SlideShare a Scribd company logo
1 of 43
Download to read offline
Review	
  of	
  challenges	
  related	
  to	
  automated	
  X-­‐
ray	
  microtomography	
  image	
  characteriza:on	
  
of	
  engineering	
  materials	
  	
  
L.	
  Babout1,	
  P.J.	
  Withers2	
  
1Ins:tute	
  of	
  Applied	
  Computer	
  Science,	
  Lodz	
  Univ.	
  Technology,	
  Poland	
  
2Henry	
  Moseley	
  X-­‐ray	
  Imaging	
  Facility,	
  School	
  of	
  Materials,	
  University	
  of	
  
Manchester,	
  UK	
  
Warsaw,	
  Poland,	
  September	
  20	
  –	
  24,	
  2015	
  
Agenda	
  
•  Introduc:on	
  
–  General	
  context	
  
–  Advanced	
  3D	
  image	
  processing	
  
–  Mo:va:on	
  
•  Case	
  studies	
  
–  Extrac:ng	
  bridge	
  ligaments	
  along	
  IGSCC	
  in	
  stainless	
  steel	
  
–  Correla:ng	
  fa:gue	
  crack	
  propaga:on	
  with	
  lamellar	
  
microstructure	
  in	
  (α+β)	
  Ti	
  alloy	
  
–  Structure	
  characteriza,on	
  of	
  GFRP	
  
–  Towards	
  local	
  characteriza:on	
  of	
  structural	
  changes	
  in	
  
auxe:c	
  polyurethane	
  foam	
  during	
  deforma:on	
  
•  Concluding	
  remarks	
  
2	
  
3	
  3	
  
Introduc:on:	
  general	
  context	
  
•  Materials	
  route:	
  from	
  fabrica:on	
  to	
  modelling	
  
Fabrica:on	
   Heat	
  treatment	
   Assembling	
   Tests/Service	
  
Modeling	
  and	
  
op:misa:on	
  
Microstructural	
  
characterisa.on	
  
Effects	
  of	
  
degrada:on	
  
processes	
  on	
  
proper:es	
  /	
  
microstructural	
  
changes	
  
Degrada.on	
  process:	
  succession	
  of	
  steps	
  generated	
  by	
  an	
  exposure	
  to	
  an	
  external	
  
	
  environment	
  which	
  causes	
  prejudice	
  to	
  a	
  structure	
  by	
  weakening	
  one	
  or	
  more	
  	
  
key	
  proper.es.	
  
4	
  4	
  
Introduc:on:	
  general	
  context	
  
•  Numerous	
  ways	
  to	
  image	
  microstructure	
  
–  Different	
  scales,	
  local/global	
  
–  Possibility	
  to	
  combine	
  with	
  in	
  situ	
  tests	
  
–  Imaging	
  techniques,	
  spanning	
  almost	
  the	
  alphabet	
  
www.hexapolis.com	
  
E.H.	
  Lehmann	
  et	
  al.	
  2010	
  
G.C.	
  Yin	
  et	
  al.	
  2006	
   W.	
  Ludwig	
  et	
  al.	
  2010	
  
P.	
  Cloetens	
  et	
  al.	
  2000	
  
N.	
  Limodin	
  et	
  al.	
  2010	
  
•  Characteriza:on:	
  qualita:ve	
  è	
  quan:ta:ve	
  
•  Informa:on	
  extrac:on	
  
– “sofware	
  engineering”	
  approach	
  
– “computer	
  science”	
  approach	
  
•  Time	
  vs.	
  accuracy	
  dilemma…	
  
Introduc:on:	
  general	
  context	
  
:me	
  
accuracy	
  
SE	
  
CS	
  
“…The	
   α-­‐Al	
   dendri:c	
   structure	
   was	
  
segmented	
  by	
  hand	
  into	
  sub-­‐volumes	
  
of	
   350	
   ×	
   220	
   ×	
   200	
   voxels	
   (…)	
   to	
  
i m p r o v e	
   t h e	
   q u a l i t y	
   o f	
   t h e	
  
reconstructed	
  slices.”	
  
	
  
Ar,cle	
  published	
  in	
  Acta	
  Mater.	
  (2012)	
  
	
  
5	
  
Manual	
  
coun:ng	
  
L.	
  Babout	
  et	
  al.	
  2001,	
  2004	
  
Introduc:on:	
  advanced	
  IP	
  
Digital/discrete	
  topology	
  
Graph-­‐based	
  IP	
  
Non	
  linear	
  filtering	
  in	
  	
  
spa.al/frequency	
  domain	
  	
  
f ⊗g
ω1
ω2
ω3
-(π,π,π)
(π,π,π)
!
Texture	
  analysis/PaHern	
  
recogni.on	
  
6	
  
Introduc:on:	
  mo:va:on	
  
•  Two	
  scien:fic	
  communi:es	
  with	
  common	
  interest	
  
•  …but	
  with	
  limited	
  interac:on	
  
	
  
•  Raise	
  the	
  awareness	
  of	
  the	
  MS&E	
  community	
  on	
  
exis:ng	
  advanced	
  IP	
  approaches	
  
7	
  
1mm
MS&E	
  
I	
  have	
  tremendous	
  
data	
  but	
  don’t	
  know	
  
how	
  to	
  analyze	
  them!	
  
CS	
  
I	
  have	
  tremendous	
  
IP	
  algo.	
  but	
  don’t	
  
have	
  real	
  data	
  to	
  
test	
  it!	
  	
  
8	
  
Case	
  study	
  #1:	
  IGSCC	
  in	
  stainless	
  steel	
  
Detector	
  
302	
  stainless	
  steel	
  
wire	
  (Φ0.4mm)	
  
X-­‐ray	
  Source	
  
Tensile	
  machine	
  
Cell	
  with	
  corrosive	
  	
  
solu:on	
  (K2S4O6	
  –	
  
pH	
  2)	
  
	
  
• 	
  SR:	
  0.7	
  μm,	
  E=30	
  keV,	
  1500	
  projec:ons,	
  distance	
  sample-­‐detector:	
  4	
  cm	
  
• 	
  Sample	
  coupled	
  to	
  counter	
  electrodes	
  (Al	
  /	
  Pt)	
  to	
  stop/start	
  corrosion	
  ac:vity	
  
• 	
  Tensile	
  load:	
  up	
  to	
  100	
  MPa	
  (10-­‐15	
  MPa	
  during	
  tomography	
  observa:ons)	
  
•  Experimental	
  set-­‐up:	
  ID19	
  beamline	
  (ESRF)	
  
L.	
  Babout	
  et	
  al.	
  2006	
  
9	
  
Case	
  study	
  #1:	
  IGSCC	
  in	
  stainless	
  steel	
  
40	
  µm	
  
Scan	
  1	
  
Scan	
  2	
  
40 µm
L.	
  Babout	
  et	
  al.	
  2006	
  
•  2D	
  images	
  reveal	
  evolu:on	
  of	
  bridge	
  ligaments	
  
along	
  crack	
  over	
  :me	
  
•  What	
  about	
  visualisa:on	
  of	
  bridges	
  in	
  3D?	
  
Scan	
  3	
  
40 µm
•  How	
  can	
  we	
  segment	
  the	
  crack?	
  
•  One	
  way	
  is	
  by	
  using	
  the	
  Minimal	
  Surface	
  by	
  
Maximum	
  Flow	
  method	
  	
  
10	
  
Case	
  study	
  #1:	
  IGSCC	
  in	
  stainless	
  steel	
  
∂P
∂τ
= −∇⋅F
∂F
∂τ
= −∇P
F ≤ g
B.	
  Appleton	
  and	
  H.	
  Talbot	
  2006	
  
S	
  
E S⎡⎣ ⎤⎦ = g S( )ds
S
∫
∀x ∈Smin
: Fmax
x( )= g x( )N x( )
A.	
  Kornev	
  et	
  al.	
  2010	
  
•  Now,	
  the	
  IGSCC	
  reveals	
  the	
  presence	
  of	
  holes,	
  
corresponding	
  to	
  bridge	
  ligaments	
  in	
  the	
  sample	
  
•  Problema:c:	
  bridges	
  do	
  not	
  correspond	
  to	
  standard	
  
features	
  (not	
  subsets	
  of	
  the	
  3D	
  space)	
  	
  
•  Hole	
  closing	
  algorithm	
  can	
  extract	
  them	
  for	
  you!	
  
11	
  
Case	
  study	
  #1:	
  IGSCC	
  in	
  stainless	
  steel	
  
12	
  
Case	
  study	
  #1:	
  IGSCC	
  in	
  stainless	
  steel	
  
•  Hole	
  filling	
  algorithm	
  
–  Based	
  on	
  approach	
  by	
  Atkouf	
  et	
  al.	
  
–  thinning	
  approach	
  which	
  is	
  based	
  on	
  discrete	
  geometry	
  no:ons	
  	
  
such	
  as	
  topological	
  numbers	
  and	
  topological	
  preserva:on	
  
–  Method:	
  
•  Generate	
  cuboid	
  Y	
  which	
  contains	
  	
  
object	
  X	
  	
  
•  Voxels	
  p	
  of	
  YX	
  with	
  special	
  	
  
topological	
  number	
  are	
  sequen:ally	
  	
  
removed	
  from	
  the	
  furthest	
  to	
  the	
  	
  
closest	
  of	
  X	
  un:l	
  2D-­‐isthmuses	
  	
  
which	
  fill	
  the	
  holes	
  in	
  the	
  object	
  
remain	
  (HCA)	
  
•  Filling	
  of	
  the	
  local	
  volume	
  of	
  the	
  	
  
hole	
  which	
  approximate	
  the	
  	
  
local	
  thickness	
  of	
  the	
  object	
  X	
  (HFA)	
  	
  	
  
M.	
  Janaszewski	
  et	
  al.	
  2010	
  
Z.	
  Aktouf	
  et	
  al.	
  2002	
  
13	
  
Case	
  study	
  #1:	
  IGSCC	
  in	
  stainless	
  steel	
  
Superposi:on	
  on	
  fracture	
  	
  
surface	
  together	
  with	
  crack:	
  
	
  history	
  of	
  IGSCC	
  
HCA	
  for	
  bridge	
  	
  
segmenta:on	
  
Bridge	
  A	
   Bridge	
  B	
   Bridge	
  C	
  
θ	
  (°)	
   62	
   86	
   83	
  
Scan	
  #2	
   541	
  μm2	
   -­‐	
   382	
  μm2	
  
Scan	
  #3	
   282	
  μm2	
   770	
  μm2	
   161	
  μm2	
  
Scan	
  #4	
   106	
  μm2	
   443	
  μm2	
   -­‐	
  
L.	
  Babout	
  et	
  al.	
  2011	
  
20 µm
crack	
  
bridge	
  
θ	
  
Case	
  study	
  #2:	
  fa:gue	
  crack	
  in	
  Ti	
  alloy	
  
•  Lamellar	
  microstructure	
  of	
  (α+β)	
  Ti	
  alloy	
  
•  Complex	
  microstructure	
  /	
  Need	
  to	
  understand	
  
short	
  fa:gue	
  crack-­‐microstructure	
  interac:on	
  
•  X-­‐ray	
  CT	
  +EBSD	
  study	
  shown	
  crack	
  propaga:on	
  
influenced	
  by	
  	
  
– β-­‐gb	
  misorienta:on	
  
– α-­‐lamellae/colonies	
  favorably	
  oriented	
  for	
  <a>	
  basal	
  
slip	
  and	
  <a>	
  prisma:c	
  slip	
  	
  
14	
  
S.	
  Birosca	
  et	
  al.	
  2009	
  
Case	
  study	
  #2:	
  fa:gue	
  crack	
  in	
  Ti	
  alloy	
  
•  α	
  plates	
  growth	
  in	
  the	
  β	
  phase	
  Burgers	
  rela:onship:	
  
(100)β	
  ||	
  (0002)α	
  and	
  [1-­‐11]β	
  ||	
  [11-­‐20]α	
  	
  
•  What	
  about	
  propor:on	
  of	
  trans-­‐/inter-­‐lamellar	
  
cracking?	
  	
  
Ø X-­‐ray	
  μCT	
  /	
  in	
  situ	
  fa:gue	
  
Ø Image	
  processing:	
  crack	
  segmenta:on	
  /	
  α-­‐lamellar/colony	
  
segmenta:on	
  /	
  (β-­‐gb	
  segmenta:on)	
  
α	
  plates	
  	
  
(1-­‐100)	
  	
  
(0002)	
  	
  
TL	
  crack	
  	
  
IL	
  crack	
  	
  
15	
  
Case	
  study	
  #2:	
  fa:gue	
  crack	
  in	
  Ti	
  alloy	
  
•  Experimental	
  set-­‐up	
  
•  ME1230	
  (ID19	
  ESRF)	
  
–  X-­‐ray	
  μCT:	
  0.7μm,	
  40	
  keV,	
  phase	
  	
  
contrast	
  
–  fa:gue:	
  50	
  Hz,	
  0.5σ0.2,	
  R=0.1	
  
•  2	
  samples	
  of	
  Ti-­‐6246	
  with	
  notch	
  
	
  
notch	
  
β-­‐gb	
  	
  
α-­‐colony	
  
β	
  grain	
  1	
  
β	
  grain	
  2	
  
crack1	
  
crack2	
  
27	
  kcycles	
  
16	
  
Case	
  study	
  #2:	
  fa:gue	
  crack	
  in	
  Ti	
  alloy	
  
•  Image	
  processing:	
  α-­‐lamellae/colony	
  segmenta.on	
  
•  direc:onal	
  filter	
  bank	
  (DFB)	
  using	
  special	
  structuring	
  
element	
  sensi:ve	
  to	
  surface-­‐like	
  objects	
  
•  Complementary	
  of	
  HourGlass	
  (CHG)	
  filter	
  bank	
  
–  tunable	
  (default:	
  r=5,	
  θ=22.5°)	
  
–  Epanechnikov	
  profile	
  
–  Default:	
  13	
  direc:ons	
  in	
  <100>,<110>	
  and	
  <111>	
  direc:ons	
  
θ	
  
n	
  
r	
  
[1	
  0	
  0]	
  
[0	
  1	
  0]	
  
[0	
  0	
  1]	
  
[-­‐1	
  1	
  1]	
  
[1	
  1	
  1]	
  
[1	
  -­‐1	
  1]	
  
[1	
  1	
  -­‐1]	
  
[1	
  0	
  -­‐1]	
  
[1	
  0	
  1]	
  
[1	
  1	
  0]	
  
[1	
  -­‐1	
  0]	
  
[0	
  1	
  1]	
  
[	
  0	
  1	
  -­‐1]	
  
y	
  
x	
  
z	
  
17	
  
L.	
  Babout	
  et	
  al.	
  2013a	
  
Case	
  study	
  #2:	
  fa:gue	
  crack	
  in	
  Ti	
  alloy	
  
•  Lamellar	
  classifica:on	
  (largest	
  response	
  to	
  DFB)	
  
[1 1 1]
[1 1 0]
[1 1 -1]
[1 0 1]
[1 0 0]
[1 0 -1]
[1 -1 1]
[1 -1 0]
[-1 1 1]
[0 1 1]
[0 1 0]
[0 1 -1]
[0 0 1]
x
y
z
18	
  
Image	
  processing:	
  β-­‐gb	
  segmenta.on	
  
•  Challenging	
  task	
  
– local	
  similarity	
  of	
  	
  
α-­‐layer/α-­‐lamellae	
  
– phase	
  contrast	
  “leaks”	
  
•  Mul:ple	
  step	
  	
  
approach	
  
19	
  
Case	
  study	
  #2:	
  fa:gue	
  crack	
  in	
  Ti	
  alloy	
  
L.	
  Babout	
  et	
  al.	
  2013b	
  
•  Step	
  1:	
  Edge	
  preserving	
  smoothing	
  
•  Goal:	
  vanish	
  as	
  much	
  as	
  α-­‐lamellae	
  as	
  possible	
  while	
  
keeping	
  sharp	
  	
  β-­‐gb	
  
•  Possible	
  methods:	
  
–  non	
  linear	
  diffusion	
  	
  
filtering	
  (used	
  in	
  Amira)	
  
–  Mean	
  shif	
  smoothing	
  
•  Step	
  2:	
  Segmenta.on	
  +	
  
hole	
  closing	
  correc.on	
  
•  Undersegmenta:on	
  of	
  	
  
β-­‐gb	
  leaves	
  holes	
  
•  Can	
  be	
  filled	
  using	
  HCA	
  
	
   20	
  
Case	
  study	
  #2:	
  fa:gue	
  crack	
  in	
  Ti	
  alloy	
  
D.	
  Comaniciu	
  and	
  	
  P.	
  Meer,	
  2002	
  
Manual	
  	
  
segmenta:on	
  
•  Step	
  3:	
  CHG	
  filtering	
  +topological	
  criterion	
  
•  Numerous	
  surface-­‐like	
  defects	
  can	
  be	
  dis:nguished	
  from	
  β-­‐gb	
  using	
  
CHG-­‐DFB	
  
•  Size	
  criterion	
  and	
  topological	
  
criterion	
  helps	
  at	
  removing	
  	
  
them	
  	
  
–  based	
  on	
  topological	
  numbers	
  
–  usually	
  defects	
  have	
  more	
  border	
  
points	
  than	
  2D	
  junc,on	
  points	
  
isthmus	
  
junc:on	
  
border	
  
	
  
Defect
Afer	
  CHG-­‐DFB	
  
21	
  
Case	
  study	
  #2:	
  fa:gue	
  crack	
  in	
  Ti	
  alloy	
  
•  Step	
  4:	
  crack	
  segmenta.on	
  and	
  image	
  registra.on	
  
•  Crack	
  segmented	
  from	
  	
  
tomo.	
  image	
  at	
  t1	
  …	
  
•  …	
  Superimposed	
  with	
  	
  
microstructural	
  features	
  	
  
from	
  tomo.	
  image	
  at	
  t0	
  
x
y
z
[1	
  1	
  1]	
  
[1	
  1	
  0]	
  
[1	
  1	
  -­‐1]	
  
[1	
  0	
  1]	
  
[1	
  0	
  0]	
  
[1	
  0	
  -­‐1]	
  
[1	
  -­‐1	
  1]	
  
[1	
  -­‐1	
  0]	
  
[-­‐1	
  1	
  1]	
  
[0	
  1	
  1]	
  
[0	
  1	
  0]	
  
[0	
  1	
  -­‐1]	
  
[0	
  0	
  1]	
  
crack	
  
notch	
  
β-­‐gb	
  
22	
  
Case	
  study	
  #2:	
  fa:gue	
  crack	
  in	
  Ti	
  alloy	
  
L.	
  Babout	
  et	
  al.	
  2014	
  
•  Quan.fica.on:	
  crack	
  vs.	
  microstructural	
  features	
  
•  2	
  samples	
  –	
  2	
  scenarios	
  (notch	
  posi:on)	
  
•  Crack	
  orienta:on	
  w.r.t.	
  fa:gue	
  loading	
  (z-­‐axis)	
  
–  CHG	
  classifica:on	
  +	
  MV=max{λi}i=1,2,3V	
  
Sample	
  A	
  
30°-40°
20°-30°
10°-20°
0°-10°
80°-90°
70°-80°
60°-70°
50°-60°
40°-50°
50 µm
x
y
z
crack #2
crack #1
Sample	
  B	
  
30°-40°
20°-30°
10°-20°
0°-10°
80°-90°
70°-80°
60°-70°
50°-60°
40°-50°
z
x
y
β-gb1
β-gb2
β-gb3
23	
  
Case	
  study	
  #2:	
  fa:gue	
  crack	
  in	
  Ti	
  alloy	
  
•  Cracks	
  crossing	
  colonies	
  of	
  ≠	
  orienta:ons	
  
–  sA:	
  crack1	
  not	
  deflected	
  by	
  numerous	
  colonies	
  
–  sB:	
  strong	
  deflec:on	
  in	
  same	
  colony	
  ([001])	
  near	
  notch	
  
x
y
z
[1 1 1]
[1 1 0]
[1 1 -1]
[1 0 1]
[1 0 0]
[1 0 -1]
[1 -1 1]
[1 -1 0]
[-1 1 1]
[0 1 1]
[0 1 0]
[0 1 -1]
[0 0 1]
[0 1 -1]
	
  
[-1 1 1]
	
  
[1 1 1]
	
  
[1 1 -1]
	
  
[1 -1 1]
	
  
x
y
z
[0 1 1]
	
  
[0 0 1]
	
  
[0 1 1]
	
  
β-gb1
β-gb2
β-gb3
24	
  
Case	
  study	
  #2:	
  fa:gue	
  crack	
  in	
  Ti	
  alloy	
  
•  Angle	
  between	
  crack	
  and	
  lamellar	
  orienta:on	
  
–  lamellar	
  orienta:on:	
  3D	
  gradient	
  map	
  +	
  MV=max{λi}i=1,2,3V	
  
–  inter-­‐	
  lamellar:	
  angle	
  <	
  30°	
  
x
y
z
80°-90°
70°-80°
60°-70°
50°-60°
40°-50°
30°-40°
0°-30°
x
y
z
β-gb1
β-gb2
β-gb3
25	
  
Case	
  study	
  #2:	
  fa:gue	
  crack	
  in	
  Ti	
  alloy	
  
•  Trans-­‐lamellar	
  cracking	
  predominant	
  
–  ~60%	
  larger	
  than	
  70°	
  
–  colonies	
  favorably	
  oriented	
  for	
  basal	
  <a>	
  slip	
  
•  Non	
  negligible	
  
inter-­‐lamellar	
  
–  10-­‐20%	
  
–  prisma,c	
  <a>	
  slip	
  
•  The	
  2	
  samples	
  show	
  	
  
similar	
  trends	
  
•  Complete	
  Birosca	
  
et	
  al.	
  EBSD	
  observa:ons	
  	
  
26	
  
Case	
  study	
  #2:	
  fa:gue	
  crack	
  in	
  Ti	
  alloy	
  
•  Problem	
  with	
  image	
  processing:	
  always	
  space	
  for	
  
improvement	
  
•  Recent	
  approach	
  
combining	
  orienta:on	
  
histogram	
  and	
  
watershed-­‐based	
  
segmenta:on	
  
•  Inspired	
  by	
  Jeulin	
  and	
  	
  
Moreaud’s	
  approach	
  
•  Step	
  1:	
  local	
  orienta.on	
  
maps	
  using	
  PCA	
  (Arnoldi	
  
method)	
  –	
  Hadamard	
  	
  
product	
  	
  
	
  
27	
  
Vx	
  
Vy	
   Vz	
  
D.	
  Jeulin	
  and	
  M.	
  Moreaud.	
  2008	
  
X	
  
Y	
  
Z	
  
Another	
  angle	
  to	
  approach	
  direc:onal	
  
textured	
  image	
  segmenta:on	
  
•  Step	
  2:	
  cartesian	
  (x,y,z)-­‐to-­‐polar	
  (θ,ϕ)	
  coordinate	
  
conversion	
  +	
  2D	
  histogram	
  	
  
•  Vθ=atan(Vy/Vx)	
  ϵ	
  [-­‐90	
  90]	
  
•  Vϕ=acos(Vz)	
  ϵ	
  [0	
  180]	
  
28	
  
Segmenta:on	
  of	
  	
  α-­‐colonies	
  in	
  Ti	
  alloy	
  
Vϕ	
  
Vθ	
  
0	
  
180	
  
90	
  
-­‐90	
   90	
  0	
  
X	
   Y	
  
Z	
  
Vϕ	
  
Vθ	
  
•  Step	
  3:	
  histogram	
  par..oning	
  using	
  grayscale	
  
watershed	
  with	
  markers	
  
watershed	
  
par::oning	
  
(afer	
  image	
  
mirroring)	
  
0	
  
H2	
   12	
  labelled	
  regions	
  in	
  H2P	
  
29	
  
Segmenta:on	
  of	
  	
  α-­‐colonies	
  in	
  Ti	
  alloy	
  
M.	
  Couprie	
  and	
  G.	
  Bertrand.	
  1997	
   F.	
  Meyer	
  1994	
  
30	
  
Segmenta:on	
  of	
  	
  α-­‐colonies	
  in	
  Ti	
  alloy	
  
•  Step	
  4:	
  segmenta.on	
  
∀p ∈I,SI
p( )= H2PI
Vϕ
p( ),Vθ
p( )( )
Visible	
  improvement	
  over	
  CHG!	
  
Is	
  it	
  worth	
  it?	
  
CHG-­‐based	
  segmenta:on	
  
•  May	
  be	
  not	
  if	
  we	
  look	
  at	
  the	
  recent	
  breakthrough	
  
in	
  Near	
  field	
  High	
  Energy	
  X-­‐ray	
  diffrac.on	
  
microscopy	
  @	
  APS	
  …	
  
•  New	
  way	
  to	
  image	
  polycrystalline/polyphase	
  materials	
  
from	
  R.	
  Suter’s	
  team	
  (Carnegie	
  Mellon	
  Univ.)	
  
•  Recently	
  applied	
  to	
  fully	
  lamellar	
  Ti-­‐6Al-­‐4V	
  
31	
  E.	
  Wielewski	
  et	
  al.	
  2015	
  
α	
  colonies	
   Recovered	
  primary	
  β	
  grains	
  
•  …However,	
  may	
  be	
  useful	
  for	
  other	
  types	
  of	
  
materials	
  with	
  direc.onal	
  microstructure	
  
•  Example:	
  GFRP	
  
– wef	
  and	
  binder	
  yarn:	
  90°	
  to	
  each	
  other	
  
– similar	
  approach	
  to	
  lamellar	
  segmenta:on	
  
32	
  J.	
  Stein	
  et	
  al.	
  2014	
  
H2	
   H2P	
  
3D	
  gradient	
  map	
  +	
  MV=min{λi}i=1,2,3V	
  
33	
  
•  GFRP	
  segmenta.on	
  
•  Possibility	
  to	
  separate	
  groups	
  of	
  wefs	
  
•  Segmenta:on	
  preŒy	
  sa:sfying	
  for	
  a	
  first	
  go	
  
34	
  
Case	
  study	
  #3:	
  characteriza:on	
  of	
  
auxe:c	
  polyurethane	
  foam	
  
•  Problema:c:	
  
– Auxe:c	
  :nega:ve	
  Poisson	
  ra:o.	
  So	
  tendency	
  to	
  expand	
  /	
  
contract	
  laterally	
  when	
  stretched	
  /	
  compressed	
  	
  
– How	
  this	
  process	
  occurs	
  locally	
  (at	
  the	
  level	
  of	
  the	
  
joints/ribs)	
  in	
  APF?	
  Joint	
  rota:on?	
  Ribs	
  straightening,	
  
stretching	
  and	
  twis:ng?	
  
•  Primary	
  objec:ves	
  
– Scan	
  polyurethane	
  foam	
  samples	
  (classic/auxe:c)	
  @	
  
HMXIF	
  for	
  different	
  tension	
  loading	
  
– Extract	
  joints	
  /	
  ribs	
  from	
  curvilinear	
  skeleton	
  of	
  foam	
  
– Look	
  at	
  local	
  geometrical	
  characteris:cs	
  and	
  see	
  how	
  
they	
  evolve	
  over	
  deforma,on	
  ,me	
  
35	
  
• Comparison	
  auxe.c	
  /	
  conven.onal	
  foam	
  
• Auxe:c	
  presents	
  bent	
  ribs	
  while	
  conven:onal	
  foam	
  has	
  cells	
  
with	
  polygonal	
  shape	
  
• Usually	
  cells	
  consist	
  of	
  4-­‐6	
  joints	
  
• Curvilinear	
  skeleton	
  helps	
  in	
  quan:fying	
  microstructural	
  
features	
  such	
  as	
  rib	
  length,	
  curvature,	
  joint-­‐to-­‐joint	
  distance	
  	
  
Classical	
  foam	
   Auxe:c	
  foam	
  
Case	
  study	
  #3:	
  characteriza:on	
  of	
  APF	
  
36	
  
•  How	
  to	
  quan.fy	
  microstructure?	
  
•  Best	
  way	
  is	
  to	
  use	
  graph	
  theory:	
  joint	
  ó	
  node,	
  
ribósegment,	
  cellócycle	
  
•  Extract	
  each	
  feature	
  from	
  ul:mate	
  curvilinear	
  skeleton	
  
(Amira)	
  
Node 1
Node 2
d	
  
l	
  
α1	
  
α2	
  
α1
α2 α3
α4
L1
L2
L3
L4
Node	
  characterisa:on	
   Cycle	
  characterisa:on	
  
Case	
  study	
  #3:	
  characteriza:on	
  of	
  APF	
  
37	
  
Cycle	
  characteriza:on	
  
•  Problem:	
  which	
  R+T	
  combina:on	
  
needed	
  for	
  cycle	
  to	
  recover	
  
polygonal	
  shape?	
  
α1
α2 α3
α4
L1
L2
L3
L4
L1
L2
L3
L4
α1 α4
α2 α3
• 	
  	
  Need	
  to	
  quan:fy	
  if	
  conserva:on	
  of	
  
angle	
  for	
  polygon	
  s:ll	
  true	
  for	
  auxe:c	
  
structure	
  (error	
  es:ma:on)	
  
( ) 1802
1
×−≡∑
=
N
N
i
iα
• 	
  	
  Also	
  the	
  level	
  of	
  cycle	
  distor:on	
  related	
  
to	
  auxicity	
  can	
  be	
  easily	
  evaluated	
  from	
  
	
  rib	
  length-­‐to-­‐joint	
  distance	
  ra:o	
  
Df
=
1
N
li
dii=1
N
∑
Case	
  study	
  #3:	
  characteriza:on	
  of	
  APF	
  
•  Parameters	
  can	
  be	
  visually	
  checked	
  locally	
  	
  
using	
  hole	
  closing	
  algorithm	
  
	
  
Normal	
  foam	
  
[0-­‐1[	
  
[1-­‐2[	
  
[2-­‐5[	
  
[5-­‐10[	
  
[10-­‐20[	
  
[20-­‐50[	
  
•  Polygon	
  rule	
  verified	
  in	
  the	
  very	
  large	
  majority	
  
(error	
  <	
  2%)	
  
•  Skeletoniza:on	
  and	
  tangent	
  es:ma:on	
  adequate	
  
38	
  
Case	
  study	
  #3:	
  characteriza:on	
  of	
  APF	
  
Auxe:c	
  foam	
  
[0-­‐1[	
  
[1-­‐2[	
  
[2-­‐5[	
  
[5-­‐10[	
  
[10-­‐20[	
  
[20-­‐50[	
  
39	
  
Case	
  study	
  #3:	
  characteriza:on	
  of	
  APF	
  
•  More	
  than	
  200	
  cycles	
  analyzed	
  
•  ~55%	
  of	
  cycles	
  for	
  which	
  error	
  >2%	
  !	
  
How	
  to	
  interpret	
  this?	
  
•  Correla:on	
  between	
  structure	
  deforma:on	
  and	
  loss	
  of	
  
polygon	
  rule	
  during	
  conversion	
  (compression/hea:ng)	
  
process	
  ?	
  
•  Or	
  is	
  it	
  simply	
  a	
  problem	
  in	
  the	
  tangent	
  descriptor	
  as	
  rib	
  
distorted?	
  
Skeletoniza:on?	
  
40	
  
Case	
  study	
  #3:	
  characteriza:on	
  of	
  APF	
  
Concluding	
  remarks	
  
•  Three	
  cases	
  studies	
  to	
  show	
  the	
  need	
  of	
  advanced	
  IP	
  for	
  
materials	
  characteriza:on…	
  
•  …But	
  not	
  an	
  easy	
  task	
  
•  Not	
  yet	
  a	
  centralized	
  plaŽorm	
  informing	
  how	
  to	
  find	
  his	
  way	
  
through	
  the	
  myriads	
  of	
  IP	
  approaches	
  
–  Commercialized	
  sofware:	
  Avizo,	
  Simpleware,	
  Aphelion,	
  VGStudio	
  
Max,	
  Matlab…	
  
–  Free	
  sofware:	
  ImageJ	
  and	
  co.	
  (good	
  lis:ng	
  @	
  
nic.med.harvard.edu)	
  	
  
–  Plugins/libraries:	
  	
  
•  Java:	
  ImageJ	
  (hŒp://imagejdocu.tudor.lu/)	
  
•  C:	
  PINK:	
  library	
  from	
  ESIEE	
  (univ.	
  Paris-­‐Est)	
  
•  C++:	
  VTK,	
  ITK,	
  DGTal	
  
•  Matlab:	
  	
  Matlab	
  File	
  exchange	
  
•  Python:	
  scikit-­‐image	
  
•  Stronger	
  coopera:on	
  between	
  materials	
  and	
  computer	
  
scien:sts	
  is	
  an	
  evidence!	
  
41	
  
Acknowledgements	
  
•  ESRF-­‐ID19:	
  E.	
  Boller,	
  P.	
  Cloetens	
  
•  IGSCC	
  
–  T.	
  J.	
  Marrow	
  (Univ.	
  Oxford)	
  
–  D.	
  Engelberg	
  (Univ.	
  Manchester)	
  
–  J.-­‐Y.	
  Buffiere	
  (INSA-­‐Lyon)	
  
–  M.	
  Janaszewski	
  (Lodz	
  Univ.	
  of	
  Technology)	
  
–  M.	
  Couprie	
  (ESIEE,	
  Univ.	
  Paris-­‐Est)	
  
•  Ti	
  alloy	
  
–  M.	
  Preuss	
  (Univ.	
  Manchester)	
  
–  S.	
  Birosca	
  (Swansea	
  University)	
  
–  J.-­‐Y.	
  Buffiere	
  (INSA-­‐Lyon)	
  
–  L.	
  Jopek,	
  R.	
  Al	
  Darwich,	
  M.	
  Janaszewski	
  (Lodz	
  Univ.	
  of	
  
Technology)	
  
42	
  
Acknowledgements	
  
43	
  
•  GFRP	
  
– P.M.	
  Mummery	
  (Univ.	
  Manchester)	
  
•  Polyurethane	
  foams	
  
– S.A.	
  McDonald	
  (Univ.	
  Manchester)	
  
•  SPECIAL	
  THANK	
  TO	
  P.J.	
  WITHERS	
  
	
  

More Related Content

Similar to Keynote lb

REU_poster_CynthiaYu-v.8.p
REU_poster_CynthiaYu-v.8.pREU_poster_CynthiaYu-v.8.p
REU_poster_CynthiaYu-v.8.p
Cynthia Yu
 
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
aimsnist
 
PhD_10_2011_Abhijeet_Paul
PhD_10_2011_Abhijeet_PaulPhD_10_2011_Abhijeet_Paul
PhD_10_2011_Abhijeet_Paul
Abhijeet Paul
 
High Capacity Planar Supercapacitors and Lithium-Ion Batteries by Modular Man...
High Capacity Planar Supercapacitors and Lithium-Ion Batteries byModular Man...High Capacity Planar Supercapacitors and Lithium-Ion Batteries byModular Man...
High Capacity Planar Supercapacitors and Lithium-Ion Batteries by Modular Man...
Bing Hsieh
 

Similar to Keynote lb (20)

XRD_AG NPG.ppt
XRD_AG NPG.pptXRD_AG NPG.ppt
XRD_AG NPG.ppt
 
XRD_AG NPG.ppt
XRD_AG NPG.pptXRD_AG NPG.ppt
XRD_AG NPG.ppt
 
REU_poster_CynthiaYu-v.8.p
REU_poster_CynthiaYu-v.8.pREU_poster_CynthiaYu-v.8.p
REU_poster_CynthiaYu-v.8.p
 
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
 
Webinar about ATK
Webinar about ATKWebinar about ATK
Webinar about ATK
 
PhD_10_2011_Abhijeet_Paul
PhD_10_2011_Abhijeet_PaulPhD_10_2011_Abhijeet_Paul
PhD_10_2011_Abhijeet_Paul
 
3 di metrology-slideshare
3 di metrology-slideshare3 di metrology-slideshare
3 di metrology-slideshare
 
ION IMPLANTATION
ION IMPLANTATIONION IMPLANTATION
ION IMPLANTATION
 
High Capacity Planar Supercapacitors and Lithium-Ion Batteries by Modular Man...
High Capacity Planar Supercapacitors and Lithium-Ion Batteries byModular Man...High Capacity Planar Supercapacitors and Lithium-Ion Batteries byModular Man...
High Capacity Planar Supercapacitors and Lithium-Ion Batteries by Modular Man...
 
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
 
NREL_rapid_development_intro
NREL_rapid_development_introNREL_rapid_development_intro
NREL_rapid_development_intro
 
Binary alloy nanopatterning using low energy ion beams
Binary alloy nanopatterning using low energy ion beams Binary alloy nanopatterning using low energy ion beams
Binary alloy nanopatterning using low energy ion beams
 
Rosa alejandra lukaszew tests of the gurenvich odel toward larger field gra...
Rosa alejandra lukaszew   tests of the gurenvich odel toward larger field gra...Rosa alejandra lukaszew   tests of the gurenvich odel toward larger field gra...
Rosa alejandra lukaszew tests of the gurenvich odel toward larger field gra...
 
Molecular dynamics simulations of ferroelectrics with feram code
Molecular dynamics simulations of ferroelectrics with feram codeMolecular dynamics simulations of ferroelectrics with feram code
Molecular dynamics simulations of ferroelectrics with feram code
 
Engenharia de nanoestruturas de superfície.
Engenharia de nanoestruturas de superfície.Engenharia de nanoestruturas de superfície.
Engenharia de nanoestruturas de superfície.
 
nano%20tutorial%20pt1.pdf
nano%20tutorial%20pt1.pdfnano%20tutorial%20pt1.pdf
nano%20tutorial%20pt1.pdf
 
Api009
Api009Api009
Api009
 
Exploring Architected Materials Using Machine Learning
Exploring Architected Materials Using Machine LearningExploring Architected Materials Using Machine Learning
Exploring Architected Materials Using Machine Learning
 
Graphene ppt
Graphene pptGraphene ppt
Graphene ppt
 
EBSD Conference_Terry
EBSD Conference_TerryEBSD Conference_Terry
EBSD Conference_Terry
 

Recently uploaded

Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 

Recently uploaded (20)

Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic Marks
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Rums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfRums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdf
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 

Keynote lb

  • 1. Review  of  challenges  related  to  automated  X-­‐ ray  microtomography  image  characteriza:on   of  engineering  materials     L.  Babout1,  P.J.  Withers2   1Ins:tute  of  Applied  Computer  Science,  Lodz  Univ.  Technology,  Poland   2Henry  Moseley  X-­‐ray  Imaging  Facility,  School  of  Materials,  University  of   Manchester,  UK   Warsaw,  Poland,  September  20  –  24,  2015  
  • 2. Agenda   •  Introduc:on   –  General  context   –  Advanced  3D  image  processing   –  Mo:va:on   •  Case  studies   –  Extrac:ng  bridge  ligaments  along  IGSCC  in  stainless  steel   –  Correla:ng  fa:gue  crack  propaga:on  with  lamellar   microstructure  in  (α+β)  Ti  alloy   –  Structure  characteriza,on  of  GFRP   –  Towards  local  characteriza:on  of  structural  changes  in   auxe:c  polyurethane  foam  during  deforma:on   •  Concluding  remarks   2  
  • 3. 3  3   Introduc:on:  general  context   •  Materials  route:  from  fabrica:on  to  modelling   Fabrica:on   Heat  treatment   Assembling   Tests/Service   Modeling  and   op:misa:on   Microstructural   characterisa.on   Effects  of   degrada:on   processes  on   proper:es  /   microstructural   changes   Degrada.on  process:  succession  of  steps  generated  by  an  exposure  to  an  external    environment  which  causes  prejudice  to  a  structure  by  weakening  one  or  more     key  proper.es.  
  • 4. 4  4   Introduc:on:  general  context   •  Numerous  ways  to  image  microstructure   –  Different  scales,  local/global   –  Possibility  to  combine  with  in  situ  tests   –  Imaging  techniques,  spanning  almost  the  alphabet   www.hexapolis.com   E.H.  Lehmann  et  al.  2010   G.C.  Yin  et  al.  2006   W.  Ludwig  et  al.  2010   P.  Cloetens  et  al.  2000   N.  Limodin  et  al.  2010  
  • 5. •  Characteriza:on:  qualita:ve  è  quan:ta:ve   •  Informa:on  extrac:on   – “sofware  engineering”  approach   – “computer  science”  approach   •  Time  vs.  accuracy  dilemma…   Introduc:on:  general  context   :me   accuracy   SE   CS   “…The   α-­‐Al   dendri:c   structure   was   segmented  by  hand  into  sub-­‐volumes   of   350   ×   220   ×   200   voxels   (…)   to   i m p r o v e   t h e   q u a l i t y   o f   t h e   reconstructed  slices.”     Ar,cle  published  in  Acta  Mater.  (2012)     5   Manual   coun:ng   L.  Babout  et  al.  2001,  2004  
  • 6. Introduc:on:  advanced  IP   Digital/discrete  topology   Graph-­‐based  IP   Non  linear  filtering  in     spa.al/frequency  domain     f ⊗g ω1 ω2 ω3 -(π,π,π) (π,π,π) ! Texture  analysis/PaHern   recogni.on   6  
  • 7. Introduc:on:  mo:va:on   •  Two  scien:fic  communi:es  with  common  interest   •  …but  with  limited  interac:on     •  Raise  the  awareness  of  the  MS&E  community  on   exis:ng  advanced  IP  approaches   7   1mm MS&E   I  have  tremendous   data  but  don’t  know   how  to  analyze  them!   CS   I  have  tremendous   IP  algo.  but  don’t   have  real  data  to   test  it!    
  • 8. 8   Case  study  #1:  IGSCC  in  stainless  steel   Detector   302  stainless  steel   wire  (Φ0.4mm)   X-­‐ray  Source   Tensile  machine   Cell  with  corrosive     solu:on  (K2S4O6  –   pH  2)     •   SR:  0.7  μm,  E=30  keV,  1500  projec:ons,  distance  sample-­‐detector:  4  cm   •   Sample  coupled  to  counter  electrodes  (Al  /  Pt)  to  stop/start  corrosion  ac:vity   •   Tensile  load:  up  to  100  MPa  (10-­‐15  MPa  during  tomography  observa:ons)   •  Experimental  set-­‐up:  ID19  beamline  (ESRF)   L.  Babout  et  al.  2006  
  • 9. 9   Case  study  #1:  IGSCC  in  stainless  steel   40  µm   Scan  1   Scan  2   40 µm L.  Babout  et  al.  2006   •  2D  images  reveal  evolu:on  of  bridge  ligaments   along  crack  over  :me   •  What  about  visualisa:on  of  bridges  in  3D?   Scan  3   40 µm
  • 10. •  How  can  we  segment  the  crack?   •  One  way  is  by  using  the  Minimal  Surface  by   Maximum  Flow  method     10   Case  study  #1:  IGSCC  in  stainless  steel   ∂P ∂τ = −∇⋅F ∂F ∂τ = −∇P F ≤ g B.  Appleton  and  H.  Talbot  2006   S   E S⎡⎣ ⎤⎦ = g S( )ds S ∫ ∀x ∈Smin : Fmax x( )= g x( )N x( ) A.  Kornev  et  al.  2010  
  • 11. •  Now,  the  IGSCC  reveals  the  presence  of  holes,   corresponding  to  bridge  ligaments  in  the  sample   •  Problema:c:  bridges  do  not  correspond  to  standard   features  (not  subsets  of  the  3D  space)     •  Hole  closing  algorithm  can  extract  them  for  you!   11   Case  study  #1:  IGSCC  in  stainless  steel  
  • 12. 12   Case  study  #1:  IGSCC  in  stainless  steel   •  Hole  filling  algorithm   –  Based  on  approach  by  Atkouf  et  al.   –  thinning  approach  which  is  based  on  discrete  geometry  no:ons     such  as  topological  numbers  and  topological  preserva:on   –  Method:   •  Generate  cuboid  Y  which  contains     object  X     •  Voxels  p  of  YX  with  special     topological  number  are  sequen:ally     removed  from  the  furthest  to  the     closest  of  X  un:l  2D-­‐isthmuses     which  fill  the  holes  in  the  object   remain  (HCA)   •  Filling  of  the  local  volume  of  the     hole  which  approximate  the     local  thickness  of  the  object  X  (HFA)       M.  Janaszewski  et  al.  2010   Z.  Aktouf  et  al.  2002  
  • 13. 13   Case  study  #1:  IGSCC  in  stainless  steel   Superposi:on  on  fracture     surface  together  with  crack:    history  of  IGSCC   HCA  for  bridge     segmenta:on   Bridge  A   Bridge  B   Bridge  C   θ  (°)   62   86   83   Scan  #2   541  μm2   -­‐   382  μm2   Scan  #3   282  μm2   770  μm2   161  μm2   Scan  #4   106  μm2   443  μm2   -­‐   L.  Babout  et  al.  2011   20 µm crack   bridge   θ  
  • 14. Case  study  #2:  fa:gue  crack  in  Ti  alloy   •  Lamellar  microstructure  of  (α+β)  Ti  alloy   •  Complex  microstructure  /  Need  to  understand   short  fa:gue  crack-­‐microstructure  interac:on   •  X-­‐ray  CT  +EBSD  study  shown  crack  propaga:on   influenced  by     – β-­‐gb  misorienta:on   – α-­‐lamellae/colonies  favorably  oriented  for  <a>  basal   slip  and  <a>  prisma:c  slip     14   S.  Birosca  et  al.  2009  
  • 15. Case  study  #2:  fa:gue  crack  in  Ti  alloy   •  α  plates  growth  in  the  β  phase  Burgers  rela:onship:   (100)β  ||  (0002)α  and  [1-­‐11]β  ||  [11-­‐20]α     •  What  about  propor:on  of  trans-­‐/inter-­‐lamellar   cracking?     Ø X-­‐ray  μCT  /  in  situ  fa:gue   Ø Image  processing:  crack  segmenta:on  /  α-­‐lamellar/colony   segmenta:on  /  (β-­‐gb  segmenta:on)   α  plates     (1-­‐100)     (0002)     TL  crack     IL  crack     15  
  • 16. Case  study  #2:  fa:gue  crack  in  Ti  alloy   •  Experimental  set-­‐up   •  ME1230  (ID19  ESRF)   –  X-­‐ray  μCT:  0.7μm,  40  keV,  phase     contrast   –  fa:gue:  50  Hz,  0.5σ0.2,  R=0.1   •  2  samples  of  Ti-­‐6246  with  notch     notch   β-­‐gb     α-­‐colony   β  grain  1   β  grain  2   crack1   crack2   27  kcycles   16  
  • 17. Case  study  #2:  fa:gue  crack  in  Ti  alloy   •  Image  processing:  α-­‐lamellae/colony  segmenta.on   •  direc:onal  filter  bank  (DFB)  using  special  structuring   element  sensi:ve  to  surface-­‐like  objects   •  Complementary  of  HourGlass  (CHG)  filter  bank   –  tunable  (default:  r=5,  θ=22.5°)   –  Epanechnikov  profile   –  Default:  13  direc:ons  in  <100>,<110>  and  <111>  direc:ons   θ   n   r   [1  0  0]   [0  1  0]   [0  0  1]   [-­‐1  1  1]   [1  1  1]   [1  -­‐1  1]   [1  1  -­‐1]   [1  0  -­‐1]   [1  0  1]   [1  1  0]   [1  -­‐1  0]   [0  1  1]   [  0  1  -­‐1]   y   x   z   17   L.  Babout  et  al.  2013a  
  • 18. Case  study  #2:  fa:gue  crack  in  Ti  alloy   •  Lamellar  classifica:on  (largest  response  to  DFB)   [1 1 1] [1 1 0] [1 1 -1] [1 0 1] [1 0 0] [1 0 -1] [1 -1 1] [1 -1 0] [-1 1 1] [0 1 1] [0 1 0] [0 1 -1] [0 0 1] x y z 18  
  • 19. Image  processing:  β-­‐gb  segmenta.on   •  Challenging  task   – local  similarity  of     α-­‐layer/α-­‐lamellae   – phase  contrast  “leaks”   •  Mul:ple  step     approach   19   Case  study  #2:  fa:gue  crack  in  Ti  alloy   L.  Babout  et  al.  2013b  
  • 20. •  Step  1:  Edge  preserving  smoothing   •  Goal:  vanish  as  much  as  α-­‐lamellae  as  possible  while   keeping  sharp    β-­‐gb   •  Possible  methods:   –  non  linear  diffusion     filtering  (used  in  Amira)   –  Mean  shif  smoothing   •  Step  2:  Segmenta.on  +   hole  closing  correc.on   •  Undersegmenta:on  of     β-­‐gb  leaves  holes   •  Can  be  filled  using  HCA     20   Case  study  #2:  fa:gue  crack  in  Ti  alloy   D.  Comaniciu  and    P.  Meer,  2002   Manual     segmenta:on  
  • 21. •  Step  3:  CHG  filtering  +topological  criterion   •  Numerous  surface-­‐like  defects  can  be  dis:nguished  from  β-­‐gb  using   CHG-­‐DFB   •  Size  criterion  and  topological   criterion  helps  at  removing     them     –  based  on  topological  numbers   –  usually  defects  have  more  border   points  than  2D  junc,on  points   isthmus   junc:on   border     Defect Afer  CHG-­‐DFB   21   Case  study  #2:  fa:gue  crack  in  Ti  alloy  
  • 22. •  Step  4:  crack  segmenta.on  and  image  registra.on   •  Crack  segmented  from     tomo.  image  at  t1  …   •  …  Superimposed  with     microstructural  features     from  tomo.  image  at  t0   x y z [1  1  1]   [1  1  0]   [1  1  -­‐1]   [1  0  1]   [1  0  0]   [1  0  -­‐1]   [1  -­‐1  1]   [1  -­‐1  0]   [-­‐1  1  1]   [0  1  1]   [0  1  0]   [0  1  -­‐1]   [0  0  1]   crack   notch   β-­‐gb   22   Case  study  #2:  fa:gue  crack  in  Ti  alloy   L.  Babout  et  al.  2014  
  • 23. •  Quan.fica.on:  crack  vs.  microstructural  features   •  2  samples  –  2  scenarios  (notch  posi:on)   •  Crack  orienta:on  w.r.t.  fa:gue  loading  (z-­‐axis)   –  CHG  classifica:on  +  MV=max{λi}i=1,2,3V   Sample  A   30°-40° 20°-30° 10°-20° 0°-10° 80°-90° 70°-80° 60°-70° 50°-60° 40°-50° 50 µm x y z crack #2 crack #1 Sample  B   30°-40° 20°-30° 10°-20° 0°-10° 80°-90° 70°-80° 60°-70° 50°-60° 40°-50° z x y β-gb1 β-gb2 β-gb3 23   Case  study  #2:  fa:gue  crack  in  Ti  alloy  
  • 24. •  Cracks  crossing  colonies  of  ≠  orienta:ons   –  sA:  crack1  not  deflected  by  numerous  colonies   –  sB:  strong  deflec:on  in  same  colony  ([001])  near  notch   x y z [1 1 1] [1 1 0] [1 1 -1] [1 0 1] [1 0 0] [1 0 -1] [1 -1 1] [1 -1 0] [-1 1 1] [0 1 1] [0 1 0] [0 1 -1] [0 0 1] [0 1 -1]   [-1 1 1]   [1 1 1]   [1 1 -1]   [1 -1 1]   x y z [0 1 1]   [0 0 1]   [0 1 1]   β-gb1 β-gb2 β-gb3 24   Case  study  #2:  fa:gue  crack  in  Ti  alloy  
  • 25. •  Angle  between  crack  and  lamellar  orienta:on   –  lamellar  orienta:on:  3D  gradient  map  +  MV=max{λi}i=1,2,3V   –  inter-­‐  lamellar:  angle  <  30°   x y z 80°-90° 70°-80° 60°-70° 50°-60° 40°-50° 30°-40° 0°-30° x y z β-gb1 β-gb2 β-gb3 25   Case  study  #2:  fa:gue  crack  in  Ti  alloy  
  • 26. •  Trans-­‐lamellar  cracking  predominant   –  ~60%  larger  than  70°   –  colonies  favorably  oriented  for  basal  <a>  slip   •  Non  negligible   inter-­‐lamellar   –  10-­‐20%   –  prisma,c  <a>  slip   •  The  2  samples  show     similar  trends   •  Complete  Birosca   et  al.  EBSD  observa:ons     26   Case  study  #2:  fa:gue  crack  in  Ti  alloy  
  • 27. •  Problem  with  image  processing:  always  space  for   improvement   •  Recent  approach   combining  orienta:on   histogram  and   watershed-­‐based   segmenta:on   •  Inspired  by  Jeulin  and     Moreaud’s  approach   •  Step  1:  local  orienta.on   maps  using  PCA  (Arnoldi   method)  –  Hadamard     product       27   Vx   Vy   Vz   D.  Jeulin  and  M.  Moreaud.  2008   X   Y   Z   Another  angle  to  approach  direc:onal   textured  image  segmenta:on  
  • 28. •  Step  2:  cartesian  (x,y,z)-­‐to-­‐polar  (θ,ϕ)  coordinate   conversion  +  2D  histogram     •  Vθ=atan(Vy/Vx)  ϵ  [-­‐90  90]   •  Vϕ=acos(Vz)  ϵ  [0  180]   28   Segmenta:on  of    α-­‐colonies  in  Ti  alloy   Vϕ   Vθ   0   180   90   -­‐90   90  0   X   Y   Z   Vϕ   Vθ  
  • 29. •  Step  3:  histogram  par..oning  using  grayscale   watershed  with  markers   watershed   par::oning   (afer  image   mirroring)   0   H2   12  labelled  regions  in  H2P   29   Segmenta:on  of    α-­‐colonies  in  Ti  alloy   M.  Couprie  and  G.  Bertrand.  1997   F.  Meyer  1994  
  • 30. 30   Segmenta:on  of    α-­‐colonies  in  Ti  alloy   •  Step  4:  segmenta.on   ∀p ∈I,SI p( )= H2PI Vϕ p( ),Vθ p( )( ) Visible  improvement  over  CHG!   Is  it  worth  it?   CHG-­‐based  segmenta:on  
  • 31. •  May  be  not  if  we  look  at  the  recent  breakthrough   in  Near  field  High  Energy  X-­‐ray  diffrac.on   microscopy  @  APS  …   •  New  way  to  image  polycrystalline/polyphase  materials   from  R.  Suter’s  team  (Carnegie  Mellon  Univ.)   •  Recently  applied  to  fully  lamellar  Ti-­‐6Al-­‐4V   31  E.  Wielewski  et  al.  2015   α  colonies   Recovered  primary  β  grains  
  • 32. •  …However,  may  be  useful  for  other  types  of   materials  with  direc.onal  microstructure   •  Example:  GFRP   – wef  and  binder  yarn:  90°  to  each  other   – similar  approach  to  lamellar  segmenta:on   32  J.  Stein  et  al.  2014   H2   H2P   3D  gradient  map  +  MV=min{λi}i=1,2,3V  
  • 33. 33   •  GFRP  segmenta.on   •  Possibility  to  separate  groups  of  wefs   •  Segmenta:on  preŒy  sa:sfying  for  a  first  go  
  • 34. 34   Case  study  #3:  characteriza:on  of   auxe:c  polyurethane  foam   •  Problema:c:   – Auxe:c  :nega:ve  Poisson  ra:o.  So  tendency  to  expand  /   contract  laterally  when  stretched  /  compressed     – How  this  process  occurs  locally  (at  the  level  of  the   joints/ribs)  in  APF?  Joint  rota:on?  Ribs  straightening,   stretching  and  twis:ng?   •  Primary  objec:ves   – Scan  polyurethane  foam  samples  (classic/auxe:c)  @   HMXIF  for  different  tension  loading   – Extract  joints  /  ribs  from  curvilinear  skeleton  of  foam   – Look  at  local  geometrical  characteris:cs  and  see  how   they  evolve  over  deforma,on  ,me  
  • 35. 35   • Comparison  auxe.c  /  conven.onal  foam   • Auxe:c  presents  bent  ribs  while  conven:onal  foam  has  cells   with  polygonal  shape   • Usually  cells  consist  of  4-­‐6  joints   • Curvilinear  skeleton  helps  in  quan:fying  microstructural   features  such  as  rib  length,  curvature,  joint-­‐to-­‐joint  distance     Classical  foam   Auxe:c  foam   Case  study  #3:  characteriza:on  of  APF  
  • 36. 36   •  How  to  quan.fy  microstructure?   •  Best  way  is  to  use  graph  theory:  joint  ó  node,   ribósegment,  cellócycle   •  Extract  each  feature  from  ul:mate  curvilinear  skeleton   (Amira)   Node 1 Node 2 d   l   α1   α2   α1 α2 α3 α4 L1 L2 L3 L4 Node  characterisa:on   Cycle  characterisa:on   Case  study  #3:  characteriza:on  of  APF  
  • 37. 37   Cycle  characteriza:on   •  Problem:  which  R+T  combina:on   needed  for  cycle  to  recover   polygonal  shape?   α1 α2 α3 α4 L1 L2 L3 L4 L1 L2 L3 L4 α1 α4 α2 α3 •     Need  to  quan:fy  if  conserva:on  of   angle  for  polygon  s:ll  true  for  auxe:c   structure  (error  es:ma:on)   ( ) 1802 1 ×−≡∑ = N N i iα •     Also  the  level  of  cycle  distor:on  related   to  auxicity  can  be  easily  evaluated  from    rib  length-­‐to-­‐joint  distance  ra:o   Df = 1 N li dii=1 N ∑ Case  study  #3:  characteriza:on  of  APF   •  Parameters  can  be  visually  checked  locally     using  hole  closing  algorithm    
  • 38. Normal  foam   [0-­‐1[   [1-­‐2[   [2-­‐5[   [5-­‐10[   [10-­‐20[   [20-­‐50[   •  Polygon  rule  verified  in  the  very  large  majority   (error  <  2%)   •  Skeletoniza:on  and  tangent  es:ma:on  adequate   38   Case  study  #3:  characteriza:on  of  APF  
  • 39. Auxe:c  foam   [0-­‐1[   [1-­‐2[   [2-­‐5[   [5-­‐10[   [10-­‐20[   [20-­‐50[   39   Case  study  #3:  characteriza:on  of  APF   •  More  than  200  cycles  analyzed   •  ~55%  of  cycles  for  which  error  >2%  !  
  • 40. How  to  interpret  this?   •  Correla:on  between  structure  deforma:on  and  loss  of   polygon  rule  during  conversion  (compression/hea:ng)   process  ?   •  Or  is  it  simply  a  problem  in  the  tangent  descriptor  as  rib   distorted?   Skeletoniza:on?   40   Case  study  #3:  characteriza:on  of  APF  
  • 41. Concluding  remarks   •  Three  cases  studies  to  show  the  need  of  advanced  IP  for   materials  characteriza:on…   •  …But  not  an  easy  task   •  Not  yet  a  centralized  plaŽorm  informing  how  to  find  his  way   through  the  myriads  of  IP  approaches   –  Commercialized  sofware:  Avizo,  Simpleware,  Aphelion,  VGStudio   Max,  Matlab…   –  Free  sofware:  ImageJ  and  co.  (good  lis:ng  @   nic.med.harvard.edu)     –  Plugins/libraries:     •  Java:  ImageJ  (hŒp://imagejdocu.tudor.lu/)   •  C:  PINK:  library  from  ESIEE  (univ.  Paris-­‐Est)   •  C++:  VTK,  ITK,  DGTal   •  Matlab:    Matlab  File  exchange   •  Python:  scikit-­‐image   •  Stronger  coopera:on  between  materials  and  computer   scien:sts  is  an  evidence!   41  
  • 42. Acknowledgements   •  ESRF-­‐ID19:  E.  Boller,  P.  Cloetens   •  IGSCC   –  T.  J.  Marrow  (Univ.  Oxford)   –  D.  Engelberg  (Univ.  Manchester)   –  J.-­‐Y.  Buffiere  (INSA-­‐Lyon)   –  M.  Janaszewski  (Lodz  Univ.  of  Technology)   –  M.  Couprie  (ESIEE,  Univ.  Paris-­‐Est)   •  Ti  alloy   –  M.  Preuss  (Univ.  Manchester)   –  S.  Birosca  (Swansea  University)   –  J.-­‐Y.  Buffiere  (INSA-­‐Lyon)   –  L.  Jopek,  R.  Al  Darwich,  M.  Janaszewski  (Lodz  Univ.  of   Technology)   42  
  • 43. Acknowledgements   43   •  GFRP   – P.M.  Mummery  (Univ.  Manchester)   •  Polyurethane  foams   – S.A.  McDonald  (Univ.  Manchester)   •  SPECIAL  THANK  TO  P.J.  WITHERS