IRRATIONAL NUMBERS
KALADEVI G.
IRRATIONAL NUMBERS
 Numbers which are not rationals are called
irrationals
 Non recurring numbers, non terminating
decimal numbers
Eg:
SQUARE OF SIDE 1 UNIT
1
1
2
A D
B C
2AC
2
11
BCAB
22
22



2AC
RECTANGLE OF SIDE 2 UNITS & 1
UNITS
D
A B
C
1
2
5
5BD
5
14
22





2
222
1
ADABBD
PRODUCT OF IRRATIONALS
 For any two positive numbers x and y,
 Eg.
yxyx 
5353 
636218218 
6.32.13 
525
3
10
2
15
3
10
2
15
3
1
3
2
1
7 
DIVISION OF IRRATIONALS
 For any two positive numbers x and y,
 Eg.
y
x
y
x

2
5
2
5

39
3
27
3
27

Irrational numbers

Irrational numbers