡. > , >
š From the deck on PDE:
š
!"(6,&)
!&
= −
!
!6
[𝑀+ 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 −
!
!6
[𝑀, 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 ]]
š Looking at a random process 𝑋(𝑡) such that 𝑝 𝑥, 𝑡 = 𝛿(𝑥 − 𝑋 𝑡 )
š < ∆𝑋 > = 𝐞 ∆𝑋 =< 𝑥 >&7∆& −< 𝑥 >&= 𝐹+ 𝑋 𝑡 , 𝑡 . ∆𝑡 (drift term)
š < ∆𝑋,> = 𝐞 ∆𝑋, =< (𝑥−< 𝑥 >&7∆&),>&7∆& = 𝐹, 𝑋 𝑡 , 𝑡 . ∆𝑡 (diffusion term)
š We showed that 𝐹+ 𝑋 𝑡 , 𝑡 = 𝑀+ 𝑋 𝑡 , 𝑡 and 𝐹, 𝑋 𝑡 , 𝑡 = 2. 𝑀, 𝑋 𝑡 , 𝑡
š
!"($,&|$9,&9)
!&
= −
!
!$
[𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡|𝑣𝑜, 𝑡𝑜 −
!
!$
[𝑀, 𝑣, 𝑡 . 𝑝 𝑥, 𝑡|𝑣𝑜, 𝑡𝑜 ]]
23
Luc_Faucheux_2020
Langevin Auto Correlation function -IV
š We know that the velocity follows the following PDE:
š
!"($,&|$9,&9)
!&
= −
!
!$
(−𝑘𝑣). 𝑝 𝑣, 𝑡 𝑣𝑜, 𝑡𝑜 −
!
!$
[
+
,
. [𝜎, . 𝑝(𝑣, 𝑡|𝑣𝑜, 𝑡𝑜)]
š So:
š 𝐶 𝑡 + ∆𝑡, 𝑡 + ∆𝑡 = < 𝑉 𝑡 + ∆𝑡 − < 𝑉 𝑡 + ∆𝑡 > , > = 2. 𝑀, 𝑣 𝑡 , 𝑡 . ∆𝑡 = 𝜎,. ∆𝑡
š Since:
š 𝑉 𝑡. = exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&*
&/&.
exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 }
š 𝐶 𝑡., 𝑡* = < 𝑉 𝑡. − < 𝑉 𝑡. > . 𝑉 𝑡* − < 𝑉 𝑡* > >
š 𝐶 𝑡., 𝑡* = 𝔌{[𝑉 𝑡. − 𝔌{𝑉 𝑡. }]. { 𝑉 𝑡* − 𝔌 𝑉 𝑡* }
š 𝔌 𝑉 𝑡. = 𝔌{exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&*
&/&.
exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 }}
š 𝔌 𝑉 𝑡. = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡* since the ITO integral is a martingale
24
Luc_Faucheux_2020
Langevin Auto Correlation function -V
š 𝐶 𝑡., 𝑡* = 𝔌{[𝑉 𝑡. − 𝔌{𝑉 𝑡. }]. { 𝑉 𝑡* − 𝔌 𝑉 𝑡* }
š 𝐶 𝑡., 𝑡* = 𝔌{[𝑉 𝑡. − 𝔌{𝑉 𝑡* }]. { 𝑉 𝑡* − 𝔌 𝑉 𝑡* }
š 𝐶 𝑡., 𝑡* = 𝔌 𝑉 𝑡. . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* − 𝔌 𝑉 𝑡. . 𝔌 𝑉 𝑡* +
𝔌 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡*
š 𝐶 𝑡., 𝑡* = 𝔌 𝑉 𝑡. . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡. +
𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡*
š 𝐶 𝑡., 𝑡* = 𝔌 𝑉 𝑡. . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡. +
𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡*
š 𝐶 𝑡., 𝑡* = 𝔌 𝑉 𝑡. . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡.
š 𝑉 𝑡. = exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&*
&/&.
exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 }
š 𝔌 𝑉 𝑡. . 𝑉 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡* . 𝑉 𝑡*
25
Luc_Faucheux_2020
Langevin Auto Correlation function -VI
š 𝔌 𝑉 𝑡. . 𝑉 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡* . 𝑉 𝑡*
š 𝔌 𝑉 𝑡. = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡*
š 𝐶 𝑡., 𝑡* = 𝔌 𝑉 𝑡. . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡.
š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . {𝔌 𝑉 𝑡* . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* }
š 𝔌 𝑉 𝑡. = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡*
š So as 𝑡. → ∞, 𝔌 𝑉 𝑡. → 0
š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . {𝔌 𝑉 𝑡* . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* }
š 𝐶 𝑡, 𝑡 = {𝔌 𝑉 𝑡 . 𝑉 𝑡 − 𝔌 𝑉 𝑡 . 𝔌 𝑉 𝑡 }
26
Luc_Faucheux_2020
Langevin Auto Correlation function -VII
š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . {𝔌 𝑉 𝑡* . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* }
š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . [𝔌 𝑉 𝑡*
, − 𝔌 𝑉 𝑡*
,]
š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡*
, − 𝔌 𝑉 𝑡*
,
š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 (𝑉 𝑡* − 𝔌 𝑉 𝑡* ),
š 𝐶 𝑡, 𝑡 = {𝔌 𝑉 𝑡 . 𝑉 𝑡 − 𝔌 𝑉 𝑡 . 𝔌 𝑉 𝑡 }
š 𝑉 𝑡. = exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&*
&/&.
exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 }
š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝐶 𝑡*, 𝑡*
š In particular to help the notation, with 𝑡* = 0 and 𝑡. = 𝑡
š 𝐶 𝑡, 0 = exp −𝑘𝑡 . 𝐶 0,0
š < 𝑉 𝑡 . 𝑉 0 > = < 𝑉(0), >. exp(−𝑘𝑡)
27
Luc_Faucheux_2020
Langevin Auto Correlation function -VIII
š Note that the Langevin process is a Markov process (no memory).
š HOWEVER, that does not mean zero correlation
š Markov really means that
š 𝑃( 𝑉 𝑡 + ℎ ≀ 𝑣 𝑉 𝑠 , 𝑠 ≀ 𝑡 = 𝑃( 𝑉 𝑡 + ℎ ≀ 𝑣 𝑉 𝑡
š For comparison, a Brownian process (Wiener) is such that:
š 𝔌 𝑊 𝑡. . 𝑊 𝑡* = min 𝑡., 𝑡*
š 𝔌 𝑊 𝑡 . 𝑊 𝑡 = 𝑡
š In some weird ways you can say that the Brownian motion is more strongly correlated than
the Langevin process.
28
Luc_Faucheux_2020
Langevin Auto Correlation function - X
š Another useful formula on the auto-correlation by expressly keeping the stochastic forcing
š 𝑉 𝑡. = exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&*
&/&.
exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 }
š In particular:
š 𝑉 𝑡 = exp −𝑘𝑡 . {𝑉 0 + ∫:/;
:/&
exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 }
š 𝑉 𝑡 = exp −𝑘𝑡 . {exp −𝑘∞ . 𝑉 −∞ + ∫:/4<
:/&
exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 }
š 𝑉 𝑡 = exp −𝑘𝑡 . ∫:/4<
:/&
exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠
š 𝑉 0 = ∫:/4<
:/;
exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠
š 𝑉 𝑡 . 𝑉 0 = exp −𝑘𝑡 . ∫:/4<
:/&
exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 . ∫:=/4<
:=/;
exp 𝑘𝑠′ . 𝜎. ([). 𝑑𝑊 𝑠′
29
Luc_Faucheux_2020
Langevin Auto Correlation function - XI
š 𝑉 𝑡 . 𝑉 0 = exp −𝑘𝑡 . ∫:/4<
:/&
exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 . ∫:=/4<
:=/;
exp 𝑘𝑠′ . 𝜎. ([). 𝑑𝑊 𝑠′
š 𝑉 𝑡 . 𝑉 0 = exp −𝑘𝑡 . ∫:=/4<
:=/;
∫:/4<
:/&
exp 𝑘𝑠 . exp 𝑘𝑠′ . 𝜎,. ([). 𝑑𝑊 𝑠 . ([). 𝑑𝑊 𝑠′
š < 𝑉 𝑡 . 𝑉 0 >= exp −𝑘𝑡 . ∫:=/4<
:=/;
∫:/4<
:/&
exp 𝑘𝑠 . exp 𝑘𝑠= . 𝜎,. ([). < 𝑑𝑊 𝑠 . ([). 𝑑𝑊 𝑠= >
š < 𝑑𝑊 𝑠 . ([). 𝑑𝑊 𝑠= > = 𝑑𝑠. 𝛿(𝑠 − 𝑠=)
š < 𝑉 𝑡 . 𝑉 0 >= exp −𝑘𝑡 . ∫:/4<
:/;
exp 2𝑘𝑠 . 𝜎,. 𝑑𝑠
š < 𝑉 𝑡 . 𝑉 0 >= exp −𝑘𝑡 . ∫:/4<
:/;
exp 2𝑘𝑠 . 𝜎,. 𝑑𝑠
š < 𝑉 𝑡 . 𝑉 0 >= exp −𝑘𝑡 .
>"
,?
š And we had before: < 𝑉 𝑡 . 𝑉 0 > = < 𝑉(0), >. exp(−𝑘𝑡)
š So < 𝑉(0), > =
>"
,?
30
Luc_Faucheux_2020
Langevin Auto Correlation function - X
š Let’s also now look at < 𝑉 𝑡 . 𝑉 𝑡 >
š 𝑉 𝑡 = exp −𝑘𝑡 . {𝑉 0 + ∫:/;
:/&
exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 }
š 𝑉 𝑡 . 𝑉 𝑡 = exp −2𝑘𝑡 . {𝑉 0 + ∫:/;
:/&
exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 }
,
š 𝑉 𝑡 . 𝑉 𝑡 = exp −2𝑘𝑡 . {𝑉 0 , +
2. 𝑉 0 . ∫:/;
:/&
exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 + ∫:/;
:/&
𝑒?:. 𝜎. ([). 𝑑𝑊 𝑠 . ∫:/;
:/&
𝑒?:. 𝜎. ([). 𝑑𝑊 𝑠 }
š 𝑉 𝑡 . 𝑉 𝑡 = exp −2𝑘𝑡 . {𝑉 0 , +
2. 𝑉 0 . ∫:/;
:/&
𝑒?:. 𝜎. ([). 𝑑𝑊 𝑠 + ∫:/;
:/&
∫:=/;
:=/&
𝑒?:#
. 𝑒?:. 𝜎,. ([). 𝑑𝑊 𝑠 . ([). 𝑑𝑊 𝑠′ }
š We then take the average and use the fact that the ITO integral is a martingale
š < ∫:/;
:/&
exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 > = 0
31
Luc_Faucheux_2020
Langevin Auto Correlation function - XI
š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . {< 𝑉 0 , >
+ ∫:/;
:/&
∫:=/;
:=/&
𝑒?:#
. 𝑒?:. 𝜎,. ([). < 𝑑𝑊 𝑠 . ([). 𝑑𝑊 𝑠= >}
š And we also use the fact that for a Wiener (Brownian process) the increments are
independents:
š < 𝑑𝑊 𝑠 . ( . 𝑑𝑊 𝑠= > = 𝛿 𝑠 − 𝑠= . 𝑑𝑠
š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . {< 𝑉 0 , > + ∫:/;
:/&
𝑒?:. 𝑒?:. 𝜎,. 𝑑𝑠}
š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . {< 𝑉 0 , > + ∫:/;
:/&
𝑒,?:. 𝜎,. 𝑑𝑠}
š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . {< 𝑉 0 , > +𝜎,.
@"$%
,? :/;
:/&
}
š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . {< 𝑉 0 , > +𝜎,.
@"$&4+
,?
}
32
Luc_Faucheux_2020
Langevin Auto Correlation function - XII
š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . {< 𝑉 0 , > +𝜎,.
@"$&4+
,?
}
š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . {< 𝑉 0 , >} + 𝜎,.
+4@'"$&
,?
š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . < 𝑉 0 , > +
>"
,?
. [1 − 𝑒4,?&]
š Or alternatively
š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . [< 𝑉 0 , > −
>"
,?
] +
>"
,?
š < 𝑉 ∞ . 𝑉 ∞ > =
>"
,?
š < 𝑉 𝑡 , > = < 𝑉 ∞ , > + exp −2𝑘𝑡 . [< 𝑉 0 , > −< 𝑉 ∞ , >]
33
Luc_Faucheux_2020
From the Langevin equation
to the particle diffusion
34
Luc_Faucheux_2020
From Langevin (velocity) to particle diffusion (position)
š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . {𝔌 𝑉 𝑡* . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* }
š 𝐶 𝑡., 𝑡* = exp −𝑘. 𝑡. . exp 𝑘. 𝑡* . 𝐶 𝑡*, 𝑡*
š Let us now tie this with the diffusion of a particle:
š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊
š The position of the particle is then given by :
š 𝑋 𝑡 − 𝑋 𝑡* = ∫&#/&*
&#/&
𝑉 𝑡= . 𝑑𝑡′ with 𝑉 𝑡 =
A
A&
. 𝑋(𝑡)
¹ Let’s calculate
š 𝐎 =
A
A&
< (𝑋 𝑡 − 𝑋 𝑡* ),> =
A
A&
𝔌 (𝑋 𝑡 − 𝑋 𝑡* ),
š 𝐎 =
A
A&
< 2.
A
A&
𝑋 𝑡 − 𝑋 𝑡* . (𝑋 𝑡 − 𝑋 𝑡* ) >
35
Luc_Faucheux_2020
From Langevin (velocity) to particle diffusion (position) - II
š 𝐎 = < 2.
A
A&
𝑋 𝑡 − 𝑋 𝑡* . (𝑋 𝑡 − 𝑋 𝑡* ) >
š 𝐎 = < 2. 𝑉(𝑡). (𝑋 𝑡 − 𝑋 𝑡* ) >
š 𝐎 = < 2. 𝑉(𝑡). ∫&#/&*
&#/&
𝑉 𝑡= . 𝑑𝑡′ >
š 𝐎 = < ∫&#/&*
&#/&
2. 𝑉 𝑡 . 𝑉 𝑡= . 𝑑𝑡′ >
š 𝐎 = ∫&#/&*
&#/&
< 2. 𝑉 𝑡 . 𝑉 𝑡= >. 𝑑𝑡′
š
A
A&
< (𝑋 𝑡 − 𝑋 𝑡* ),> = ∫&#/&*
&#/&
< 2. 𝑉 𝑡 . 𝑉 𝑡= >. 𝑑𝑡′
š And from the Langevin auto correlation function:
š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝐶 𝑡*, 𝑡*
36
Luc_Faucheux_2020
From Langevin (velocity) to particle diffusion (position) - III
š This is where the physics comes in (note that we are just glancing over it).
š We could:
š Derive the SIE for 𝑋(𝑡)
š Derive the PDE, solve for the PDF (in the other deck we do it through the neat trick of
Fourier transform)
¹ Look at overdamped – underdamped regime
š Take the steady state limit
š Show that this converges indeed towards the usual diffusion equation.
¹ But we can also ”define” the diffusion coefficient in space as:
š
A
A&
< (𝑋 𝑡 − 𝑋 𝑡* ),> = ∫&#/&*
&#/&
< 2. 𝑉 𝑡 . 𝑉 𝑡= >. 𝑑𝑡′ = 2𝐷3
š Note: not to be confused with the diffusion coefficient in the velocity space
37
Luc_Faucheux_2020
From Langevin (velocity) to particle diffusion (position) - IV
š
A
A&
< (𝑋 𝑡 − 𝑋 𝑡* ),> = ∫&#/&*
&#/&
< 2. 𝑉 𝑡 . 𝑉 𝑡= >. 𝑑𝑡′ = 2𝐷3
š With 𝐷3 = 𝐷3(𝑡, 𝑡*, . . )
š In the steady-state limit we assume that 𝐷3 is a constant
š ∫&#/4<
&#/&
< 2. 𝑉 𝑡 . 𝑉 𝑡= >. 𝑑𝑡′ = 2𝐷3
š 𝐷3 = ∫&#/4<
&#/&
< 2. 𝑉 𝑡 . 𝑉 𝑡= >. 𝑑𝑡′ = ∫:/;
:/<
< 𝑉 𝑠 . 𝑉 0 >. 𝑑𝑠 using 𝑠 = 𝑡 − 𝑡′
š 𝐷3 = ∫:/;
:/<
< 𝑉 𝑠 . 𝑉 0 >. 𝑑𝑠
š and we had:
š < 𝑉 𝑠 . 𝑉 0 > = < 𝑉(0), >. exp −𝑘𝑠 =
>"
,?
. exp −𝑘𝑠
38
Luc_Faucheux_2020
From Langevin (velocity) to particle diffusion (position) - V
š 𝐷3 = ∫:/;
:/<
< 𝑉 𝑠 . 𝑉 0 >. 𝑑𝑠
š 𝐷3 = ∫:/;
:/< >"
,?
. exp −𝑘𝑠 . 𝑑𝑠 =
>"
,?
.
+
?
=< 𝑉(0), >.
+
?
š In the steady state of the physical process that is diffusion of a particle in a thermal bath:
š
+
,
𝑀 < 𝑉(0), >=
+
,
𝐟B. 𝑇
š Where (and for now we can just take those as almost formal definitions):
š 𝑀 is the mass of the particle
š 𝐟B is a constant (the Boltzmann constant)
š 𝑇 is the temperature of the surrounding fluid
39
Luc_Faucheux_2020
From Langevin (velocity) to particle diffusion (position) - VI
š So we get if we want the Langevin equation to accurately describe the diffusion of a particle,
at least in the steady state limit
š (note, in another deck we will go through the actual full derivation of the PDF for the
particle diffusion from the Langevin, and justify the steady state limit as the correct
approximation)
š 𝐷3 =
C(D
E?
=
>"
,?"
š This is an illustration of the celebrated fluctuation-dissipation theorem
š If we choose for the viscous damping the Stokes equation:
š 𝑘 =
FGHI
E
, where the particle is a sphere of radius 𝑅 in a fluid of steady state viscosity 𝜂
š We then obtain the Einstein (1905) equation: 𝐷3 =
C(D
E?
=
C(D
FGHI
š That was verified experimentally by the illustrious Frenchman Jean Perrin in 1908
40
Luc_Faucheux_2020
From Langevin (velocity) to particle diffusion (position) - VII
š This section did pack a lot and did not go into the details of actually deriving the PDF for the
particle position from the PDF from the velocity, or from any other way (from SIE or PDE).
š That will be for another deck
š This section was more to illustrate how central is the Langevin equation in Physics
š The same way that it should be in Finance, as the underlying dynamics for Black-Sholes, the
GBM (Geometric Brownian motion) suffers from not only allowing only positive security
prices, but also exhibits unstable dynamics (higher moments will diverge).
š For many securities (in particular rates, which are already the derivative of something like
the velocity is to the particle position), a Langevin approach is more favored (or should be).
š Salomon Brothers in the 1970 had already a Langevin approach using more than one factor
(hence the name 2+), with factor correlation and a skew function famously known as IRMA.
They were quite ahead of their time, as most of the market kept on using multiple tweaks on
Black-Sholes to try to make it work in a satisfactory manner
41
Luc_Faucheux_2020
Langevin equation
Dynamics of moments from the PDF
42
Luc_Faucheux_2020
Langevin equation – dynamics of moments
š In the deck (II), we looked at moments from the FP:
š
!"($,&)
!&
= −
!
!$
[𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 −
!
!$
[𝑀, 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 ]]
š Really in terms of notation to highlight the fact that this is a FORWARD FP:
š
!"($,&|$;,&;)
!&
= −
!
!$
[𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡|𝑣0, 𝑡0 −
!
!$
[𝑀, 𝑣, 𝑡 . 𝑝 𝑣, 𝑡|𝑣𝑜, 𝑡𝑜 ]]
š 𝑚J 𝑣, 𝑡 =< 𝑉J >&= ∫4<
7<
𝑝 𝑣, 𝑡 . 𝑣J. 𝑑𝑣
š We showed in deck II that by integration by part:
š 𝐌, 𝑛 = ∫4<
7<
𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 𝑛. 𝑣J4+. 𝑑𝑣 + ∫4<
7<
𝑀, 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 𝑛. (𝑛 − 1). 𝑣J4,. 𝑑𝑣
š
A
A&
. 𝑚J 𝑣, 𝑡 = 𝐌, 𝑛
š
A
A&
. 𝑚; 𝑣, 𝑡 = 0 since the probability 𝑚; 𝑣, 𝑡 = ∫4<
7<
𝑝 𝑣, 𝑡 . 𝑑𝑣 is conserved
43
Luc_Faucheux_2020
Langevin equation – dynamics of moments - II
š For the Langevin case:
š
!"($,&|$;,&;)
!&
= −
!
!$
[𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡|𝑣0, 𝑡0 −
!
!$
[𝑀, 𝑣, 𝑡 . 𝑝 𝑣, 𝑡|𝑣𝑜, 𝑡𝑜 ]]
š
!"($,&|(!,&!)
!&
= −
!
!$
(−𝑘𝑣). 𝑝 𝑣, 𝑡 𝑉*, 𝑡* −
!
!$
[
+
,
. [𝜎, . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)]
š 𝑀+ 𝑣, 𝑡 = −𝑘𝑣
š 𝑀, 𝑣, 𝑡 =
+
,
. 𝜎,
š
A
A&
. 𝑚+ 𝑣, 𝑡 = 𝐌, 1 = ∫4<
7<
𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 𝑑𝑣 = ∫4<
7<
(−𝑘𝑣). 𝑝 𝑣, 𝑡 . 𝑑𝑣
š
A
A&
. 𝑚+ 𝑣, 𝑡 = ∫4<
7<
−𝑘𝑣 . 𝑝 𝑣, 𝑡 . 𝑑𝑣 = −𝑘. ∫4<
7<
𝑣. 𝑝 𝑣, 𝑡 . 𝑑𝑣 = −𝑘. 𝑚+ 𝑣, 𝑡
44
Luc_Faucheux_2020
Langevin equation – dynamics of moments - III
š
A
A&
. 𝑚+ 𝑣, 𝑡 = −𝑘. 𝑚+ 𝑣, 𝑡
š 𝑚+ 𝑣, 𝑡 = 𝑚+ 𝑣, 0 . exp(−𝑘𝑡)
š < 𝑉 >& = < 𝑉 𝑡 > = < 𝑉 0 >. exp(−𝑘𝑡)
š This is also what we had from an explicit formulation of the Langevin equation:
š 𝔌 𝑉 𝑡. = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡*
š So as 𝑡. → ∞, 𝔌 𝑉 𝑡. → 0
š From:
š 𝑉 𝑡. = exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&*
&/&.
exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 }
45
Luc_Faucheux_2020
Langevin equation – dynamics of moments - IV
š
A
A&
. 𝑚, 𝑣, 𝑡 = 𝐌, 2
š 𝐌, 𝑛 = ∫4<
7<
𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 𝑛. 𝑣J4+. 𝑑𝑣 + ∫4<
7<
𝑀, 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 𝑛. (𝑛 − 1). 𝑣J4,. 𝑑𝑣
š
A
A&
. 𝑚, 𝑣, 𝑡 = ∫4<
7<
𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 2𝑣. 𝑑𝑣 + ∫4<
7<
𝑀, 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 2. 𝑑𝑣
š 𝑀+ 𝑣, 𝑡 = −𝑘𝑣
š 𝑀, 𝑣, 𝑡 =
+
,
. 𝜎,
š
A
A&
. 𝑚, 𝑣, 𝑡 = ∫4<
7<
(−𝑘𝑣). 𝑝 𝑣, 𝑡 . 2𝑣. 𝑑𝑣 + ∫4<
7<
(
+
,
. 𝜎, ). 𝑝 𝑣, 𝑡 . 2. 𝑑𝑣
š
A
A&
. 𝑚, 𝑣, 𝑡 = −2𝑘 ∫4<
7<
𝑝 𝑣, 𝑡 . 𝑣,. 𝑑𝑣 + 𝜎,
∫4<
7<
𝑝 𝑣, 𝑡 . 𝑑𝑣
š
A
A&
. 𝑚, 𝑣, 𝑡 = −2𝑘. 𝑚, 𝑣, 𝑡 + 𝜎,. 𝑚; 𝑣, 𝑡 = −2𝑘. 𝑚, 𝑣, 𝑡 + 𝜎,
46
Luc_Faucheux_2020
Langevin equation – dynamics of moments - V
š
A
A&
. 𝑚, 𝑣, 𝑡 = −2𝑘. 𝑚, 𝑣, 𝑡 + 𝜎,
š
A
A&
. 𝑚, 𝑣, 𝑡 + 2𝑘. 𝑚, 𝑣, 𝑡 = 𝜎,
š We choose to write using the separation of variables method:
š 𝑚, 𝑣, 𝑡 = 𝑛, 𝑡 . exp(−2𝑘𝑡)
š
A
A&
𝑛, 𝑡 . exp −2𝑘𝑡 + 𝑛, 𝑡 . −2𝑘 . 𝑒𝑥𝑝 −2𝑘𝑡 = −2𝑘. 𝑛, 𝑡 . exp(−2𝑘𝑡) + 𝜎,
š
A
A&
𝑛, 𝑡 . exp −2𝑘𝑡 = 𝜎,
š
A
A&
𝑛, 𝑡 = 𝜎,. exp 2𝑘𝑡
š 𝑛, 𝑡 =
+
,?
𝜎,. exp 2𝑘𝑡 + 𝐶
š 𝑛, 𝑡 =
+
,?
𝜎,. exp 2𝑘𝑡 + 𝑛, 0 −
+
,?
𝜎,
47
Luc_Faucheux_2020
Langevin equation – dynamics of moments - VI
š 𝑛, 𝑡 =
+
,?
𝜎,. exp 2𝑘𝑡 + 𝑛, 0 −
+
,?
𝜎,
š 𝑚, 𝑡 = 𝑛, 𝑡 . exp −2𝑘𝑡 =
>
,?
,
+ 𝑛, 0 −
+
,?
𝜎, . exp −2𝑘𝑡
š And 𝑛, 0 = 𝑚, 0
š 𝑚, 𝑡 =
>
,?
,
+ 𝑚, 0 −
+
,?
𝜎, . exp −2𝑘𝑡
š < 𝑉&
, >& = < 𝑉 𝑡 , > = < 𝑉 0 , > −
>"
,?
. exp −2𝑘𝑡 +
>"
,?
š < 𝑉 𝑡 , > converges to
>"
,?
when 𝑡 → ∞
š This is also what we obtained when explicitly calculating the autocorrelation function.
48
Luc_Faucheux_2020
Langevin equation – dynamics of moments - VII
š We can also by recurrence get the higher moments:
š 𝐌, 𝑛 = ∫4<
7<
𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 𝑛. 𝑣J4+. 𝑑𝑣 + ∫4<
7<
𝑀, 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 𝑛. (𝑛 − 1). 𝑣J4,. 𝑑𝑣
š
A
A&
. 𝑚J 𝑣, 𝑡 = 𝐌, 𝑛
š 𝑀+ 𝑣, 𝑡 = −𝑘𝑣
š 𝑀, 𝑣, 𝑡 =
+
,
. 𝜎,
š
A
A&
. 𝑚J 𝑣, 𝑡 = ∫4<
7<
(−𝑘𝑣). 𝑝 𝑣, 𝑡 . 𝑛. 𝑣J4+. 𝑑𝑣 + ∫4<
7<
(
>"
,
). 𝑝 𝑣, 𝑡 . 𝑛. (𝑛 − 1). 𝑣J4,. 𝑑𝑣
š
A
A&
. 𝑚J 𝑣, 𝑡 = −𝑘. 𝑛. ∫4<
7<
𝑝 𝑣, 𝑡 . 𝑣J . 𝑑𝑣 +
>"
,
. ∫4<
7<
𝑝 𝑣, 𝑡 . 𝑛. (𝑛 − 1). 𝑣J4,. 𝑑𝑣
š
A
A&
. 𝑚J 𝑡 = −𝑘. 𝑛. 𝑚J 𝑡 +
>"
,
. 𝑛. 𝑛 − 1 . 𝑚J4, 𝑡
49
Luc_Faucheux_2020
Langevin equation – dynamics of moments - VIII
š
A
A&
. 𝑚J 𝑡 = −𝑘. 𝑚J 𝑡 +
>"
,
. 𝑛. 𝑛 − 1 . 𝑚J4, 𝑡
¹ We can solve this by recurrence using the method of “variations of parameters” first
originated by Joseph-Henri Lagrange (on the left) for ODE, then extended to PDE by Jean-
Marie Duhamel on the right (born in Saint-Malo !)
50
Luc_Faucheux_2020
Jean-Marie Duhamel was born in Saint-Malo !
š Saint Malo is just awesome. Many reasons why. In random order
š It is the location for a #1 New York Times bestseller
51
Luc_Faucheux_2020
Saint Malo is awesome - II
¹ The Surcouf family is from Saint Malo. Robert was a renowned “corsair” (French pirate) who
gave a lot of grief to the Beefeaters. The whole family were essentially pirates.
52
Luc_Faucheux_2020
Saint Malo is awesome - III
š Duguay-Trouin is also from Saint Malo. He was also a French corsair giving grief to the Brits
(there is a pattern there)
53
Luc_Faucheux_2020
Saint Malo is awesome - IV
¹ Pierre Louis Maupertuis is from Saint Malo. He invented the “least action principle” in
Physics. The principle can be used to derive Newtonian, Lagrangian and Hamiltonian
equations of motion, and is fundamental to general relativity and Quantum mechanics
š In the drawing below he is wearing appropriate attire for an expedition in Lapland (Sapmi)
54
Luc_Faucheux_2020
Saint Malo is awesome - V
š Jean-Baptiste Benard de la Harpe is from Saint Malo. He discovered Little Rock, Arkansas.
We forgive him.
55
Luc_Faucheux_2020
Saint Malo is awesome - VI
š Jacques Cartier is from Saint Malo. He discovered Canada. Take that Jean-Baptiste Benard
de la Harpe.
56
Luc_Faucheux_2020
Saint Malo is awesome - VII
š Colin Clive is also from Saint Malo. He was the doctor Frankenstein (on the right)
57
Luc_Faucheux_2020
Saint Malo is awesome - VIII
š It is a great place to watch a storm.
58
Luc_Faucheux_2020
Variation of parameters method for first-order ODE
š In the general case:
š 𝑊= + 𝑝 𝑥 . 𝑊 = 𝑞(𝑥)
š If 𝑞 𝑥 = 0 we then have: 𝑊= + 𝑝 𝑥 . 𝑊 = 0
š
AK
A6
= −𝑝 𝑥 . 𝑊
š
AK
K
= 𝑑 ln 𝑊 = −𝑝 𝑥 . 𝑑𝑥
š ln 𝑊 = − ∫ 𝑝 𝑥 . 𝑑𝑥 + 𝐶
š Similar to the SIE formulation we write it as :
š ln 𝑊 𝑥. − ln 𝑊 𝑥* = − ∫6/6*
6/6.
𝑝 𝑥 . 𝑑𝑥
š 𝑊 𝑥. = 𝑊 𝑥* . exp(− ∫6/6*
6/6.
𝑝 𝑥 . 𝑑𝑥)
59
Luc_Faucheux_2020
Variation of parameters method for first-order ODE - II
š If 𝑞 𝑥 <> 0 we then have: 𝑊= + 𝑝 𝑥 . 𝑊 = 𝑞 𝑥
š We choose: 𝑊 𝑥 = 𝐶(𝑥). exp(− ∫;
6
𝑝 𝑠 . 𝑑𝑠)
š 𝑊= 𝑥 = 𝐶= 𝑥 . exp − ∫;
6
𝑝 𝑠 . 𝑑𝑠 + 𝐶 𝑥 . −𝑝 𝑥 . exp(− ∫;
6
𝑝 𝑠 . 𝑑𝑠)
š 𝑊= 𝑥 = 𝐶= 𝑥 . exp − ∫;
6
𝑝 𝑠 . 𝑑𝑠 − 𝑝 𝑥 . 𝑊(𝑥)
š So we get: 𝐶= 𝑥 . exp − ∫;
6
𝑝 𝑠 . 𝑑𝑠 = 𝑞 𝑥
š 𝐶= 𝑥 = exp ∫;
6
𝑝 𝑠 . 𝑑𝑠 . 𝑞 𝑥
š 𝐶 𝑥. − 𝐶 𝑥* = ∫6/6*
6/6.
exp ∫;
6
𝑝 𝑠 . 𝑑𝑠 . 𝑞 𝑥 . 𝑑𝑥
š You can see that for ODE of higher orders we can see a nesting of integrals that is started to
rear its ugly head
60
Luc_Faucheux_2020
Variation of parameters method for first-order ODE - III
š 𝐶 𝑥. − 𝐶 𝑥* = ∫6/6*
6/6.
exp ∫;
6
𝑝 𝑠 . 𝑑𝑠 . 𝑞 𝑥 . 𝑑𝑥
š 𝑊 𝑥. = 𝐶(𝑥.). exp(− ∫6)
6)
𝑝 𝑠 . 𝑑𝑠)
š 𝑊 𝑥. = 𝐶 𝑥* . exp − ∫6)
6)
𝑝 𝑠 . 𝑑𝑠 + exp − ∫6)
6)
𝑝 𝑠 . 𝑑𝑠 . ∫6/6*
6/6.
exp ∫;
6
𝑝 𝑠 . 𝑑𝑠 . 𝑞 𝑥 . 𝑑𝑥
š Jean-Mari Duhamel extended this to ODE of degree 𝑛
š He also essentially invented the record player (vibroscope)
61
Luc_Faucheux_2020
Langevin equation – dynamics of moments - IX
š Back to the ODE at stake here:
š
A
A&
. 𝑚J 𝑡 = −𝑘. 𝑛. 𝑚J 𝑡 +
>"
,
. 𝑛. 𝑛 − 1 . 𝑚J4, 𝑡
š 𝑊= + 𝑝 𝑡 . 𝑊 = 𝑞(𝑡)
š With 𝑝 𝑡 = 𝑘𝑛 and 𝑞 𝑡 =
>"
,
. 𝑛. 𝑛 − 1 . 𝑚J4, 𝑡
š 𝑊 𝑡. = 𝐶 𝑡* . exp − ∫&!
&)
𝑝 𝑠 . 𝑑𝑠 + exp − ∫&!
&)
𝑝 𝑠 . 𝑑𝑠 . ∫&/&*
&/&.
exp ∫;
&
𝑝 𝑠 . 𝑑𝑠 . 𝑞 𝑡 . 𝑑𝑡
š 𝑚J 𝑡. = 𝐶 𝑡* . exp − ∫&!
&)
(𝑘𝑛). 𝑑𝑠 + exp − ∫&!
&)
(𝑘𝑛). 𝑑𝑠 . ∫&/&*
&/&.
exp ∫;
&
(𝑘𝑛). 𝑑𝑠 . 𝑞 𝑡 . 𝑑𝑡
š 𝑚J 𝑡. = 𝐶 𝑡* . exp −𝑛𝑘(𝑡. − 𝑡*) + exp −𝑛𝑘(𝑡. − 𝑡*) . ∫&/&*
&/&.
exp ∫;
&
(𝑘𝑛). 𝑑𝑠 . 𝑞 𝑡 . 𝑑𝑡
62
Luc_Faucheux_2020
Langevin equation – dynamics of moments - X
š 𝑚J 𝑡. = 𝐶 𝑡* . exp −𝑛𝑘(𝑡. − 𝑡*) + exp −𝑛𝑘(𝑡. − 𝑡*) . ∫&/&*
&/&.
exp ∫;
&
(𝑘𝑛). 𝑑𝑠 . 𝑞 𝑡 . 𝑑𝑡
š Choosing 𝑡* = 0 for sake of clarity:
š 𝑚J 𝑡. = 𝐶 0 . exp −𝑛𝑘𝑡. + exp −𝑛𝑘𝑡. . ∫&/;
&/&.
exp ∫;
&
(𝑘𝑛). 𝑑𝑠 . 𝑞 𝑡 . 𝑑𝑡
š 𝑞 𝑡 =
>"
,
. 𝑛. 𝑛 − 1 . 𝑚J4, 𝑡
š exp ∫;
&
(𝑘𝑛). 𝑑𝑠 = 𝑘𝑛𝑡
š 𝑚J 𝑡. = 𝐶 0 . exp −𝑛𝑘𝑡. + exp −𝑛𝑘𝑡. . ∫&/;
&/&.
exp 𝑛𝑘𝑡 . 𝑞 𝑡 . 𝑑𝑡
š 𝑚J 𝑡. = 𝑚J 0 . exp −𝑛𝑘𝑡. +
>"
,
. 𝑛. 𝑛 − 1 . exp −𝑛𝑘𝑡. . ∫&/;
&/&.
exp 𝑛𝑘𝑡 . 𝑚J4, 𝑡 . 𝑑𝑡
š 𝑚J 𝑡 = 𝑚J 0 . exp −𝑛𝑘𝑡 +
>"
,
. 𝑛. 𝑛 − 1 . exp −𝑛𝑘𝑡 . ∫:/;
:/&
exp 𝑛𝑘𝑠 . 𝑚J4, 𝑠 . 𝑑𝑠
63
Luc_Faucheux_2020
Langevin equation – dynamics of moments - XI
š 𝑚J 𝑡 = 𝑚J 0 . exp −𝑛𝑘𝑡 +
>"
,
. 𝑛. 𝑛 − 1 . exp −𝑛𝑘𝑡 . ∫:/;
:/&
exp 𝑛𝑘𝑠 . 𝑚J4, 𝑠 . 𝑑𝑠
š 𝑚J 𝑡 = 𝑚J 0 . exp −𝑛𝑘𝑡 +
>"
,
. 𝑛. 𝑛 − 1 . ∫:/;
:/&
exp −𝑛𝑘(𝑡 − 𝑠) . 𝑚J4, 𝑠 . 𝑑𝑠
š For 𝑛 = 2 we recover:
š 𝑚, 𝑡 = 𝑚, 0 . exp −2𝑘𝑡 +
>"
,
. 2. 2 − 1 . ∫:/;
:/&
exp −2𝑘(𝑡 − 𝑠) . 𝑚; 𝑠 . 𝑑𝑠
š And 𝑚; 𝑠 = 1
š 𝑚, 𝑡 = 𝑚, 0 . exp −2𝑘𝑡 + 𝜎,. ∫:/;
:/&
exp −2𝑘(𝑡 − 𝑠) . 𝑑𝑠
š 𝑚, 𝑡 = 𝑚, 0 . exp −2𝑘𝑡 + 𝜎,. exp −2𝑘𝑡 [
+
,?
exp(2𝑘𝑠)]:/;
:/&
š 𝑚, 𝑡 = 𝑚, 0 . exp −2𝑘𝑡 + 𝜎,. exp −2𝑘𝑡 . [
+
,?
exp 2𝑘𝑡 −
+
,?
]
64
Luc_Faucheux_2020
Langevin equation – dynamics of moments - XII
š 𝑚, 𝑡 = 𝑚, 0 . exp −2𝑘𝑡 + 𝜎,. exp −2𝑘𝑡 . [
+
,?
exp 2𝑘𝑡 −
+
,?
]
š 𝑚, 𝑡 =
>"
,?
+ exp −2𝑘𝑡 . [𝑚, 0 −
>"
,?
]
š What we had before was:
š 𝑚, 𝑡 =
>
,?
,
+ 𝑚, 0 −
+
,?
𝜎, . exp −2𝑘𝑡
š So it works !
65
Luc_Faucheux_2020
Langevin equation – dynamics of moments - XIII
š Steady-state values of the moments (noted for 𝑡 = ∞)
š 𝑚; 𝑡 = 1 so 𝑚; ∞ = 1
š
A
A&
. 𝑚+ 𝑣, 𝑡 = −𝑘. 𝑚+ 𝑣, 𝑡 = 0 so 𝑚+ ∞ = 0
š 𝑚, 𝑡 =
>"
,?
+ exp −2𝑘𝑡 . [𝑚, 0 −
>"
,?
] converges when 𝑡 → ∞ to
>"
,?
, so 𝑚, ∞ =
>"
,?
š Also,
A
A&
. 𝑚, 𝑣, 𝑡 = −2𝑘. 𝑚, 𝑣, 𝑡 + 𝜎,= 0 so 𝑚, ∞ =
>"
,?
š 𝑚J 𝑡 = 𝑚J 0 . exp −𝑛𝑘𝑡 +
>"
,
. 𝑛. 𝑛 − 1 . ∫:/;
:/&
exp −𝑛𝑘(𝑡 − 𝑠) . 𝑚J4, 𝑠 . 𝑑𝑠
š The first term converges to 0 so we are left for 𝑡 → ∞ with:
š 𝑚J ∞ = lim
&→<
>"
,
. 𝑛. 𝑛 − 1 . ∫:/;
:/&
exp −𝑛𝑘(𝑡 − 𝑠) . 𝑚J4, 𝑠 . 𝑑𝑠
66
Luc_Faucheux_2020
Langevin equation – dynamics of moments - XIV
š We already have:
š 𝑚; ∞ = 1
š 𝑚+ ∞ = 0
š 𝑚, ∞ =
>"
,?
š 𝑚J ∞ = lim
&→<
>"
,
. 𝑛. 𝑛 − 1 . ∫:/;
:/&
exp −𝑛𝑘(𝑡 − 𝑠) . 𝑚J4, 𝑠 . 𝑑𝑠
š 𝑚J ∞ =
>"
,
. 𝑛. 𝑛 − 1 .
+
J?
𝑚J4, ∞ = 𝑚, ∞ . 𝑛 − 1 . 𝑚J4, ∞
š So for all odd n numbers, 𝑚J ∞ = 0
š For all even numbers: 𝑚J ∞ = 𝑛 − 1 . 𝑛 − 3 
 3.1. (𝑚, ∞ )J/,
67
Luc_Faucheux_2020
Langevin equation – dynamics of moments - XV
š In the deck on Bachelier, we calculated all the moments for the Gaussian distribution:
š < 𝑥,J > = (𝜎, 𝑡)J. 2𝑛 − 1 ‌ and < 𝑥,J7+ > = 0
š For the regular Gaussian ℎ 𝑥, 𝑡 =
+
,G>"&
. exp(
46"
,>"&
)
š 𝑛! = ∏N/+
N/J
𝑗 is the usual factorial
š 𝑛!! = ∏N/+
N/J
𝑗 is called the “double factorial” and only includes in the product the terms that
have the SAME parity as 𝑘
š Here for the Langevin equation we have:
š 𝑚,J ∞ = 2𝑛 − 1 ‌ (𝑚, ∞ )J and 𝑚,J7+ ∞ = 0
š 𝑚, ∞ =
>"
,?
68
Luc_Faucheux_2020
Langevin equation – dynamics of moments - XVI
š This suggests, that whatever the PDF for the Langevin equation (that we have not solved
yet), it might converge to:
š ℎ 𝑣, 𝑡 → ∞ =
+
,G.-" <
. exp(
4$"
,-" <
)
š ℎ 𝑣, 𝑡 → ∞ =
+
,G.
*"
"$
. exp(
4$"
,
*"
"$
)
š ℎ 𝑣, 𝑡 → ∞ =
?
G >" . exp(
4?$"
>" )
š We also have of course:
š 𝑚,J ∞ = ∫$/4<
$/7<
𝑣J. ℎ 𝑣, 𝑡 → ∞ . 𝑑𝑣
š We will use that when trying to guess / derive the PDF for the Langevin equation.
69
Luc_Faucheux_2020
Langevin equation
Dynamics of moments from the SDE
70
Luc_Faucheux_2020
Langevin equation – dynamics of moments from SDE
š We can also derive the dynamics of moments from the SDE as opposed to the PDF, using the
ITO lemma
š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊
š ITO lemma for a function 𝑓(𝑉)
š 𝑓 𝑉 𝑡. − 𝑓 𝑉 𝑡* = ∫&/&*
&/&. !0
!(
. ([). 𝑑𝑉(𝑡) + ∫&/&*
&/&. +
,
.
!"1
!(" . ([). (𝛿𝑉),
¹ In the ”limit” of small time increments, this can be written formally as the Ito lemma:
š 𝛿𝑓 =
!0
!(
. 𝛿𝑉 +
+
,
.
!"0
!(" . (𝛿𝑉), and we choose 𝑓 𝑉 = 𝑉J
š
!0
!(
= 𝑛. 𝑉J4+
š
!"0
!(" = 𝑛. 𝑛 − 1 . 𝑉J4,
71
Luc_Faucheux_2020
Langevin equation – dynamics of moments from SDE - II
š 𝑉 𝑡.
J − 𝑉 𝑡*
J = ∫&/&*
&/&.
𝑛. 𝑉J4+. ([). 𝑑𝑉(𝑡) + ∫&/&*
&/&. +
,
𝑛. 𝑛 − 1 . 𝑉J4,. ([). (𝛿𝑉),
š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊
š 𝑉 𝑡.
J − 𝑉 𝑡*
J = −𝑘 ∫&/&*
&/&.
𝑛𝑉J 𝑑𝑡 + ∫&/&*
&/&. +
,
𝑛 𝑛 − 1 𝑉J4, 𝜎, 𝑑𝑡 + ∫&/&*
&/&.
𝑛. 𝑉J4+. 𝜎. ([). 𝑑𝑊
š 𝑉 𝑡.
J = 𝑉 𝑡*
J − 𝑘 ∫&/&*
&/&.
𝑛𝑉J 𝑑𝑡 + ∫&/&*
&/&. +
,
𝑛 𝑛 − 1 𝑉J4, 𝜎, 𝑑𝑡 + ∫&/&*
&/&.
𝑛. 𝑉J4+. 𝜎. ([). 𝑑𝑊
š 𝑚J 𝑡. =< 𝑉J >&)
= ∫4<
7<
𝑝 𝑣, 𝑡. . 𝑣J. 𝑑𝑣
š 𝑚J 𝑡. = 𝔌(𝑉J)
š Since the ITO integral is a martingale,
š 𝔌 ∫&/&*
&/&.
𝑛. 𝑉J4+. 𝜎. ([). 𝑑𝑊 = 0
72
Luc_Faucheux_2020
Langevin equation – dynamics of moments from SDE - III
š 𝔌(𝑉 𝑡.
J) = 𝔌(𝑉 𝑡*
J) − 𝑘 ∫&/&*
&/&.
𝑛𝔌(𝑉J)𝑑𝑡 + ∫&/&*
&/&. +
,
𝑛 𝑛 − 1 𝔌(𝑉J4,)𝜎, 𝑑𝑡
š 𝑚J 𝑡. = 𝑚J 𝑡* − 𝑘 ∫&/&*
&/&.
𝑛. 𝑚J 𝑡 𝑑𝑡 + ∫&/&*
&/&. +
,
𝑛 𝑛 − 1 𝑚J 𝑡 𝜎, 𝑑𝑡
š Or in differential form:
š
A
A&
. 𝑚J 𝑡 = −𝑘. 𝑛. 𝑚J 𝑡 +
>"
,
. 𝑛. 𝑛 − 1 . 𝑚J4, 𝑡
š This is the same exact formula we obtained when getting the dynamics from the PDE
(forward PDE) when integrating by parts
š Here we obtained it directly from ITO lemma and using the martingale property
š No surprise there, as we saw before the correspondence between the Forward and
Backward PDEs using the integration by parts.
73
Luc_Faucheux_2020
A quick note on averaging
74
Luc_Faucheux_2020
A quick note on averaging
š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊
š One is tempted to write
š < 𝑑𝑉 𝑡 > = < −𝑘𝑉 𝑡 >. 𝑑𝑡 +< 𝜎. 𝑑𝑊 >
š 𝑑 < 𝑉 𝑡 > = −𝑘 < 𝑉 𝑡 >. 𝑑𝑡
š And so < 𝑉 𝑡 > =< 𝑉 𝑡 >. exp(−𝑘𝑡)
š This is exactly what we had from either solving specifically for a solution of the SDE, or using
the moments:
š 𝑚+ 𝑣, 𝑡 = 𝑚+ 𝑣, 0 . exp(−𝑘𝑡)
š < 𝑉 >& = < 𝑉 𝑡 > = < 𝑉 0 >. exp(−𝑘𝑡)
š 𝔌 𝑉 𝑡. = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡*
š 𝑉 𝑡. = exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&*
&/&.
exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 }
75
Luc_Faucheux_2020
A quick note on averaging - II
š One is tempted to do the same for the second moment by multiplying by 𝑉 on both sides
š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊
š 𝑉 𝑡 . 𝑑𝑉 𝑡 = −𝑘𝑉 𝑡 𝑉 𝑡 . 𝑑𝑡 + 𝜎. 𝑉 𝑡 . ([). 𝑑𝑊
š 𝑑[
("
,
] = −𝑘𝑉 𝑡 𝑉 𝑡 . 𝑑𝑡 + 𝜎. 𝑉 𝑡 . ([). 𝑑𝑊
š And then take the average
š < 𝑑
("
,
> = < −𝑘𝑉 𝑡 𝑉 𝑡 . 𝑑𝑡 >+< 𝜎. 𝑉 𝑡 . ([). 𝑑𝑊 >
š 𝑑 <
("
,
> = −𝑘 < 𝑉, >. 𝑑𝑡 > + < 𝜎. 𝑉 𝑡 . ([). 𝑑𝑊 >
š And then say : < 𝜎. 𝑉 𝑡 . ([). 𝑑𝑊 > = 0
š So: < 𝑉, 𝑡 > =< 𝑉,(0) >. exp(−2𝑘𝑡)
76
Luc_Faucheux_2020
A quick note on averaging - III
š Previous slide is wrong because we cannot rely on usual rules of calculus.
š We know that the previous slide is wrong because the actual result is:
š < 𝑉&
, >& = < 𝑉 𝑡 , > = < 𝑉 0 , > −
>"
,?
. exp −2𝑘𝑡 +
>"
,?
š So we can either stay in ITO calculus so that we can use: < 𝜎. 𝑉 𝑡 . ([). 𝑑𝑊 > = 0
š OR we formally use the usual rules of calculus, but in that case we have to rely on the
STRATO convention for the integral and in this case: < 𝜎. 𝑉 𝑡 . (∘). 𝑑𝑊 > ≠ 0
š This was motivated by a footnote by Van Kampen on page 221
77
Luc_Faucheux_2020
A quick note on averaging - IV
¹ Let’s do it right in ITO
š 𝑑
("
,
=
!
!(
("
,
. ([). 𝑑𝑉 +
+
,
.
!"
!("
("
,
. ([). 𝑑𝑉. ([). 𝑑𝑉 +
!
!&
("
,
. 𝑑𝑡
š 𝑑
("
,
= 𝑉. ([). 𝑑𝑉 +
+
,
. 1. ([). 𝑑𝑉. ([). 𝑑𝑉 + 0. 𝑑𝑡
š 𝑑
("
,
= 𝑉. ([). {−𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊} +
+
,
. 𝜎, 𝑑𝑡
š 𝑑
("
,
= −2𝑘
("
,
. 𝑑𝑡 + 𝜎. 𝑉. ([). 𝑑𝑊 +
+
,
. 𝜎, 𝑑𝑡
š We then take the average:
š 𝑑 <
("
,
> = −2𝑘 <
("
,
>. 𝑑𝑡 + < 𝜎. 𝑉. ([). 𝑑𝑊 > +
+
,
. 𝜎, 𝑑𝑡
š We can then use the property that the ITO integral is a martingale
78
Luc_Faucheux_2020
A quick note on averaging - V
š < 𝜎. 𝑉. ([). 𝑑𝑊 > = 0
š 𝑑 <
("
,
> = −2𝑘 <
("
,
>. 𝑑𝑡 +
+
,
. 𝜎, 𝑑𝑡
š That is now a closed equation which we can write as:
š With:
š
A
A&
. 𝑚, 𝑣, 𝑡 + 2𝑘. 𝑚, 𝑣, 𝑡 = 𝜎,
š This is exactly the equation we got for the moment so we will get the same solution
š < 𝑉&
, >& = < 𝑉 𝑡 , > = < 𝑉 0 , > −
>"
,?
. exp −2𝑘𝑡 +
>"
,?
79
Luc_Faucheux_2020
A quick note on averaging - VI
š If we do it the correct way in STRATO:
š 𝑑
("
,
=
!
!(
("
,
. (∘). 𝑑𝑉 +
!
!&
("
,
. 𝑑𝑡
š 𝑑
("
,
= 𝑉 𝑡 . ∘ . 𝑑𝑉 = 𝑉 𝑡 . ∘ . {−𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊}
š 𝑑
("
,
= 𝑉 𝑡 . ∘ . 𝑑𝑉 = −2𝑘
("
,
. 𝑑𝑡 + 𝜎. 𝑉(𝑡). (∘). 𝑑𝑊
š We then take the average:
š 𝑑 <
("
,
> = −2𝑘 <
("
,
>. 𝑑𝑡 + < 𝜎. 𝑉. (∘). 𝑑𝑊 >
š This is NOT closed equation since the STRATO integral is NOT a martingale
š < 𝜎. 𝑉. ∘ . 𝑑𝑊 > ≠ 0
80
Luc_Faucheux_2020
A quick note on averaging - V
š In fact comparing the two equations we get:
š 𝑑 <
("
,
> = −2𝑘 <
("
,
>. 𝑑𝑡 +
+
,
. 𝜎, 𝑑𝑡
š 𝑑 <
("
,
> = −2𝑘 <
("
,
>. 𝑑𝑡 + < 𝜎. 𝑉. (∘). 𝑑𝑊 >
š SO:
š < 𝜎. 𝑉. ∘ . 𝑑𝑊 > =
+
,
. 𝜎, 𝑑𝑡
š We could also derive this explicitly, in a couple of different ways
81
Luc_Faucheux_2020
A quick note on averaging - VI
š We could use the relation between the ITO and STRATO integrals.
š For a stochastic process
š 𝑑𝑉 𝑡 = 𝑎 𝑡, 𝑉 𝑡 . 𝑑𝑡 + 𝑏 𝑡, 𝑉 𝑡 . 𝑑𝑊
š We have:
š ∫&/&*
&/&.
𝑓 𝑉 𝑡 . ∘ . 𝑑𝑊 𝑡 = ∫&/&*
&/&.
𝑓 𝑉 𝑡 . ([). 𝑑𝑊(𝑡) + ∫&/&*
&/&. +
,
. 𝑏 𝑡, 𝑉 𝑡 .
!
!(
𝑓 𝑉(𝑡 . 𝑑𝑡
š 𝑓 𝑉 𝑡 = 𝜎. 𝑉(𝑡)
š
!
!(
𝑓 𝑉(𝑡 = 𝜎
š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊
š 𝑏 𝑡, 𝑉 𝑡 = 𝜎
82
Luc_Faucheux_2020
A quick note on averaging - VII
š ∫&/&*
&/&.
𝜎. 𝑉(𝑡) . ∘ . 𝑑𝑊 𝑡 = ∫&/&*
&/&.
𝜎. 𝑉(𝑡) . ([). 𝑑𝑊(𝑡) + ∫&/&*
&/&. +
,
. 𝜎. 𝜎. 𝑑𝑡
š In the limit of small time increment:
š 𝜎. 𝑉 𝑡 . ∘ . 𝑑𝑊 𝑡 = 𝜎. 𝑉(𝑡) . ([). 𝑑𝑊 𝑡 +
+
,
. 𝜎. 𝜎. 𝑑𝑡
š We then take the average:
š <𝜎. 𝑉 𝑡 . ∘ . 𝑑𝑊 𝑡 > = < 𝜎. 𝑉(𝑡) . ([). 𝑑𝑊 𝑡 > + <
+
,
. 𝜎. 𝜎. 𝑑𝑡 >
š And we use the fact that the ITO integral is a martingale
š <𝑉 𝑡 . ∘ . 𝑑𝑊 𝑡 > = < 𝑉(𝑡) . ([). 𝑑𝑊 𝑡 > +
+
,
. 𝜎, 𝑑𝑡
š <𝑉 𝑡 . ∘ . 𝑑𝑊 𝑡 > =
+
,
. 𝜎, 𝑑𝑡
83
Luc_Faucheux_2020
A quick note on averaging - VIII
š <𝑉 𝑡 . ∘ . 𝑑𝑊 𝑡 > =
+
,
. 𝜎, 𝑑𝑡
š We can plug this back into 𝑑 <
("
,
> = −2𝑘 <
("
,
>. 𝑑𝑡 + < 𝜎. 𝑉. (∘). 𝑑𝑊 >
š To recover:
š 𝑑 <
("
,
> = −2𝑘 <
("
,
>. 𝑑𝑡 +
+
,
. 𝜎, 𝑑𝑡
š And then solve again and get:
š < 𝑉&
, >& = < 𝑉 𝑡 , > = < 𝑉 0 , > −
>"
,?
. exp −2𝑘𝑡 +
>"
,?
š So again ITO and STRATO are equivalent, we will obtain the same solutions, as long as we do
not mix and match.
š ITO integral is a martingale but the rules of calculus are NOT the usual one
š STRATO integral is NOT a martingale but we can formally use the usual rules of calculus
84
Luc_Faucheux_2020
PDF for the Langevin
85
Luc_Faucheux_2020
PDF for the Langevin equation
š From the dynamics of the moments, it looks like the steady state solution could be
something like:
š ℎ 𝑣, 𝑡 → ∞ =
+
,G.-" <
. exp(
4$"
,-" <
)
š We also have:
š 𝑚; ∞ = 1
š 𝑚+ ∞ = 0
š 𝑚, ∞ =
>"
,?
š 𝑚+ 𝑣, 𝑡 = 𝑚+ 𝑣, 0 . exp(−𝑘𝑡)
š 𝑚, 𝑡 =
>"
,?
+ exp −2𝑘𝑡 . [𝑚, 0 −
>"
,?
]
86
Luc_Faucheux_2020
PDF for the Langevin equation - II
¹ We also know when looking at the SDE of the type (deck ITO – II):
š 𝑑𝑋 𝑡 = 𝑎 𝑡 . 𝑑𝑡 + 𝑏(𝑡). ([). 𝑑𝑊
š 𝑋 𝑡. − 𝑋 𝑡* = ∫&/&*
&/&.
𝑑𝑋 𝑡 = ∫&/&*
&/&.
𝑎(𝑡). 𝑑𝑡) + ∫&/&*
&/&.
𝑏(𝑡). ([). 𝑑𝑊(𝑡)
š We had shown that the PDF: 𝑝 𝑥, 𝑡 =
+
,G(*P(&)
. 𝑒𝑥𝑝(−
(64I(&))"
,(*P(&)
)
š With
š 𝑅 𝑡 = 𝑋 𝑡 = 𝑋; + ∫&/&;
&
𝑎(𝑠). 𝑑𝑠 so 𝑅= 𝑡 = 𝑎(𝑡)
š 𝑉𝑎𝑟 𝑡 = 𝑉 𝑡 = p𝑏(𝑡),. 𝑡 = ∫:/;
:/&
𝑏 𝑠 ,. 𝑑𝑠 so 𝑉𝑎𝑟= 𝑡 = 𝑏 𝑡 ,
š Followed the PDE (ITO FORWARD):
š
!
!&
𝑝 = −
!
!6
𝑎(𝑡). 𝑝 −
. & "
,
!
!6
𝑝 = −
!
!6
𝐜1 + 𝐜Q
87
Luc_Faucheux_2020
PDF for the Langevin equation - III
š
!
!&
𝑝 = −
!
!6
𝑎(𝑡). 𝑝 −
. & "
,
!
!6
𝑝 = −
!
!6
𝐜1 + 𝐜Q
š 𝐜1 = 𝑎 𝑡 . 𝑝(𝑥, 𝑡) Forcing / drift current
š 𝐜Q = −
. & "
,
!
!6
𝑝 𝑥, 𝑡 = −
> & "
,
!
!6
𝑝 𝑥, 𝑡 = −𝐷(𝑡)
!
!6
𝑝(𝑥, 𝑡) Diffusion current
š In the Langevin case:
š 𝑑𝑉 𝑡 = 𝑎 𝑡, 𝑉 𝑡 . 𝑑𝑡 + 𝑏 𝑡, 𝑉 𝑡 . 𝑑𝑊
š 𝑎 𝑡, 𝑉 𝑡 = −𝑘𝑉
š 𝑏 𝑡, 𝑉 𝑡 = 𝜎
š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊
88
Luc_Faucheux_2020
PDF for the Langevin equation - IV
š 𝑅 𝑡 = 𝑉 𝑡 = 𝑉; + ∫&/&;
&
𝑎(𝑠). 𝑑𝑠 so 𝑅= 𝑡 = 𝑎(𝑡)
š 𝑉𝑎𝑟 𝑡 = 𝑉𝑎𝑟 𝑡 = p𝑏(𝑡),. 𝑡 = ∫:/;
:/&
𝑏 𝑠 ,. 𝑑𝑠 so 𝑉𝑎𝑟= 𝑡 = 𝑏 𝑡 ,
š 𝑎 𝑡, 𝑉 𝑡 = −𝑘𝑉
š 𝑏 𝑡, 𝑉 𝑡 = 𝜎
š 𝑉𝑎𝑟 𝑡 = 𝑉𝑎𝑟 𝑡 = p𝑏(𝑡),. 𝑡 = ∫:/;
:/&
𝜎,. 𝑑𝑠 = 𝜎,. 𝑡 so 𝑉= 𝑡 = 𝜎,
š HOWEVER, for 𝑅 𝑡 = 𝑋 𝑡 = 𝑋; + ∫&/&;
&
𝑎(𝑠). 𝑑𝑠, we are stuck because we only looked at
the case 𝑎 𝑡, 𝑉 𝑡 , not 𝑎 𝑉 𝑡
š So this is going to be a little tricky, but based on what we think is the steady state solution,
we could try to be as lucky as Bachelier in 1900 and maybe guess something like
š 𝑝 𝑣, 𝑡 =
+
,G-" &
. 𝑒𝑥𝑝(−
($4-+ & )"
,-" &
)
89
Luc_Faucheux_2020
PDF for the Langevin equation - V
¹ Let’s try indeed:
š 𝑝 𝑣, 𝑡 =
+
,G-" &
. 𝑒𝑥𝑝(−
($4-+ & )"
,-" &
)
š BUT for now let’s not equate 𝑚+ 𝑡 and 𝑚, 𝑡 to the functions:
š 𝑚+ 𝑡 = 𝑚+ 0 . exp(−𝑘𝑡)
š 𝑚, 𝑡 =
>"
,?
+ exp −2𝑘𝑡 . [𝑚, 0 −
>"
,?
]
š We could try from the get-go and see if 𝑝 𝑣, 𝑡 verifies:
š
!"($,&|(!,&!)
!&
= −
!
!$
(−𝑘𝑣). 𝑝 𝑣, 𝑡 𝑉*, 𝑡* −
!
!$
[
+
,
. [𝜎, . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)]
š Or keep 𝑚+ 𝑡 and 𝑚, 𝑡 for a little longer to try to simplify the derivation
90
Luc_Faucheux_2020
PDF for the Langevin equation - VI
š 𝑝 𝑣, 𝑡 =
+
,G-" &
. 𝑒𝑥𝑝(−
($4-+ & )"
,-" &
)
š
!" $,&
!$
=
+
,G-" &
.
!
!$
𝑒𝑥 𝑝 −
$4-+ &
"
,-" &
=
+
,G-" &
.
4, $4-+ &
,-" &
. 𝑒𝑥 𝑝 −
$4-+ &
"
,-" &
š
!" $,&
!$
=
+
,G-" &
. 𝑒𝑥 𝑝 −
$4-+ &
"
,-" &
.
4 $4-+ &
-" &
=
4 $4-+ &
-" &
. 𝑝 𝑣, 𝑡
š
!"" $,&
!R" =
!
!$
!
!$
𝑝 𝑣, 𝑡 =
!
!$
4 $4-+ &
-" &
. 𝑝 𝑣, 𝑡 =
4 $4-+ &
-" &
.
!" $,&
!$
+ 𝑝 𝑣, 𝑡 .
!
!$
4 $4-+ &
-" &
š
!"" $,&
!R" =
4 $4-+ &
-" &
.
4 $4-+ &
-" &
. 𝑝 𝑣, 𝑡 +
4+
-" &
. 𝑝 𝑣, 𝑡
91
Luc_Faucheux_2020
PDF for the Langevin equation - VII
š 𝑝 𝑣, 𝑡 =
+
,G-" &
. 𝑒𝑥𝑝(−
($4-+ & )"
,-" &
)
š
!" $,&
!$
=
+
,G-" &
. 𝑒𝑥 𝑝 −
$4-+ &
"
,-" &
.
4 $4-+ &
-" &
=
4 $4-+ &
-" &
. 𝑝 𝑣, 𝑡
š
!"
!$
=
4 $4-+
-"
. 𝑝
š
!"" $,&
!R" =
4 $4-+ &
-" &
.
4 $4-+ &
-" &
. 𝑝 𝑣, 𝑡 +
4+
-" &
. 𝑝 𝑣, 𝑡
š
!""
!R" =
4 $4-+
-"
.
4 $4-+
-"
. 𝑝 +
4+
-"
. 𝑝
š Dropping the explicit dependencies for sake of notation
92
Luc_Faucheux_2020
PDF for the Langevin equation - VIII
š 𝑝 𝑣, 𝑡 =
+
,G-" &
. 𝑒𝑥𝑝(−
($4-+ & )"
,-" &
)
š
!" $,&
!&
=
!
!&
+
,G-" &
. 𝑒𝑥 𝑝 −
$4-+ &
"
,-" &
+
+
,G-" &
!
!&
𝑒𝑥 𝑝 −
$4-+ &
"
,-" &
š
!" $,&
!&
=
4+
,
+
,G-"
+
,G-"
. 2𝜋𝑚,
=
. 𝑒𝑥 𝑝 −
$4-+
"
,-"
+
+
,G-"
𝑒𝑥 𝑝 −
$4-+
"
,-"
!
!&
[
4 $4-+
"
,-"
]
š
!" $,&
!&
=
4+
,
-"
#
-"
. 𝑝 + 𝑝.
!
!&
4 $4-+
"
,-"
=
4+
,
-"
#
-"
. 𝑝 + 𝑝.
7 $4-+
"
,-"-"
𝑚,
= + 2 𝑣 − 𝑚+ . 𝑚+
= +
,-"
š
!" $,&
!&
=
4+
,
-"
#
-"
. 𝑝 + 𝑝.
7 $4-+
"
,-"-"
𝑚,
= + 𝑣 − 𝑚+ . 𝑚+
= .
+
-"
93
Luc_Faucheux_2020
PDF for the Langevin equation - IX
š
!" $,&
!&
=
4+
,
-"
#
-"
. 𝑝 + 𝑝.
7 $4-+
"
,-"-"
𝑚,
= + 𝑣 − 𝑚+ . 𝑚+
= .
+
-"
š
!"
!$
=
4 $4-+
-"
. 𝑝
š
!""
!R" =
4 $4-+
-"
.
4 $4-+
-"
. 𝑝 +
4+
-"
. 𝑝
š At this point, we can either plug in those equations the formulas for 𝑚+ 𝑡 and 𝑚, 𝑡 :
š 𝑚+ 𝑡 = 𝑚+ 0 . exp(−𝑘𝑡)
š 𝑚+
=
𝑡 = −𝑘. 𝑚+ 𝑡 = −𝑘. 𝑚+ 0 . exp(−𝑘𝑡)
š 𝑚, 𝑡 =
>"
,?
+ exp −2𝑘𝑡 . [𝑚, 0 −
>"
,?
]
š 𝑚,
= 𝑡 = −2𝑘. exp −2𝑘𝑡 . 𝑚, 0 −
>"
,?
= −2𝑘. exp −2𝑘𝑡 . [𝑚, 0 − 𝑚, ∞ ]
94
Luc_Faucheux_2020
PDF for the Langevin equation - X
š We know that we are after something like:
š
!"($,&|(!,&!)
!&
= −
!
!$
(−𝑘𝑣). 𝑝 𝑣, 𝑡 𝑉*, 𝑡* −
!
!$
[
+
,
. [𝜎, . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)]
š
!"
!&
= −
!
!$
(−𝑘𝑣). 𝑝 −
!
!$
[
+
,
. [𝜎, . 𝑝
š We see a bunch of terms that appear as orders of 𝑣 − 𝑚+
¹ So let’s rewrite above as:
š
!"
!&
= −
!
!$
(−𝑘𝑣). 𝑝 −
!
!$
[
+
,
. [𝜎, . 𝑝 =
!
!$
[𝑘𝑣𝑝] +
>"
,
!""
!R"
š
!"
!&
=
!
!$
[𝑘 𝑣 − 𝑚+ 𝑝 + 𝑘𝑚+ 𝑝] +
>"
,
!""
!R"
š
!"
!&
= 𝑘 𝑣 − 𝑚+
!"
!$
+ 𝑘𝑝 + 𝑘𝑚+
!"
!$
+
>"
,
!""
!R"
95
Luc_Faucheux_2020
PDF for the Langevin equation - XI
š Plugging the expressions we derived:
š
!"
!&
= 𝑘 𝑣 − 𝑚+
!"
!$
+ 𝑘𝑝 + 𝑘𝑚+
!"
!$
+
>"
,
!""
!R"
š Left Hand Side
š
!" $,&
!&
=
4+
,
-"
#
-"
. 𝑝 + 𝑝.
7 $4-+
"
,-"-"
𝑚,
=
+ 𝑣 − 𝑚+ . 𝑚+
=
.
+
-"
š Right Hand Side
š 𝑘 𝑣 − 𝑚+ .
4 $4-+
-"
. 𝑝 + 𝑘𝑝 + 𝑘𝑚+.
4 $4-+
-"
. 𝑝 +
>"
,
. [
4 $4-+
-"
.
4 $4-+
-"
. 𝑝 +
4+
-"
. 𝑝]
96
Luc_Faucheux_2020
PDF for the Langevin equation - XII
š Ordering the terms in order of 𝑣 − 𝑚+
š Left Hand Side
š
!" $,&
!&
=
4+
,
-"
#
-"
. 𝑝 + 𝑝. 𝑣 − 𝑚+ . 𝑚+
= .
+
-"
+ 𝑝.
$4-+
"
,-"-"
𝑚,
=
š Right Hand Side
š 𝑘𝑝 +
>"
,
.
4+
-"
. 𝑝 + 𝑘𝑚+.
4 $4-+
-"
. 𝑝 + 𝑝. 𝑣 − 𝑚+
,. [−𝑘
+
-"
+
>"
,-"-"
]
97
Luc_Faucheux_2020
PDF for the Langevin equation - XII
š Terms in 𝑣 − 𝑚+
;:
š
4+
,
-"
#
-"
. 𝑝 = 𝑘𝑝 +
>"
,
.
4+
-"
. 𝑝
š Terms in 𝑣 − 𝑚+
+:
š 𝑝. 𝑣 − 𝑚+ . 𝑚+
=
.
+
-"
= 𝑘𝑚+.
4 $4-+
-"
. 𝑝
š Terms in 𝑣 − 𝑚+
,:
š 𝑝.
$4-+
"
,-"-"
𝑚,
=
= 𝑝. 𝑣 − 𝑚+
,. [−𝑘
+
-"
+
>"
,-"-"
]
98
Luc_Faucheux_2020
PDF for the Langevin equation - XIII
š Terms in 𝑣 − 𝑚+
;:
š
+
,
𝑚,
=
= −𝑘𝑚, +
>"
,
š Terms in 𝑣 − 𝑚+
+:
š 𝑚+
=
= −𝑘𝑚+
š Terms in 𝑣 − 𝑚+
,:
š
+
,
𝑚,
=
= −𝑘𝑚, +
>"
,
š If all those equations are verified, then our guess will indeed forward PDE for the Langevin
PDF.
š Note that the set of 3 equations actually reduces to only 2. I do not have much intuition
why it is, but again we only had 2 moments 𝑚+ 𝑡 and 𝑚, 𝑡 , so maybe if our guess was
incorrect we would have gotten inconsistent equations, meaning that we needed a 3rd
moment in our guess ?
99
Luc_Faucheux_2020
PDF for the Langevin equation - XIV
š 𝑚+
=
= −𝑘𝑚+
š Turns out that this is EXACTLY the equation we had derived from the SDE.
š So obviously if we plug into that equation the formula : 𝑚+ 𝑡 = 𝑚+ 0 . exp(−𝑘𝑡), we
verify the ODE or alternatively we can solve it and we will recover the above formula
š
+
,
𝑚,
= = −𝑘𝑚, +
>"
,
š Turns out again (boy oh boy aren’t we lucky!) that this is the same ODE for 𝑚, 𝑡 that we
had derived from the SDE, or from the dynamics of the moments section (from the PDE).
š So we can solve and recover the formula, or apply the formula in the ODE to convince
ourselves, but we have:
š 𝑚, 𝑡 =
>"
,?
+ exp −2𝑘𝑡 . [𝑚, 0 −
>"
,?
]
100
Luc_Faucheux_2020
PDF for the Langevin equation - XV
š So we finally have a solution for the Langevin PDF and it looks like this:
š 𝑝 𝑣, 𝑡 = 𝑝 𝑣, 𝑡|𝑉; = 𝑚+ 0 , 𝑡 = 0 =
+
,G-" &
. 𝑒𝑥𝑝(−
($4-+ & )"
,-" &
)
š 𝑚+ 𝑡 = 𝑚+ 0 . exp(−𝑘𝑡)
š 𝑚, 𝑡 =
>"
,?
+ exp −2𝑘𝑡 . [𝑚, 0 −
>"
,?
]
š 𝑚, 𝑡 = 𝑚, ∞ + exp −2𝑘𝑡 . [𝑚, 0 − 𝑚, ∞ ]
š 𝑚, ∞ =
>"
,?
101
Luc_Faucheux_2020
PDF for the Langevin equation - XVI
š 𝑝 𝑣, 𝑡 = 𝑝 𝑣, 𝑡|𝑉; = 𝑚+ 0 , 𝑡 = 0 =
+
,G-" &
. 𝑒𝑥𝑝(−
($4-+ & )"
,-" &
)
š SO we also need to impose the condition:
š 𝑝 𝑣, 𝑡 = 0|𝑉; = 𝑚+ 0 , 𝑡 = 0 = 𝛿(𝑣 − 𝑚+ 0 )
š 𝑚, 𝑡 = 𝑚, ∞ + exp −2𝑘𝑡 . [𝑚, 0 − 𝑚, ∞ ]
š 𝑚, ∞ =
>"
,?
= 𝐷/𝑘 to simplify somewhat with the usual Diffusion coefficient 𝐷 =
>"
,
š 𝑚, 𝑡 =
Q
?
[1 − exp −2𝑘𝑡 ] + 𝑚, 0 . exp −2𝑘𝑡
š When 𝑡 → 0, 𝑚, 𝑡 =
Q
?
. 1 − 1 − 2𝑘𝑡 + 𝕆 𝑡, + 𝑚, 0 . 1 − 2𝑘𝑡 + 𝕆 𝑡,
š 𝑚, 𝑡 = 𝑚, 0 + 2𝐷𝑡 + 𝕆 𝑡,
š 𝑚+ 𝑡 = 𝑚+ 0 . exp −𝑘𝑡 = 𝑚+ 0 + 𝕆 𝑡
102
Luc_Faucheux_2020
PDF for the Langevin equation - XVII
š So if 𝑚, 0 <> 0,
š 𝑝 𝑣, 𝑡 = 0 = 𝑝 𝑣, 𝑡 = 0|𝑉; = 𝑚+ 0 , 𝑡 = 0 =
+
,G-" ;
. 𝑒𝑥𝑝(−
($4-+ ; )"
,-" ;
)
š That is a Gaussian centered around 𝑚, 0 of width 𝑚, 0
š It is still normalized but does not converge to the Dirac peak 𝛿(𝑣 − 𝑚+ 0 )
š So we have to enforce 𝑚, 0 = 0
š 𝑚, 𝑡 =
Q
?
[1 − exp −2𝑘𝑡 ] + 𝑚, 0 . exp −2𝑘𝑡 =
Q
?
[1 − exp −2𝑘𝑡 ]
š We can rewrite the PDF as:
š 𝑝 𝑣, 𝑡|𝑚+ 0 , 𝑡 = 0 =
?
,GQ.(+4STU 4,?& )
. 𝑒𝑥𝑝(−𝑘
($4-+ ; .STU 4?& )"
,Q.(+4STU 4,?& )
)
103
Luc_Faucheux_2020
PDF for the Langevin equation - XVIII
š After much calculation, this is the celebrated Langevin PDF:
š 𝑝 𝑣, 𝑡|𝑚+ 0 , 𝑡 = 0 =
?
,GQ.(+4STU 4,?& )
. 𝑒𝑥𝑝(−𝑘
($4-+ ; .STU 4?& )"
,Q.(+4STU 4,?& )
)
š SMALL TIME LIMIT
š IF 𝑡 → 0
?
Q.(+4STU 4,?& )
=
+
,Q&
+ 𝕆 𝑡,
š 𝑝 𝑣, 𝑡|𝑚+ 0 , 𝑡 = 0 →
+
VGQ&
. 𝑒𝑥𝑝(−
($4-+ ; )"
VQ&
)
š At short time scales (underdamped regime), the Langevin diffuses as a regular diffusion
process
š 𝑑𝑉 𝑡 = −𝑘𝑉 𝑡 . 𝑑𝑡 + 𝜎. 𝑑𝑊 → 𝜎. 𝑑𝑊
104
Luc_Faucheux_2020
PDF for the Langevin equation - XIX
š SMALL 𝑘 limit
š IF 𝑘 → 0
?
Q.(+4STU 4,?& )
=
+
,Q&
+ 𝕆 𝑘,
š 𝑝 𝑣, 𝑡|𝑚+ 0 , 𝑡 = 0 →
+
VGQ&
. 𝑒𝑥𝑝(−
($4-+ ; )"
VQ&
)
š This is expected since when 𝑘 → 0 we should recover the usual diffusion:
š 𝑑𝑉 𝑡 = −𝑘𝑉 𝑡 . 𝑑𝑡 + 𝜎. 𝑑𝑊 → 𝜎. 𝑑𝑊
105
Luc_Faucheux_2020
PDF for the Langevin equation - XX
š STEADY STATE LIMIT
š IF 𝑡 → ∞
?
Q.(+4STU 4,?& )
=
?
Q
+ 𝕆 𝑡4+
š 𝑝 𝑣, 𝑡|𝑚+ 0 , 𝑡 = 0 =
?
,GQ.(+4STU 4,?& )
. 𝑒𝑥𝑝(−𝑘
($4-+ ; .STU 4?& )"
,Q.(+4STU 4,?& )
)
š 𝑝 𝑣, 𝑡 → ∞|𝑚+ 0 , 𝑡 = 0 =
?
,GQ
. 𝑒𝑥𝑝(−𝑘
$"
,Q
)
¹ This is referred to as the “invariant Gaussian distribution”
106
Luc_Faucheux_2020
PDF for the Langevin equation - XXI
š In the case where 𝑘 → 0, the SDE becomes :
š 𝑑𝑉 𝑡 = −𝑘𝑉 𝑡 . 𝑑𝑡 + 𝜎. 𝑑𝑊 = 𝜎. 𝑑𝑊
š And we should recover the usual Brownian diffusion
š 𝑚+ 𝑡 = 𝑚+ 0 . exp −𝑘𝑡 → 𝑚+ 0
š 𝑚, 𝑡 = 𝑚, ∞ + exp −2𝑘𝑡 . 𝑚, 0 − 𝑚, ∞ → 𝑚, 0
š 𝑝 𝑣, 𝑡 = 𝑝 𝑣, 𝑡|𝑉; = 𝑚+ 0 , 𝑡 = 0 =
+
,G-" &
. 𝑒𝑥𝑝(−
($4-+ & )"
,-" &
)
š 𝑝 𝑣, 𝑡 = 𝑝 𝑣, 𝑡|𝑉; = 𝑚+ 0 , 𝑡 = 0 =
+
,G-" ;
. 𝑒𝑥𝑝(−
($4-+ ; )"
,-" ;
)
107
Luc_Faucheux_2020
PDF for the Langevin equation - XXII
š 𝑝 𝑣, 𝑡|𝑉 𝑡* , 𝑡* =
?
,GQ.(+4@'"$(&'&!))
. 𝑒𝑥𝑝(−𝑘
($4-+ &! .@'$(&'&!))"
,Q(+4@'"$(&'&!))
)
š The Langevin process is Gaussian (the PDF can be expressed as a Gaussian function)
š The Langevin process is Markov (the PDF only depends on 𝑉 𝑡* , 𝑡* and not on the entire
history before)
š 𝑝 𝑣, 𝑡|{𝑉 𝑠 , 𝑠 ≀ 𝑡*} = 𝑝 𝑣, 𝑡|𝑉 𝑡* , 𝑡*
š The Langevin process is stationary (only depends on (𝑡 − 𝑡*))
š 𝑝 𝑣, 𝑡 + ℎ|𝑉 𝑡* + ℎ = 𝑉*, 𝑡* + ℎ = 𝑝 𝑣, 𝑡|𝑉*, 𝑡*
š The increments of the Langevin process are NOT independents. Indeed the increments are
not even uncorrelated (as opposed to a Wiener process)
š The correlation function decays as an exponential. In some textbooks they base the
definition of the process on the knowledge of the auto-correlation function, as an
equivalent starting point
108
Luc_Faucheux_2020
Langevin PDF
Via the Distribution Function
109
Luc_Faucheux_2020
Langevin PDF via the Distribution function
š So there I have somewhat of a confession to make, I was already a couple hundred pages
into writing those notes (deck on Bachelier, Black-Sholes, binomial trees, ITO lemma, Risk
management,
) when I bought the book below. I was tempted to throw my notes in the
trash because this book is awesome and has pretty much all you want, and more

110
Luc_Faucheux_2020
Langevin PDF via the Distribution function – II
š In particular, on page 31, the author goes through a derivation of the Langevin PDF that is
truly awesome using the distribution function:
š PDF Probability Density Function: 𝑝((𝑣, 𝑡)
š Distribution function : 𝑉(𝑣, 𝑡)
š 𝑃( 𝑣, 𝑡 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑊 𝑉 ≀ 𝑣, 𝑡 = ∫K/4<
K/$
𝑝( 𝑊, 𝑡 . 𝑑𝑊
š 𝑝((𝑣, 𝑡) =
!
!$
𝑃( 𝑣, 𝑡
š 𝑝( 𝑣, 𝑡 = 𝑝 𝑣, 𝑡 = 𝑝 𝑣, 𝑡|𝑉; = 𝑚+ 0 , 𝑡 = 0
111
Luc_Faucheux_2020
Langevin PDF via the Distribution function – III
š We know the distribution function for the Brownian motion 𝑊(𝑡)
š [𝑊 𝑡. − 𝑊(𝑡*)] is 𝑁(0, 𝑡. − 𝑡* )
š [𝑊 𝑡. − 𝑊(𝑡*)] is normally distributed according to the Gaussian function:
š ℎ 𝑥, 𝑡 =
+
,G&
. exp(
46"
,&
)
š 𝑃W 𝑀, 𝑡|𝑊 𝑡* , 𝑡* = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑊 𝑊(𝑡) ≀ 𝑀, 𝑡|𝑊 𝑡* , 𝑡* = ∫K/4<
K/X
𝑝W 𝑊, 𝑡 . 𝑑𝑊
š 𝑃W 𝑀, 𝑡|𝑊 𝑡* , 𝑡* = ∫K/4<
K/X +
,G(&4&!)
. exp(
4(K4W &! )"
,(&4&!)
) . 𝑑𝑊
š Sometimes for ease of notation, choosing 𝑊 𝑡* = 0 and 𝑡* = 0
š 𝑃W 𝑀, 𝑡|0,0 = ∫K/4<
K/X +
,G&
. exp
46"
,&
. 𝑑𝑊
š 𝑝W 𝑀, 𝑡 =
!
!X
𝑃W 𝑀, 𝑡 =
+
,G&
. exp(
4X"
,&
)
112
Luc_Faucheux_2020
Langevin PDF via the Distribution function – IV
š Define now the Langevin process as :
š 𝑉 𝑡 =
>"
?
. exp −𝑘𝑡 . 𝑊(exp 2𝑘𝑡 )
š So in some ways if you already have a Brownian motion {𝑊(𝑡Y)}, for example on a computer
simulation, you can simulate a Langevin process {𝑉(𝑡Y)} by mapping:
š 𝑖 → 𝑗 so that 𝑡N = exp(2𝑘𝑡Y)
š Pick the value of {𝑊(𝑡N)}
š Multiply by
>"
?
. exp −𝑘𝑡Y
š That would be a way to replicate a Langevin process from a given Brownian process
113
Luc_Faucheux_2020
Langevin PDF via the Distribution function – V
š 𝑉 𝑡 =
>"
?
. exp −𝑘𝑡 . 𝑊(exp 2𝑘𝑡 )
š 𝑃( 𝑣, 𝑡|𝑉 𝑡* , 𝑡* = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑊 𝑉(𝑡) ≀ 𝑣, 𝑡|𝑉 𝑡* , 𝑡* = 𝑃𝑟𝑜𝑏 𝑉(𝑡) ≀ 𝑣, 𝑡|𝑉 𝑡* , 𝑡*
š 𝑃( 𝑣, 𝑡|𝑉 𝑡* , 𝑡* = 𝑃𝑟𝑜𝑏
>"
?
. exp −𝑘𝑡 . 𝑊(exp 2𝑘𝑡 ) ≀ 𝑣, 𝑡|𝑉 𝑡* , 𝑡*
š 𝑃( 𝑣, 𝑡|𝑉 𝑡* , 𝑡* = 𝑃𝑟𝑜𝑏
>"
?
𝑒4?&. 𝑊(𝑒,?&) ≀ 𝑣, 𝑡|𝑉 𝑡* = 𝑉*, 𝑡*
š 𝑃( 𝑣, 𝑡|𝑉 𝑡* , 𝑡* = 𝑃𝑟𝑜𝑏
>"
?
𝑒4?&. 𝑊(𝑒,?&) ≀ 𝑣, 𝑡|
>"
?
𝑒4?&!. 𝑊(𝑒,?&!) = 𝑉*, 𝑡*
114
Luc_Faucheux_2020
Langevin PDF via the Distribution function – VI
š 𝑃( 𝑣, 𝑡|𝑉 𝑡* , 𝑡* = 𝑃𝑟𝑜𝑏 𝑊(𝑒,?&) ≀
?
>" 𝑣𝑒?&, 𝑡|𝑊(𝑒,?&!) =
?
>" 𝑉* 𝑒?&!, 𝑡*
š 𝑃 = 𝑃𝑟𝑜𝑏 𝑊(𝑒,?&) ≀
?
>" 𝑣𝑒?&, 𝑡|𝑊(𝑒,?&!) =
?
>" 𝑉* 𝑒?&!, 𝑡*
š 𝑃 = 𝑃W 𝑊(𝑒,?&) ≀
?
>" 𝑣𝑒?&, 𝑡|𝑊(𝑒,?&!) =
?
>" 𝑉* 𝑒?&!
š 𝑃 = ∫K/4<
K/
$
*"$@$&
+
,G(@"$&4@"$&!)
. exp(
4(K4
$
*"(!@$&!)"
,(@"$&4@"$&!)
) . 𝑑𝑊
115
Luc_Faucheux_2020
Langevin PDF via the Distribution function – VII
š 𝑃 = ∫K/4<
K/
$
*"$@$&
+
,G(@"$&4@"$&!)
. exp(
4(K4
$
*"(!@$&!)"
,(@"$&4@"$&!)
) . 𝑑𝑊
š Changing to the variable: 𝑊 =
?
>" 𝑒?&. 𝜌 with 𝑑𝑊 =
?
>" 𝑒?&. 𝑑𝜌
š 𝑃 = ∫Z/4<
Z/$ +
,G(@"$&4@"$&!)
. exp(
4(Z
$
*"@$&4
$
*"(!@$&!)"
,(@"$&4@"$&!)
) . 𝑑𝜌
?
>" 𝑒?&
š 𝑃 = ∫Z/4<
Z/$ @$&
,G(@"$&4@"$&!)
. exp(
4(Z
$
*"@$&4
$
*"(!@$&!)"
,(@"$&4@"$&!)
) .
?
>" . 𝑑𝜌
116
Luc_Faucheux_2020
Langevin PDF via the Distribution function – VIII
š 𝑃 = ∫Z/4<
Z/$ ?
,G>"(+4@'"$(&'&!))
. exp(
4(Z4(!.@'$(&'&!))"
,(>"/?).(+4@'"$(&'&!))
) . 𝑑𝜌
š 𝑃 = 𝑃( 𝑣, 𝑡|𝑉 𝑡* , 𝑡*
š 𝑝((𝑣, 𝑡) =
!
!$
𝑃( 𝑣, 𝑡
š 𝑝( 𝑣, 𝑡 𝑉 𝑡* , 𝑡* =
?
,G>"(+4@'"$(&'&!))
. exp(
4(Z4(!.@'$(&'&!))"
,(>"/?).(+4@'"$(&'&!))
)
š Using 𝐷 =
>"
,
š 𝑝 𝑣, 𝑡|𝑉 𝑡* , 𝑡* =
?
,GQ.(+4@'"$(&'&!))
. 𝑒𝑥𝑝(−𝑘
($4-+ &! .@'$(&'&!))"
,Q(+4@'"$(&'&!))
)
š This is EXACTLY the same PDF we have already arrived at !!
117
Luc_Faucheux_2020
Langevin PDF via the Distribution function – IX
š So we know that
š 𝑉 𝑡 =
>"
?
. exp −𝑘𝑡 . 𝑊(exp 2𝑘𝑡 )
š Is the Langevin process following the SDE: 𝑑𝑉 𝑡 = −𝑘𝑉 𝑡 . 𝑑𝑡 + 𝜎. 𝑑𝑊
š Deriving the PDF was surprisingly easy (I broke it down to make it very explicit, but Pavliotis
does it in 6 lines on page 31
š It is also avoiding pages and pages of algebra using the ansatz (guess) method.
š This is quite elegant
118
Luc_Faucheux_2020
Langevin Auto correlation through the Distribution function
š 𝑉 𝑡 =
>"
?
. exp −𝑘𝑡 . 𝑊(exp 2𝑘𝑡 )
š So:
š 𝔌 𝑉 𝑡. . 𝑉 𝑡* =
>"
?
.
>"
?
. exp −𝑘𝑡. . exp −𝑘𝑡* . 𝔌 𝑊(exp 2𝑘𝑡* ). 𝑊(exp 2𝑘𝑡. )
š 𝔌 𝑉 𝑡. . 𝑉 𝑡* =
>"
?
. exp −𝑘𝑡. . exp −𝑘𝑡* . min(exp 2𝑘𝑡* , exp 2𝑘𝑡. )
š With 𝑡. > 𝑡*
š 𝔌 𝑉 𝑡. . 𝑉 𝑡* =
>"
?
. exp 𝑘𝑡. . exp −𝑘𝑡* and 𝔌 𝑉 𝑡* . 𝑉 𝑡* =
>"
?
š 𝔌 𝑉 𝑡. . 𝑉 𝑡* = 𝔌 𝑉 𝑡* . 𝑉 𝑡* . exp 𝑘𝑡. . exp −𝑘𝑡*
š Again, so quick and elegant !
119
Luc_Faucheux_2020
Langevin versus GBM
Geometric Brownian motion
Dynamics of moments
120
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion)
¹ Let’s redo the analysis on the dynamics of the moments for the GBM (Geometric Brownian
Motion).
š GBM was introduced to model stock prices. It is the first process you see in textbooks when
they go on deriving Black-Sholes
š However, recently a lot more people woke up to the advantages of the Langevin approach
(also called OU or Ornstein-Uhlenbeck)
š The Langevin has a lot of advantages that the GBM does not possess
š In particular we are going to show that the higher order moments of the GBM do not always
converge (as the OU-Langevin do).
š In the 1970, Salomon Brothers developed a 3-factor OU (Langevin) model with mean
reversion and correlation, as well as their own skew distribution, well ahead of their time.
¹ This model slowly percolated through the industry and is sometimes called the “2+” or “2+
IRMA”.
š Ask anyone who worked on rates options and this model is quite famous
121
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) - II
š The Langevin equation was written with the particle velocity 𝑉 𝑡 as the stochastic variable
š We usually write the GBM with the stock (security) 𝑆(𝑡) as the stochastic variable or also
sometimes with just the usual stochastic notation 𝑋(𝑡)
š The canonical GBM is given by:
š 𝑑𝑋 𝑡 = 𝜇. 𝑋 𝑡 . 𝑑𝑡 + 𝜎. 𝑋 𝑡 . ([). 𝑑𝑊(𝑡)
š Note that this is of the form:
š 𝑑𝑋 𝑡 = 𝑎(𝑋, 𝑡). 𝑑𝑡 + 𝑏(𝑋, 𝑡). ([). 𝑑𝑊(𝑡)
š With
š 𝑎 𝑋, 𝑡 = 𝜇. 𝑋 𝑡
š 𝑏 𝑋, 𝑡 = 𝜎. 𝑋 𝑡
š So we have to be a little careful about ITO versus STRATANOVITCH
122
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) - III
š ITO SDE : 𝑑𝑋 𝑡 = 𝑎(𝑋, 𝑡). 𝑑𝑡 + 𝑏(𝑋, 𝑡). ([). 𝑑𝑊(𝑡)
š ITO SDE: 𝑑𝑋 𝑡 = 𝜇. 𝑋 𝑡 . 𝑑𝑡 + 𝜎. 𝑋 𝑡 . ([). 𝑑𝑊(𝑡)
š The corresponding STRATO SDE is: 𝑑𝑋 𝑡 = 6𝑎 𝑡, 𝑋 𝑡 . 𝑑𝑡 + 7𝑏 𝑡, 𝑋 𝑡 . (∘). 𝑑𝑊
š With: 𝑎 𝑋, 𝑡 = 𝜇. 𝑋 𝑡 and 𝑏 𝑋, 𝑡 = 𝜎. 𝑋 𝑡
š 6𝑎 𝑡, 𝑋 𝑡 = 𝑎 𝑋 𝑡 , 𝑡 −
+
,
. 𝑏 𝑡, 𝑋 𝑡 .
!
!3
𝑏 𝑡, 𝑋 𝑡 = 𝜇. 𝑋 𝑡 −
+
,
. 𝜎. 𝑋 𝑡 . 𝜎
š 7𝑏 𝑡, 𝑋 𝑡 = 𝑏 𝑋 𝑡 , 𝑡 = 𝜎. 𝑋 𝑡
š STRATO SDE: 𝑑𝑋 𝑡 = [𝜇. 𝑋 𝑡 −
+
,
. 𝜎. 𝑋 𝑡 . 𝜎]. 𝑑𝑡 + 𝜎. 𝑋 𝑡 . (∘). 𝑑𝑊
123
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) - IV
š ITO SDE: 𝑑𝑋 𝑡 = 𝜇. 𝑋 𝑡 . 𝑑𝑡 + 𝜎. 𝑋 𝑡 . ([). 𝑑𝑊(𝑡)
š ITO SIE:
š 𝑋 𝑡. − 𝑋 𝑡* = ∫&/&*
&/&.
𝑑𝑋 𝑡 = ∫&/&*
&/&.
𝜇. 𝑋 𝑡 . 𝑑𝑡) + ∫&/&*
&/&.
𝜎. 𝑋 𝑡 . ([). 𝑑𝑊(𝑡)
š STRATO SDE: 𝑑𝑋 𝑡 = [𝜇. 𝑋 𝑡 −
+
,
. 𝜎. 𝑋 𝑡 . 𝜎]. 𝑑𝑡 + 𝜎. 𝑋 𝑡 . (∘). 𝑑𝑊
š STRATO SIE:
š 𝑋 𝑡. − 𝑋 𝑡* = ∫&/&*
&/&.
[𝜇. 𝑋 𝑡 −
+
,
. 𝜎. 𝑋 𝑡 . 𝜎]. 𝑑𝑡) + ∫&/&*
&/&.
𝜎. 𝑋 𝑡 . (∘). 𝑑𝑊(𝑡)
124
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) - V
š ITO SDE: 𝑑𝑋 𝑡 = 𝜇. 𝑋 𝑡 . 𝑑𝑡 + 𝜎. 𝑋 𝑡 . ([). 𝑑𝑊(𝑡)
š ITO lemma on 𝑓 𝑋 𝑡 = ln(𝑋 𝑡 )
š 𝑑𝑓 𝑋 𝑡 = 𝑑(ln 𝑋 𝑡 ) =
!0
!3
. [ . 𝑑𝑋 +
+
,
!"0
!3" . [ . 𝑑𝑋 , +
!0
!3
. 𝑑𝑡
š 𝑑𝑓 𝑋 𝑡 = 𝑑(ln 𝑋 𝑡 ) =
+
3
. [ . 𝑑𝑋 +
4+
,
+
3" . [ . 𝜎. 𝑋 𝑡
,
. 𝑑𝑡
š 𝑑𝑓 𝑋 𝑡 =
+
3
. [ . {𝜇. 𝑋 𝑡 . 𝑑𝑡 + 𝜎. 𝑋 𝑡 . ([). 𝑑𝑊(𝑡)} +
4+
,
+
3" . [ . 𝜎. 𝑋 𝑡
,
. 𝑑𝑡
š 𝑑(ln 𝑋 𝑡 ) = 𝜇 −
>"
,
. 𝑑𝑡 + 𝜎. [ . 𝑑𝑊(𝑡)
š ITO SDE on ln 𝑋 𝑡 : 𝑑(ln 𝑋 𝑡 ) = 𝜇 −
>"
,
. 𝑑𝑡 + 𝜎. [ . 𝑑𝑊(𝑡)
125
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) - VI
š ITO SDE on ln 𝑋 𝑡 : 𝑑(ln 𝑋 𝑡 ) = 𝜇 −
>"
,
. 𝑑𝑡 + 𝜎. [ . 𝑑𝑊(𝑡)
š Note that since 𝜎 is constant in that case 𝜎. [ . 𝑑𝑊 𝑡 = 𝜎. ∘ . 𝑑𝑊 𝑡 = 𝜎. 𝑑𝑊(𝑡)
š ITO SIE on ln 𝑋 𝑡
š 𝑙𝑛𝑋 𝑡. − 𝑙𝑛𝑋 𝑡* = ∫&/&*
&/&.
𝑑𝑙𝑛𝑋 𝑡 = ∫&/&*
&/&.
𝜇 −
>"
,
. 𝑑𝑡) + ∫&/&*
&/&.
𝜎. ([). 𝑑𝑊(𝑡)
š 𝑙𝑛𝑋 𝑡. − 𝑙𝑛𝑋 𝑡* = ∫&/&*
&/&.
𝑑𝑙𝑛𝑋 𝑡 = 𝜇 −
>"
,
. (𝑡. − 𝑡*) + 𝜎[𝑊 𝑡. − 𝑊(𝑡*)]
š ln[
3 &)
3 &!
] = 𝜇 −
>"
,
. (𝑡. − 𝑡*) + 𝜎[𝑊 𝑡. − 𝑊(𝑡*)]
š 𝑋 𝑡. = 𝑋 𝑡. . exp{ 𝜇 −
>"
,
. 𝑡. − 𝑡* + 𝜎 𝑊 𝑡. − 𝑊 𝑡* }
126
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) - VII
š STRATO SDE: 𝑑𝑋 𝑡 = [𝜇. 𝑋 𝑡 −
+
,
. 𝜎. 𝑋 𝑡 . 𝜎]. 𝑑𝑡 + 𝜎. 𝑋 𝑡 . (∘). 𝑑𝑊
š STRATO SIE:
š 𝑋 𝑡. − 𝑋 𝑡* = ∫&/&*
&/&.
[𝜇. 𝑋 𝑡 −
+
,
. 𝜎. 𝑋 𝑡 . 𝜎]. 𝑑𝑡) + ∫&/&*
&/&.
𝜎. 𝑋 𝑡 . (∘). 𝑑𝑊(𝑡)
š STRATO lemma on 𝑓 𝑋 𝑡 = ln(𝑋 𝑡 )
š 𝑑𝑓 𝑋 𝑡 = 𝑑(ln 𝑋 𝑡 ) =
!0
!3
. ∘ . 𝑑𝑋 +
!0
!3
. 𝑑𝑡
š 𝑑𝑓 𝑋 𝑡 = 𝑑(ln 𝑋 𝑡 ) =
+
3
. ∘ . ([𝜇. 𝑋 𝑡 −
+
,
. 𝜎. 𝑋 𝑡 . 𝜎]. 𝑑𝑡 + 𝜎. 𝑋 𝑡 . (∘). 𝑑𝑊)
š 𝑑𝑓 𝑋 𝑡 = 𝜇 −
>"
,
. 𝑑𝑡 + 𝜎. (∘). 𝑑𝑊(𝑡)
š 𝑑(ln 𝑋 𝑡 ) = 𝜇 −
>"
,
. 𝑑𝑡 + 𝜎. ∘ . 𝑑𝑊(𝑡)
127
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) - VIII
š STRATO SDE on ln 𝑋 𝑡 : 𝑑(ln 𝑋 𝑡 ) = 𝜇 −
>"
,
. 𝑑𝑡 + 𝜎. ∘ . 𝑑𝑊(𝑡)
š Note that since 𝜎 is constant in that case 𝜎. [ . 𝑑𝑊 𝑡 = 𝜎. ∘ . 𝑑𝑊 𝑡 = 𝜎. 𝑑𝑊(𝑡)
š STRATO SIE on ln 𝑋 𝑡
š 𝑙𝑛𝑋 𝑡. − 𝑙𝑛𝑋 𝑡* = ∫&/&*
&/&.
𝑑𝑙𝑛𝑋 𝑡 = ∫&/&*
&/&.
𝜇 −
>"
,
. 𝑑𝑡) + ∫&/&*
&/&.
𝜎. (∘). 𝑑𝑊(𝑡)
š 𝑙𝑛𝑋 𝑡. − 𝑙𝑛𝑋 𝑡* = ∫&/&*
&/&.
𝑑𝑙𝑛𝑋 𝑡 = 𝜇 −
>"
,
. (𝑡. − 𝑡*) + 𝜎[𝑊 𝑡. − 𝑊(𝑡*)]
š ln[
3 &)
3 &!
] = 𝜇 −
>"
,
. (𝑡. − 𝑡*) + 𝜎[𝑊 𝑡. − 𝑊(𝑡*)]
š 𝑋 𝑡. = 𝑋 𝑡. . exp{ 𝜇 −
>"
,
. 𝑡. − 𝑡* + 𝜎 𝑊 𝑡. − 𝑊 𝑡*
š This is the same solution that we got from ITO (as expected but always worth checking)
128
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) - IX
š ITO SDE: 𝑑𝑋 𝑡 = 𝜇. 𝑋 𝑡 . 𝑑𝑡 + 𝜎. 𝑋 𝑡 . ([). 𝑑𝑊(𝑡)
š ITO SDE is: 𝑑𝑋 𝑡 = 𝑎 𝑡, 𝑋 𝑡 . 𝑑𝑡 + 𝑏 𝑡, 𝑋 𝑡 . ([). 𝑑𝑊
š This implies that the PDF follows the FORWARD ITO Kolmogorov PDE
š
!"(6,&|3!,&!)
!&
= −
!
!6
𝑎 𝑥 𝑡 , 𝑡 . 𝑝 𝑥, 𝑡 𝑋*, 𝑡* −
!
!6
[
+
,
. [𝑏(𝑥 𝑡 , 𝑡), . 𝑝(𝑥, 𝑡|𝑋*, 𝑡*)]
š
!"(6,&|3!,&!)
!&
= −
!
!6
𝜇. 𝑥. 𝑝 𝑥, 𝑡 𝑋*, 𝑡* −
!
!6
[
+
,
. [(𝜎. 𝑥), . 𝑝(𝑥, 𝑡|𝑋*, 𝑡*)]
129
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) - X
š STRATO SDE: 𝑑𝑋 𝑡 = [𝜇. 𝑋 𝑡 −
+
,
. 𝜎. 𝑋 𝑡 . 𝜎]. 𝑑𝑡 + 𝜎. 𝑋 𝑡 . (∘). 𝑑𝑊
š STRATO SDE is: 𝑑𝑋 𝑡 = 6𝑎 𝑡, 𝑋 𝑡 . 𝑑𝑡 + 7𝑏 𝑡, 𝑋 𝑡 . (∘). 𝑑𝑊
š This implies that the PDF follows the FORWARD STRATO Kolmogorov PDE
š
!"(6,&|3!,&!)
!&
= −
!
!6
9
:
{6𝑎 𝑡, 𝑥 +
+
,
. 7𝑏 𝑡, 𝑥 .
!
!6
7𝑏 𝑡, 𝑥 }. 𝑝 𝑥, 𝑡 𝑋*, 𝑡* −
!
!6
[
+
,
. [7𝑏(𝑡, 𝑥), . 𝑝(𝑥, 𝑡|𝑋*, 𝑡*)]
š 6𝑎 𝑡, 𝑋 𝑡 = 𝑎 𝑋 𝑡 , 𝑡 −
+
,
. 𝑏 𝑡, 𝑋 𝑡 .
!
!3
𝑏 𝑡, 𝑋 𝑡 = 𝜇. 𝑋 𝑡 −
+
,
. 𝜎. 𝑋 𝑡 . 𝜎
š 7𝑏 𝑡, 𝑋 𝑡 = 𝑏 𝑡, 𝑋 𝑡 = 𝜎. 𝑋 𝑡
š
!"(6,&|3!,&!)
!&
= −
!
!6
{𝜇. 𝑥}. 𝑝 𝑥, 𝑡 𝑋*, 𝑡* −
!
!6
[
+
,
. [(𝜎. 𝑥), . 𝑝(𝑥, 𝑡|𝑋*, 𝑡*)]
š Again, same as derived in ITO, but always worth checking
130
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) - XI
š In the deck (II), we looked at moments from the FP:
š
!"(6,&)
!&
= −
!
!6
[𝑀+ 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 −
!
!6
[𝑀, 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 ]]
š Really in terms of notation to highlight the fact that this is a FORWARD FP:
š
!"(6,&|6;,&;)
!&
= −
!
!6
[𝑀+ 𝑥, 𝑡 . 𝑝 𝑥, 𝑡|𝑣0, 𝑡0 −
!
!6
[𝑀, 𝑥, 𝑡 . 𝑝 𝑥, 𝑡|𝑥𝑜, 𝑡𝑜 ]]
š 𝑚J 𝑥, 𝑡 =< 𝑋J >&= ∫4<
7<
𝑝 𝑥, 𝑡 . 𝑥J. 𝑑𝑣
š We showed in deck II that by integration by part:
š 𝐌, 𝑛 = ∫4<
7<
𝑀+ 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 . 𝑛. 𝑥J4+. 𝑑𝑣 + ∫4<
7<
𝑀, 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 . 𝑛. (𝑛 − 1). 𝑥J4,. 𝑑𝑣
š
A
A&
. 𝑚J 𝑥, 𝑡 = 𝐌, 𝑛
š
A
A&
. 𝑚; 𝑥, 𝑡 = 0 since the probability 𝑚; 𝑥, 𝑡 = ∫4<
7<
𝑝 𝑥, 𝑡 . 𝑑𝑣 is conserved
131
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) - XII
š For the GBM case:
š
!"(6,&|3!,&!)
!&
= −
!
!6
{𝜇. 𝑥}. 𝑝 𝑥, 𝑡 𝑋*, 𝑡* −
!
!6
[
+
,
. [(𝜎. 𝑥), . 𝑝(𝑥, 𝑡|𝑋*, 𝑡*)]
š
!"(6,&)
!&
= −
!
!6
[𝑀+ 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 −
!
!6
[𝑀, 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 ]]
š 𝑀+ 𝑥, 𝑡 = 𝜇. 𝑥
š 𝑀, 𝑥, 𝑡 =
+
,
. (𝜎. 𝑥),
š 𝐌, 𝑛 = ∫4<
7<
𝑀+ 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 . 𝑛. 𝑥J4+. 𝑑𝑣 + ∫4<
7<
𝑀, 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 . 𝑛. (𝑛 − 1). 𝑥J4,. 𝑑𝑣
š 𝐌, 𝑛 = ∫4<
7<
𝜇. 𝑥. 𝑝 𝑥, 𝑡 . 𝑛. 𝑥J4+. 𝑑𝑣 + ∫4<
7< +
,
. (𝜎. 𝑥), . 𝑝 𝑥, 𝑡 . 𝑛. (𝑛 − 1). 𝑥J4,. 𝑑𝑣
š 𝐌, 𝑛 = 𝜇 ∫4<
7<
𝑝 𝑥, 𝑡 . 𝑛. 𝑥J. 𝑑𝑣 +
>"
,
. ∫4<
7<
𝑝 𝑥, 𝑡 . 𝑛. (𝑛 − 1). 𝑥J. 𝑑𝑣
132
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) - XIII
š 𝐌, 𝑛 = 𝑛𝜇 ∫4<
7<
𝑝 𝑥, 𝑡 . 𝑥J . 𝑑𝑣 + 𝑛(𝑛 − 1)
>"
,
. ∫4<
7<
𝑝 𝑥, 𝑡 . 𝑥J . 𝑑𝑣
š 𝐌, 𝑛 = 𝑛𝜇 + 𝑛 𝑛 − 1
>"
,
. ∫4<
7<
𝑝 𝑥, 𝑡 . 𝑥J . 𝑑𝑣
š 𝐌, 𝑛 = 𝑛𝜇 + 𝑛 𝑛 − 1
>"
,
. 𝑚J 𝑥, 𝑡
š
A
A&
. 𝑚J 𝑥, 𝑡 = 𝐌, 𝑛 = 𝑛𝜇 + 𝑛 𝑛 − 1
>"
,
. 𝑚J 𝑥, 𝑡
š
A
A&
. 𝑚; 𝑥, 𝑡 = 0
š
A
A&
. 𝑚+ 𝑡 = 𝐌, 1 = 𝜇𝑚+ 𝑡 so 𝑚+ 𝑡 = 𝑚+ 0 . exp(𝜇𝑡)
š
A
A&
. 𝑚J 𝑥, 𝑡 = 𝐌, 𝑛 = 𝑛𝜇 + 𝑛 𝑛 − 1
>"
,
. 𝑚J 𝑥, 𝑡
133
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) - XIV
š
A
A&
. 𝑚J 𝑥, 𝑡 = 𝐌, 𝑛 = 𝑛𝜇 + 𝑛 𝑛 − 1
>"
,
. 𝑚J 𝑥, 𝑡
š 𝑚J 𝑡 = 𝑚J 0 . exp[ 𝑛𝜇 + 𝑛 𝑛 − 1
>"
,
. 𝑡]
š 𝑚; 𝑥, 𝑡 = 1
š 𝑚+ 𝑡 = 𝑚+ 0 . exp(𝜇𝑡) diverges when 𝑡 → ∞ if 𝜇 > 0
š 𝑚J 𝑡 = 𝑚J 0 . exp[ 𝑛𝜇 + 𝑛 𝑛 − 1
>"
,
. 𝑡]
š That moment also diverges when 𝑡 → ∞ if 𝜇 + (𝑛 − 1) 𝜎, > 0
š SO there will ALWAYS be a value of n large enough (𝑛 > 1 −
,[
>") for which the moment will
diverge
š This is one of the drawback of the GBM, even if you start with a large negative value for 𝜇
there will always be a moment that will diverge (the dynamics is unstable)
134
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) – XV
š Igor Halperin (NYU machine learning professor)
š My pretty dramatic conclusion was that financial academics collectively missed all the
relevant development in physics starting from 1908 when Paul Langevin developed a
generalization of the theory of Brownian motion of Einstein, which describes a Brownian
particle moving in an external potential field. Einstein’s theory is mathematically equivalent
to the Bachelier model from 1900 for stock prices. In its turn, the Bachelier model was
reformulated as a model for a log-price (instead of the price itself) with a linear drift by Paul
Samuelson in 1964, resulting in his celebrated Geometric Brownian Motion (GBM) model.
š As the GBM model produces a poor fit to market data, financial engineers have since
modified or extended it in myriad ways, proposing various stochastic volatility, jump-
diffusion, Levy etc. models to ‘better match the market’.
135
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) – XVI
š I was quite shocked to find that a simple two-line comparison of two very famous equations,
namely the GBM model and the Langevin equation, shows that the GBM model (as well as
its multiple descends) describes a world with globally unstable dynamics, and thus does not
make sense from the point of view of physics – at best, it can only be used to describe small
market fluctuations over short period of time, but not dynamics that can proceed at
arbitrary long times.
š Though this observation is very basic, it appears that it has been overlooked since 1964
when the GBM model was proposed. I believe that if Samuelson was familiar with the
Langevin equation from 1908, he would not propose his GBM model – just because the latter
does not make sense!
š Paraphrasing a famous quote about string theory, I would say that most financial models
used by practitioners are ``not even wrong” - they are not about actual ‘physical’ markets,
but rather about something else (a pure math).
š https://www.rebellionresearch.com/blog/did-finance-oversleep-a-century-of-development-
in-physics-interview-with
š Salomon Brothers and their 2+ Langevin model from 1970 would also agree with Igor
Halperin
136
Luc_Faucheux_2020
PDF for the GBM
137
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) – XVII
š Just to check one more time, we can derive the PDF for the GBM using the distribution
functions
š PDF Probability Density Function: 𝑝3(𝑥, 𝑡)
š Distribution function : 𝑃3(𝑥, 𝑡)
š 𝑃3 𝑥, 𝑡 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑊 𝑋 ≀ 𝑥, 𝑡 = ∫K/4<
K/6
𝑝3 𝑊, 𝑡 . 𝑑𝑊
š 𝑝3(𝑥, 𝑡) =
!
!6
𝑃3 𝑥, 𝑡
š 𝑙𝑛𝑋 𝑡. − 𝑙𝑛𝑋 𝑡* = ∫&/&*
&/&.
𝑑𝑙𝑛𝑋 𝑡 = 𝜇 −
>"
,
. (𝑡. − 𝑡*) + 𝜎[𝑊 𝑡. − 𝑊(𝑡*)]
š Right from the start you see that for the GBM we need to restrict ourselves to having:
š 𝑥 ∈ ]0 , +∞[
š That is another drawback of the GBM, it does not allow for negative prices for the stock
138
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) – XVIII
š 𝑃3 𝑥, 𝑡. = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑊(𝑋 ≀ 𝑥|𝑋 𝑡* = 𝑥*)
š 𝑃3 𝑥, 𝑡. = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑊(𝑙𝑛𝑋(𝑡.) ≀ 𝑙𝑛𝑥|𝑙𝑛𝑋 𝑡* = 𝑙𝑛𝑥*)
š 𝑃3 𝑥, 𝑡. = 𝑃(𝑙𝑛𝑋 𝑡* + 𝜇 −
>"
,
. (𝑡. − 𝑡*) + 𝜎[𝑊 𝑡. − 𝑊(𝑡*)] ≀ 𝑙𝑛𝑥|𝑙𝑛𝑋 𝑡* =
𝑙𝑛𝑥*)
š 𝑃3 𝑥, 𝑡. = 𝑃( 𝜇 −
>"
,
. (𝑡. − 𝑡*) + 𝜎[𝑊 𝑡. − 𝑊(𝑡*)] ≀ 𝑙𝑛𝑥 − 𝑙𝑛𝑋 𝑡* |𝑙𝑛𝑋 𝑡* =
𝑙𝑛𝑥*)
š 𝑃3 𝑥, 𝑡. = 𝑃(𝜎[𝑊 𝑡. − 𝑊(𝑡*)] ≀ 𝑙𝑛𝑥 − 𝑙𝑛𝑋 𝑡* − 𝜇 −
>"
,
. (𝑡. − 𝑡*)|𝑙𝑛𝑋 𝑡* =
𝑙𝑛𝑥*)
š 𝑃3 𝑥, 𝑡. = 𝑃([𝑊 𝑡. − 𝑊(𝑡*)] ≀
J64J3 &! 4 [4
*"
"
.(&)4&!)
>
|𝑙𝑛𝑋 𝑡* = 𝑙𝑛𝑥*)
139
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) – XIX
š 𝑃3 𝑥, 𝑡. = 𝑃([𝑊 𝑡. − 𝑊(𝑡*)] ≀
J64J3 &! 4 [4
*"
"
.(&)4&!)
>
|𝑙𝑛𝑋 𝑡* = 𝑙𝑛𝑥*)
š We have now brought this back to the distribution function on the Gaussian, since by
definition [𝑊 𝑡. − 𝑊(𝑡*)] is normally distributed with mean 0 and variance (𝑡. − 𝑡*)
š Math people sometimes write something like this:
š [𝑊 𝑡. − 𝑊(𝑡*)] is 𝑁(0, 𝑡. − 𝑡* )
š [𝑊 𝑡. − 𝑊(𝑡*)] is normally distributed according to the Gaussian function:
š ℎ 𝑥, 𝑡 =
+
,G&
. exp(
46"
,&
)
š Writing 𝜉 =
J64J3 &! 4 [4
*"
"
.(&)4&!)
>
140
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) – XX
š Writing 𝜉 =
J64J3 &! 4 [4
*"
"
.(&)4&!)
>
š 𝑃3 𝑥, 𝑡. = 𝑃([𝑊 𝑡. − 𝑊(𝑡*)] ≀
J64J3 &! 4 [4
*"
"
.(&)4&!)
>
|𝑙𝑛𝑋 𝑡* = 𝑙𝑛𝑥*)
š 𝑃3 𝑥, 𝑡. = ∫K/4<
K/2
ℎ 𝑊, 𝑡 . 𝑑𝑊
š 𝑃3 𝑥, 𝑡. = ∫K/4<
K/2 +
,G&
. exp(
4K"
,&
) . 𝑑𝑊
š Using the change of variable: 𝑊 =
J]4J3 &! 4 [4
*"
"
.(&)4&!)
>
š 𝑑𝑊 =
J]4J3 &! 4 [4
*"
"
.(&)4&!)
>
=
+
>]
𝑑𝑢
141
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) – XXI
š 𝑃3 𝑥, 𝑡. = ∫K/4<
K/2 +
,G(&)4&!)
. exp(
4K"
,(&)4&!)
) . 𝑑𝑊
š 𝜉 =
J64J3 &! 4 [4
*"
"
.(&)4&!)
>
š 𝑃3 𝑥, 𝑡. = ∫]/;
]/6 +
,G(&)4&!)
. exp(−
[J]4J3 &! 4 [4
*"
"
.(&)4&!)]"
,>"(&)4&!)
) .
A]
]>
š 𝑃3 𝑥, 𝑡. = ∫]/;
]/6 +
,G>"(&)4&!)
. exp(−
[J]4J3 &! 4 [4
*"
"
.(&)4&!)]"
,>"(&)4&!)
) .
A]
]
š Note that it is not (. 𝑑𝑢) but (.
A]
]
)
š Seems obvious but that little (
+
]
) can be tricky at times
142
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) – XXII
š 𝑃3 𝑥, 𝑡. = ∫]/;
]/6 +
,G>"(&)4&!)
. exp(−
[J]4J3 &! 4 [4
*"
"
.(&)4&!)]"
,>"(&)4&!)
) .
A]
]
š 𝑝3(𝑥, 𝑡) =
!
!6
𝑃3 𝑥, 𝑡
š 𝑝3(𝑥, 𝑡) =
+
,G>"(&)4&!)
. exp(−
[J64J3 &! 4 [4
*"
"
.(&)4&!)]"
,>"(&)4&!)
) .
+
6
š That is essentially all we need in order to calculate Black-Sholes through integration
š With the appropriate discounting (numeraire) being taken out of the integral (see the deck
on Black-Sholes Numeraire), and also Hull White p.
143
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) – XXIII
š 𝑝3(𝑥, 𝑡) =
+
,G>"(&)4&!)
. exp(−
[J64J3 &! 4 [4
*"
"
.(&)4&!)]"
,>"(&)4&!)
) .
+
6
š Sometimes to avoid forgetting the little
+
6
we write as a function of 𝑝J3(𝑙𝑛𝑥, 𝑡)
š If we have 𝑋′ 𝑡 = Ί(𝑋 𝑡 ) and 𝑋 𝑡 = 𝜑(𝑋′ 𝑡 )
š 𝑝3# 𝑥=, 𝑡 = 𝑝3 𝑥, 𝑡 .
!
!6# 𝜑 𝑥=
š 𝑝3# 𝑥=, 𝑡 = 𝑝3 𝑥, 𝑡 .
!
!6# 𝜑 𝑥= and noting 𝑥 = 𝜑 𝑥= and 𝑥′ = Ί(𝑥)
š
!
!6# 𝜑 𝑥= =
A6
A6# =
A` 6#
A6#
š The density of probability {𝑝3# 𝑥=, 𝑡 . 𝑑𝑥′} = {𝑝3 𝑥, 𝑡 . 𝑑𝑥} is conserved
š If you integrate under the curve, then change the variable of integration, this is the usual
result
144
Luc_Faucheux_2020
Langevin versus GBM (geometric Brownian motion) – XXIV
š {𝑝3# 𝑥=, 𝑡 . 𝑑𝑥′} = {𝑝3 𝑥, 𝑡 . 𝑑𝑥} with 𝑥= = 𝑙𝑛𝑥
š {𝑝J3 𝑙𝑛𝑥, 𝑡 . 𝑑𝑙𝑛𝑥} = {𝑝3 𝑥, 𝑡 . 𝑑𝑥} with 𝑑𝑙𝑛𝑥 = 𝑑𝑥/𝑥
š 𝑝J3 𝑙𝑛𝑥, 𝑡 = 𝑝3 𝑥, 𝑡 . 𝑥
š 𝑝3(𝑥, 𝑡) =
+
,G>"(&)4&!)
. exp(−
[J64J3 &! 4 [4
*"
"
.(&)4&!)]"
,>"(&)4&!)
) .
+
6
š 𝑝J3(𝑙𝑛𝑥, 𝑡) =
+
,G>"(&)4&!)
. exp(−
[J64J3 &! 4 [4
*"
"
.(&)4&!)]"
,>"(&)4&!)
)
145
Luc_Faucheux_2020
Black-Sholes in the BGM
(because where else?)
146
Stochastic Calculus Example - Langevin Equation
Stochastic Calculus Example - Langevin Equation
Stochastic Calculus Example - Langevin Equation
Stochastic Calculus Example - Langevin Equation
Stochastic Calculus Example - Langevin Equation
Stochastic Calculus Example - Langevin Equation
Stochastic Calculus Example - Langevin Equation
Stochastic Calculus Example - Langevin Equation
Stochastic Calculus Example - Langevin Equation
Stochastic Calculus Example - Langevin Equation
Stochastic Calculus Example - Langevin Equation
Stochastic Calculus Example - Langevin Equation

More Related Content

What's hot

UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...University of California, San Diego
 
Chapter 4 - Raman Spectroscopy.pdf
Chapter 4 - Raman Spectroscopy.pdfChapter 4 - Raman Spectroscopy.pdf
Chapter 4 - Raman Spectroscopy.pdfShotosroyRoyTirtho
 
Hydrogen Storage Technologies, New Materials, Transport and Infrastructure (D...
Hydrogen Storage Technologies, New Materials, Transport and Infrastructure (D...Hydrogen Storage Technologies, New Materials, Transport and Infrastructure (D...
Hydrogen Storage Technologies, New Materials, Transport and Infrastructure (D...HadiM19
 
Piezoelectric ceramic
Piezoelectric ceramicPiezoelectric ceramic
Piezoelectric ceramicbiruk gedif
 
Crystal field theory11 21
Crystal field theory11 21Crystal field theory11 21
Crystal field theory11 21Mahbub Alwathoni
 
Mn alcu2 heusler compound
Mn alcu2 heusler compoundMn alcu2 heusler compound
Mn alcu2 heusler compoundogunmoyekehinde
 
Unit 1
Unit 1Unit 1
Unit 1mrecedu
 
NaS Energy Storage (3)
NaS Energy Storage (3)NaS Energy Storage (3)
NaS Energy Storage (3)Lisa Li
 
dielectric materials
dielectric materialsdielectric materials
dielectric materialsDivy Kumar Gupta
 
Cathodic and anodic protection
Cathodic and anodic protectionCathodic and anodic protection
Cathodic and anodic protectionTHOMAS THANGADURAI K
 
B-H curve of magnetic materials
B-H curve of magnetic materialsB-H curve of magnetic materials
B-H curve of magnetic materialsSonuKumarBairwa
 
Crystallographic planes
Crystallographic planesCrystallographic planes
Crystallographic planessandhya sharma
 
High Entropy alloys
High Entropy alloysHigh Entropy alloys
High Entropy alloysHitesh Basitti
 

What's hot (20)

UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
 
Chapter 4 - Raman Spectroscopy.pdf
Chapter 4 - Raman Spectroscopy.pdfChapter 4 - Raman Spectroscopy.pdf
Chapter 4 - Raman Spectroscopy.pdf
 
Hydrogen Storage Technologies, New Materials, Transport and Infrastructure (D...
Hydrogen Storage Technologies, New Materials, Transport and Infrastructure (D...Hydrogen Storage Technologies, New Materials, Transport and Infrastructure (D...
Hydrogen Storage Technologies, New Materials, Transport and Infrastructure (D...
 
Crystal sizeanalysis
Crystal sizeanalysisCrystal sizeanalysis
Crystal sizeanalysis
 
Dislocation
DislocationDislocation
Dislocation
 
Piezoelectric ceramic
Piezoelectric ceramicPiezoelectric ceramic
Piezoelectric ceramic
 
Crystal field theory11 21
Crystal field theory11 21Crystal field theory11 21
Crystal field theory11 21
 
Mn alcu2 heusler compound
Mn alcu2 heusler compoundMn alcu2 heusler compound
Mn alcu2 heusler compound
 
SOMMERFELD MODEL Maya yadav ppt
SOMMERFELD MODEL Maya yadav pptSOMMERFELD MODEL Maya yadav ppt
SOMMERFELD MODEL Maya yadav ppt
 
Unit 1
Unit 1Unit 1
Unit 1
 
NaS Energy Storage (3)
NaS Energy Storage (3)NaS Energy Storage (3)
NaS Energy Storage (3)
 
dielectric materials
dielectric materialsdielectric materials
dielectric materials
 
Lecture5
Lecture5Lecture5
Lecture5
 
Cathodic and anodic protection
Cathodic and anodic protectionCathodic and anodic protection
Cathodic and anodic protection
 
B-H curve of magnetic materials
B-H curve of magnetic materialsB-H curve of magnetic materials
B-H curve of magnetic materials
 
line defects
line defectsline defects
line defects
 
bloch.pdf
bloch.pdfbloch.pdf
bloch.pdf
 
Crystallographic planes
Crystallographic planesCrystallographic planes
Crystallographic planes
 
Multiferroic project literature survey
Multiferroic project literature surveyMultiferroic project literature survey
Multiferroic project literature survey
 
High Entropy alloys
High Entropy alloysHigh Entropy alloys
High Entropy alloys
 

Similar to Stochastic Calculus Example - Langevin Equation

Lf 2021 stochastic_calculus_ito-iii
Lf 2021 stochastic_calculus_ito-iiiLf 2021 stochastic_calculus_ito-iii
Lf 2021 stochastic_calculus_ito-iiiluc faucheux
 
Lf 2021 rates_vii
Lf 2021 rates_viiLf 2021 rates_vii
Lf 2021 rates_viiluc faucheux
 
Lf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-iiLf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-iiluc faucheux
 
Lf 2020 rates_v_a
Lf 2020 rates_v_aLf 2020 rates_v_a
Lf 2020 rates_v_aluc faucheux
 
Lf 2021 rates_vi
Lf 2021 rates_viLf 2021 rates_vi
Lf 2021 rates_viluc faucheux
 
Lf 2020 rates_iv
Lf 2020 rates_ivLf 2020 rates_iv
Lf 2020 rates_ivluc faucheux
 
Lf 2021 rates_viii_a
Lf 2021 rates_viii_aLf 2021 rates_viii_a
Lf 2021 rates_viii_aluc faucheux
 
Lf 2020 rates_iii
Lf 2020 rates_iiiLf 2020 rates_iii
Lf 2020 rates_iiiluc faucheux
 
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irmaLf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irmaluc faucheux
 
01. integral fungsi aljabar
01. integral fungsi aljabar01. integral fungsi aljabar
01. integral fungsi aljabarHirwanto Iwan
 
Lf 2020 rates_ii
Lf 2020 rates_iiLf 2020 rates_ii
Lf 2020 rates_iiluc faucheux
 
Some approximation properties of modified baskakov stancu operators
Some approximation properties of modified baskakov stancu operatorsSome approximation properties of modified baskakov stancu operators
Some approximation properties of modified baskakov stancu operatorseSAT Journals
 
Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recapFarzad Javidanrad
 
programming project
programming projectprogramming project
programming projectLingwen He
 
Lf 2020 trees
Lf 2020 treesLf 2020 trees
Lf 2020 treesluc faucheux
 
Left and Right Folds - Comparison of a mathematical definition and a programm...
Left and Right Folds- Comparison of a mathematical definition and a programm...Left and Right Folds- Comparison of a mathematical definition and a programm...
Left and Right Folds - Comparison of a mathematical definition and a programm...Philip Schwarz
 
2. data types, variables and operators
2. data types, variables and operators2. data types, variables and operators
2. data types, variables and operatorsPhD Research Scholar
 
Variational Autoencoder Tutorial
Variational Autoencoder Tutorial Variational Autoencoder Tutorial
Variational Autoencoder Tutorial Hojin Yang
 
Metal-Insulator Transitions I.pdf
Metal-Insulator Transitions I.pdfMetal-Insulator Transitions I.pdf
Metal-Insulator Transitions I.pdfTheAnalyzed
 

Similar to Stochastic Calculus Example - Langevin Equation (20)

Lf 2021 stochastic_calculus_ito-iii
Lf 2021 stochastic_calculus_ito-iiiLf 2021 stochastic_calculus_ito-iii
Lf 2021 stochastic_calculus_ito-iii
 
Lf 2021 rates_vii
Lf 2021 rates_viiLf 2021 rates_vii
Lf 2021 rates_vii
 
Lf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-iiLf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-ii
 
Lf 2020 rates_v_a
Lf 2020 rates_v_aLf 2020 rates_v_a
Lf 2020 rates_v_a
 
Lf 2021 rates_vi
Lf 2021 rates_viLf 2021 rates_vi
Lf 2021 rates_vi
 
Lf 2020 rates_iv
Lf 2020 rates_ivLf 2020 rates_iv
Lf 2020 rates_iv
 
Lf 2021 rates_viii_a
Lf 2021 rates_viii_aLf 2021 rates_viii_a
Lf 2021 rates_viii_a
 
Lf 2020 rates_iii
Lf 2020 rates_iiiLf 2020 rates_iii
Lf 2020 rates_iii
 
Lf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irmaLf 2021 rates_iv_a_irma
Lf 2021 rates_iv_a_irma
 
Periodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral EquationsPeriodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral Equations
 
01. integral fungsi aljabar
01. integral fungsi aljabar01. integral fungsi aljabar
01. integral fungsi aljabar
 
Lf 2020 rates_ii
Lf 2020 rates_iiLf 2020 rates_ii
Lf 2020 rates_ii
 
Some approximation properties of modified baskakov stancu operators
Some approximation properties of modified baskakov stancu operatorsSome approximation properties of modified baskakov stancu operators
Some approximation properties of modified baskakov stancu operators
 
Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recap
 
programming project
programming projectprogramming project
programming project
 
Lf 2020 trees
Lf 2020 treesLf 2020 trees
Lf 2020 trees
 
Left and Right Folds - Comparison of a mathematical definition and a programm...
Left and Right Folds- Comparison of a mathematical definition and a programm...Left and Right Folds- Comparison of a mathematical definition and a programm...
Left and Right Folds - Comparison of a mathematical definition and a programm...
 
2. data types, variables and operators
2. data types, variables and operators2. data types, variables and operators
2. data types, variables and operators
 
Variational Autoencoder Tutorial
Variational Autoencoder Tutorial Variational Autoencoder Tutorial
Variational Autoencoder Tutorial
 
Metal-Insulator Transitions I.pdf
Metal-Insulator Transitions I.pdfMetal-Insulator Transitions I.pdf
Metal-Insulator Transitions I.pdf
 

More from luc faucheux

Marcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdfMarcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdfluc faucheux
 
Selection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdfSelection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdfluc faucheux
 
Binary_Potential.pdf
Binary_Potential.pdfBinary_Potential.pdf
Binary_Potential.pdfluc faucheux
 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdfluc faucheux
 
ConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdfConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdfluc faucheux
 
Optical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdfOptical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdfluc faucheux
 
Lf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-aLf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-aluc faucheux
 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101luc faucheux
 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101luc faucheux
 
Lf 2021 rates_viii
Lf 2021 rates_viiiLf 2021 rates_viii
Lf 2021 rates_viiiluc faucheux
 
Lf 2021 rates_v_b2
Lf 2021 rates_v_b2Lf 2021 rates_v_b2
Lf 2021 rates_v_b2luc faucheux
 
Lf 2021 rates_v_a
Lf 2021 rates_v_aLf 2021 rates_v_a
Lf 2021 rates_v_aluc faucheux
 
Lf 2020 rates_i
Lf 2020 rates_iLf 2020 rates_i
Lf 2020 rates_iluc faucheux
 
Lf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-iLf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-iluc faucheux
 
Lf 2020 structured
Lf 2020 structuredLf 2020 structured
Lf 2020 structuredluc faucheux
 
Lf 2020 options
Lf 2020 optionsLf 2020 options
Lf 2020 optionsluc faucheux
 
Lf 2020 skew
Lf 2020 skewLf 2020 skew
Lf 2020 skewluc faucheux
 
Lf 2020 bachelier
Lf 2020 bachelierLf 2020 bachelier
Lf 2020 bachelierluc faucheux
 

More from luc faucheux (18)

Marcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdfMarcel_Faucheux_Taquin.pdf
Marcel_Faucheux_Taquin.pdf
 
Selection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdfSelection_Brownian_Particles.pdf
Selection_Brownian_Particles.pdf
 
Binary_Potential.pdf
Binary_Potential.pdfBinary_Potential.pdf
Binary_Potential.pdf
 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdf
 
ConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdfConfinedBrownian MotionPhysRevE.49.5158.pdf
ConfinedBrownian MotionPhysRevE.49.5158.pdf
 
Optical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdfOptical_Thermal_Ratchet.pdf
Optical_Thermal_Ratchet.pdf
 
Lf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-aLf 2021 stochastic_calculus_ito-iii-a
Lf 2021 stochastic_calculus_ito-iii-a
 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101
 
Lf 2021 risk_management_101
Lf 2021 risk_management_101Lf 2021 risk_management_101
Lf 2021 risk_management_101
 
Lf 2021 rates_viii
Lf 2021 rates_viiiLf 2021 rates_viii
Lf 2021 rates_viii
 
Lf 2021 rates_v_b2
Lf 2021 rates_v_b2Lf 2021 rates_v_b2
Lf 2021 rates_v_b2
 
Lf 2021 rates_v_a
Lf 2021 rates_v_aLf 2021 rates_v_a
Lf 2021 rates_v_a
 
Lf 2020 rates_i
Lf 2020 rates_iLf 2020 rates_i
Lf 2020 rates_i
 
Lf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-iLf 2020 stochastic_calculus_ito-i
Lf 2020 stochastic_calculus_ito-i
 
Lf 2020 structured
Lf 2020 structuredLf 2020 structured
Lf 2020 structured
 
Lf 2020 options
Lf 2020 optionsLf 2020 options
Lf 2020 options
 
Lf 2020 skew
Lf 2020 skewLf 2020 skew
Lf 2020 skew
 
Lf 2020 bachelier
Lf 2020 bachelierLf 2020 bachelier
Lf 2020 bachelier
 

Recently uploaded

Monthly Market Risk Update: April 2024 [SlideShare]
Monthly Market Risk Update: April 2024 [SlideShare]Monthly Market Risk Update: April 2024 [SlideShare]
Monthly Market Risk Update: April 2024 [SlideShare]Commonwealth
 
Unveiling the Top Chartered Accountants in India and Their Staggering Net Worth
Unveiling the Top Chartered Accountants in India and Their Staggering Net WorthUnveiling the Top Chartered Accountants in India and Their Staggering Net Worth
Unveiling the Top Chartered Accountants in India and Their Staggering Net WorthShaheen Kumar
 
20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdf20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdfAdnet Communications
 
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdf
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdfBPPG response - Options for Defined Benefit schemes - 19Apr24.pdf
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdfHenry Tapper
 
Governor Olli Rehn: Dialling back monetary restraint
Governor Olli Rehn: Dialling back monetary restraintGovernor Olli Rehn: Dialling back monetary restraint
Governor Olli Rehn: Dialling back monetary restraintSuomen Pankki
 
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance CompanyInterimreport1 January–31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance CompanyTyöelÀkeyhtiö Elo
 
government_intervention_in_business_ownership[1].pdf
government_intervention_in_business_ownership[1].pdfgovernment_intervention_in_business_ownership[1].pdf
government_intervention_in_business_ownership[1].pdfshaunmashale756
 
VIP Kolkata Call Girl Serampore 👉 8250192130 Available With Room
VIP Kolkata Call Girl Serampore 👉 8250192130  Available With RoomVIP Kolkata Call Girl Serampore 👉 8250192130  Available With Room
VIP Kolkata Call Girl Serampore 👉 8250192130 Available With Roomdivyansh0kumar0
 
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...shivangimorya083
 
(办理孊䜍证)加拿倧萚省倧孊毕䞚证成绩单原版䞀比䞀
(办理孊䜍证)加拿倧萚省倧孊毕䞚证成绩单原版䞀比䞀(办理孊䜍证)加拿倧萚省倧孊毕䞚证成绩单原版䞀比䞀
(办理孊䜍证)加拿倧萚省倧孊毕䞚证成绩单原版䞀比䞀S SDS
 
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...makika9823
 
AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...
AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...
AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...yordanosyohannes2
 
Classical Theory of Macroeconomics by Adam Smith
Classical Theory of Macroeconomics by Adam SmithClassical Theory of Macroeconomics by Adam Smith
Classical Theory of Macroeconomics by Adam SmithAdamYassin2
 
Mulki Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mulki Call Girls 7001305949 WhatsApp Number 24x7 Best ServicesMulki Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mulki Call Girls 7001305949 WhatsApp Number 24x7 Best Servicesnajka9823
 
NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...
NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...
NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...Amil baba
 
letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...
letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...
letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...Henry Tapper
 
Call Girls Near Delhi Pride Hotel, New Delhi|9873777170
Call Girls Near Delhi Pride Hotel, New Delhi|9873777170Call Girls Near Delhi Pride Hotel, New Delhi|9873777170
Call Girls Near Delhi Pride Hotel, New Delhi|9873777170Sonam Pathan
 
SBP-Market-Operations and market managment
SBP-Market-Operations and market managmentSBP-Market-Operations and market managment
SBP-Market-Operations and market managmentfactical
 
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130 Available With Room
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130  Available With RoomVIP Kolkata Call Girl Jodhpur Park 👉 8250192130  Available With Room
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130 Available With Roomdivyansh0kumar0
 

Recently uploaded (20)

Monthly Market Risk Update: April 2024 [SlideShare]
Monthly Market Risk Update: April 2024 [SlideShare]Monthly Market Risk Update: April 2024 [SlideShare]
Monthly Market Risk Update: April 2024 [SlideShare]
 
Unveiling the Top Chartered Accountants in India and Their Staggering Net Worth
Unveiling the Top Chartered Accountants in India and Their Staggering Net WorthUnveiling the Top Chartered Accountants in India and Their Staggering Net Worth
Unveiling the Top Chartered Accountants in India and Their Staggering Net Worth
 
20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdf20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdf
 
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdf
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdfBPPG response - Options for Defined Benefit schemes - 19Apr24.pdf
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdf
 
Governor Olli Rehn: Dialling back monetary restraint
Governor Olli Rehn: Dialling back monetary restraintGovernor Olli Rehn: Dialling back monetary restraint
Governor Olli Rehn: Dialling back monetary restraint
 
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance CompanyInterimreport1 January–31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance Company
 
government_intervention_in_business_ownership[1].pdf
government_intervention_in_business_ownership[1].pdfgovernment_intervention_in_business_ownership[1].pdf
government_intervention_in_business_ownership[1].pdf
 
VIP Kolkata Call Girl Serampore 👉 8250192130 Available With Room
VIP Kolkata Call Girl Serampore 👉 8250192130  Available With RoomVIP Kolkata Call Girl Serampore 👉 8250192130  Available With Room
VIP Kolkata Call Girl Serampore 👉 8250192130 Available With Room
 
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
 
(办理孊䜍证)加拿倧萚省倧孊毕䞚证成绩单原版䞀比䞀
(办理孊䜍证)加拿倧萚省倧孊毕䞚证成绩单原版䞀比䞀(办理孊䜍证)加拿倧萚省倧孊毕䞚证成绩单原版䞀比䞀
(办理孊䜍证)加拿倧萚省倧孊毕䞚证成绩单原版䞀比䞀
 
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...
Independent Lucknow Call Girls 8923113531WhatsApp Lucknow Call Girls make you...
 
AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...
AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...
AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...
 
Classical Theory of Macroeconomics by Adam Smith
Classical Theory of Macroeconomics by Adam SmithClassical Theory of Macroeconomics by Adam Smith
Classical Theory of Macroeconomics by Adam Smith
 
Mulki Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mulki Call Girls 7001305949 WhatsApp Number 24x7 Best ServicesMulki Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mulki Call Girls 7001305949 WhatsApp Number 24x7 Best Services
 
NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...
NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...
NO1 WorldWide Genuine vashikaran specialist Vashikaran baba near Lahore Vashi...
 
letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...
letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...
letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...
 
Monthly Economic Monitoring of Ukraine No 231, April 2024
Monthly Economic Monitoring of Ukraine No 231, April 2024Monthly Economic Monitoring of Ukraine No 231, April 2024
Monthly Economic Monitoring of Ukraine No 231, April 2024
 
Call Girls Near Delhi Pride Hotel, New Delhi|9873777170
Call Girls Near Delhi Pride Hotel, New Delhi|9873777170Call Girls Near Delhi Pride Hotel, New Delhi|9873777170
Call Girls Near Delhi Pride Hotel, New Delhi|9873777170
 
SBP-Market-Operations and market managment
SBP-Market-Operations and market managmentSBP-Market-Operations and market managment
SBP-Market-Operations and market managment
 
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130 Available With Room
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130  Available With RoomVIP Kolkata Call Girl Jodhpur Park 👉 8250192130  Available With Room
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130 Available With Room
 

Stochastic Calculus Example - Langevin Equation

  • 1. Luc_Faucheux_2020 Stochastic Calculus – ITO – IV The example of the Langevin equation 1
  • 2. Luc_Faucheux_2020 Couple of notes on those slides š Those are part IV of the the slides on stochastic calculus š Since they are mostly devoted to the Langevin equation, they are somewhat “stand-alone” and I have tried to keep them independent from the other as much as possible š Some of the results are demonstrated in the other slide decks, but are used in this deck sometimes without redoing the derivation 2
  • 3. Luc_Faucheux_2020 A useful example The Langevin equation (1908) 3
  • 4. Luc_Faucheux_2020 A useful example – Langevin š In 1908 Langevin introduced the Langevin equation in order to describe the velocity of a particle in a viscous fluid, subject to random collisions from the surrounding fluid (thermal noise) š 𝑑𝑉 𝑡 = 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 𝑏 𝑉 𝑡 , 𝑡 . 𝑑𝑊 š 𝑎 𝑉 𝑡 , 𝑡 = −𝑘𝑉 š 𝑏 𝑉 𝑡 , 𝑡 = 𝜎 š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊 š In 1930 Ornstein and Uhlenbeck put the equation on a firmer basis and explored a slightly more general class of SDE known as OU processes š OU processes have very nice properties (stationary, Gaussian, Markovian) š In particular, unlike the Geometric Brownian motion, the Langevin process has stable dynamics of moments 4
  • 6. Luc_Faucheux_2020 A useful example – Langevin - II š 𝑑𝑉 𝑡 = 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 𝑏 𝑉 𝑡 , 𝑡 . 𝑑𝑊 š 𝑎 𝑉 𝑡 , 𝑡 = −𝑘𝑉 š 𝑏 𝑉 𝑡 , 𝑡 = 𝜎 š Note that here we looking at the velocity 𝑉 𝑡 of the particle as the stochastic variable 𝑋 𝑡 š Hopefully we are mentally flexible enough to do the jump š The issue once again is how do you interpret: 𝑏 𝑉 𝑡 , 𝑡 . 𝑑𝑊 6
  • 7. Luc_Faucheux_2020 A useful example – Langevin - III š With the ITO convention: š 𝑑𝑉 𝑡 = 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 𝑏 𝑉 𝑡 , 𝑡 . 𝑑𝑊 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊 š 𝑑𝑉 𝑡 = 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 𝑏 𝑉 𝑡 , 𝑡 . [ . 𝑑𝑊 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. [ . 𝑑𝑊 š So the PDF for the particle velocity follows the FORWARD ITO PDE: š !"($,&|(!,&!) !& = − ! !$ 𝑎 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 𝑉*, 𝑡* − ! !$ [ + , . [𝑏(𝑣, 𝑡), . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)] š !"($,&|(!,&!) !& = − ! !$ (−𝑘𝑣). 𝑝 𝑣, 𝑡 𝑉*, 𝑡* − ! !$ [ + , . [𝜎, . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)] 7
  • 8. Luc_Faucheux_2020 A useful example – Langevin - IV š With the STRATO convention: š 𝑑𝑉 𝑡 = 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 𝑏 𝑉 𝑡 , 𝑡 . 𝑑𝑊 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊 š 𝑑𝑉 𝑡 = 6𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 7𝑏 𝑉 𝑡 , 𝑡 . ∘ . 𝑑𝑊 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. ∘ . 𝑑𝑊 š So the PDF for the particle velocity follows the FORWARD STRATO PDE: š !"($,&|(!,&!) !& = − ! !$ 9 : {6𝑎 𝑣, 𝑡 + + , . 7𝑏 𝑣, 𝑡 . ! !$ 7𝑏 𝑣, 𝑡 }. 𝑝 𝑣, 𝑡 𝑉*, 𝑡* − ! !$ [ + , . [7𝑏(𝑣, 𝑡), . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)] š And since: ! !( 7𝑏 𝑣, 𝑡 = 0 š !"($,&|(!,&!) !& = − ! !$ (−𝑘𝑣). 𝑝 𝑣, 𝑡 𝑉*, 𝑡* − ! !$ [ + , . [𝜎, . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)] 8
  • 9. Luc_Faucheux_2020 A useful example – Langevin - V š So BOTH ITO and STRATO interpretation of the Langevin equation will return the SAME PDE (forward Fokker Planck) for the PDF: š !"($,&|(!,&!) !& = − ! !$ (−𝑘𝑣). 𝑝 𝑣, 𝑡 𝑉*, 𝑡* − ! !( [ + , . [𝜎, . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)] š Again no real surprise there, this is to be expected since ! !$ 7𝑏 𝑡, 𝑉 𝑡 = 0 š So : š 𝑎 𝑣, 𝑡 = 6𝑎 𝑣, 𝑡 + + , . 7𝑏 𝑣, 𝑡 . ! !$ 7𝑏 𝑣, 𝑡 = 6𝑎 𝑣, 𝑡 š 𝑏 𝑣, 𝑡 = 7𝑏 𝑣, 𝑡 š So both ITO and STRATO are equivalent for homogeneous diffusion coefficients 9
  • 10. Luc_Faucheux_2020 A useful example – Langevin - VI š Let us know look at a function of the velocity, in both ITO and STRATO š We will look at the kinetic energy 𝜉 = -(" , š Because this function is NOT a linear function of the velocity, we would expect to observe a divergence between the ITO and the STRATO treatments š Let us show that either one you choose, you will still get the same PDE and same PDF, as long as you are consistent within your choice (if you choose ITO, you have to use ITO lemma) 10
  • 11. Luc_Faucheux_2020 A useful example – Langevin - VII š Let’s use ITO interpretation and ITO calculus and ITO lemma š 𝑑𝑉 𝑡 = 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 𝑏 𝑉 𝑡 , 𝑡 . [ . 𝑑𝑊(𝑡) = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. ([). 𝑑𝑊 š Note: from time to time we need to remember ourselves that this is really: š We really are writing an SIE, because random processes are NOT differentiable š 𝑉 𝑡. − 𝑉 𝑡* = ∫&/&* &/&. 𝑑𝑉 𝑡 = ∫&/&* &/&. 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + ∫&/&* &/&. 𝑏 𝑉 𝑡 , 𝑡 . ([). 𝑑𝑊(𝑡) š 𝑉 𝑡. − 𝑉 𝑡* = ∫&/&* &/&. 𝑑𝑉 𝑡 = ∫&/&* &/&. (−𝑘𝑉(𝑡)). 𝑑𝑡 + ∫&/&* &/&. 𝜎. ([). 𝑑𝑊(𝑡) š 𝜉 = -(" , š ITO lemma is given by: š 𝑓 𝑉 𝑡. − 𝑓 𝑉 𝑡* = ∫&/&* &/&. !0 !( . ([). 𝑑𝑉(𝑡) + + , ∫&/&* &/&. !"1 !(" . 𝑑𝑉 𝑡 , + ∫&/&* &/&. !0 !& . 𝑑𝑡 11
  • 12. Luc_Faucheux_2020 A useful example – Langevin - VIII š 𝑑𝑓 = !0 !( . [ . 𝑑𝑉 + + , . !"1 !(" . 𝑑𝑉, š Let’s apply this to the energy: š 𝜉 = -(" , š !2 !( = 𝑚𝑉 š !"2 !(" = 𝑚 š !2 !& = 0 š 𝑑𝜉 = 𝑚𝑉. [ . 𝑑𝑉 + + , . 𝑚. 𝜎, 𝑑𝑡 = 𝑚𝑉. [ . (−𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. ([). 𝑑𝑊) + + , . 𝑚. 𝜎, 𝑑𝑡 š 𝑑𝜉 = −𝑘𝑚𝑉,. 𝑑𝑡 + 𝑚𝑉 𝜎. ([). 𝑑𝑊 + + , . 𝑚. 𝜎, 𝑑𝑡 12
  • 13. Luc_Faucheux_2020 A useful example – Langevin - IX š 𝑑𝜉 = −𝑘𝑚𝑉,. 𝑑𝑡 + 𝑚𝑉 𝜎. ([). 𝑑𝑊 + + , . 𝑚. 𝜎, 𝑑𝑡 š Expressing this equation in terms of 𝜉 = -(" , š 𝑑𝜉 = −2𝑘𝜉,. 𝑑𝑡 + + , . 𝑚. 𝜎, 𝑑𝑡 + 𝜎 2𝑚𝜉. [ . 𝑑𝑊 š Of the form: š 𝑑𝜉 = 𝑎 𝜉, 𝑡 . 𝑑𝑡 + 𝑏 𝜉, 𝑡 . [ . 𝑑𝑊 š With š 𝑎 𝜉, 𝑡 = −2𝑘𝜉, + + , . 𝑚. 𝜎, š 𝑏 𝜉, 𝑡 = 𝜎 2𝑚𝜉 š 𝑏 𝜉, 𝑡 , = 2𝑚𝜉𝜎, 13
  • 14. Luc_Faucheux_2020 A useful example – Langevin - X š So the PDF for the energy should follow the ITO FORWARD PDE: š !"(2,&|3!,&!) !& = − ! !2 𝑎 𝜉 𝑡 , 𝑡 . 𝑝 𝜉, 𝑡 𝜉*, 𝑡* − ! !2 [ + , . [𝑏(𝜉 𝑡 , 𝑡), . 𝑝(𝜉, 𝑡|𝜉*, 𝑡*)] š !" !& = − ! !2 (−2𝑘𝜉, + + , 𝑚𝜎,). 𝑝 − ! !2 [𝑚𝜉𝜎,. 𝑝] 14
  • 15. Luc_Faucheux_2020 A useful example – Langevin - XI š Let’s use STRATO interpretation and STRATO calculus and STRATO lemma š 𝑑𝑉 𝑡 = 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + 𝑏 𝑉 𝑡 , 𝑡 . ∘ . 𝑑𝑊(𝑡) = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. (∘). 𝑑𝑊(𝑡) š Note: from time to time we need to remember ourselves that this is really: š We really are writing an SIE, because random processes are NOT differentiable š 𝑉 𝑡. − 𝑉 𝑡* = ∫&/&* &/&. 𝑑𝑉 𝑡 = ∫&/&* &/&. 𝑎 𝑉 𝑡 , 𝑡 . 𝑑𝑡 + ∫&/&* &/&. 𝑏 𝑉 𝑡 , 𝑡 . (∘). 𝑑𝑊(𝑡) š 𝑉 𝑡. − 𝑉 𝑡* = ∫&/&* &/&. 𝑑𝑉 𝑡 = ∫&/&* &/&. (−𝑘𝑉(𝑡)). 𝑑𝑡 + ∫&/&* &/&. 𝜎. (∘). 𝑑𝑊(𝑡) š 𝜉 = -(" , š STRATO lemma is given by: š 𝑓 𝑉 𝑡. − 𝑓 𝑉 𝑡* = ∫&/&* &/&. !0 !( . (∘). 𝑑𝑉(𝑡) + ∫&/&* &/&. !0 !& . 𝑑𝑡 15
  • 16. Luc_Faucheux_2020 A useful example – Langevin - XII š 𝑑𝑓 = !0 !( . ∘ . 𝑑𝑉 š Let’s apply this to the energy: š 𝜉 = -(" , š !2 !( = 𝑚𝑉 š !2 !& = 0 š 𝑑𝜉 = 𝑚𝑉. ∘ . 𝑑𝑉 = 𝑚𝑉. ∘ . (−𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. (∘). 𝑑𝑊) š 𝑑𝜉 = −𝑘𝑚𝑉,. 𝑑𝑡 + 𝑚𝑉𝜎. (∘). 𝑑𝑊 16
  • 17. Luc_Faucheux_2020 A useful example – Langevin - XIII š 𝑑𝜉 = −𝑘𝑚𝑉,. 𝑑𝑡 + 𝑚𝑉𝜎. (∘). 𝑑𝑊 š Expressing this equation in terms of 𝜉 = -(" , š 𝑑𝜉 = −2𝑘𝜉,. 𝑑𝑡 + 𝜎 2𝑚𝜉. ∘ . 𝑑𝑊 š Remember this is really writing: š 𝜉 𝑡. − 𝜉 𝑡* = ∫&/&* &/&. 𝑑𝜉 𝑡 = ∫&/&* &/&. (−2𝑘𝜉,). 𝑑𝑡 + ∫&/&* &/&. 𝜎 2𝑚𝜉. (∘). 𝑑𝑊(𝑡) š This has the form: 𝑑𝜉 𝑡 = 6𝑎 𝜉 𝑡 , 𝑡 . 𝑑𝑡 + 7𝑏 𝜉 𝑡 , 𝑡 . (∘). 𝑑𝑊 š With : 6𝑎 𝜉, 𝑡 = (−2𝑘𝜉,) š 7𝑏 𝜉, 𝑡 = 𝜎 2𝑚𝜉 š And: ! !2 7𝑏 𝜉, 𝑡 = 𝜎 2𝑚𝜉. + , . 𝜉4+ 17
  • 18. Luc_Faucheux_2020 A useful example – Langevin - XIV š This implies that the PDF for the energy follows the FORWARD STRATO Kolmogorov PDE š !"(2,&|2!,&!) !& = − ! !2 9 : 6𝑎 𝜉, 𝑡 . 𝑝 𝑥, 𝑡 𝜉*, 𝑡* + + , . 7𝑏 𝜉, 𝑡 . ! !2 7𝑏 𝜉, 𝑡 . 𝑝 𝑥, 𝑡 𝜉*, 𝑡* − ! !2 [ + , . [7𝑏(𝜉, 𝑡), . 𝑝(𝜉, 𝑡|𝜉*, 𝑡*)] š !" !& = − ! !2 6𝑎𝑝 + + , . 7𝑏. ! !2 7𝑏. 𝑝 − ! !2 ( + , 7𝑏, . 𝑝) š !" !& = − ! !2 −2𝑘𝜉, 𝑝 + + , . 𝜎 2𝑚𝜉. ! !2 (𝜎 2𝑚𝜉). 𝑝 − ! !2 ( + , 𝜎, 2𝑚𝜉 , . 𝑝) š !" !& = − ! !2 −2𝑘𝜉, 𝑝 + + , . 𝜎, 2𝑚 𝜉. ! !2 ( 𝜉). 𝑝 − ! !2 (𝑚𝜎, 𝜉𝑝) š !" !& = − ! !2 −2𝑘𝜉, 𝑝 + + , . 𝜎, 𝑚. 𝑝 − ! !2 (𝑚𝜎, 𝜉𝑝) 18
  • 19. Luc_Faucheux_2020 A useful example – Langevin - XV š Now by construction the STRATO PDF and the ITO PDF should be the same š ITO: !" !& = − ! !2 (−2𝑘𝜉, + + , 𝑚𝜎,). 𝑝 − ! !2 [𝑚𝜉𝜎,. 𝑝 š STRATO: !" !& = − ! !2 −2𝑘𝜉, 𝑝 + + , . 𝜎, 𝑚. 𝑝 − ! !2 (𝑚𝜎, 𝜉𝑝) š There is no surprise there, we are getting the same result. If we start with a well defined equation (using one convention and sticking with it), we are free to apply non-linear transformations to the variable. š We are just proving that the results are consistent. š There is an advantage in using STRATO in that the formal rules of calculus are formally preserved, so we should be able to map the PDF for the velocity into the PDF for the energy. š This is a neat trick that we can apply from time to time (Van Kampen page 194), put yourself in Stratonovitch calculus, where you have convinced yourself that you can apply (formally) the usual rules of calculus, and derive the PDE 19
  • 21. Luc_Faucheux_2020 Langevin Auto Correlation function š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊 š Let’s define 7𝑉 𝑡 = exp 𝑘𝑡 . 𝑉(𝑡) š 𝑑 7𝑉 = !5( !( . [ . 𝑑𝑉 + + , . !"5( !(" . 𝑑𝑉, + !5( !& . [ . 𝑑𝑡 š !5( !& = 𝑘𝑡. 𝑉 𝑡 š !5( !( = exp(𝑘𝑡) š !"5( !(" = 0 š 𝑑 7𝑉 = exp 𝑘𝑡 . ([). 𝑑𝑉 + 𝑘𝑡. 𝑉 𝑡 . ([). 𝑑𝑡 š 𝑑 7𝑉 = exp 𝑘𝑡 . ([). (−𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊) + 𝑘𝑡. 𝑉 𝑡 . ([). 𝑑𝑡 = exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 21
  • 22. Luc_Faucheux_2020 Langevin Auto Correlation function - II š 𝑑 7𝑉 = exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 š Which we should really write as an SIE anyways: š 7𝑉 𝑡. − 7𝑉 𝑡* = ∫&/&* &/&. 𝑑 7𝑉 𝑡 = ∫&/&* &/&. exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊(𝑡) š exp 𝑘𝑡. . 𝑉 𝑡. − exp 𝑘𝑡* . 𝑉 𝑡* = ∫&/&* &/&. exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊(𝑡) š 𝑉 𝑡. = exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&* &/&. exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 } š In stochastic processes, and especially regarding physical systems, it is quite useful to define and use the autocorrelation function: If it includes the variance it is also referred to as the auto-covariance function. If normalized by the variance, it is the auto-correlation. š 𝐶 𝑡., 𝑡* = < 𝑉 𝑡. − < 𝑉 𝑡. > . 𝑉 𝑡* − < 𝑉 𝑡* > > š 𝐶 𝑡., 𝑡* = 𝔌{[𝑉 𝑡. − 𝔌{𝑉 𝑡. }]. { 𝑉 𝑡* − 𝔌 𝑉 𝑡* } 22
  • 23. Luc_Faucheux_2020 Langevin Auto Correlation function -III š When 𝑡. = 𝑡* this is the expectation of the second moment: š 𝐶 𝑡., 𝑡. = < 𝑉 𝑡. − < 𝑉 𝑡. > , > š From the deck on PDE: š !"(6,&) !& = − ! !6 [𝑀+ 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 − ! !6 [𝑀, 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 ]] š Looking at a random process 𝑋(𝑡) such that 𝑝 𝑥, 𝑡 = 𝛿(𝑥 − 𝑋 𝑡 ) š < ∆𝑋 > = 𝐞 ∆𝑋 =< 𝑥 >&7∆& −< 𝑥 >&= 𝐹+ 𝑋 𝑡 , 𝑡 . ∆𝑡 (drift term) š < ∆𝑋,> = 𝐞 ∆𝑋, =< (𝑥−< 𝑥 >&7∆&),>&7∆& = 𝐹, 𝑋 𝑡 , 𝑡 . ∆𝑡 (diffusion term) š We showed that 𝐹+ 𝑋 𝑡 , 𝑡 = 𝑀+ 𝑋 𝑡 , 𝑡 and 𝐹, 𝑋 𝑡 , 𝑡 = 2. 𝑀, 𝑋 𝑡 , 𝑡 š !"($,&|$9,&9) !& = − ! !$ [𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡|𝑣𝑜, 𝑡𝑜 − ! !$ [𝑀, 𝑣, 𝑡 . 𝑝 𝑥, 𝑡|𝑣𝑜, 𝑡𝑜 ]] 23
  • 24. Luc_Faucheux_2020 Langevin Auto Correlation function -IV š We know that the velocity follows the following PDE: š !"($,&|$9,&9) !& = − ! !$ (−𝑘𝑣). 𝑝 𝑣, 𝑡 𝑣𝑜, 𝑡𝑜 − ! !$ [ + , . [𝜎, . 𝑝(𝑣, 𝑡|𝑣𝑜, 𝑡𝑜)] š So: š 𝐶 𝑡 + ∆𝑡, 𝑡 + ∆𝑡 = < 𝑉 𝑡 + ∆𝑡 − < 𝑉 𝑡 + ∆𝑡 > , > = 2. 𝑀, 𝑣 𝑡 , 𝑡 . ∆𝑡 = 𝜎,. ∆𝑡 š Since: š 𝑉 𝑡. = exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&* &/&. exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 } š 𝐶 𝑡., 𝑡* = < 𝑉 𝑡. − < 𝑉 𝑡. > . 𝑉 𝑡* − < 𝑉 𝑡* > > š 𝐶 𝑡., 𝑡* = 𝔌{[𝑉 𝑡. − 𝔌{𝑉 𝑡. }]. { 𝑉 𝑡* − 𝔌 𝑉 𝑡* } š 𝔌 𝑉 𝑡. = 𝔌{exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&* &/&. exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 }} š 𝔌 𝑉 𝑡. = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡* since the ITO integral is a martingale 24
  • 25. Luc_Faucheux_2020 Langevin Auto Correlation function -V š 𝐶 𝑡., 𝑡* = 𝔌{[𝑉 𝑡. − 𝔌{𝑉 𝑡. }]. { 𝑉 𝑡* − 𝔌 𝑉 𝑡* } š 𝐶 𝑡., 𝑡* = 𝔌{[𝑉 𝑡. − 𝔌{𝑉 𝑡* }]. { 𝑉 𝑡* − 𝔌 𝑉 𝑡* } š 𝐶 𝑡., 𝑡* = 𝔌 𝑉 𝑡. . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* − 𝔌 𝑉 𝑡. . 𝔌 𝑉 𝑡* + 𝔌 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* š 𝐶 𝑡., 𝑡* = 𝔌 𝑉 𝑡. . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡. + 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* š 𝐶 𝑡., 𝑡* = 𝔌 𝑉 𝑡. . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡. + 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* š 𝐶 𝑡., 𝑡* = 𝔌 𝑉 𝑡. . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡. š 𝑉 𝑡. = exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&* &/&. exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 } š 𝔌 𝑉 𝑡. . 𝑉 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡* . 𝑉 𝑡* 25
  • 26. Luc_Faucheux_2020 Langevin Auto Correlation function -VI š 𝔌 𝑉 𝑡. . 𝑉 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡* . 𝑉 𝑡* š 𝔌 𝑉 𝑡. = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡* š 𝐶 𝑡., 𝑡* = 𝔌 𝑉 𝑡. . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡. š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . {𝔌 𝑉 𝑡* . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* } š 𝔌 𝑉 𝑡. = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡* š So as 𝑡. → ∞, 𝔌 𝑉 𝑡. → 0 š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . {𝔌 𝑉 𝑡* . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* } š 𝐶 𝑡, 𝑡 = {𝔌 𝑉 𝑡 . 𝑉 𝑡 − 𝔌 𝑉 𝑡 . 𝔌 𝑉 𝑡 } 26
  • 27. Luc_Faucheux_2020 Langevin Auto Correlation function -VII š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . {𝔌 𝑉 𝑡* . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* } š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . [𝔌 𝑉 𝑡* , − 𝔌 𝑉 𝑡* ,] š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡* , − 𝔌 𝑉 𝑡* , š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 (𝑉 𝑡* − 𝔌 𝑉 𝑡* ), š 𝐶 𝑡, 𝑡 = {𝔌 𝑉 𝑡 . 𝑉 𝑡 − 𝔌 𝑉 𝑡 . 𝔌 𝑉 𝑡 } š 𝑉 𝑡. = exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&* &/&. exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 } š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝐶 𝑡*, 𝑡* š In particular to help the notation, with 𝑡* = 0 and 𝑡. = 𝑡 š 𝐶 𝑡, 0 = exp −𝑘𝑡 . 𝐶 0,0 š < 𝑉 𝑡 . 𝑉 0 > = < 𝑉(0), >. exp(−𝑘𝑡) 27
  • 28. Luc_Faucheux_2020 Langevin Auto Correlation function -VIII š Note that the Langevin process is a Markov process (no memory). š HOWEVER, that does not mean zero correlation š Markov really means that š 𝑃( 𝑉 𝑡 + ℎ ≀ 𝑣 𝑉 𝑠 , 𝑠 ≀ 𝑡 = 𝑃( 𝑉 𝑡 + ℎ ≀ 𝑣 𝑉 𝑡 š For comparison, a Brownian process (Wiener) is such that: š 𝔌 𝑊 𝑡. . 𝑊 𝑡* = min 𝑡., 𝑡* š 𝔌 𝑊 𝑡 . 𝑊 𝑡 = 𝑡 š In some weird ways you can say that the Brownian motion is more strongly correlated than the Langevin process. 28
  • 29. Luc_Faucheux_2020 Langevin Auto Correlation function - X š Another useful formula on the auto-correlation by expressly keeping the stochastic forcing š 𝑉 𝑡. = exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&* &/&. exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 } š In particular: š 𝑉 𝑡 = exp −𝑘𝑡 . {𝑉 0 + ∫:/; :/& exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 } š 𝑉 𝑡 = exp −𝑘𝑡 . {exp −𝑘∞ . 𝑉 −∞ + ∫:/4< :/& exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 } š 𝑉 𝑡 = exp −𝑘𝑡 . ∫:/4< :/& exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 š 𝑉 0 = ∫:/4< :/; exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 š 𝑉 𝑡 . 𝑉 0 = exp −𝑘𝑡 . ∫:/4< :/& exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 . ∫:=/4< :=/; exp 𝑘𝑠′ . 𝜎. ([). 𝑑𝑊 𝑠′ 29
  • 30. Luc_Faucheux_2020 Langevin Auto Correlation function - XI š 𝑉 𝑡 . 𝑉 0 = exp −𝑘𝑡 . ∫:/4< :/& exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 . ∫:=/4< :=/; exp 𝑘𝑠′ . 𝜎. ([). 𝑑𝑊 𝑠′ š 𝑉 𝑡 . 𝑉 0 = exp −𝑘𝑡 . ∫:=/4< :=/; ∫:/4< :/& exp 𝑘𝑠 . exp 𝑘𝑠′ . 𝜎,. ([). 𝑑𝑊 𝑠 . ([). 𝑑𝑊 𝑠′ š < 𝑉 𝑡 . 𝑉 0 >= exp −𝑘𝑡 . ∫:=/4< :=/; ∫:/4< :/& exp 𝑘𝑠 . exp 𝑘𝑠= . 𝜎,. ([). < 𝑑𝑊 𝑠 . ([). 𝑑𝑊 𝑠= > š < 𝑑𝑊 𝑠 . ([). 𝑑𝑊 𝑠= > = 𝑑𝑠. 𝛿(𝑠 − 𝑠=) š < 𝑉 𝑡 . 𝑉 0 >= exp −𝑘𝑡 . ∫:/4< :/; exp 2𝑘𝑠 . 𝜎,. 𝑑𝑠 š < 𝑉 𝑡 . 𝑉 0 >= exp −𝑘𝑡 . ∫:/4< :/; exp 2𝑘𝑠 . 𝜎,. 𝑑𝑠 š < 𝑉 𝑡 . 𝑉 0 >= exp −𝑘𝑡 . >" ,? š And we had before: < 𝑉 𝑡 . 𝑉 0 > = < 𝑉(0), >. exp(−𝑘𝑡) š So < 𝑉(0), > = >" ,? 30
  • 31. Luc_Faucheux_2020 Langevin Auto Correlation function - X š Let’s also now look at < 𝑉 𝑡 . 𝑉 𝑡 > š 𝑉 𝑡 = exp −𝑘𝑡 . {𝑉 0 + ∫:/; :/& exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 } š 𝑉 𝑡 . 𝑉 𝑡 = exp −2𝑘𝑡 . {𝑉 0 + ∫:/; :/& exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 } , š 𝑉 𝑡 . 𝑉 𝑡 = exp −2𝑘𝑡 . {𝑉 0 , + 2. 𝑉 0 . ∫:/; :/& exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 + ∫:/; :/& 𝑒?:. 𝜎. ([). 𝑑𝑊 𝑠 . ∫:/; :/& 𝑒?:. 𝜎. ([). 𝑑𝑊 𝑠 } š 𝑉 𝑡 . 𝑉 𝑡 = exp −2𝑘𝑡 . {𝑉 0 , + 2. 𝑉 0 . ∫:/; :/& 𝑒?:. 𝜎. ([). 𝑑𝑊 𝑠 + ∫:/; :/& ∫:=/; :=/& 𝑒?:# . 𝑒?:. 𝜎,. ([). 𝑑𝑊 𝑠 . ([). 𝑑𝑊 𝑠′ } š We then take the average and use the fact that the ITO integral is a martingale š < ∫:/; :/& exp 𝑘𝑠 . 𝜎. ([). 𝑑𝑊 𝑠 > = 0 31
  • 32. Luc_Faucheux_2020 Langevin Auto Correlation function - XI š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . {< 𝑉 0 , > + ∫:/; :/& ∫:=/; :=/& 𝑒?:# . 𝑒?:. 𝜎,. ([). < 𝑑𝑊 𝑠 . ([). 𝑑𝑊 𝑠= >} š And we also use the fact that for a Wiener (Brownian process) the increments are independents: š < 𝑑𝑊 𝑠 . ( . 𝑑𝑊 𝑠= > = 𝛿 𝑠 − 𝑠= . 𝑑𝑠 š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . {< 𝑉 0 , > + ∫:/; :/& 𝑒?:. 𝑒?:. 𝜎,. 𝑑𝑠} š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . {< 𝑉 0 , > + ∫:/; :/& 𝑒,?:. 𝜎,. 𝑑𝑠} š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . {< 𝑉 0 , > +𝜎,. @"$% ,? :/; :/& } š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . {< 𝑉 0 , > +𝜎,. @"$&4+ ,? } 32
  • 33. Luc_Faucheux_2020 Langevin Auto Correlation function - XII š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . {< 𝑉 0 , > +𝜎,. @"$&4+ ,? } š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . {< 𝑉 0 , >} + 𝜎,. +4@'"$& ,? š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . < 𝑉 0 , > + >" ,? . [1 − 𝑒4,?&] š Or alternatively š < 𝑉 𝑡 . 𝑉 𝑡 > = exp −2𝑘𝑡 . [< 𝑉 0 , > − >" ,? ] + >" ,? š < 𝑉 ∞ . 𝑉 ∞ > = >" ,? š < 𝑉 𝑡 , > = < 𝑉 ∞ , > + exp −2𝑘𝑡 . [< 𝑉 0 , > −< 𝑉 ∞ , >] 33
  • 34. Luc_Faucheux_2020 From the Langevin equation to the particle diffusion 34
  • 35. Luc_Faucheux_2020 From Langevin (velocity) to particle diffusion (position) š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . {𝔌 𝑉 𝑡* . 𝑉 𝑡* − 𝔌 𝑉 𝑡* . 𝔌 𝑉 𝑡* } š 𝐶 𝑡., 𝑡* = exp −𝑘. 𝑡. . exp 𝑘. 𝑡* . 𝐶 𝑡*, 𝑡* š Let us now tie this with the diffusion of a particle: š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊 š The position of the particle is then given by : š 𝑋 𝑡 − 𝑋 𝑡* = ∫&#/&* &#/& 𝑉 𝑡= . 𝑑𝑡′ with 𝑉 𝑡 = A A& . 𝑋(𝑡) š Let’s calculate š 𝐎 = A A& < (𝑋 𝑡 − 𝑋 𝑡* ),> = A A& 𝔌 (𝑋 𝑡 − 𝑋 𝑡* ), š 𝐎 = A A& < 2. A A& 𝑋 𝑡 − 𝑋 𝑡* . (𝑋 𝑡 − 𝑋 𝑡* ) > 35
  • 36. Luc_Faucheux_2020 From Langevin (velocity) to particle diffusion (position) - II š 𝐎 = < 2. A A& 𝑋 𝑡 − 𝑋 𝑡* . (𝑋 𝑡 − 𝑋 𝑡* ) > š 𝐎 = < 2. 𝑉(𝑡). (𝑋 𝑡 − 𝑋 𝑡* ) > š 𝐎 = < 2. 𝑉(𝑡). ∫&#/&* &#/& 𝑉 𝑡= . 𝑑𝑡′ > š 𝐎 = < ∫&#/&* &#/& 2. 𝑉 𝑡 . 𝑉 𝑡= . 𝑑𝑡′ > š 𝐎 = ∫&#/&* &#/& < 2. 𝑉 𝑡 . 𝑉 𝑡= >. 𝑑𝑡′ š A A& < (𝑋 𝑡 − 𝑋 𝑡* ),> = ∫&#/&* &#/& < 2. 𝑉 𝑡 . 𝑉 𝑡= >. 𝑑𝑡′ š And from the Langevin auto correlation function: š 𝐶 𝑡., 𝑡* = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝐶 𝑡*, 𝑡* 36
  • 37. Luc_Faucheux_2020 From Langevin (velocity) to particle diffusion (position) - III š This is where the physics comes in (note that we are just glancing over it). š We could: š Derive the SIE for 𝑋(𝑡) š Derive the PDE, solve for the PDF (in the other deck we do it through the neat trick of Fourier transform) š Look at overdamped – underdamped regime š Take the steady state limit š Show that this converges indeed towards the usual diffusion equation. š But we can also ”define” the diffusion coefficient in space as: š A A& < (𝑋 𝑡 − 𝑋 𝑡* ),> = ∫&#/&* &#/& < 2. 𝑉 𝑡 . 𝑉 𝑡= >. 𝑑𝑡′ = 2𝐷3 š Note: not to be confused with the diffusion coefficient in the velocity space 37
  • 38. Luc_Faucheux_2020 From Langevin (velocity) to particle diffusion (position) - IV š A A& < (𝑋 𝑡 − 𝑋 𝑡* ),> = ∫&#/&* &#/& < 2. 𝑉 𝑡 . 𝑉 𝑡= >. 𝑑𝑡′ = 2𝐷3 š With 𝐷3 = 𝐷3(𝑡, 𝑡*, . . ) š In the steady-state limit we assume that 𝐷3 is a constant š ∫&#/4< &#/& < 2. 𝑉 𝑡 . 𝑉 𝑡= >. 𝑑𝑡′ = 2𝐷3 š 𝐷3 = ∫&#/4< &#/& < 2. 𝑉 𝑡 . 𝑉 𝑡= >. 𝑑𝑡′ = ∫:/; :/< < 𝑉 𝑠 . 𝑉 0 >. 𝑑𝑠 using 𝑠 = 𝑡 − 𝑡′ š 𝐷3 = ∫:/; :/< < 𝑉 𝑠 . 𝑉 0 >. 𝑑𝑠 š and we had: š < 𝑉 𝑠 . 𝑉 0 > = < 𝑉(0), >. exp −𝑘𝑠 = >" ,? . exp −𝑘𝑠 38
  • 39. Luc_Faucheux_2020 From Langevin (velocity) to particle diffusion (position) - V š 𝐷3 = ∫:/; :/< < 𝑉 𝑠 . 𝑉 0 >. 𝑑𝑠 š 𝐷3 = ∫:/; :/< >" ,? . exp −𝑘𝑠 . 𝑑𝑠 = >" ,? . + ? =< 𝑉(0), >. + ? š In the steady state of the physical process that is diffusion of a particle in a thermal bath: š + , 𝑀 < 𝑉(0), >= + , 𝐟B. 𝑇 š Where (and for now we can just take those as almost formal definitions): š 𝑀 is the mass of the particle š 𝐟B is a constant (the Boltzmann constant) š 𝑇 is the temperature of the surrounding fluid 39
  • 40. Luc_Faucheux_2020 From Langevin (velocity) to particle diffusion (position) - VI š So we get if we want the Langevin equation to accurately describe the diffusion of a particle, at least in the steady state limit š (note, in another deck we will go through the actual full derivation of the PDF for the particle diffusion from the Langevin, and justify the steady state limit as the correct approximation) š 𝐷3 = C(D E? = >" ,?" š This is an illustration of the celebrated fluctuation-dissipation theorem š If we choose for the viscous damping the Stokes equation: š 𝑘 = FGHI E , where the particle is a sphere of radius 𝑅 in a fluid of steady state viscosity 𝜂 š We then obtain the Einstein (1905) equation: 𝐷3 = C(D E? = C(D FGHI š That was verified experimentally by the illustrious Frenchman Jean Perrin in 1908 40
  • 41. Luc_Faucheux_2020 From Langevin (velocity) to particle diffusion (position) - VII š This section did pack a lot and did not go into the details of actually deriving the PDF for the particle position from the PDF from the velocity, or from any other way (from SIE or PDE). š That will be for another deck š This section was more to illustrate how central is the Langevin equation in Physics š The same way that it should be in Finance, as the underlying dynamics for Black-Sholes, the GBM (Geometric Brownian motion) suffers from not only allowing only positive security prices, but also exhibits unstable dynamics (higher moments will diverge). š For many securities (in particular rates, which are already the derivative of something like the velocity is to the particle position), a Langevin approach is more favored (or should be). š Salomon Brothers in the 1970 had already a Langevin approach using more than one factor (hence the name 2+), with factor correlation and a skew function famously known as IRMA. They were quite ahead of their time, as most of the market kept on using multiple tweaks on Black-Sholes to try to make it work in a satisfactory manner 41
  • 43. Luc_Faucheux_2020 Langevin equation – dynamics of moments š In the deck (II), we looked at moments from the FP: š !"($,&) !& = − ! !$ [𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 − ! !$ [𝑀, 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 ]] š Really in terms of notation to highlight the fact that this is a FORWARD FP: š !"($,&|$;,&;) !& = − ! !$ [𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡|𝑣0, 𝑡0 − ! !$ [𝑀, 𝑣, 𝑡 . 𝑝 𝑣, 𝑡|𝑣𝑜, 𝑡𝑜 ]] š 𝑚J 𝑣, 𝑡 =< 𝑉J >&= ∫4< 7< 𝑝 𝑣, 𝑡 . 𝑣J. 𝑑𝑣 š We showed in deck II that by integration by part: š 𝐌, 𝑛 = ∫4< 7< 𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 𝑛. 𝑣J4+. 𝑑𝑣 + ∫4< 7< 𝑀, 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 𝑛. (𝑛 − 1). 𝑣J4,. 𝑑𝑣 š A A& . 𝑚J 𝑣, 𝑡 = 𝐌, 𝑛 š A A& . 𝑚; 𝑣, 𝑡 = 0 since the probability 𝑚; 𝑣, 𝑡 = ∫4< 7< 𝑝 𝑣, 𝑡 . 𝑑𝑣 is conserved 43
  • 44. Luc_Faucheux_2020 Langevin equation – dynamics of moments - II š For the Langevin case: š !"($,&|$;,&;) !& = − ! !$ [𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡|𝑣0, 𝑡0 − ! !$ [𝑀, 𝑣, 𝑡 . 𝑝 𝑣, 𝑡|𝑣𝑜, 𝑡𝑜 ]] š !"($,&|(!,&!) !& = − ! !$ (−𝑘𝑣). 𝑝 𝑣, 𝑡 𝑉*, 𝑡* − ! !$ [ + , . [𝜎, . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)] š 𝑀+ 𝑣, 𝑡 = −𝑘𝑣 š 𝑀, 𝑣, 𝑡 = + , . 𝜎, š A A& . 𝑚+ 𝑣, 𝑡 = 𝐌, 1 = ∫4< 7< 𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 𝑑𝑣 = ∫4< 7< (−𝑘𝑣). 𝑝 𝑣, 𝑡 . 𝑑𝑣 š A A& . 𝑚+ 𝑣, 𝑡 = ∫4< 7< −𝑘𝑣 . 𝑝 𝑣, 𝑡 . 𝑑𝑣 = −𝑘. ∫4< 7< 𝑣. 𝑝 𝑣, 𝑡 . 𝑑𝑣 = −𝑘. 𝑚+ 𝑣, 𝑡 44
  • 45. Luc_Faucheux_2020 Langevin equation – dynamics of moments - III š A A& . 𝑚+ 𝑣, 𝑡 = −𝑘. 𝑚+ 𝑣, 𝑡 š 𝑚+ 𝑣, 𝑡 = 𝑚+ 𝑣, 0 . exp(−𝑘𝑡) š < 𝑉 >& = < 𝑉 𝑡 > = < 𝑉 0 >. exp(−𝑘𝑡) š This is also what we had from an explicit formulation of the Langevin equation: š 𝔌 𝑉 𝑡. = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡* š So as 𝑡. → ∞, 𝔌 𝑉 𝑡. → 0 š From: š 𝑉 𝑡. = exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&* &/&. exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 } 45
  • 46. Luc_Faucheux_2020 Langevin equation – dynamics of moments - IV š A A& . 𝑚, 𝑣, 𝑡 = 𝐌, 2 š 𝐌, 𝑛 = ∫4< 7< 𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 𝑛. 𝑣J4+. 𝑑𝑣 + ∫4< 7< 𝑀, 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 𝑛. (𝑛 − 1). 𝑣J4,. 𝑑𝑣 š A A& . 𝑚, 𝑣, 𝑡 = ∫4< 7< 𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 2𝑣. 𝑑𝑣 + ∫4< 7< 𝑀, 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 2. 𝑑𝑣 š 𝑀+ 𝑣, 𝑡 = −𝑘𝑣 š 𝑀, 𝑣, 𝑡 = + , . 𝜎, š A A& . 𝑚, 𝑣, 𝑡 = ∫4< 7< (−𝑘𝑣). 𝑝 𝑣, 𝑡 . 2𝑣. 𝑑𝑣 + ∫4< 7< ( + , . 𝜎, ). 𝑝 𝑣, 𝑡 . 2. 𝑑𝑣 š A A& . 𝑚, 𝑣, 𝑡 = −2𝑘 ∫4< 7< 𝑝 𝑣, 𝑡 . 𝑣,. 𝑑𝑣 + 𝜎, ∫4< 7< 𝑝 𝑣, 𝑡 . 𝑑𝑣 š A A& . 𝑚, 𝑣, 𝑡 = −2𝑘. 𝑚, 𝑣, 𝑡 + 𝜎,. 𝑚; 𝑣, 𝑡 = −2𝑘. 𝑚, 𝑣, 𝑡 + 𝜎, 46
  • 47. Luc_Faucheux_2020 Langevin equation – dynamics of moments - V š A A& . 𝑚, 𝑣, 𝑡 = −2𝑘. 𝑚, 𝑣, 𝑡 + 𝜎, š A A& . 𝑚, 𝑣, 𝑡 + 2𝑘. 𝑚, 𝑣, 𝑡 = 𝜎, š We choose to write using the separation of variables method: š 𝑚, 𝑣, 𝑡 = 𝑛, 𝑡 . exp(−2𝑘𝑡) š A A& 𝑛, 𝑡 . exp −2𝑘𝑡 + 𝑛, 𝑡 . −2𝑘 . 𝑒𝑥𝑝 −2𝑘𝑡 = −2𝑘. 𝑛, 𝑡 . exp(−2𝑘𝑡) + 𝜎, š A A& 𝑛, 𝑡 . exp −2𝑘𝑡 = 𝜎, š A A& 𝑛, 𝑡 = 𝜎,. exp 2𝑘𝑡 š 𝑛, 𝑡 = + ,? 𝜎,. exp 2𝑘𝑡 + 𝐶 š 𝑛, 𝑡 = + ,? 𝜎,. exp 2𝑘𝑡 + 𝑛, 0 − + ,? 𝜎, 47
  • 48. Luc_Faucheux_2020 Langevin equation – dynamics of moments - VI š 𝑛, 𝑡 = + ,? 𝜎,. exp 2𝑘𝑡 + 𝑛, 0 − + ,? 𝜎, š 𝑚, 𝑡 = 𝑛, 𝑡 . exp −2𝑘𝑡 = > ,? , + 𝑛, 0 − + ,? 𝜎, . exp −2𝑘𝑡 š And 𝑛, 0 = 𝑚, 0 š 𝑚, 𝑡 = > ,? , + 𝑚, 0 − + ,? 𝜎, . exp −2𝑘𝑡 š < 𝑉& , >& = < 𝑉 𝑡 , > = < 𝑉 0 , > − >" ,? . exp −2𝑘𝑡 + >" ,? š < 𝑉 𝑡 , > converges to >" ,? when 𝑡 → ∞ š This is also what we obtained when explicitly calculating the autocorrelation function. 48
  • 49. Luc_Faucheux_2020 Langevin equation – dynamics of moments - VII š We can also by recurrence get the higher moments: š 𝐌, 𝑛 = ∫4< 7< 𝑀+ 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 𝑛. 𝑣J4+. 𝑑𝑣 + ∫4< 7< 𝑀, 𝑣, 𝑡 . 𝑝 𝑣, 𝑡 . 𝑛. (𝑛 − 1). 𝑣J4,. 𝑑𝑣 š A A& . 𝑚J 𝑣, 𝑡 = 𝐌, 𝑛 š 𝑀+ 𝑣, 𝑡 = −𝑘𝑣 š 𝑀, 𝑣, 𝑡 = + , . 𝜎, š A A& . 𝑚J 𝑣, 𝑡 = ∫4< 7< (−𝑘𝑣). 𝑝 𝑣, 𝑡 . 𝑛. 𝑣J4+. 𝑑𝑣 + ∫4< 7< ( >" , ). 𝑝 𝑣, 𝑡 . 𝑛. (𝑛 − 1). 𝑣J4,. 𝑑𝑣 š A A& . 𝑚J 𝑣, 𝑡 = −𝑘. 𝑛. ∫4< 7< 𝑝 𝑣, 𝑡 . 𝑣J . 𝑑𝑣 + >" , . ∫4< 7< 𝑝 𝑣, 𝑡 . 𝑛. (𝑛 − 1). 𝑣J4,. 𝑑𝑣 š A A& . 𝑚J 𝑡 = −𝑘. 𝑛. 𝑚J 𝑡 + >" , . 𝑛. 𝑛 − 1 . 𝑚J4, 𝑡 49
  • 50. Luc_Faucheux_2020 Langevin equation – dynamics of moments - VIII š A A& . 𝑚J 𝑡 = −𝑘. 𝑚J 𝑡 + >" , . 𝑛. 𝑛 − 1 . 𝑚J4, 𝑡 š We can solve this by recurrence using the method of “variations of parameters” first originated by Joseph-Henri Lagrange (on the left) for ODE, then extended to PDE by Jean- Marie Duhamel on the right (born in Saint-Malo !) 50
  • 51. Luc_Faucheux_2020 Jean-Marie Duhamel was born in Saint-Malo ! š Saint Malo is just awesome. Many reasons why. In random order š It is the location for a #1 New York Times bestseller 51
  • 52. Luc_Faucheux_2020 Saint Malo is awesome - II š The Surcouf family is from Saint Malo. Robert was a renowned “corsair” (French pirate) who gave a lot of grief to the Beefeaters. The whole family were essentially pirates. 52
  • 53. Luc_Faucheux_2020 Saint Malo is awesome - III š Duguay-Trouin is also from Saint Malo. He was also a French corsair giving grief to the Brits (there is a pattern there) 53
  • 54. Luc_Faucheux_2020 Saint Malo is awesome - IV š Pierre Louis Maupertuis is from Saint Malo. He invented the “least action principle” in Physics. The principle can be used to derive Newtonian, Lagrangian and Hamiltonian equations of motion, and is fundamental to general relativity and Quantum mechanics š In the drawing below he is wearing appropriate attire for an expedition in Lapland (Sapmi) 54
  • 55. Luc_Faucheux_2020 Saint Malo is awesome - V š Jean-Baptiste Benard de la Harpe is from Saint Malo. He discovered Little Rock, Arkansas. We forgive him. 55
  • 56. Luc_Faucheux_2020 Saint Malo is awesome - VI š Jacques Cartier is from Saint Malo. He discovered Canada. Take that Jean-Baptiste Benard de la Harpe. 56
  • 57. Luc_Faucheux_2020 Saint Malo is awesome - VII š Colin Clive is also from Saint Malo. He was the doctor Frankenstein (on the right) 57
  • 58. Luc_Faucheux_2020 Saint Malo is awesome - VIII š It is a great place to watch a storm. 58
  • 59. Luc_Faucheux_2020 Variation of parameters method for first-order ODE š In the general case: š 𝑊= + 𝑝 𝑥 . 𝑊 = 𝑞(𝑥) š If 𝑞 𝑥 = 0 we then have: 𝑊= + 𝑝 𝑥 . 𝑊 = 0 š AK A6 = −𝑝 𝑥 . 𝑊 š AK K = 𝑑 ln 𝑊 = −𝑝 𝑥 . 𝑑𝑥 š ln 𝑊 = − ∫ 𝑝 𝑥 . 𝑑𝑥 + 𝐶 š Similar to the SIE formulation we write it as : š ln 𝑊 𝑥. − ln 𝑊 𝑥* = − ∫6/6* 6/6. 𝑝 𝑥 . 𝑑𝑥 š 𝑊 𝑥. = 𝑊 𝑥* . exp(− ∫6/6* 6/6. 𝑝 𝑥 . 𝑑𝑥) 59
  • 60. Luc_Faucheux_2020 Variation of parameters method for first-order ODE - II š If 𝑞 𝑥 <> 0 we then have: 𝑊= + 𝑝 𝑥 . 𝑊 = 𝑞 𝑥 š We choose: 𝑊 𝑥 = 𝐶(𝑥). exp(− ∫; 6 𝑝 𝑠 . 𝑑𝑠) š 𝑊= 𝑥 = 𝐶= 𝑥 . exp − ∫; 6 𝑝 𝑠 . 𝑑𝑠 + 𝐶 𝑥 . −𝑝 𝑥 . exp(− ∫; 6 𝑝 𝑠 . 𝑑𝑠) š 𝑊= 𝑥 = 𝐶= 𝑥 . exp − ∫; 6 𝑝 𝑠 . 𝑑𝑠 − 𝑝 𝑥 . 𝑊(𝑥) š So we get: 𝐶= 𝑥 . exp − ∫; 6 𝑝 𝑠 . 𝑑𝑠 = 𝑞 𝑥 š 𝐶= 𝑥 = exp ∫; 6 𝑝 𝑠 . 𝑑𝑠 . 𝑞 𝑥 š 𝐶 𝑥. − 𝐶 𝑥* = ∫6/6* 6/6. exp ∫; 6 𝑝 𝑠 . 𝑑𝑠 . 𝑞 𝑥 . 𝑑𝑥 š You can see that for ODE of higher orders we can see a nesting of integrals that is started to rear its ugly head 60
  • 61. Luc_Faucheux_2020 Variation of parameters method for first-order ODE - III š 𝐶 𝑥. − 𝐶 𝑥* = ∫6/6* 6/6. exp ∫; 6 𝑝 𝑠 . 𝑑𝑠 . 𝑞 𝑥 . 𝑑𝑥 š 𝑊 𝑥. = 𝐶(𝑥.). exp(− ∫6) 6) 𝑝 𝑠 . 𝑑𝑠) š 𝑊 𝑥. = 𝐶 𝑥* . exp − ∫6) 6) 𝑝 𝑠 . 𝑑𝑠 + exp − ∫6) 6) 𝑝 𝑠 . 𝑑𝑠 . ∫6/6* 6/6. exp ∫; 6 𝑝 𝑠 . 𝑑𝑠 . 𝑞 𝑥 . 𝑑𝑥 š Jean-Mari Duhamel extended this to ODE of degree 𝑛 š He also essentially invented the record player (vibroscope) 61
  • 62. Luc_Faucheux_2020 Langevin equation – dynamics of moments - IX š Back to the ODE at stake here: š A A& . 𝑚J 𝑡 = −𝑘. 𝑛. 𝑚J 𝑡 + >" , . 𝑛. 𝑛 − 1 . 𝑚J4, 𝑡 š 𝑊= + 𝑝 𝑡 . 𝑊 = 𝑞(𝑡) š With 𝑝 𝑡 = 𝑘𝑛 and 𝑞 𝑡 = >" , . 𝑛. 𝑛 − 1 . 𝑚J4, 𝑡 š 𝑊 𝑡. = 𝐶 𝑡* . exp − ∫&! &) 𝑝 𝑠 . 𝑑𝑠 + exp − ∫&! &) 𝑝 𝑠 . 𝑑𝑠 . ∫&/&* &/&. exp ∫; & 𝑝 𝑠 . 𝑑𝑠 . 𝑞 𝑡 . 𝑑𝑡 š 𝑚J 𝑡. = 𝐶 𝑡* . exp − ∫&! &) (𝑘𝑛). 𝑑𝑠 + exp − ∫&! &) (𝑘𝑛). 𝑑𝑠 . ∫&/&* &/&. exp ∫; & (𝑘𝑛). 𝑑𝑠 . 𝑞 𝑡 . 𝑑𝑡 š 𝑚J 𝑡. = 𝐶 𝑡* . exp −𝑛𝑘(𝑡. − 𝑡*) + exp −𝑛𝑘(𝑡. − 𝑡*) . ∫&/&* &/&. exp ∫; & (𝑘𝑛). 𝑑𝑠 . 𝑞 𝑡 . 𝑑𝑡 62
  • 63. Luc_Faucheux_2020 Langevin equation – dynamics of moments - X š 𝑚J 𝑡. = 𝐶 𝑡* . exp −𝑛𝑘(𝑡. − 𝑡*) + exp −𝑛𝑘(𝑡. − 𝑡*) . ∫&/&* &/&. exp ∫; & (𝑘𝑛). 𝑑𝑠 . 𝑞 𝑡 . 𝑑𝑡 š Choosing 𝑡* = 0 for sake of clarity: š 𝑚J 𝑡. = 𝐶 0 . exp −𝑛𝑘𝑡. + exp −𝑛𝑘𝑡. . ∫&/; &/&. exp ∫; & (𝑘𝑛). 𝑑𝑠 . 𝑞 𝑡 . 𝑑𝑡 š 𝑞 𝑡 = >" , . 𝑛. 𝑛 − 1 . 𝑚J4, 𝑡 š exp ∫; & (𝑘𝑛). 𝑑𝑠 = 𝑘𝑛𝑡 š 𝑚J 𝑡. = 𝐶 0 . exp −𝑛𝑘𝑡. + exp −𝑛𝑘𝑡. . ∫&/; &/&. exp 𝑛𝑘𝑡 . 𝑞 𝑡 . 𝑑𝑡 š 𝑚J 𝑡. = 𝑚J 0 . exp −𝑛𝑘𝑡. + >" , . 𝑛. 𝑛 − 1 . exp −𝑛𝑘𝑡. . ∫&/; &/&. exp 𝑛𝑘𝑡 . 𝑚J4, 𝑡 . 𝑑𝑡 š 𝑚J 𝑡 = 𝑚J 0 . exp −𝑛𝑘𝑡 + >" , . 𝑛. 𝑛 − 1 . exp −𝑛𝑘𝑡 . ∫:/; :/& exp 𝑛𝑘𝑠 . 𝑚J4, 𝑠 . 𝑑𝑠 63
  • 64. Luc_Faucheux_2020 Langevin equation – dynamics of moments - XI š 𝑚J 𝑡 = 𝑚J 0 . exp −𝑛𝑘𝑡 + >" , . 𝑛. 𝑛 − 1 . exp −𝑛𝑘𝑡 . ∫:/; :/& exp 𝑛𝑘𝑠 . 𝑚J4, 𝑠 . 𝑑𝑠 š 𝑚J 𝑡 = 𝑚J 0 . exp −𝑛𝑘𝑡 + >" , . 𝑛. 𝑛 − 1 . ∫:/; :/& exp −𝑛𝑘(𝑡 − 𝑠) . 𝑚J4, 𝑠 . 𝑑𝑠 š For 𝑛 = 2 we recover: š 𝑚, 𝑡 = 𝑚, 0 . exp −2𝑘𝑡 + >" , . 2. 2 − 1 . ∫:/; :/& exp −2𝑘(𝑡 − 𝑠) . 𝑚; 𝑠 . 𝑑𝑠 š And 𝑚; 𝑠 = 1 š 𝑚, 𝑡 = 𝑚, 0 . exp −2𝑘𝑡 + 𝜎,. ∫:/; :/& exp −2𝑘(𝑡 − 𝑠) . 𝑑𝑠 š 𝑚, 𝑡 = 𝑚, 0 . exp −2𝑘𝑡 + 𝜎,. exp −2𝑘𝑡 [ + ,? exp(2𝑘𝑠)]:/; :/& š 𝑚, 𝑡 = 𝑚, 0 . exp −2𝑘𝑡 + 𝜎,. exp −2𝑘𝑡 . [ + ,? exp 2𝑘𝑡 − + ,? ] 64
  • 65. Luc_Faucheux_2020 Langevin equation – dynamics of moments - XII š 𝑚, 𝑡 = 𝑚, 0 . exp −2𝑘𝑡 + 𝜎,. exp −2𝑘𝑡 . [ + ,? exp 2𝑘𝑡 − + ,? ] š 𝑚, 𝑡 = >" ,? + exp −2𝑘𝑡 . [𝑚, 0 − >" ,? ] š What we had before was: š 𝑚, 𝑡 = > ,? , + 𝑚, 0 − + ,? 𝜎, . exp −2𝑘𝑡 š So it works ! 65
  • 66. Luc_Faucheux_2020 Langevin equation – dynamics of moments - XIII š Steady-state values of the moments (noted for 𝑡 = ∞) š 𝑚; 𝑡 = 1 so 𝑚; ∞ = 1 š A A& . 𝑚+ 𝑣, 𝑡 = −𝑘. 𝑚+ 𝑣, 𝑡 = 0 so 𝑚+ ∞ = 0 š 𝑚, 𝑡 = >" ,? + exp −2𝑘𝑡 . [𝑚, 0 − >" ,? ] converges when 𝑡 → ∞ to >" ,? , so 𝑚, ∞ = >" ,? š Also, A A& . 𝑚, 𝑣, 𝑡 = −2𝑘. 𝑚, 𝑣, 𝑡 + 𝜎,= 0 so 𝑚, ∞ = >" ,? š 𝑚J 𝑡 = 𝑚J 0 . exp −𝑛𝑘𝑡 + >" , . 𝑛. 𝑛 − 1 . ∫:/; :/& exp −𝑛𝑘(𝑡 − 𝑠) . 𝑚J4, 𝑠 . 𝑑𝑠 š The first term converges to 0 so we are left for 𝑡 → ∞ with: š 𝑚J ∞ = lim &→< >" , . 𝑛. 𝑛 − 1 . ∫:/; :/& exp −𝑛𝑘(𝑡 − 𝑠) . 𝑚J4, 𝑠 . 𝑑𝑠 66
  • 67. Luc_Faucheux_2020 Langevin equation – dynamics of moments - XIV š We already have: š 𝑚; ∞ = 1 š 𝑚+ ∞ = 0 š 𝑚, ∞ = >" ,? š 𝑚J ∞ = lim &→< >" , . 𝑛. 𝑛 − 1 . ∫:/; :/& exp −𝑛𝑘(𝑡 − 𝑠) . 𝑚J4, 𝑠 . 𝑑𝑠 š 𝑚J ∞ = >" , . 𝑛. 𝑛 − 1 . + J? 𝑚J4, ∞ = 𝑚, ∞ . 𝑛 − 1 . 𝑚J4, ∞ š So for all odd n numbers, 𝑚J ∞ = 0 š For all even numbers: 𝑚J ∞ = 𝑛 − 1 . 𝑛 − 3 
 3.1. (𝑚, ∞ )J/, 67
  • 68. Luc_Faucheux_2020 Langevin equation – dynamics of moments - XV š In the deck on Bachelier, we calculated all the moments for the Gaussian distribution: š < 𝑥,J > = (𝜎, 𝑡)J. 2𝑛 − 1 ‌ and < 𝑥,J7+ > = 0 š For the regular Gaussian ℎ 𝑥, 𝑡 = + ,G>"& . exp( 46" ,>"& ) š 𝑛! = ∏N/+ N/J 𝑗 is the usual factorial š 𝑛!! = ∏N/+ N/J 𝑗 is called the “double factorial” and only includes in the product the terms that have the SAME parity as 𝑘 š Here for the Langevin equation we have: š 𝑚,J ∞ = 2𝑛 − 1 ‌ (𝑚, ∞ )J and 𝑚,J7+ ∞ = 0 š 𝑚, ∞ = >" ,? 68
  • 69. Luc_Faucheux_2020 Langevin equation – dynamics of moments - XVI š This suggests, that whatever the PDF for the Langevin equation (that we have not solved yet), it might converge to: š ℎ 𝑣, 𝑡 → ∞ = + ,G.-" < . exp( 4$" ,-" < ) š ℎ 𝑣, 𝑡 → ∞ = + ,G. *" "$ . exp( 4$" , *" "$ ) š ℎ 𝑣, 𝑡 → ∞ = ? G >" . exp( 4?$" >" ) š We also have of course: š 𝑚,J ∞ = ∫$/4< $/7< 𝑣J. ℎ 𝑣, 𝑡 → ∞ . 𝑑𝑣 š We will use that when trying to guess / derive the PDF for the Langevin equation. 69
  • 71. Luc_Faucheux_2020 Langevin equation – dynamics of moments from SDE š We can also derive the dynamics of moments from the SDE as opposed to the PDF, using the ITO lemma š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊 š ITO lemma for a function 𝑓(𝑉) š 𝑓 𝑉 𝑡. − 𝑓 𝑉 𝑡* = ∫&/&* &/&. !0 !( . ([). 𝑑𝑉(𝑡) + ∫&/&* &/&. + , . !"1 !(" . ([). (𝛿𝑉), š In the ”limit” of small time increments, this can be written formally as the Ito lemma: š 𝛿𝑓 = !0 !( . 𝛿𝑉 + + , . !"0 !(" . (𝛿𝑉), and we choose 𝑓 𝑉 = 𝑉J š !0 !( = 𝑛. 𝑉J4+ š !"0 !(" = 𝑛. 𝑛 − 1 . 𝑉J4, 71
  • 72. Luc_Faucheux_2020 Langevin equation – dynamics of moments from SDE - II š 𝑉 𝑡. J − 𝑉 𝑡* J = ∫&/&* &/&. 𝑛. 𝑉J4+. ([). 𝑑𝑉(𝑡) + ∫&/&* &/&. + , 𝑛. 𝑛 − 1 . 𝑉J4,. ([). (𝛿𝑉), š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊 š 𝑉 𝑡. J − 𝑉 𝑡* J = −𝑘 ∫&/&* &/&. 𝑛𝑉J 𝑑𝑡 + ∫&/&* &/&. + , 𝑛 𝑛 − 1 𝑉J4, 𝜎, 𝑑𝑡 + ∫&/&* &/&. 𝑛. 𝑉J4+. 𝜎. ([). 𝑑𝑊 š 𝑉 𝑡. J = 𝑉 𝑡* J − 𝑘 ∫&/&* &/&. 𝑛𝑉J 𝑑𝑡 + ∫&/&* &/&. + , 𝑛 𝑛 − 1 𝑉J4, 𝜎, 𝑑𝑡 + ∫&/&* &/&. 𝑛. 𝑉J4+. 𝜎. ([). 𝑑𝑊 š 𝑚J 𝑡. =< 𝑉J >&) = ∫4< 7< 𝑝 𝑣, 𝑡. . 𝑣J. 𝑑𝑣 š 𝑚J 𝑡. = 𝔌(𝑉J) š Since the ITO integral is a martingale, š 𝔌 ∫&/&* &/&. 𝑛. 𝑉J4+. 𝜎. ([). 𝑑𝑊 = 0 72
  • 73. Luc_Faucheux_2020 Langevin equation – dynamics of moments from SDE - III š 𝔌(𝑉 𝑡. J) = 𝔌(𝑉 𝑡* J) − 𝑘 ∫&/&* &/&. 𝑛𝔌(𝑉J)𝑑𝑡 + ∫&/&* &/&. + , 𝑛 𝑛 − 1 𝔌(𝑉J4,)𝜎, 𝑑𝑡 š 𝑚J 𝑡. = 𝑚J 𝑡* − 𝑘 ∫&/&* &/&. 𝑛. 𝑚J 𝑡 𝑑𝑡 + ∫&/&* &/&. + , 𝑛 𝑛 − 1 𝑚J 𝑡 𝜎, 𝑑𝑡 š Or in differential form: š A A& . 𝑚J 𝑡 = −𝑘. 𝑛. 𝑚J 𝑡 + >" , . 𝑛. 𝑛 − 1 . 𝑚J4, 𝑡 š This is the same exact formula we obtained when getting the dynamics from the PDE (forward PDE) when integrating by parts š Here we obtained it directly from ITO lemma and using the martingale property š No surprise there, as we saw before the correspondence between the Forward and Backward PDEs using the integration by parts. 73
  • 75. Luc_Faucheux_2020 A quick note on averaging š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊 š One is tempted to write š < 𝑑𝑉 𝑡 > = < −𝑘𝑉 𝑡 >. 𝑑𝑡 +< 𝜎. 𝑑𝑊 > š 𝑑 < 𝑉 𝑡 > = −𝑘 < 𝑉 𝑡 >. 𝑑𝑡 š And so < 𝑉 𝑡 > =< 𝑉 𝑡 >. exp(−𝑘𝑡) š This is exactly what we had from either solving specifically for a solution of the SDE, or using the moments: š 𝑚+ 𝑣, 𝑡 = 𝑚+ 𝑣, 0 . exp(−𝑘𝑡) š < 𝑉 >& = < 𝑉 𝑡 > = < 𝑉 0 >. exp(−𝑘𝑡) š 𝔌 𝑉 𝑡. = exp −𝑘𝑡. . exp 𝑘𝑡* . 𝔌 𝑉 𝑡* š 𝑉 𝑡. = exp −𝑘𝑡. . {exp 𝑘𝑡* . 𝑉 𝑡* + ∫&/&* &/&. exp 𝑘𝑡 . 𝜎. ([). 𝑑𝑊 𝑡 } 75
  • 76. Luc_Faucheux_2020 A quick note on averaging - II š One is tempted to do the same for the second moment by multiplying by 𝑉 on both sides š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊 š 𝑉 𝑡 . 𝑑𝑉 𝑡 = −𝑘𝑉 𝑡 𝑉 𝑡 . 𝑑𝑡 + 𝜎. 𝑉 𝑡 . ([). 𝑑𝑊 š 𝑑[ (" , ] = −𝑘𝑉 𝑡 𝑉 𝑡 . 𝑑𝑡 + 𝜎. 𝑉 𝑡 . ([). 𝑑𝑊 š And then take the average š < 𝑑 (" , > = < −𝑘𝑉 𝑡 𝑉 𝑡 . 𝑑𝑡 >+< 𝜎. 𝑉 𝑡 . ([). 𝑑𝑊 > š 𝑑 < (" , > = −𝑘 < 𝑉, >. 𝑑𝑡 > + < 𝜎. 𝑉 𝑡 . ([). 𝑑𝑊 > š And then say : < 𝜎. 𝑉 𝑡 . ([). 𝑑𝑊 > = 0 š So: < 𝑉, 𝑡 > =< 𝑉,(0) >. exp(−2𝑘𝑡) 76
  • 77. Luc_Faucheux_2020 A quick note on averaging - III š Previous slide is wrong because we cannot rely on usual rules of calculus. š We know that the previous slide is wrong because the actual result is: š < 𝑉& , >& = < 𝑉 𝑡 , > = < 𝑉 0 , > − >" ,? . exp −2𝑘𝑡 + >" ,? š So we can either stay in ITO calculus so that we can use: < 𝜎. 𝑉 𝑡 . ([). 𝑑𝑊 > = 0 š OR we formally use the usual rules of calculus, but in that case we have to rely on the STRATO convention for the integral and in this case: < 𝜎. 𝑉 𝑡 . (∘). 𝑑𝑊 > ≠ 0 š This was motivated by a footnote by Van Kampen on page 221 77
  • 78. Luc_Faucheux_2020 A quick note on averaging - IV š Let’s do it right in ITO š 𝑑 (" , = ! !( (" , . ([). 𝑑𝑉 + + , . !" !(" (" , . ([). 𝑑𝑉. ([). 𝑑𝑉 + ! !& (" , . 𝑑𝑡 š 𝑑 (" , = 𝑉. ([). 𝑑𝑉 + + , . 1. ([). 𝑑𝑉. ([). 𝑑𝑉 + 0. 𝑑𝑡 š 𝑑 (" , = 𝑉. ([). {−𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊} + + , . 𝜎, 𝑑𝑡 š 𝑑 (" , = −2𝑘 (" , . 𝑑𝑡 + 𝜎. 𝑉. ([). 𝑑𝑊 + + , . 𝜎, 𝑑𝑡 š We then take the average: š 𝑑 < (" , > = −2𝑘 < (" , >. 𝑑𝑡 + < 𝜎. 𝑉. ([). 𝑑𝑊 > + + , . 𝜎, 𝑑𝑡 š We can then use the property that the ITO integral is a martingale 78
  • 79. Luc_Faucheux_2020 A quick note on averaging - V š < 𝜎. 𝑉. ([). 𝑑𝑊 > = 0 š 𝑑 < (" , > = −2𝑘 < (" , >. 𝑑𝑡 + + , . 𝜎, 𝑑𝑡 š That is now a closed equation which we can write as: š With: š A A& . 𝑚, 𝑣, 𝑡 + 2𝑘. 𝑚, 𝑣, 𝑡 = 𝜎, š This is exactly the equation we got for the moment so we will get the same solution š < 𝑉& , >& = < 𝑉 𝑡 , > = < 𝑉 0 , > − >" ,? . exp −2𝑘𝑡 + >" ,? 79
  • 80. Luc_Faucheux_2020 A quick note on averaging - VI š If we do it the correct way in STRATO: š 𝑑 (" , = ! !( (" , . (∘). 𝑑𝑉 + ! !& (" , . 𝑑𝑡 š 𝑑 (" , = 𝑉 𝑡 . ∘ . 𝑑𝑉 = 𝑉 𝑡 . ∘ . {−𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊} š 𝑑 (" , = 𝑉 𝑡 . ∘ . 𝑑𝑉 = −2𝑘 (" , . 𝑑𝑡 + 𝜎. 𝑉(𝑡). (∘). 𝑑𝑊 š We then take the average: š 𝑑 < (" , > = −2𝑘 < (" , >. 𝑑𝑡 + < 𝜎. 𝑉. (∘). 𝑑𝑊 > š This is NOT closed equation since the STRATO integral is NOT a martingale š < 𝜎. 𝑉. ∘ . 𝑑𝑊 > ≠ 0 80
  • 81. Luc_Faucheux_2020 A quick note on averaging - V š In fact comparing the two equations we get: š 𝑑 < (" , > = −2𝑘 < (" , >. 𝑑𝑡 + + , . 𝜎, 𝑑𝑡 š 𝑑 < (" , > = −2𝑘 < (" , >. 𝑑𝑡 + < 𝜎. 𝑉. (∘). 𝑑𝑊 > š SO: š < 𝜎. 𝑉. ∘ . 𝑑𝑊 > = + , . 𝜎, 𝑑𝑡 š We could also derive this explicitly, in a couple of different ways 81
  • 82. Luc_Faucheux_2020 A quick note on averaging - VI š We could use the relation between the ITO and STRATO integrals. š For a stochastic process š 𝑑𝑉 𝑡 = 𝑎 𝑡, 𝑉 𝑡 . 𝑑𝑡 + 𝑏 𝑡, 𝑉 𝑡 . 𝑑𝑊 š We have: š ∫&/&* &/&. 𝑓 𝑉 𝑡 . ∘ . 𝑑𝑊 𝑡 = ∫&/&* &/&. 𝑓 𝑉 𝑡 . ([). 𝑑𝑊(𝑡) + ∫&/&* &/&. + , . 𝑏 𝑡, 𝑉 𝑡 . ! !( 𝑓 𝑉(𝑡 . 𝑑𝑡 š 𝑓 𝑉 𝑡 = 𝜎. 𝑉(𝑡) š ! !( 𝑓 𝑉(𝑡 = 𝜎 š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊 š 𝑏 𝑡, 𝑉 𝑡 = 𝜎 82
  • 83. Luc_Faucheux_2020 A quick note on averaging - VII š ∫&/&* &/&. 𝜎. 𝑉(𝑡) . ∘ . 𝑑𝑊 𝑡 = ∫&/&* &/&. 𝜎. 𝑉(𝑡) . ([). 𝑑𝑊(𝑡) + ∫&/&* &/&. + , . 𝜎. 𝜎. 𝑑𝑡 š In the limit of small time increment: š 𝜎. 𝑉 𝑡 . ∘ . 𝑑𝑊 𝑡 = 𝜎. 𝑉(𝑡) . ([). 𝑑𝑊 𝑡 + + , . 𝜎. 𝜎. 𝑑𝑡 š We then take the average: š <𝜎. 𝑉 𝑡 . ∘ . 𝑑𝑊 𝑡 > = < 𝜎. 𝑉(𝑡) . ([). 𝑑𝑊 𝑡 > + < + , . 𝜎. 𝜎. 𝑑𝑡 > š And we use the fact that the ITO integral is a martingale š <𝑉 𝑡 . ∘ . 𝑑𝑊 𝑡 > = < 𝑉(𝑡) . ([). 𝑑𝑊 𝑡 > + + , . 𝜎, 𝑑𝑡 š <𝑉 𝑡 . ∘ . 𝑑𝑊 𝑡 > = + , . 𝜎, 𝑑𝑡 83
  • 84. Luc_Faucheux_2020 A quick note on averaging - VIII š <𝑉 𝑡 . ∘ . 𝑑𝑊 𝑡 > = + , . 𝜎, 𝑑𝑡 š We can plug this back into 𝑑 < (" , > = −2𝑘 < (" , >. 𝑑𝑡 + < 𝜎. 𝑉. (∘). 𝑑𝑊 > š To recover: š 𝑑 < (" , > = −2𝑘 < (" , >. 𝑑𝑡 + + , . 𝜎, 𝑑𝑡 š And then solve again and get: š < 𝑉& , >& = < 𝑉 𝑡 , > = < 𝑉 0 , > − >" ,? . exp −2𝑘𝑡 + >" ,? š So again ITO and STRATO are equivalent, we will obtain the same solutions, as long as we do not mix and match. š ITO integral is a martingale but the rules of calculus are NOT the usual one š STRATO integral is NOT a martingale but we can formally use the usual rules of calculus 84
  • 86. Luc_Faucheux_2020 PDF for the Langevin equation š From the dynamics of the moments, it looks like the steady state solution could be something like: š ℎ 𝑣, 𝑡 → ∞ = + ,G.-" < . exp( 4$" ,-" < ) š We also have: š 𝑚; ∞ = 1 š 𝑚+ ∞ = 0 š 𝑚, ∞ = >" ,? š 𝑚+ 𝑣, 𝑡 = 𝑚+ 𝑣, 0 . exp(−𝑘𝑡) š 𝑚, 𝑡 = >" ,? + exp −2𝑘𝑡 . [𝑚, 0 − >" ,? ] 86
  • 87. Luc_Faucheux_2020 PDF for the Langevin equation - II š We also know when looking at the SDE of the type (deck ITO – II): š 𝑑𝑋 𝑡 = 𝑎 𝑡 . 𝑑𝑡 + 𝑏(𝑡). ([). 𝑑𝑊 š 𝑋 𝑡. − 𝑋 𝑡* = ∫&/&* &/&. 𝑑𝑋 𝑡 = ∫&/&* &/&. 𝑎(𝑡). 𝑑𝑡) + ∫&/&* &/&. 𝑏(𝑡). ([). 𝑑𝑊(𝑡) š We had shown that the PDF: 𝑝 𝑥, 𝑡 = + ,G(*P(&) . 𝑒𝑥𝑝(− (64I(&))" ,(*P(&) ) š With š 𝑅 𝑡 = 𝑋 𝑡 = 𝑋; + ∫&/&; & 𝑎(𝑠). 𝑑𝑠 so 𝑅= 𝑡 = 𝑎(𝑡) š 𝑉𝑎𝑟 𝑡 = 𝑉 𝑡 = p𝑏(𝑡),. 𝑡 = ∫:/; :/& 𝑏 𝑠 ,. 𝑑𝑠 so 𝑉𝑎𝑟= 𝑡 = 𝑏 𝑡 , š Followed the PDE (ITO FORWARD): š ! !& 𝑝 = − ! !6 𝑎(𝑡). 𝑝 − . & " , ! !6 𝑝 = − ! !6 𝐜1 + 𝐜Q 87
  • 88. Luc_Faucheux_2020 PDF for the Langevin equation - III š ! !& 𝑝 = − ! !6 𝑎(𝑡). 𝑝 − . & " , ! !6 𝑝 = − ! !6 𝐜1 + 𝐜Q š 𝐜1 = 𝑎 𝑡 . 𝑝(𝑥, 𝑡) Forcing / drift current š 𝐜Q = − . & " , ! !6 𝑝 𝑥, 𝑡 = − > & " , ! !6 𝑝 𝑥, 𝑡 = −𝐷(𝑡) ! !6 𝑝(𝑥, 𝑡) Diffusion current š In the Langevin case: š 𝑑𝑉 𝑡 = 𝑎 𝑡, 𝑉 𝑡 . 𝑑𝑡 + 𝑏 𝑡, 𝑉 𝑡 . 𝑑𝑊 š 𝑎 𝑡, 𝑉 𝑡 = −𝑘𝑉 š 𝑏 𝑡, 𝑉 𝑡 = 𝜎 š 𝑑𝑉 𝑡 = −𝑘𝑉(𝑡). 𝑑𝑡 + 𝜎. 𝑑𝑊 88
  • 89. Luc_Faucheux_2020 PDF for the Langevin equation - IV š 𝑅 𝑡 = 𝑉 𝑡 = 𝑉; + ∫&/&; & 𝑎(𝑠). 𝑑𝑠 so 𝑅= 𝑡 = 𝑎(𝑡) š 𝑉𝑎𝑟 𝑡 = 𝑉𝑎𝑟 𝑡 = p𝑏(𝑡),. 𝑡 = ∫:/; :/& 𝑏 𝑠 ,. 𝑑𝑠 so 𝑉𝑎𝑟= 𝑡 = 𝑏 𝑡 , š 𝑎 𝑡, 𝑉 𝑡 = −𝑘𝑉 š 𝑏 𝑡, 𝑉 𝑡 = 𝜎 š 𝑉𝑎𝑟 𝑡 = 𝑉𝑎𝑟 𝑡 = p𝑏(𝑡),. 𝑡 = ∫:/; :/& 𝜎,. 𝑑𝑠 = 𝜎,. 𝑡 so 𝑉= 𝑡 = 𝜎, š HOWEVER, for 𝑅 𝑡 = 𝑋 𝑡 = 𝑋; + ∫&/&; & 𝑎(𝑠). 𝑑𝑠, we are stuck because we only looked at the case 𝑎 𝑡, 𝑉 𝑡 , not 𝑎 𝑉 𝑡 š So this is going to be a little tricky, but based on what we think is the steady state solution, we could try to be as lucky as Bachelier in 1900 and maybe guess something like š 𝑝 𝑣, 𝑡 = + ,G-" & . 𝑒𝑥𝑝(− ($4-+ & )" ,-" & ) 89
  • 90. Luc_Faucheux_2020 PDF for the Langevin equation - V š Let’s try indeed: š 𝑝 𝑣, 𝑡 = + ,G-" & . 𝑒𝑥𝑝(− ($4-+ & )" ,-" & ) š BUT for now let’s not equate 𝑚+ 𝑡 and 𝑚, 𝑡 to the functions: š 𝑚+ 𝑡 = 𝑚+ 0 . exp(−𝑘𝑡) š 𝑚, 𝑡 = >" ,? + exp −2𝑘𝑡 . [𝑚, 0 − >" ,? ] š We could try from the get-go and see if 𝑝 𝑣, 𝑡 verifies: š !"($,&|(!,&!) !& = − ! !$ (−𝑘𝑣). 𝑝 𝑣, 𝑡 𝑉*, 𝑡* − ! !$ [ + , . [𝜎, . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)] š Or keep 𝑚+ 𝑡 and 𝑚, 𝑡 for a little longer to try to simplify the derivation 90
  • 91. Luc_Faucheux_2020 PDF for the Langevin equation - VI š 𝑝 𝑣, 𝑡 = + ,G-" & . 𝑒𝑥𝑝(− ($4-+ & )" ,-" & ) š !" $,& !$ = + ,G-" & . ! !$ 𝑒𝑥 𝑝 − $4-+ & " ,-" & = + ,G-" & . 4, $4-+ & ,-" & . 𝑒𝑥 𝑝 − $4-+ & " ,-" & š !" $,& !$ = + ,G-" & . 𝑒𝑥 𝑝 − $4-+ & " ,-" & . 4 $4-+ & -" & = 4 $4-+ & -" & . 𝑝 𝑣, 𝑡 š !"" $,& !R" = ! !$ ! !$ 𝑝 𝑣, 𝑡 = ! !$ 4 $4-+ & -" & . 𝑝 𝑣, 𝑡 = 4 $4-+ & -" & . !" $,& !$ + 𝑝 𝑣, 𝑡 . ! !$ 4 $4-+ & -" & š !"" $,& !R" = 4 $4-+ & -" & . 4 $4-+ & -" & . 𝑝 𝑣, 𝑡 + 4+ -" & . 𝑝 𝑣, 𝑡 91
  • 92. Luc_Faucheux_2020 PDF for the Langevin equation - VII š 𝑝 𝑣, 𝑡 = + ,G-" & . 𝑒𝑥𝑝(− ($4-+ & )" ,-" & ) š !" $,& !$ = + ,G-" & . 𝑒𝑥 𝑝 − $4-+ & " ,-" & . 4 $4-+ & -" & = 4 $4-+ & -" & . 𝑝 𝑣, 𝑡 š !" !$ = 4 $4-+ -" . 𝑝 š !"" $,& !R" = 4 $4-+ & -" & . 4 $4-+ & -" & . 𝑝 𝑣, 𝑡 + 4+ -" & . 𝑝 𝑣, 𝑡 š !"" !R" = 4 $4-+ -" . 4 $4-+ -" . 𝑝 + 4+ -" . 𝑝 š Dropping the explicit dependencies for sake of notation 92
  • 93. Luc_Faucheux_2020 PDF for the Langevin equation - VIII š 𝑝 𝑣, 𝑡 = + ,G-" & . 𝑒𝑥𝑝(− ($4-+ & )" ,-" & ) š !" $,& !& = ! !& + ,G-" & . 𝑒𝑥 𝑝 − $4-+ & " ,-" & + + ,G-" & ! !& 𝑒𝑥 𝑝 − $4-+ & " ,-" & š !" $,& !& = 4+ , + ,G-" + ,G-" . 2𝜋𝑚, = . 𝑒𝑥 𝑝 − $4-+ " ,-" + + ,G-" 𝑒𝑥 𝑝 − $4-+ " ,-" ! !& [ 4 $4-+ " ,-" ] š !" $,& !& = 4+ , -" # -" . 𝑝 + 𝑝. ! !& 4 $4-+ " ,-" = 4+ , -" # -" . 𝑝 + 𝑝. 7 $4-+ " ,-"-" 𝑚, = + 2 𝑣 − 𝑚+ . 𝑚+ = + ,-" š !" $,& !& = 4+ , -" # -" . 𝑝 + 𝑝. 7 $4-+ " ,-"-" 𝑚, = + 𝑣 − 𝑚+ . 𝑚+ = . + -" 93
  • 94. Luc_Faucheux_2020 PDF for the Langevin equation - IX š !" $,& !& = 4+ , -" # -" . 𝑝 + 𝑝. 7 $4-+ " ,-"-" 𝑚, = + 𝑣 − 𝑚+ . 𝑚+ = . + -" š !" !$ = 4 $4-+ -" . 𝑝 š !"" !R" = 4 $4-+ -" . 4 $4-+ -" . 𝑝 + 4+ -" . 𝑝 š At this point, we can either plug in those equations the formulas for 𝑚+ 𝑡 and 𝑚, 𝑡 : š 𝑚+ 𝑡 = 𝑚+ 0 . exp(−𝑘𝑡) š 𝑚+ = 𝑡 = −𝑘. 𝑚+ 𝑡 = −𝑘. 𝑚+ 0 . exp(−𝑘𝑡) š 𝑚, 𝑡 = >" ,? + exp −2𝑘𝑡 . [𝑚, 0 − >" ,? ] š 𝑚, = 𝑡 = −2𝑘. exp −2𝑘𝑡 . 𝑚, 0 − >" ,? = −2𝑘. exp −2𝑘𝑡 . [𝑚, 0 − 𝑚, ∞ ] 94
  • 95. Luc_Faucheux_2020 PDF for the Langevin equation - X š We know that we are after something like: š !"($,&|(!,&!) !& = − ! !$ (−𝑘𝑣). 𝑝 𝑣, 𝑡 𝑉*, 𝑡* − ! !$ [ + , . [𝜎, . 𝑝(𝑣, 𝑡|𝑉*, 𝑡*)] š !" !& = − ! !$ (−𝑘𝑣). 𝑝 − ! !$ [ + , . [𝜎, . 𝑝 š We see a bunch of terms that appear as orders of 𝑣 − 𝑚+ š So let’s rewrite above as: š !" !& = − ! !$ (−𝑘𝑣). 𝑝 − ! !$ [ + , . [𝜎, . 𝑝 = ! !$ [𝑘𝑣𝑝] + >" , !"" !R" š !" !& = ! !$ [𝑘 𝑣 − 𝑚+ 𝑝 + 𝑘𝑚+ 𝑝] + >" , !"" !R" š !" !& = 𝑘 𝑣 − 𝑚+ !" !$ + 𝑘𝑝 + 𝑘𝑚+ !" !$ + >" , !"" !R" 95
  • 96. Luc_Faucheux_2020 PDF for the Langevin equation - XI š Plugging the expressions we derived: š !" !& = 𝑘 𝑣 − 𝑚+ !" !$ + 𝑘𝑝 + 𝑘𝑚+ !" !$ + >" , !"" !R" š Left Hand Side š !" $,& !& = 4+ , -" # -" . 𝑝 + 𝑝. 7 $4-+ " ,-"-" 𝑚, = + 𝑣 − 𝑚+ . 𝑚+ = . + -" š Right Hand Side š 𝑘 𝑣 − 𝑚+ . 4 $4-+ -" . 𝑝 + 𝑘𝑝 + 𝑘𝑚+. 4 $4-+ -" . 𝑝 + >" , . [ 4 $4-+ -" . 4 $4-+ -" . 𝑝 + 4+ -" . 𝑝] 96
  • 97. Luc_Faucheux_2020 PDF for the Langevin equation - XII š Ordering the terms in order of 𝑣 − 𝑚+ š Left Hand Side š !" $,& !& = 4+ , -" # -" . 𝑝 + 𝑝. 𝑣 − 𝑚+ . 𝑚+ = . + -" + 𝑝. $4-+ " ,-"-" 𝑚, = š Right Hand Side š 𝑘𝑝 + >" , . 4+ -" . 𝑝 + 𝑘𝑚+. 4 $4-+ -" . 𝑝 + 𝑝. 𝑣 − 𝑚+ ,. [−𝑘 + -" + >" ,-"-" ] 97
  • 98. Luc_Faucheux_2020 PDF for the Langevin equation - XII š Terms in 𝑣 − 𝑚+ ;: š 4+ , -" # -" . 𝑝 = 𝑘𝑝 + >" , . 4+ -" . 𝑝 š Terms in 𝑣 − 𝑚+ +: š 𝑝. 𝑣 − 𝑚+ . 𝑚+ = . + -" = 𝑘𝑚+. 4 $4-+ -" . 𝑝 š Terms in 𝑣 − 𝑚+ ,: š 𝑝. $4-+ " ,-"-" 𝑚, = = 𝑝. 𝑣 − 𝑚+ ,. [−𝑘 + -" + >" ,-"-" ] 98
  • 99. Luc_Faucheux_2020 PDF for the Langevin equation - XIII š Terms in 𝑣 − 𝑚+ ;: š + , 𝑚, = = −𝑘𝑚, + >" , š Terms in 𝑣 − 𝑚+ +: š 𝑚+ = = −𝑘𝑚+ š Terms in 𝑣 − 𝑚+ ,: š + , 𝑚, = = −𝑘𝑚, + >" , š If all those equations are verified, then our guess will indeed forward PDE for the Langevin PDF. š Note that the set of 3 equations actually reduces to only 2. I do not have much intuition why it is, but again we only had 2 moments 𝑚+ 𝑡 and 𝑚, 𝑡 , so maybe if our guess was incorrect we would have gotten inconsistent equations, meaning that we needed a 3rd moment in our guess ? 99
  • 100. Luc_Faucheux_2020 PDF for the Langevin equation - XIV š 𝑚+ = = −𝑘𝑚+ š Turns out that this is EXACTLY the equation we had derived from the SDE. š So obviously if we plug into that equation the formula : 𝑚+ 𝑡 = 𝑚+ 0 . exp(−𝑘𝑡), we verify the ODE or alternatively we can solve it and we will recover the above formula š + , 𝑚, = = −𝑘𝑚, + >" , š Turns out again (boy oh boy aren’t we lucky!) that this is the same ODE for 𝑚, 𝑡 that we had derived from the SDE, or from the dynamics of the moments section (from the PDE). š So we can solve and recover the formula, or apply the formula in the ODE to convince ourselves, but we have: š 𝑚, 𝑡 = >" ,? + exp −2𝑘𝑡 . [𝑚, 0 − >" ,? ] 100
  • 101. Luc_Faucheux_2020 PDF for the Langevin equation - XV š So we finally have a solution for the Langevin PDF and it looks like this: š 𝑝 𝑣, 𝑡 = 𝑝 𝑣, 𝑡|𝑉; = 𝑚+ 0 , 𝑡 = 0 = + ,G-" & . 𝑒𝑥𝑝(− ($4-+ & )" ,-" & ) š 𝑚+ 𝑡 = 𝑚+ 0 . exp(−𝑘𝑡) š 𝑚, 𝑡 = >" ,? + exp −2𝑘𝑡 . [𝑚, 0 − >" ,? ] š 𝑚, 𝑡 = 𝑚, ∞ + exp −2𝑘𝑡 . [𝑚, 0 − 𝑚, ∞ ] š 𝑚, ∞ = >" ,? 101
  • 102. Luc_Faucheux_2020 PDF for the Langevin equation - XVI š 𝑝 𝑣, 𝑡 = 𝑝 𝑣, 𝑡|𝑉; = 𝑚+ 0 , 𝑡 = 0 = + ,G-" & . 𝑒𝑥𝑝(− ($4-+ & )" ,-" & ) š SO we also need to impose the condition: š 𝑝 𝑣, 𝑡 = 0|𝑉; = 𝑚+ 0 , 𝑡 = 0 = 𝛿(𝑣 − 𝑚+ 0 ) š 𝑚, 𝑡 = 𝑚, ∞ + exp −2𝑘𝑡 . [𝑚, 0 − 𝑚, ∞ ] š 𝑚, ∞ = >" ,? = 𝐷/𝑘 to simplify somewhat with the usual Diffusion coefficient 𝐷 = >" , š 𝑚, 𝑡 = Q ? [1 − exp −2𝑘𝑡 ] + 𝑚, 0 . exp −2𝑘𝑡 š When 𝑡 → 0, 𝑚, 𝑡 = Q ? . 1 − 1 − 2𝑘𝑡 + 𝕆 𝑡, + 𝑚, 0 . 1 − 2𝑘𝑡 + 𝕆 𝑡, š 𝑚, 𝑡 = 𝑚, 0 + 2𝐷𝑡 + 𝕆 𝑡, š 𝑚+ 𝑡 = 𝑚+ 0 . exp −𝑘𝑡 = 𝑚+ 0 + 𝕆 𝑡 102
  • 103. Luc_Faucheux_2020 PDF for the Langevin equation - XVII š So if 𝑚, 0 <> 0, š 𝑝 𝑣, 𝑡 = 0 = 𝑝 𝑣, 𝑡 = 0|𝑉; = 𝑚+ 0 , 𝑡 = 0 = + ,G-" ; . 𝑒𝑥𝑝(− ($4-+ ; )" ,-" ; ) š That is a Gaussian centered around 𝑚, 0 of width 𝑚, 0 š It is still normalized but does not converge to the Dirac peak 𝛿(𝑣 − 𝑚+ 0 ) š So we have to enforce 𝑚, 0 = 0 š 𝑚, 𝑡 = Q ? [1 − exp −2𝑘𝑡 ] + 𝑚, 0 . exp −2𝑘𝑡 = Q ? [1 − exp −2𝑘𝑡 ] š We can rewrite the PDF as: š 𝑝 𝑣, 𝑡|𝑚+ 0 , 𝑡 = 0 = ? ,GQ.(+4STU 4,?& ) . 𝑒𝑥𝑝(−𝑘 ($4-+ ; .STU 4?& )" ,Q.(+4STU 4,?& ) ) 103
  • 104. Luc_Faucheux_2020 PDF for the Langevin equation - XVIII š After much calculation, this is the celebrated Langevin PDF: š 𝑝 𝑣, 𝑡|𝑚+ 0 , 𝑡 = 0 = ? ,GQ.(+4STU 4,?& ) . 𝑒𝑥𝑝(−𝑘 ($4-+ ; .STU 4?& )" ,Q.(+4STU 4,?& ) ) š SMALL TIME LIMIT š IF 𝑡 → 0 ? Q.(+4STU 4,?& ) = + ,Q& + 𝕆 𝑡, š 𝑝 𝑣, 𝑡|𝑚+ 0 , 𝑡 = 0 → + VGQ& . 𝑒𝑥𝑝(− ($4-+ ; )" VQ& ) š At short time scales (underdamped regime), the Langevin diffuses as a regular diffusion process š 𝑑𝑉 𝑡 = −𝑘𝑉 𝑡 . 𝑑𝑡 + 𝜎. 𝑑𝑊 → 𝜎. 𝑑𝑊 104
  • 105. Luc_Faucheux_2020 PDF for the Langevin equation - XIX š SMALL 𝑘 limit š IF 𝑘 → 0 ? Q.(+4STU 4,?& ) = + ,Q& + 𝕆 𝑘, š 𝑝 𝑣, 𝑡|𝑚+ 0 , 𝑡 = 0 → + VGQ& . 𝑒𝑥𝑝(− ($4-+ ; )" VQ& ) š This is expected since when 𝑘 → 0 we should recover the usual diffusion: š 𝑑𝑉 𝑡 = −𝑘𝑉 𝑡 . 𝑑𝑡 + 𝜎. 𝑑𝑊 → 𝜎. 𝑑𝑊 105
  • 106. Luc_Faucheux_2020 PDF for the Langevin equation - XX š STEADY STATE LIMIT š IF 𝑡 → ∞ ? Q.(+4STU 4,?& ) = ? Q + 𝕆 𝑡4+ š 𝑝 𝑣, 𝑡|𝑚+ 0 , 𝑡 = 0 = ? ,GQ.(+4STU 4,?& ) . 𝑒𝑥𝑝(−𝑘 ($4-+ ; .STU 4?& )" ,Q.(+4STU 4,?& ) ) š 𝑝 𝑣, 𝑡 → ∞|𝑚+ 0 , 𝑡 = 0 = ? ,GQ . 𝑒𝑥𝑝(−𝑘 $" ,Q ) š This is referred to as the “invariant Gaussian distribution” 106
  • 107. Luc_Faucheux_2020 PDF for the Langevin equation - XXI š In the case where 𝑘 → 0, the SDE becomes : š 𝑑𝑉 𝑡 = −𝑘𝑉 𝑡 . 𝑑𝑡 + 𝜎. 𝑑𝑊 = 𝜎. 𝑑𝑊 š And we should recover the usual Brownian diffusion š 𝑚+ 𝑡 = 𝑚+ 0 . exp −𝑘𝑡 → 𝑚+ 0 š 𝑚, 𝑡 = 𝑚, ∞ + exp −2𝑘𝑡 . 𝑚, 0 − 𝑚, ∞ → 𝑚, 0 š 𝑝 𝑣, 𝑡 = 𝑝 𝑣, 𝑡|𝑉; = 𝑚+ 0 , 𝑡 = 0 = + ,G-" & . 𝑒𝑥𝑝(− ($4-+ & )" ,-" & ) š 𝑝 𝑣, 𝑡 = 𝑝 𝑣, 𝑡|𝑉; = 𝑚+ 0 , 𝑡 = 0 = + ,G-" ; . 𝑒𝑥𝑝(− ($4-+ ; )" ,-" ; ) 107
  • 108. Luc_Faucheux_2020 PDF for the Langevin equation - XXII š 𝑝 𝑣, 𝑡|𝑉 𝑡* , 𝑡* = ? ,GQ.(+4@'"$(&'&!)) . 𝑒𝑥𝑝(−𝑘 ($4-+ &! .@'$(&'&!))" ,Q(+4@'"$(&'&!)) ) š The Langevin process is Gaussian (the PDF can be expressed as a Gaussian function) š The Langevin process is Markov (the PDF only depends on 𝑉 𝑡* , 𝑡* and not on the entire history before) š 𝑝 𝑣, 𝑡|{𝑉 𝑠 , 𝑠 ≀ 𝑡*} = 𝑝 𝑣, 𝑡|𝑉 𝑡* , 𝑡* š The Langevin process is stationary (only depends on (𝑡 − 𝑡*)) š 𝑝 𝑣, 𝑡 + ℎ|𝑉 𝑡* + ℎ = 𝑉*, 𝑡* + ℎ = 𝑝 𝑣, 𝑡|𝑉*, 𝑡* š The increments of the Langevin process are NOT independents. Indeed the increments are not even uncorrelated (as opposed to a Wiener process) š The correlation function decays as an exponential. In some textbooks they base the definition of the process on the knowledge of the auto-correlation function, as an equivalent starting point 108
  • 109. Luc_Faucheux_2020 Langevin PDF Via the Distribution Function 109
  • 110. Luc_Faucheux_2020 Langevin PDF via the Distribution function š So there I have somewhat of a confession to make, I was already a couple hundred pages into writing those notes (deck on Bachelier, Black-Sholes, binomial trees, ITO lemma, Risk management,
) when I bought the book below. I was tempted to throw my notes in the trash because this book is awesome and has pretty much all you want, and more
 110
  • 111. Luc_Faucheux_2020 Langevin PDF via the Distribution function – II š In particular, on page 31, the author goes through a derivation of the Langevin PDF that is truly awesome using the distribution function: š PDF Probability Density Function: 𝑝((𝑣, 𝑡) š Distribution function : 𝑉(𝑣, 𝑡) š 𝑃( 𝑣, 𝑡 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑊 𝑉 ≀ 𝑣, 𝑡 = ∫K/4< K/$ 𝑝( 𝑊, 𝑡 . 𝑑𝑊 š 𝑝((𝑣, 𝑡) = ! !$ 𝑃( 𝑣, 𝑡 š 𝑝( 𝑣, 𝑡 = 𝑝 𝑣, 𝑡 = 𝑝 𝑣, 𝑡|𝑉; = 𝑚+ 0 , 𝑡 = 0 111
  • 112. Luc_Faucheux_2020 Langevin PDF via the Distribution function – III š We know the distribution function for the Brownian motion 𝑊(𝑡) š [𝑊 𝑡. − 𝑊(𝑡*)] is 𝑁(0, 𝑡. − 𝑡* ) š [𝑊 𝑡. − 𝑊(𝑡*)] is normally distributed according to the Gaussian function: š ℎ 𝑥, 𝑡 = + ,G& . exp( 46" ,& ) š 𝑃W 𝑀, 𝑡|𝑊 𝑡* , 𝑡* = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑊 𝑊(𝑡) ≀ 𝑀, 𝑡|𝑊 𝑡* , 𝑡* = ∫K/4< K/X 𝑝W 𝑊, 𝑡 . 𝑑𝑊 š 𝑃W 𝑀, 𝑡|𝑊 𝑡* , 𝑡* = ∫K/4< K/X + ,G(&4&!) . exp( 4(K4W &! )" ,(&4&!) ) . 𝑑𝑊 š Sometimes for ease of notation, choosing 𝑊 𝑡* = 0 and 𝑡* = 0 š 𝑃W 𝑀, 𝑡|0,0 = ∫K/4< K/X + ,G& . exp 46" ,& . 𝑑𝑊 š 𝑝W 𝑀, 𝑡 = ! !X 𝑃W 𝑀, 𝑡 = + ,G& . exp( 4X" ,& ) 112
  • 113. Luc_Faucheux_2020 Langevin PDF via the Distribution function – IV š Define now the Langevin process as : š 𝑉 𝑡 = >" ? . exp −𝑘𝑡 . 𝑊(exp 2𝑘𝑡 ) š So in some ways if you already have a Brownian motion {𝑊(𝑡Y)}, for example on a computer simulation, you can simulate a Langevin process {𝑉(𝑡Y)} by mapping: š 𝑖 → 𝑗 so that 𝑡N = exp(2𝑘𝑡Y) š Pick the value of {𝑊(𝑡N)} š Multiply by >" ? . exp −𝑘𝑡Y š That would be a way to replicate a Langevin process from a given Brownian process 113
  • 114. Luc_Faucheux_2020 Langevin PDF via the Distribution function – V š 𝑉 𝑡 = >" ? . exp −𝑘𝑡 . 𝑊(exp 2𝑘𝑡 ) š 𝑃( 𝑣, 𝑡|𝑉 𝑡* , 𝑡* = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑊 𝑉(𝑡) ≀ 𝑣, 𝑡|𝑉 𝑡* , 𝑡* = 𝑃𝑟𝑜𝑏 𝑉(𝑡) ≀ 𝑣, 𝑡|𝑉 𝑡* , 𝑡* š 𝑃( 𝑣, 𝑡|𝑉 𝑡* , 𝑡* = 𝑃𝑟𝑜𝑏 >" ? . exp −𝑘𝑡 . 𝑊(exp 2𝑘𝑡 ) ≀ 𝑣, 𝑡|𝑉 𝑡* , 𝑡* š 𝑃( 𝑣, 𝑡|𝑉 𝑡* , 𝑡* = 𝑃𝑟𝑜𝑏 >" ? 𝑒4?&. 𝑊(𝑒,?&) ≀ 𝑣, 𝑡|𝑉 𝑡* = 𝑉*, 𝑡* š 𝑃( 𝑣, 𝑡|𝑉 𝑡* , 𝑡* = 𝑃𝑟𝑜𝑏 >" ? 𝑒4?&. 𝑊(𝑒,?&) ≀ 𝑣, 𝑡| >" ? 𝑒4?&!. 𝑊(𝑒,?&!) = 𝑉*, 𝑡* 114
  • 115. Luc_Faucheux_2020 Langevin PDF via the Distribution function – VI š 𝑃( 𝑣, 𝑡|𝑉 𝑡* , 𝑡* = 𝑃𝑟𝑜𝑏 𝑊(𝑒,?&) ≀ ? >" 𝑣𝑒?&, 𝑡|𝑊(𝑒,?&!) = ? >" 𝑉* 𝑒?&!, 𝑡* š 𝑃 = 𝑃𝑟𝑜𝑏 𝑊(𝑒,?&) ≀ ? >" 𝑣𝑒?&, 𝑡|𝑊(𝑒,?&!) = ? >" 𝑉* 𝑒?&!, 𝑡* š 𝑃 = 𝑃W 𝑊(𝑒,?&) ≀ ? >" 𝑣𝑒?&, 𝑡|𝑊(𝑒,?&!) = ? >" 𝑉* 𝑒?&! š 𝑃 = ∫K/4< K/ $ *"$@$& + ,G(@"$&4@"$&!) . exp( 4(K4 $ *"(!@$&!)" ,(@"$&4@"$&!) ) . 𝑑𝑊 115
  • 116. Luc_Faucheux_2020 Langevin PDF via the Distribution function – VII š 𝑃 = ∫K/4< K/ $ *"$@$& + ,G(@"$&4@"$&!) . exp( 4(K4 $ *"(!@$&!)" ,(@"$&4@"$&!) ) . 𝑑𝑊 š Changing to the variable: 𝑊 = ? >" 𝑒?&. 𝜌 with 𝑑𝑊 = ? >" 𝑒?&. 𝑑𝜌 š 𝑃 = ∫Z/4< Z/$ + ,G(@"$&4@"$&!) . exp( 4(Z $ *"@$&4 $ *"(!@$&!)" ,(@"$&4@"$&!) ) . 𝑑𝜌 ? >" 𝑒?& š 𝑃 = ∫Z/4< Z/$ @$& ,G(@"$&4@"$&!) . exp( 4(Z $ *"@$&4 $ *"(!@$&!)" ,(@"$&4@"$&!) ) . ? >" . 𝑑𝜌 116
  • 117. Luc_Faucheux_2020 Langevin PDF via the Distribution function – VIII š 𝑃 = ∫Z/4< Z/$ ? ,G>"(+4@'"$(&'&!)) . exp( 4(Z4(!.@'$(&'&!))" ,(>"/?).(+4@'"$(&'&!)) ) . 𝑑𝜌 š 𝑃 = 𝑃( 𝑣, 𝑡|𝑉 𝑡* , 𝑡* š 𝑝((𝑣, 𝑡) = ! !$ 𝑃( 𝑣, 𝑡 š 𝑝( 𝑣, 𝑡 𝑉 𝑡* , 𝑡* = ? ,G>"(+4@'"$(&'&!)) . exp( 4(Z4(!.@'$(&'&!))" ,(>"/?).(+4@'"$(&'&!)) ) š Using 𝐷 = >" , š 𝑝 𝑣, 𝑡|𝑉 𝑡* , 𝑡* = ? ,GQ.(+4@'"$(&'&!)) . 𝑒𝑥𝑝(−𝑘 ($4-+ &! .@'$(&'&!))" ,Q(+4@'"$(&'&!)) ) š This is EXACTLY the same PDF we have already arrived at !! 117
  • 118. Luc_Faucheux_2020 Langevin PDF via the Distribution function – IX š So we know that š 𝑉 𝑡 = >" ? . exp −𝑘𝑡 . 𝑊(exp 2𝑘𝑡 ) š Is the Langevin process following the SDE: 𝑑𝑉 𝑡 = −𝑘𝑉 𝑡 . 𝑑𝑡 + 𝜎. 𝑑𝑊 š Deriving the PDF was surprisingly easy (I broke it down to make it very explicit, but Pavliotis does it in 6 lines on page 31 š It is also avoiding pages and pages of algebra using the ansatz (guess) method. š This is quite elegant 118
  • 119. Luc_Faucheux_2020 Langevin Auto correlation through the Distribution function š 𝑉 𝑡 = >" ? . exp −𝑘𝑡 . 𝑊(exp 2𝑘𝑡 ) š So: š 𝔌 𝑉 𝑡. . 𝑉 𝑡* = >" ? . >" ? . exp −𝑘𝑡. . exp −𝑘𝑡* . 𝔌 𝑊(exp 2𝑘𝑡* ). 𝑊(exp 2𝑘𝑡. ) š 𝔌 𝑉 𝑡. . 𝑉 𝑡* = >" ? . exp −𝑘𝑡. . exp −𝑘𝑡* . min(exp 2𝑘𝑡* , exp 2𝑘𝑡. ) š With 𝑡. > 𝑡* š 𝔌 𝑉 𝑡. . 𝑉 𝑡* = >" ? . exp 𝑘𝑡. . exp −𝑘𝑡* and 𝔌 𝑉 𝑡* . 𝑉 𝑡* = >" ? š 𝔌 𝑉 𝑡. . 𝑉 𝑡* = 𝔌 𝑉 𝑡* . 𝑉 𝑡* . exp 𝑘𝑡. . exp −𝑘𝑡* š Again, so quick and elegant ! 119
  • 120. Luc_Faucheux_2020 Langevin versus GBM Geometric Brownian motion Dynamics of moments 120
  • 121. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) š Let’s redo the analysis on the dynamics of the moments for the GBM (Geometric Brownian Motion). š GBM was introduced to model stock prices. It is the first process you see in textbooks when they go on deriving Black-Sholes š However, recently a lot more people woke up to the advantages of the Langevin approach (also called OU or Ornstein-Uhlenbeck) š The Langevin has a lot of advantages that the GBM does not possess š In particular we are going to show that the higher order moments of the GBM do not always converge (as the OU-Langevin do). š In the 1970, Salomon Brothers developed a 3-factor OU (Langevin) model with mean reversion and correlation, as well as their own skew distribution, well ahead of their time. š This model slowly percolated through the industry and is sometimes called the “2+” or “2+ IRMA”. š Ask anyone who worked on rates options and this model is quite famous 121
  • 122. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) - II š The Langevin equation was written with the particle velocity 𝑉 𝑡 as the stochastic variable š We usually write the GBM with the stock (security) 𝑆(𝑡) as the stochastic variable or also sometimes with just the usual stochastic notation 𝑋(𝑡) š The canonical GBM is given by: š 𝑑𝑋 𝑡 = 𝜇. 𝑋 𝑡 . 𝑑𝑡 + 𝜎. 𝑋 𝑡 . ([). 𝑑𝑊(𝑡) š Note that this is of the form: š 𝑑𝑋 𝑡 = 𝑎(𝑋, 𝑡). 𝑑𝑡 + 𝑏(𝑋, 𝑡). ([). 𝑑𝑊(𝑡) š With š 𝑎 𝑋, 𝑡 = 𝜇. 𝑋 𝑡 š 𝑏 𝑋, 𝑡 = 𝜎. 𝑋 𝑡 š So we have to be a little careful about ITO versus STRATANOVITCH 122
  • 123. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) - III š ITO SDE : 𝑑𝑋 𝑡 = 𝑎(𝑋, 𝑡). 𝑑𝑡 + 𝑏(𝑋, 𝑡). ([). 𝑑𝑊(𝑡) š ITO SDE: 𝑑𝑋 𝑡 = 𝜇. 𝑋 𝑡 . 𝑑𝑡 + 𝜎. 𝑋 𝑡 . ([). 𝑑𝑊(𝑡) š The corresponding STRATO SDE is: 𝑑𝑋 𝑡 = 6𝑎 𝑡, 𝑋 𝑡 . 𝑑𝑡 + 7𝑏 𝑡, 𝑋 𝑡 . (∘). 𝑑𝑊 š With: 𝑎 𝑋, 𝑡 = 𝜇. 𝑋 𝑡 and 𝑏 𝑋, 𝑡 = 𝜎. 𝑋 𝑡 š 6𝑎 𝑡, 𝑋 𝑡 = 𝑎 𝑋 𝑡 , 𝑡 − + , . 𝑏 𝑡, 𝑋 𝑡 . ! !3 𝑏 𝑡, 𝑋 𝑡 = 𝜇. 𝑋 𝑡 − + , . 𝜎. 𝑋 𝑡 . 𝜎 š 7𝑏 𝑡, 𝑋 𝑡 = 𝑏 𝑋 𝑡 , 𝑡 = 𝜎. 𝑋 𝑡 š STRATO SDE: 𝑑𝑋 𝑡 = [𝜇. 𝑋 𝑡 − + , . 𝜎. 𝑋 𝑡 . 𝜎]. 𝑑𝑡 + 𝜎. 𝑋 𝑡 . (∘). 𝑑𝑊 123
  • 124. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) - IV š ITO SDE: 𝑑𝑋 𝑡 = 𝜇. 𝑋 𝑡 . 𝑑𝑡 + 𝜎. 𝑋 𝑡 . ([). 𝑑𝑊(𝑡) š ITO SIE: š 𝑋 𝑡. − 𝑋 𝑡* = ∫&/&* &/&. 𝑑𝑋 𝑡 = ∫&/&* &/&. 𝜇. 𝑋 𝑡 . 𝑑𝑡) + ∫&/&* &/&. 𝜎. 𝑋 𝑡 . ([). 𝑑𝑊(𝑡) š STRATO SDE: 𝑑𝑋 𝑡 = [𝜇. 𝑋 𝑡 − + , . 𝜎. 𝑋 𝑡 . 𝜎]. 𝑑𝑡 + 𝜎. 𝑋 𝑡 . (∘). 𝑑𝑊 š STRATO SIE: š 𝑋 𝑡. − 𝑋 𝑡* = ∫&/&* &/&. [𝜇. 𝑋 𝑡 − + , . 𝜎. 𝑋 𝑡 . 𝜎]. 𝑑𝑡) + ∫&/&* &/&. 𝜎. 𝑋 𝑡 . (∘). 𝑑𝑊(𝑡) 124
  • 125. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) - V š ITO SDE: 𝑑𝑋 𝑡 = 𝜇. 𝑋 𝑡 . 𝑑𝑡 + 𝜎. 𝑋 𝑡 . ([). 𝑑𝑊(𝑡) š ITO lemma on 𝑓 𝑋 𝑡 = ln(𝑋 𝑡 ) š 𝑑𝑓 𝑋 𝑡 = 𝑑(ln 𝑋 𝑡 ) = !0 !3 . [ . 𝑑𝑋 + + , !"0 !3" . [ . 𝑑𝑋 , + !0 !3 . 𝑑𝑡 š 𝑑𝑓 𝑋 𝑡 = 𝑑(ln 𝑋 𝑡 ) = + 3 . [ . 𝑑𝑋 + 4+ , + 3" . [ . 𝜎. 𝑋 𝑡 , . 𝑑𝑡 š 𝑑𝑓 𝑋 𝑡 = + 3 . [ . {𝜇. 𝑋 𝑡 . 𝑑𝑡 + 𝜎. 𝑋 𝑡 . ([). 𝑑𝑊(𝑡)} + 4+ , + 3" . [ . 𝜎. 𝑋 𝑡 , . 𝑑𝑡 š 𝑑(ln 𝑋 𝑡 ) = 𝜇 − >" , . 𝑑𝑡 + 𝜎. [ . 𝑑𝑊(𝑡) š ITO SDE on ln 𝑋 𝑡 : 𝑑(ln 𝑋 𝑡 ) = 𝜇 − >" , . 𝑑𝑡 + 𝜎. [ . 𝑑𝑊(𝑡) 125
  • 126. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) - VI š ITO SDE on ln 𝑋 𝑡 : 𝑑(ln 𝑋 𝑡 ) = 𝜇 − >" , . 𝑑𝑡 + 𝜎. [ . 𝑑𝑊(𝑡) š Note that since 𝜎 is constant in that case 𝜎. [ . 𝑑𝑊 𝑡 = 𝜎. ∘ . 𝑑𝑊 𝑡 = 𝜎. 𝑑𝑊(𝑡) š ITO SIE on ln 𝑋 𝑡 š 𝑙𝑛𝑋 𝑡. − 𝑙𝑛𝑋 𝑡* = ∫&/&* &/&. 𝑑𝑙𝑛𝑋 𝑡 = ∫&/&* &/&. 𝜇 − >" , . 𝑑𝑡) + ∫&/&* &/&. 𝜎. ([). 𝑑𝑊(𝑡) š 𝑙𝑛𝑋 𝑡. − 𝑙𝑛𝑋 𝑡* = ∫&/&* &/&. 𝑑𝑙𝑛𝑋 𝑡 = 𝜇 − >" , . (𝑡. − 𝑡*) + 𝜎[𝑊 𝑡. − 𝑊(𝑡*)] š ln[ 3 &) 3 &! ] = 𝜇 − >" , . (𝑡. − 𝑡*) + 𝜎[𝑊 𝑡. − 𝑊(𝑡*)] š 𝑋 𝑡. = 𝑋 𝑡. . exp{ 𝜇 − >" , . 𝑡. − 𝑡* + 𝜎 𝑊 𝑡. − 𝑊 𝑡* } 126
  • 127. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) - VII š STRATO SDE: 𝑑𝑋 𝑡 = [𝜇. 𝑋 𝑡 − + , . 𝜎. 𝑋 𝑡 . 𝜎]. 𝑑𝑡 + 𝜎. 𝑋 𝑡 . (∘). 𝑑𝑊 š STRATO SIE: š 𝑋 𝑡. − 𝑋 𝑡* = ∫&/&* &/&. [𝜇. 𝑋 𝑡 − + , . 𝜎. 𝑋 𝑡 . 𝜎]. 𝑑𝑡) + ∫&/&* &/&. 𝜎. 𝑋 𝑡 . (∘). 𝑑𝑊(𝑡) š STRATO lemma on 𝑓 𝑋 𝑡 = ln(𝑋 𝑡 ) š 𝑑𝑓 𝑋 𝑡 = 𝑑(ln 𝑋 𝑡 ) = !0 !3 . ∘ . 𝑑𝑋 + !0 !3 . 𝑑𝑡 š 𝑑𝑓 𝑋 𝑡 = 𝑑(ln 𝑋 𝑡 ) = + 3 . ∘ . ([𝜇. 𝑋 𝑡 − + , . 𝜎. 𝑋 𝑡 . 𝜎]. 𝑑𝑡 + 𝜎. 𝑋 𝑡 . (∘). 𝑑𝑊) š 𝑑𝑓 𝑋 𝑡 = 𝜇 − >" , . 𝑑𝑡 + 𝜎. (∘). 𝑑𝑊(𝑡) š 𝑑(ln 𝑋 𝑡 ) = 𝜇 − >" , . 𝑑𝑡 + 𝜎. ∘ . 𝑑𝑊(𝑡) 127
  • 128. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) - VIII š STRATO SDE on ln 𝑋 𝑡 : 𝑑(ln 𝑋 𝑡 ) = 𝜇 − >" , . 𝑑𝑡 + 𝜎. ∘ . 𝑑𝑊(𝑡) š Note that since 𝜎 is constant in that case 𝜎. [ . 𝑑𝑊 𝑡 = 𝜎. ∘ . 𝑑𝑊 𝑡 = 𝜎. 𝑑𝑊(𝑡) š STRATO SIE on ln 𝑋 𝑡 š 𝑙𝑛𝑋 𝑡. − 𝑙𝑛𝑋 𝑡* = ∫&/&* &/&. 𝑑𝑙𝑛𝑋 𝑡 = ∫&/&* &/&. 𝜇 − >" , . 𝑑𝑡) + ∫&/&* &/&. 𝜎. (∘). 𝑑𝑊(𝑡) š 𝑙𝑛𝑋 𝑡. − 𝑙𝑛𝑋 𝑡* = ∫&/&* &/&. 𝑑𝑙𝑛𝑋 𝑡 = 𝜇 − >" , . (𝑡. − 𝑡*) + 𝜎[𝑊 𝑡. − 𝑊(𝑡*)] š ln[ 3 &) 3 &! ] = 𝜇 − >" , . (𝑡. − 𝑡*) + 𝜎[𝑊 𝑡. − 𝑊(𝑡*)] š 𝑋 𝑡. = 𝑋 𝑡. . exp{ 𝜇 − >" , . 𝑡. − 𝑡* + 𝜎 𝑊 𝑡. − 𝑊 𝑡* š This is the same solution that we got from ITO (as expected but always worth checking) 128
  • 129. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) - IX š ITO SDE: 𝑑𝑋 𝑡 = 𝜇. 𝑋 𝑡 . 𝑑𝑡 + 𝜎. 𝑋 𝑡 . ([). 𝑑𝑊(𝑡) š ITO SDE is: 𝑑𝑋 𝑡 = 𝑎 𝑡, 𝑋 𝑡 . 𝑑𝑡 + 𝑏 𝑡, 𝑋 𝑡 . ([). 𝑑𝑊 š This implies that the PDF follows the FORWARD ITO Kolmogorov PDE š !"(6,&|3!,&!) !& = − ! !6 𝑎 𝑥 𝑡 , 𝑡 . 𝑝 𝑥, 𝑡 𝑋*, 𝑡* − ! !6 [ + , . [𝑏(𝑥 𝑡 , 𝑡), . 𝑝(𝑥, 𝑡|𝑋*, 𝑡*)] š !"(6,&|3!,&!) !& = − ! !6 𝜇. 𝑥. 𝑝 𝑥, 𝑡 𝑋*, 𝑡* − ! !6 [ + , . [(𝜎. 𝑥), . 𝑝(𝑥, 𝑡|𝑋*, 𝑡*)] 129
  • 130. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) - X š STRATO SDE: 𝑑𝑋 𝑡 = [𝜇. 𝑋 𝑡 − + , . 𝜎. 𝑋 𝑡 . 𝜎]. 𝑑𝑡 + 𝜎. 𝑋 𝑡 . (∘). 𝑑𝑊 š STRATO SDE is: 𝑑𝑋 𝑡 = 6𝑎 𝑡, 𝑋 𝑡 . 𝑑𝑡 + 7𝑏 𝑡, 𝑋 𝑡 . (∘). 𝑑𝑊 š This implies that the PDF follows the FORWARD STRATO Kolmogorov PDE š !"(6,&|3!,&!) !& = − ! !6 9 : {6𝑎 𝑡, 𝑥 + + , . 7𝑏 𝑡, 𝑥 . ! !6 7𝑏 𝑡, 𝑥 }. 𝑝 𝑥, 𝑡 𝑋*, 𝑡* − ! !6 [ + , . [7𝑏(𝑡, 𝑥), . 𝑝(𝑥, 𝑡|𝑋*, 𝑡*)] š 6𝑎 𝑡, 𝑋 𝑡 = 𝑎 𝑋 𝑡 , 𝑡 − + , . 𝑏 𝑡, 𝑋 𝑡 . ! !3 𝑏 𝑡, 𝑋 𝑡 = 𝜇. 𝑋 𝑡 − + , . 𝜎. 𝑋 𝑡 . 𝜎 š 7𝑏 𝑡, 𝑋 𝑡 = 𝑏 𝑡, 𝑋 𝑡 = 𝜎. 𝑋 𝑡 š !"(6,&|3!,&!) !& = − ! !6 {𝜇. 𝑥}. 𝑝 𝑥, 𝑡 𝑋*, 𝑡* − ! !6 [ + , . [(𝜎. 𝑥), . 𝑝(𝑥, 𝑡|𝑋*, 𝑡*)] š Again, same as derived in ITO, but always worth checking 130
  • 131. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) - XI š In the deck (II), we looked at moments from the FP: š !"(6,&) !& = − ! !6 [𝑀+ 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 − ! !6 [𝑀, 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 ]] š Really in terms of notation to highlight the fact that this is a FORWARD FP: š !"(6,&|6;,&;) !& = − ! !6 [𝑀+ 𝑥, 𝑡 . 𝑝 𝑥, 𝑡|𝑣0, 𝑡0 − ! !6 [𝑀, 𝑥, 𝑡 . 𝑝 𝑥, 𝑡|𝑥𝑜, 𝑡𝑜 ]] š 𝑚J 𝑥, 𝑡 =< 𝑋J >&= ∫4< 7< 𝑝 𝑥, 𝑡 . 𝑥J. 𝑑𝑣 š We showed in deck II that by integration by part: š 𝐌, 𝑛 = ∫4< 7< 𝑀+ 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 . 𝑛. 𝑥J4+. 𝑑𝑣 + ∫4< 7< 𝑀, 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 . 𝑛. (𝑛 − 1). 𝑥J4,. 𝑑𝑣 š A A& . 𝑚J 𝑥, 𝑡 = 𝐌, 𝑛 š A A& . 𝑚; 𝑥, 𝑡 = 0 since the probability 𝑚; 𝑥, 𝑡 = ∫4< 7< 𝑝 𝑥, 𝑡 . 𝑑𝑣 is conserved 131
  • 132. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) - XII š For the GBM case: š !"(6,&|3!,&!) !& = − ! !6 {𝜇. 𝑥}. 𝑝 𝑥, 𝑡 𝑋*, 𝑡* − ! !6 [ + , . [(𝜎. 𝑥), . 𝑝(𝑥, 𝑡|𝑋*, 𝑡*)] š !"(6,&) !& = − ! !6 [𝑀+ 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 − ! !6 [𝑀, 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 ]] š 𝑀+ 𝑥, 𝑡 = 𝜇. 𝑥 š 𝑀, 𝑥, 𝑡 = + , . (𝜎. 𝑥), š 𝐌, 𝑛 = ∫4< 7< 𝑀+ 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 . 𝑛. 𝑥J4+. 𝑑𝑣 + ∫4< 7< 𝑀, 𝑥, 𝑡 . 𝑝 𝑥, 𝑡 . 𝑛. (𝑛 − 1). 𝑥J4,. 𝑑𝑣 š 𝐌, 𝑛 = ∫4< 7< 𝜇. 𝑥. 𝑝 𝑥, 𝑡 . 𝑛. 𝑥J4+. 𝑑𝑣 + ∫4< 7< + , . (𝜎. 𝑥), . 𝑝 𝑥, 𝑡 . 𝑛. (𝑛 − 1). 𝑥J4,. 𝑑𝑣 š 𝐌, 𝑛 = 𝜇 ∫4< 7< 𝑝 𝑥, 𝑡 . 𝑛. 𝑥J. 𝑑𝑣 + >" , . ∫4< 7< 𝑝 𝑥, 𝑡 . 𝑛. (𝑛 − 1). 𝑥J. 𝑑𝑣 132
  • 133. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) - XIII š 𝐌, 𝑛 = 𝑛𝜇 ∫4< 7< 𝑝 𝑥, 𝑡 . 𝑥J . 𝑑𝑣 + 𝑛(𝑛 − 1) >" , . ∫4< 7< 𝑝 𝑥, 𝑡 . 𝑥J . 𝑑𝑣 š 𝐌, 𝑛 = 𝑛𝜇 + 𝑛 𝑛 − 1 >" , . ∫4< 7< 𝑝 𝑥, 𝑡 . 𝑥J . 𝑑𝑣 š 𝐌, 𝑛 = 𝑛𝜇 + 𝑛 𝑛 − 1 >" , . 𝑚J 𝑥, 𝑡 š A A& . 𝑚J 𝑥, 𝑡 = 𝐌, 𝑛 = 𝑛𝜇 + 𝑛 𝑛 − 1 >" , . 𝑚J 𝑥, 𝑡 š A A& . 𝑚; 𝑥, 𝑡 = 0 š A A& . 𝑚+ 𝑡 = 𝐌, 1 = 𝜇𝑚+ 𝑡 so 𝑚+ 𝑡 = 𝑚+ 0 . exp(𝜇𝑡) š A A& . 𝑚J 𝑥, 𝑡 = 𝐌, 𝑛 = 𝑛𝜇 + 𝑛 𝑛 − 1 >" , . 𝑚J 𝑥, 𝑡 133
  • 134. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) - XIV š A A& . 𝑚J 𝑥, 𝑡 = 𝐌, 𝑛 = 𝑛𝜇 + 𝑛 𝑛 − 1 >" , . 𝑚J 𝑥, 𝑡 š 𝑚J 𝑡 = 𝑚J 0 . exp[ 𝑛𝜇 + 𝑛 𝑛 − 1 >" , . 𝑡] š 𝑚; 𝑥, 𝑡 = 1 š 𝑚+ 𝑡 = 𝑚+ 0 . exp(𝜇𝑡) diverges when 𝑡 → ∞ if 𝜇 > 0 š 𝑚J 𝑡 = 𝑚J 0 . exp[ 𝑛𝜇 + 𝑛 𝑛 − 1 >" , . 𝑡] š That moment also diverges when 𝑡 → ∞ if 𝜇 + (𝑛 − 1) 𝜎, > 0 š SO there will ALWAYS be a value of n large enough (𝑛 > 1 − ,[ >") for which the moment will diverge š This is one of the drawback of the GBM, even if you start with a large negative value for 𝜇 there will always be a moment that will diverge (the dynamics is unstable) 134
  • 135. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) – XV š Igor Halperin (NYU machine learning professor) š My pretty dramatic conclusion was that financial academics collectively missed all the relevant development in physics starting from 1908 when Paul Langevin developed a generalization of the theory of Brownian motion of Einstein, which describes a Brownian particle moving in an external potential field. Einstein’s theory is mathematically equivalent to the Bachelier model from 1900 for stock prices. In its turn, the Bachelier model was reformulated as a model for a log-price (instead of the price itself) with a linear drift by Paul Samuelson in 1964, resulting in his celebrated Geometric Brownian Motion (GBM) model. š As the GBM model produces a poor fit to market data, financial engineers have since modified or extended it in myriad ways, proposing various stochastic volatility, jump- diffusion, Levy etc. models to ‘better match the market’. 135
  • 136. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) – XVI š I was quite shocked to find that a simple two-line comparison of two very famous equations, namely the GBM model and the Langevin equation, shows that the GBM model (as well as its multiple descends) describes a world with globally unstable dynamics, and thus does not make sense from the point of view of physics – at best, it can only be used to describe small market fluctuations over short period of time, but not dynamics that can proceed at arbitrary long times. š Though this observation is very basic, it appears that it has been overlooked since 1964 when the GBM model was proposed. I believe that if Samuelson was familiar with the Langevin equation from 1908, he would not propose his GBM model – just because the latter does not make sense! š Paraphrasing a famous quote about string theory, I would say that most financial models used by practitioners are ``not even wrong” - they are not about actual ‘physical’ markets, but rather about something else (a pure math). š https://www.rebellionresearch.com/blog/did-finance-oversleep-a-century-of-development- in-physics-interview-with š Salomon Brothers and their 2+ Langevin model from 1970 would also agree with Igor Halperin 136
  • 138. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) – XVII š Just to check one more time, we can derive the PDF for the GBM using the distribution functions š PDF Probability Density Function: 𝑝3(𝑥, 𝑡) š Distribution function : 𝑃3(𝑥, 𝑡) š 𝑃3 𝑥, 𝑡 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑊 𝑋 ≀ 𝑥, 𝑡 = ∫K/4< K/6 𝑝3 𝑊, 𝑡 . 𝑑𝑊 š 𝑝3(𝑥, 𝑡) = ! !6 𝑃3 𝑥, 𝑡 š 𝑙𝑛𝑋 𝑡. − 𝑙𝑛𝑋 𝑡* = ∫&/&* &/&. 𝑑𝑙𝑛𝑋 𝑡 = 𝜇 − >" , . (𝑡. − 𝑡*) + 𝜎[𝑊 𝑡. − 𝑊(𝑡*)] š Right from the start you see that for the GBM we need to restrict ourselves to having: š 𝑥 ∈ ]0 , +∞[ š That is another drawback of the GBM, it does not allow for negative prices for the stock 138
  • 139. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) – XVIII š 𝑃3 𝑥, 𝑡. = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑊(𝑋 ≀ 𝑥|𝑋 𝑡* = 𝑥*) š 𝑃3 𝑥, 𝑡. = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑊(𝑙𝑛𝑋(𝑡.) ≀ 𝑙𝑛𝑥|𝑙𝑛𝑋 𝑡* = 𝑙𝑛𝑥*) š 𝑃3 𝑥, 𝑡. = 𝑃(𝑙𝑛𝑋 𝑡* + 𝜇 − >" , . (𝑡. − 𝑡*) + 𝜎[𝑊 𝑡. − 𝑊(𝑡*)] ≀ 𝑙𝑛𝑥|𝑙𝑛𝑋 𝑡* = 𝑙𝑛𝑥*) š 𝑃3 𝑥, 𝑡. = 𝑃( 𝜇 − >" , . (𝑡. − 𝑡*) + 𝜎[𝑊 𝑡. − 𝑊(𝑡*)] ≀ 𝑙𝑛𝑥 − 𝑙𝑛𝑋 𝑡* |𝑙𝑛𝑋 𝑡* = 𝑙𝑛𝑥*) š 𝑃3 𝑥, 𝑡. = 𝑃(𝜎[𝑊 𝑡. − 𝑊(𝑡*)] ≀ 𝑙𝑛𝑥 − 𝑙𝑛𝑋 𝑡* − 𝜇 − >" , . (𝑡. − 𝑡*)|𝑙𝑛𝑋 𝑡* = 𝑙𝑛𝑥*) š 𝑃3 𝑥, 𝑡. = 𝑃([𝑊 𝑡. − 𝑊(𝑡*)] ≀ J64J3 &! 4 [4 *" " .(&)4&!) > |𝑙𝑛𝑋 𝑡* = 𝑙𝑛𝑥*) 139
  • 140. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) – XIX š 𝑃3 𝑥, 𝑡. = 𝑃([𝑊 𝑡. − 𝑊(𝑡*)] ≀ J64J3 &! 4 [4 *" " .(&)4&!) > |𝑙𝑛𝑋 𝑡* = 𝑙𝑛𝑥*) š We have now brought this back to the distribution function on the Gaussian, since by definition [𝑊 𝑡. − 𝑊(𝑡*)] is normally distributed with mean 0 and variance (𝑡. − 𝑡*) š Math people sometimes write something like this: š [𝑊 𝑡. − 𝑊(𝑡*)] is 𝑁(0, 𝑡. − 𝑡* ) š [𝑊 𝑡. − 𝑊(𝑡*)] is normally distributed according to the Gaussian function: š ℎ 𝑥, 𝑡 = + ,G& . exp( 46" ,& ) š Writing 𝜉 = J64J3 &! 4 [4 *" " .(&)4&!) > 140
  • 141. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) – XX š Writing 𝜉 = J64J3 &! 4 [4 *" " .(&)4&!) > š 𝑃3 𝑥, 𝑡. = 𝑃([𝑊 𝑡. − 𝑊(𝑡*)] ≀ J64J3 &! 4 [4 *" " .(&)4&!) > |𝑙𝑛𝑋 𝑡* = 𝑙𝑛𝑥*) š 𝑃3 𝑥, 𝑡. = ∫K/4< K/2 ℎ 𝑊, 𝑡 . 𝑑𝑊 š 𝑃3 𝑥, 𝑡. = ∫K/4< K/2 + ,G& . exp( 4K" ,& ) . 𝑑𝑊 š Using the change of variable: 𝑊 = J]4J3 &! 4 [4 *" " .(&)4&!) > š 𝑑𝑊 = J]4J3 &! 4 [4 *" " .(&)4&!) > = + >] 𝑑𝑢 141
  • 142. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) – XXI š 𝑃3 𝑥, 𝑡. = ∫K/4< K/2 + ,G(&)4&!) . exp( 4K" ,(&)4&!) ) . 𝑑𝑊 š 𝜉 = J64J3 &! 4 [4 *" " .(&)4&!) > š 𝑃3 𝑥, 𝑡. = ∫]/; ]/6 + ,G(&)4&!) . exp(− [J]4J3 &! 4 [4 *" " .(&)4&!)]" ,>"(&)4&!) ) . A] ]> š 𝑃3 𝑥, 𝑡. = ∫]/; ]/6 + ,G>"(&)4&!) . exp(− [J]4J3 &! 4 [4 *" " .(&)4&!)]" ,>"(&)4&!) ) . A] ] š Note that it is not (. 𝑑𝑢) but (. A] ] ) š Seems obvious but that little ( + ] ) can be tricky at times 142
  • 143. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) – XXII š 𝑃3 𝑥, 𝑡. = ∫]/; ]/6 + ,G>"(&)4&!) . exp(− [J]4J3 &! 4 [4 *" " .(&)4&!)]" ,>"(&)4&!) ) . A] ] š 𝑝3(𝑥, 𝑡) = ! !6 𝑃3 𝑥, 𝑡 š 𝑝3(𝑥, 𝑡) = + ,G>"(&)4&!) . exp(− [J64J3 &! 4 [4 *" " .(&)4&!)]" ,>"(&)4&!) ) . + 6 š That is essentially all we need in order to calculate Black-Sholes through integration š With the appropriate discounting (numeraire) being taken out of the integral (see the deck on Black-Sholes Numeraire), and also Hull White p. 143
  • 144. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) – XXIII š 𝑝3(𝑥, 𝑡) = + ,G>"(&)4&!) . exp(− [J64J3 &! 4 [4 *" " .(&)4&!)]" ,>"(&)4&!) ) . + 6 š Sometimes to avoid forgetting the little + 6 we write as a function of 𝑝J3(𝑙𝑛𝑥, 𝑡) š If we have 𝑋′ 𝑡 = Ί(𝑋 𝑡 ) and 𝑋 𝑡 = 𝜑(𝑋′ 𝑡 ) š 𝑝3# 𝑥=, 𝑡 = 𝑝3 𝑥, 𝑡 . ! !6# 𝜑 𝑥= š 𝑝3# 𝑥=, 𝑡 = 𝑝3 𝑥, 𝑡 . ! !6# 𝜑 𝑥= and noting 𝑥 = 𝜑 𝑥= and 𝑥′ = Ί(𝑥) š ! !6# 𝜑 𝑥= = A6 A6# = A` 6# A6# š The density of probability {𝑝3# 𝑥=, 𝑡 . 𝑑𝑥′} = {𝑝3 𝑥, 𝑡 . 𝑑𝑥} is conserved š If you integrate under the curve, then change the variable of integration, this is the usual result 144
  • 145. Luc_Faucheux_2020 Langevin versus GBM (geometric Brownian motion) – XXIV š {𝑝3# 𝑥=, 𝑡 . 𝑑𝑥′} = {𝑝3 𝑥, 𝑡 . 𝑑𝑥} with 𝑥= = 𝑙𝑛𝑥 š {𝑝J3 𝑙𝑛𝑥, 𝑡 . 𝑑𝑙𝑛𝑥} = {𝑝3 𝑥, 𝑡 . 𝑑𝑥} with 𝑑𝑙𝑛𝑥 = 𝑑𝑥/𝑥 š 𝑝J3 𝑙𝑛𝑥, 𝑡 = 𝑝3 𝑥, 𝑡 . 𝑥 š 𝑝3(𝑥, 𝑡) = + ,G>"(&)4&!) . exp(− [J64J3 &! 4 [4 *" " .(&)4&!)]" ,>"(&)4&!) ) . + 6 š 𝑝J3(𝑙𝑛𝑥, 𝑡) = + ,G>"(&)4&!) . exp(− [J64J3 &! 4 [4 *" " .(&)4&!)]" ,>"(&)4&!) ) 145
  • 146. Luc_Faucheux_2020 Black-Sholes in the BGM (because where else?) 146