SlideShare a Scribd company logo

ロボットの音声コミュニケーション技術:言葉や能力の壁を越えるデータ指向知能に向けて

20170618音学シンポジウム講演資料

1 of 37
ロボットの音声コミュニケーション技術
~言葉や能力の壁を越えるデータ指向知能に向けて~
国立研究開発法人 情報通信研究機構
杉浦孔明
音声コミュニケーション技術はここ10年で身近になった
今後、Google Home, Apple HomePod, LINE Clova Smart Speaker
などの発売が予定されている
Apple Siri
NTT Docomo
しゃべってコンシェル
Amazon Echo Dot NICT VoiceTra
応用成果は長期・地道な基礎研究活動の
うえに得られた賜物
取り巻く背景:
データ指向知能アプローチによるイノベーション
3
近年のデータ指向アプローチの2つのカギ
• 「ロケットエンジン」
– DNN-HMM, CTC, GoogLeNet, …
• 「ロケット燃料」=高品質な大規模データ
– 音声(1000-10000H書起こし)、画像、対訳、行動データ等
→ロボティクスでも同様のアプローチでイノベーションを起こせるはず
A. Ng: http://www.slideshare.net/ExtractConf/andrew-
ng-chief-scientist-at-baidu
データ量
性能
以前
深層学習以降
Q. 実ユーザとコミュニケーションを行うロボットにおいて
音声信号処理に何が求められているか?その1
耐雑音音声認識
(聞き取ってもらえない)
実世界情報に基づく音声対話
(動作実行までに1分もかかる )
Q. 何を目指す研究か?
A. 人を支援するシステムに関わる音声対話基盤技術を構築します
現在の社会課題
• 少子高齢化社会における生産性向上
(G7全てで高齢化率20%を超えるまで
残り12年【国連調査】)
• ポテンシャルユーザのなかで、介助犬
の利用者≒0.5%
外出が難しい。
運ぶのが重い 介助犬は世
話できない
これから
家族の世話
を分担して
ほしい
言葉の壁を超えるための音声対話技術:
クラウド基盤ROSPEEX

Recommended

生活支援ロボットのマルチモーダル言語理解技術
生活支援ロボットのマルチモーダル言語理解技術生活支援ロボットのマルチモーダル言語理解技術
生活支援ロボットのマルチモーダル言語理解技術Komei Sugiura
 
実世界の意味を扱う理論と機械知能の構築
実世界の意味を扱う理論と機械知能の構築実世界の意味を扱う理論と機械知能の構築
実世界の意味を扱う理論と機械知能の構築Komei Sugiura
 
ロボティクスにおける言語の利活用
ロボティクスにおける言語の利活用ロボティクスにおける言語の利活用
ロボティクスにおける言語の利活用Komei Sugiura
 
言葉や能力の壁を越えるデータ指向知能
言葉や能力の壁を越えるデータ指向知能言葉や能力の壁を越えるデータ指向知能
言葉や能力の壁を越えるデータ指向知能Komei Sugiura
 
ロボカップ@ホーム入門
ロボカップ@ホーム入門ロボカップ@ホーム入門
ロボカップ@ホーム入門Komei Sugiura
 
Japan Robot Week 2014けいはんなロボットフォーラム
Japan Robot Week 2014けいはんなロボットフォーラムJapan Robot Week 2014けいはんなロボットフォーラム
Japan Robot Week 2014けいはんなロボットフォーラムKomei Sugiura
 
20151129インテリジェントホームロボティクス研究会
20151129インテリジェントホームロボティクス研究会20151129インテリジェントホームロボティクス研究会
20151129インテリジェントホームロボティクス研究会Komei Sugiura
 
統計的係り受け解析入門
統計的係り受け解析入門統計的係り受け解析入門
統計的係り受け解析入門Yuya Unno
 

More Related Content

What's hot

ICML2013読み会 ELLA: An Efficient Lifelong Learning Algorithm
ICML2013読み会 ELLA: An Efficient Lifelong Learning AlgorithmICML2013読み会 ELLA: An Efficient Lifelong Learning Algorithm
ICML2013読み会 ELLA: An Efficient Lifelong Learning AlgorithmYuya Unno
 
ICASSP読み会2020
ICASSP読み会2020ICASSP読み会2020
ICASSP読み会2020Yuki Saito
 
機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPython機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPythonKimikazu Kato
 
Interspeech2020 reading
Interspeech2020 readingInterspeech2020 reading
Interspeech2020 readingYuki Saito
 
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会Yuya Unno
 
Jubatusの紹介@第6回さくさくテキストマイニング
Jubatusの紹介@第6回さくさくテキストマイニングJubatusの紹介@第6回さくさくテキストマイニング
Jubatusの紹介@第6回さくさくテキストマイニングYuya Unno
 
Jubatusにおける大規模分散オンライン機械学習
Jubatusにおける大規模分散オンライン機械学習Jubatusにおける大規模分散オンライン機械学習
Jubatusにおける大規模分散オンライン機械学習Preferred Networks
 
音声の声質を変換する技術とその応用
音声の声質を変換する技術とその応用音声の声質を変換する技術とその応用
音声の声質を変換する技術とその応用NU_I_TODALAB
 
情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜Yuya Unno
 
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17Yuya Unno
 
Connecting embedding for knowledge graph entity typing
Connecting embedding for knowledge graph entity typingConnecting embedding for knowledge graph entity typing
Connecting embedding for knowledge graph entity typing禎晃 山崎
 
第四回 全日本CV勉強会スライド(MOTS: Multi-Object Tracking and Segmentation)
第四回 全日本CV勉強会スライド(MOTS: Multi-Object Tracking and Segmentation)第四回 全日本CV勉強会スライド(MOTS: Multi-Object Tracking and Segmentation)
第四回 全日本CV勉強会スライド(MOTS: Multi-Object Tracking and Segmentation)Yasunori Ozaki
 
NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...
NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...
NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...Yuya Unno
 
ディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみたディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみた卓也 安東
 
Deep learning for acoustic modeling in parametric speech generation
Deep learning for acoustic modeling in parametric speech generationDeep learning for acoustic modeling in parametric speech generation
Deep learning for acoustic modeling in parametric speech generationYuki Saito
 
segmentation-modelsでざっくり動かすセマンティックセグメンテーション(U-Net)
segmentation-modelsでざっくり動かすセマンティックセグメンテーション(U-Net)segmentation-modelsでざっくり動かすセマンティックセグメンテーション(U-Net)
segmentation-modelsでざっくり動かすセマンティックセグメンテーション(U-Net)Haruka Shimojima
 
Dataset cartography mapping and diagnosing datasets with training dynamics
Dataset cartography mapping and diagnosing datasets with training dynamicsDataset cartography mapping and diagnosing datasets with training dynamics
Dataset cartography mapping and diagnosing datasets with training dynamics禎晃 山崎
 
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9Yuya Unno
 

What's hot (20)

ICML2013読み会 ELLA: An Efficient Lifelong Learning Algorithm
ICML2013読み会 ELLA: An Efficient Lifelong Learning AlgorithmICML2013読み会 ELLA: An Efficient Lifelong Learning Algorithm
ICML2013読み会 ELLA: An Efficient Lifelong Learning Algorithm
 
Sapporo20140709
Sapporo20140709Sapporo20140709
Sapporo20140709
 
ICASSP読み会2020
ICASSP読み会2020ICASSP読み会2020
ICASSP読み会2020
 
bigdata2012nlp okanohara
bigdata2012nlp okanoharabigdata2012nlp okanohara
bigdata2012nlp okanohara
 
機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPython機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPython
 
Interspeech2020 reading
Interspeech2020 readingInterspeech2020 reading
Interspeech2020 reading
 
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
 
Jubatusの紹介@第6回さくさくテキストマイニング
Jubatusの紹介@第6回さくさくテキストマイニングJubatusの紹介@第6回さくさくテキストマイニング
Jubatusの紹介@第6回さくさくテキストマイニング
 
Jubatusにおける大規模分散オンライン機械学習
Jubatusにおける大規模分散オンライン機械学習Jubatusにおける大規模分散オンライン機械学習
Jubatusにおける大規模分散オンライン機械学習
 
音声の声質を変換する技術とその応用
音声の声質を変換する技術とその応用音声の声質を変換する技術とその応用
音声の声質を変換する技術とその応用
 
情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜
 
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
 
Connecting embedding for knowledge graph entity typing
Connecting embedding for knowledge graph entity typingConnecting embedding for knowledge graph entity typing
Connecting embedding for knowledge graph entity typing
 
第四回 全日本CV勉強会スライド(MOTS: Multi-Object Tracking and Segmentation)
第四回 全日本CV勉強会スライド(MOTS: Multi-Object Tracking and Segmentation)第四回 全日本CV勉強会スライド(MOTS: Multi-Object Tracking and Segmentation)
第四回 全日本CV勉強会スライド(MOTS: Multi-Object Tracking and Segmentation)
 
NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...
NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...
NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...
 
ディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみたディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみた
 
Deep learning for acoustic modeling in parametric speech generation
Deep learning for acoustic modeling in parametric speech generationDeep learning for acoustic modeling in parametric speech generation
Deep learning for acoustic modeling in parametric speech generation
 
segmentation-modelsでざっくり動かすセマンティックセグメンテーション(U-Net)
segmentation-modelsでざっくり動かすセマンティックセグメンテーション(U-Net)segmentation-modelsでざっくり動かすセマンティックセグメンテーション(U-Net)
segmentation-modelsでざっくり動かすセマンティックセグメンテーション(U-Net)
 
Dataset cartography mapping and diagnosing datasets with training dynamics
Dataset cartography mapping and diagnosing datasets with training dynamicsDataset cartography mapping and diagnosing datasets with training dynamics
Dataset cartography mapping and diagnosing datasets with training dynamics
 
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
 

Similar to ロボットの音声コミュニケーション技術:言葉や能力の壁を越えるデータ指向知能に向けて

Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤Shohei Hido
 
機械学習エンジニアリング・品質保証 (ESS2018招待講演 鷲崎弘宜)
機械学習エンジニアリング・品質保証 (ESS2018招待講演 鷲崎弘宜)機械学習エンジニアリング・品質保証 (ESS2018招待講演 鷲崎弘宜)
機械学習エンジニアリング・品質保証 (ESS2018招待講演 鷲崎弘宜)Hironori Washizaki
 
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けて
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けてSSII2022 [OS3-03] スケーラブルなロボット学習システムに向けて
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けてSSII
 
MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習Preferred Networks
 
楽天のECにおけるAI技術の活用
楽天のECにおけるAI技術の活用楽天のECにおけるAI技術の活用
楽天のECにおけるAI技術の活用Rakuten Group, Inc.
 
自動化の先にあるもの ースマート技術のアプローチと選択
自動化の先にあるもの ースマート技術のアプローチと選択自動化の先にあるもの ースマート技術のアプローチと選択
自動化の先にあるもの ースマート技術のアプローチと選択Takuro Yonezawa
 
生活支援ロボットにおける 大規模データ収集に向けて
生活支援ロボットにおける大規模データ収集に向けて生活支援ロボットにおける大規模データ収集に向けて
生活支援ロボットにおける 大規模データ収集に向けてKomei Sugiura
 
IVS CTO Night & Day 2016 Tech Talk - AI
IVS CTO Night & Day 2016 Tech Talk - AIIVS CTO Night & Day 2016 Tech Talk - AI
IVS CTO Night & Day 2016 Tech Talk - AIToshiaki Enami
 
ソフトウェアとAIの進化が示唆するもの Final Final revised Final
ソフトウェアとAIの進化が示唆するもの Final Final revised FinalソフトウェアとAIの進化が示唆するもの Final Final revised Final
ソフトウェアとAIの進化が示唆するもの Final Final revised FinalRoy Sugimura, Ph.D
 
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術Yoichi Motomura
 
コンピューターの整列処理におけるデータ操作の時間的共起分析
コンピューターの整列処理におけるデータ操作の時間的共起分析コンピューターの整列処理におけるデータ操作の時間的共起分析
コンピューターの整列処理におけるデータ操作の時間的共起分析yamahige
 
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)Yuya Unno
 
[R勉強会][データマイニング] R言語による時系列分析
[R勉強会][データマイニング] R言語による時系列分析[R勉強会][データマイニング] R言語による時系列分析
[R勉強会][データマイニング] R言語による時系列分析Koichi Hamada
 
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太Preferred Networks
 
確率的深層学習における中間層の改良と高性能学習法の提案
確率的深層学習における中間層の改良と高性能学習法の提案確率的深層学習における中間層の改良と高性能学習法の提案
確率的深層学習における中間層の改良と高性能学習法の提案__106__
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!TransformerArithmer Inc.
 
Os 12 記号創発ロボティクス / OS趣旨説明@JSAI2015
Os 12 記号創発ロボティクス / OS趣旨説明@JSAI2015 Os 12 記号創発ロボティクス / OS趣旨説明@JSAI2015
Os 12 記号創発ロボティクス / OS趣旨説明@JSAI2015 Tadahiro Taniguchi
 

Similar to ロボットの音声コミュニケーション技術:言葉や能力の壁を越えるデータ指向知能に向けて (20)

Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤
 
機械学習エンジニアリング・品質保証 (ESS2018招待講演 鷲崎弘宜)
機械学習エンジニアリング・品質保証 (ESS2018招待講演 鷲崎弘宜)機械学習エンジニアリング・品質保証 (ESS2018招待講演 鷲崎弘宜)
機械学習エンジニアリング・品質保証 (ESS2018招待講演 鷲崎弘宜)
 
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けて
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けてSSII2022 [OS3-03] スケーラブルなロボット学習システムに向けて
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けて
 
MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習
 
楽天のECにおけるAI技術の活用
楽天のECにおけるAI技術の活用楽天のECにおけるAI技術の活用
楽天のECにおけるAI技術の活用
 
自動化の先にあるもの ースマート技術のアプローチと選択
自動化の先にあるもの ースマート技術のアプローチと選択自動化の先にあるもの ースマート技術のアプローチと選択
自動化の先にあるもの ースマート技術のアプローチと選択
 
生活支援ロボットにおける 大規模データ収集に向けて
生活支援ロボットにおける大規模データ収集に向けて生活支援ロボットにおける大規模データ収集に向けて
生活支援ロボットにおける 大規模データ収集に向けて
 
IVS CTO Night & Day 2016 Tech Talk - AI
IVS CTO Night & Day 2016 Tech Talk - AIIVS CTO Night & Day 2016 Tech Talk - AI
IVS CTO Night & Day 2016 Tech Talk - AI
 
MLOpsはバズワード
MLOpsはバズワードMLOpsはバズワード
MLOpsはバズワード
 
ソフトウェアとAIの進化が示唆するもの Final Final revised Final
ソフトウェアとAIの進化が示唆するもの Final Final revised FinalソフトウェアとAIの進化が示唆するもの Final Final revised Final
ソフトウェアとAIの進化が示唆するもの Final Final revised Final
 
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
 
コンピューターの整列処理におけるデータ操作の時間的共起分析
コンピューターの整列処理におけるデータ操作の時間的共起分析コンピューターの整列処理におけるデータ操作の時間的共起分析
コンピューターの整列処理におけるデータ操作の時間的共起分析
 
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
 
SOINN PBR
SOINN PBRSOINN PBR
SOINN PBR
 
実世界に埋め込まれる深層学習
実世界に埋め込まれる深層学習 実世界に埋め込まれる深層学習
実世界に埋め込まれる深層学習
 
[R勉強会][データマイニング] R言語による時系列分析
[R勉強会][データマイニング] R言語による時系列分析[R勉強会][データマイニング] R言語による時系列分析
[R勉強会][データマイニング] R言語による時系列分析
 
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
 
確率的深層学習における中間層の改良と高性能学習法の提案
確率的深層学習における中間層の改良と高性能学習法の提案確率的深層学習における中間層の改良と高性能学習法の提案
確率的深層学習における中間層の改良と高性能学習法の提案
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
 
Os 12 記号創発ロボティクス / OS趣旨説明@JSAI2015
Os 12 記号創発ロボティクス / OS趣旨説明@JSAI2015 Os 12 記号創発ロボティクス / OS趣旨説明@JSAI2015
Os 12 記号創発ロボティクス / OS趣旨説明@JSAI2015
 

More from Komei Sugiura

SuMo-SS: Submodular Optimization Sensor Scattering for Deploying Sensor Netwo...
SuMo-SS: Submodular Optimization Sensor Scattering for Deploying Sensor Netwo...SuMo-SS: Submodular Optimization Sensor Scattering for Deploying Sensor Netwo...
SuMo-SS: Submodular Optimization Sensor Scattering for Deploying Sensor Netwo...Komei Sugiura
 
Spatio-Temporal Pseudo Relevance Feedback for Large-Scale and Heterogeneous S...
Spatio-Temporal Pseudo Relevance Feedback for Large-Scale and Heterogeneous S...Spatio-Temporal Pseudo Relevance Feedback for Large-Scale and Heterogeneous S...
Spatio-Temporal Pseudo Relevance Feedback for Large-Scale and Heterogeneous S...Komei Sugiura
 
New challenge in RoboCup 2017 Nagoya: RoboCup@Home Standard Platform
New challenge in RoboCup 2017 Nagoya: RoboCup@Home Standard PlatformNew challenge in RoboCup 2017 Nagoya: RoboCup@Home Standard Platform
New challenge in RoboCup 2017 Nagoya: RoboCup@Home Standard PlatformKomei Sugiura
 
20160907rsj16ロボット聴覚OS
20160907rsj16ロボット聴覚OS20160907rsj16ロボット聴覚OS
20160907rsj16ロボット聴覚OSKomei Sugiura
 
20160606劣モジュラ性を利用したドローンによるばらまき型センサ配置
20160606劣モジュラ性を利用したドローンによるばらまき型センサ配置20160606劣モジュラ性を利用したドローンによるばらまき型センサ配置
20160606劣モジュラ性を利用したドローンによるばらまき型センサ配置Komei Sugiura
 
20160221statistic imitation learning and human-robot communication
20160221statistic imitation learning and human-robot communication20160221statistic imitation learning and human-robot communication
20160221statistic imitation learning and human-robot communicationKomei Sugiura
 
20140513大規模異分野データ横断検索における時空間情報を用いた擬似適合性フィードバック
20140513大規模異分野データ横断検索における時空間情報を用いた擬似適合性フィードバック20140513大規模異分野データ横断検索における時空間情報を用いた擬似適合性フィードバック
20140513大規模異分野データ横断検索における時空間情報を用いた擬似適合性フィードバックKomei Sugiura
 
20150531Deep Recurrent Neural Networkによる環境モニタリングデータの予測
20150531Deep Recurrent Neural Networkによる環境モニタリングデータの予測20150531Deep Recurrent Neural Networkによる環境モニタリングデータの予測
20150531Deep Recurrent Neural Networkによる環境モニタリングデータの予測Komei Sugiura
 
階層型評価構造に基づく観光スポット推薦システムの構築と長期実証実験
階層型評価構造に基づく観光スポット推薦システムの構築と長期実証実験階層型評価構造に基づく観光スポット推薦システムの構築と長期実証実験
階層型評価構造に基づく観光スポット推薦システムの構築と長期実証実験Komei Sugiura
 
Cloud Robotics for Human-Robot Dialogues
Cloud Robotics for Human-Robot DialoguesCloud Robotics for Human-Robot Dialogues
Cloud Robotics for Human-Robot DialoguesKomei Sugiura
 
Language acquisition framework for robots: From grounded language acquisition...
Language acquisition framework for robots: From grounded language acquisition...Language acquisition framework for robots: From grounded language acquisition...
Language acquisition framework for robots: From grounded language acquisition...Komei Sugiura
 
rospeex: a cloud-based speech communication toolkit for ROS
rospeex: a cloud-based speech communication toolkit for ROSrospeex: a cloud-based speech communication toolkit for ROS
rospeex: a cloud-based speech communication toolkit for ROSKomei Sugiura
 
Introduction to RoboCup@Home
Introduction to RoboCup@HomeIntroduction to RoboCup@Home
Introduction to RoboCup@HomeKomei Sugiura
 

More from Komei Sugiura (14)

SuMo-SS: Submodular Optimization Sensor Scattering for Deploying Sensor Netwo...
SuMo-SS: Submodular Optimization Sensor Scattering for Deploying Sensor Netwo...SuMo-SS: Submodular Optimization Sensor Scattering for Deploying Sensor Netwo...
SuMo-SS: Submodular Optimization Sensor Scattering for Deploying Sensor Netwo...
 
Spatio-Temporal Pseudo Relevance Feedback for Large-Scale and Heterogeneous S...
Spatio-Temporal Pseudo Relevance Feedback for Large-Scale and Heterogeneous S...Spatio-Temporal Pseudo Relevance Feedback for Large-Scale and Heterogeneous S...
Spatio-Temporal Pseudo Relevance Feedback for Large-Scale and Heterogeneous S...
 
20161014IROS_WS
20161014IROS_WS20161014IROS_WS
20161014IROS_WS
 
New challenge in RoboCup 2017 Nagoya: RoboCup@Home Standard Platform
New challenge in RoboCup 2017 Nagoya: RoboCup@Home Standard PlatformNew challenge in RoboCup 2017 Nagoya: RoboCup@Home Standard Platform
New challenge in RoboCup 2017 Nagoya: RoboCup@Home Standard Platform
 
20160907rsj16ロボット聴覚OS
20160907rsj16ロボット聴覚OS20160907rsj16ロボット聴覚OS
20160907rsj16ロボット聴覚OS
 
20160606劣モジュラ性を利用したドローンによるばらまき型センサ配置
20160606劣モジュラ性を利用したドローンによるばらまき型センサ配置20160606劣モジュラ性を利用したドローンによるばらまき型センサ配置
20160606劣モジュラ性を利用したドローンによるばらまき型センサ配置
 
20160221statistic imitation learning and human-robot communication
20160221statistic imitation learning and human-robot communication20160221statistic imitation learning and human-robot communication
20160221statistic imitation learning and human-robot communication
 
20140513大規模異分野データ横断検索における時空間情報を用いた擬似適合性フィードバック
20140513大規模異分野データ横断検索における時空間情報を用いた擬似適合性フィードバック20140513大規模異分野データ横断検索における時空間情報を用いた擬似適合性フィードバック
20140513大規模異分野データ横断検索における時空間情報を用いた擬似適合性フィードバック
 
20150531Deep Recurrent Neural Networkによる環境モニタリングデータの予測
20150531Deep Recurrent Neural Networkによる環境モニタリングデータの予測20150531Deep Recurrent Neural Networkによる環境モニタリングデータの予測
20150531Deep Recurrent Neural Networkによる環境モニタリングデータの予測
 
階層型評価構造に基づく観光スポット推薦システムの構築と長期実証実験
階層型評価構造に基づく観光スポット推薦システムの構築と長期実証実験階層型評価構造に基づく観光スポット推薦システムの構築と長期実証実験
階層型評価構造に基づく観光スポット推薦システムの構築と長期実証実験
 
Cloud Robotics for Human-Robot Dialogues
Cloud Robotics for Human-Robot DialoguesCloud Robotics for Human-Robot Dialogues
Cloud Robotics for Human-Robot Dialogues
 
Language acquisition framework for robots: From grounded language acquisition...
Language acquisition framework for robots: From grounded language acquisition...Language acquisition framework for robots: From grounded language acquisition...
Language acquisition framework for robots: From grounded language acquisition...
 
rospeex: a cloud-based speech communication toolkit for ROS
rospeex: a cloud-based speech communication toolkit for ROSrospeex: a cloud-based speech communication toolkit for ROS
rospeex: a cloud-based speech communication toolkit for ROS
 
Introduction to RoboCup@Home
Introduction to RoboCup@HomeIntroduction to RoboCup@Home
Introduction to RoboCup@Home
 

Recently uploaded

scikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんscikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんtoshinori622
 
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHubK Kinzal
 
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdfAyachika Kitazaki
 
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)Kanta Sasaki
 
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。iPride Co., Ltd.
 
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfHarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfMatsushita Laboratory
 

Recently uploaded (6)

scikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんscikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみん
 
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
 
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
 
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
 
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
 
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfHarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
 

ロボットの音声コミュニケーション技術:言葉や能力の壁を越えるデータ指向知能に向けて