SlideShare a Scribd company logo
1 of 65
Download to read offline
Doctoral Thesis


   “UNSTEADY ROTOR-STATOR
   INTERACTION IN AN AXIAL
       TURBOMACHINE”

             D. Jesús Manuel Fernández Oro

             Dtor: Prof. Carlos Santolaria Morros
23/11/2011
Table of Contents




      “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                 Rotor-                               Turbomachine”
       Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                         Gijó April,                                      2/64
Table of Contents

                                          1.- Introduction


                                           2.- Axial Turbomachine


                                             3.- Experimental Work

                                               Facilities      Results


                                               4.- Numerical Work

                                              Methodology       Results

                                                 5.- Deterministic
                                                 Analysis

                                                  6.- Conclussions &
                                                  Future Work




      “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                 Rotor-                               Turbomachine”
       Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                         Gijó April,                                      3/64
1.- Introduction
   UNSTEADY                  This unsteady pressure field is
TURBOMACHINERY                a consequence of the blades
     FLOW                         motion of the rotor.




                            
    Dh0 P                                                     Why Unsteady
             T v   f v    q                            Flow Analysis?
    Dt   t

 1.- Even, an inviscid, adiabatic flow (reversible) is exchanging enthalpy
 (work) due to the existence of an unsteady pressure field.

 2.- Mechanical vibrations and unsteady forces also appear due to the
 time variations of the pressure field.

 3.- Aerodynamically generated noise is associated to the pressure
 fluctuations inside the turbomachine.


          “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                     Rotor-                               Turbomachine”
           Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                             Gijó April,                                      4/64
1.- Introduction
ROTOR-STATOR INTERACTION                                            TURBOMACHINERY
Turbomachinery flows are highly                                        UNSTEADY
unsteady because of the relative                                      MECHANISMS
motion of rotor and stator stages. In
general, unsteadiness may be viewed
as a combination of two processes:
                                                                 TIME PERIODIC                      Chaotic, aperiodic
                                                                                                    Chaotic,
the INVISCID POTENTIAL EFFECT                                                                         phenomena
                                                                  PHENOMENA
and the PERIODIC PASSING OF
WAKES generated by the upstream
blade rows. The former is due to the                                                                        Turbulence

relative motion of the rotors with               Related to Speed                  Non related to
respect to the stators, and this effect
                stators                              Rotation                      Speed Rotation
                                                                                                           Transitional
becomes stronger when the gap                                                                              Operation –
between rotor and stator is small.                                                        Vortex           Speed Range
                                                                                         shedding           Variations
The latter arises from the interaction
                                            Stable                Unstable
of the blade boundary layers with the
                                           Operation              Operation
vortices shed from the blunt trailing
edge of upstream blade rows, and                                        Rotating
from the variation of the angle of        ROTOR-STATOR
                                          ROTOR-                          Stall
                                           INTERACTION
attack at the leading edge due to the
wake velocity deficit. All these
unsteady      features     and      the       Potential Origin
interaction between them make the
simulation          of       unsteady         Boundary Layer                         Which Unsteady
turbomachinery flows a highly
challenging task. (C.HIRSCH)                  Shock Waves                            Flow Analysis?

                  “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                             Rotor-                               Turbomachine”
                   Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                                     Gijó April,                                                               5/64
1.- Introduction
   ROTOR-STATOR
    INTERACTION
                                             • Wake Decay (Mixing Loss)
             PERIODIC PASSING                • Wake Transport (Chopping effects, Redistribution of Moment,
                 OF WAKES                    Hot Spots)
                                             • Wake Recovery (Wake Stretching)
                  INVISCID
              POTENTIAL EFFECT




Vortex shedding


 Rotor 1




              Stator 2

                  Stator wakes    Rotor 2


                         “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                                    Rotor-                               Turbomachine”
                          Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                                            Gijó April,                                                6/64
1.- Introduction
ROTOR-STATOR
 INTERACTION


    PERIODIC PASSING
        OF WAKES
                             • Axial gap variations. Pitch effect.
                             • Circunferential variations in total pressure due to the blades
        INVISCID
    POTENTIAL EFFECT         downstream response.
                             • Time circunferential variations and response to an uniform inlet
                             conditions.

                   
                
         t t     
                                 “A steady flow pattern in a relative frame of
                                   reference with a velocity gradient in the
                                 tangential direction generates an unsteady
                                      absolute flow pattern”. (Lyman, 1993)
                             The static pressure field upstream and downstream of a blade row
                              is varying circumferentially (and radially) due to the blade load.
                                                                                           load
                             This causes a flow defect, which is felt as unsteady pressure waves
                                      by the relative moving blade rows. (Jöcker, 2002)
                                                                           (J cker,



         “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                    Rotor-                               Turbomachine”
          Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                            Gijó April,                                                    7/64
1.- Introduction                                     How Unsteady Flow?


                                                                             Mathematical Models For
         TURBOMACHINERY                                                       Turbomachinery Flows
           FLOW SCALES


            Blade-passing
             frequencies



                            Spectral Gap
                                                                     Averaging Technique
                                                                         Segregation

                                                                          Ensemble Average
Energy




                                     Turbulence                              Time Average
                                       scales
                                                                           Passage Average
                                           Frequency
                   “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                              Rotor-                               Turbomachine”
                    Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                                      Gijó April,                                            8/64
1.- Introduction
                                                          DETERMINISTIC FLOW INSIDE A
1. Ensemble-average                                       TURBOMACHINE (Adamzcyk, 1986)

                                                                                2
                                              M
                                      1
                                               f  r , , z ,                    m  1 ; t1  t  T  t1
                              e
                             f  lim                                     t
                                 M  M
                                              m 1                              
2. Time-average
                                                                                      1
                                                                                                  H G  r , , z , t dt
                            1 T
                              0 H G  r , , z, t   f  r , , z, t  dt
                                                                                              T
                                                                                        
                     t
                    f                                  e

                           T                                                         T   0



3. Passage-to-passage average
                                                                                        1          2
                                                                                                                gl  r , , z d
                                                                                                           L
                                                                                  
                1   N 1
                               2 n                 2 n                           2
                                                                                                           l 1

                     G  r ,  N , z   f t  r ,  N , z                                             l j
                                                                                                  0
    f   ap
             
               N                                                              G  r , , z    l 1 gl  r , , z 
                    n0                                                                                       L




                                                        • Aperiodic Term: Indexing contribution of different blade row stages.
                                                                                                                        stages.
         URANS                                          • DETERMINISTIC TERM: Rotor-Stator Interaction at one stage.
                                                                                    Rotor-                           stage.
        Equations                                       • Reynolds Stresses: Stochastic unresolved flow-field.
                                                                                                     flow- field.


                PANS Equations +                                                        ˆˆ
                                                                                        
              Closure requirements                                              Rij   ui u j   ui u j   uiuj
                                                                                                 ˆˆ
                                                                                                   
                “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                           Rotor-                               Turbomachine”
                 Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                                   Gijó April,                                                                                        9/64
1.- Introduction

OBJECTIVES OVERVIEW


       1.- Analysis of the unsteady scenario inside an axial turbomachine


       2.- Both numerical and experimental characterization of the flow
       patterns


       3.- Segregation of instantaneous turbulent phenomena through a
       time average for every rotor phase


       4.- Identification of dynamic unsteadiness sources, either generated
       by rotor blades or generated by stator vanes


       5.- Analysis of these dynamics phenomena (axial gap influence, mass
       flow rate variations) associated to blade passing frequency (BPF)


       6.- Deterministic analysis of the flow: wake transport, wake
       convection and wake recovery


         “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                    Rotor-                               Turbomachine”
          Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                            Gijó April,                                       10/64
                                                                              10/64
2.- Axial Turbomachine
                     FAN characteristics:                  STATOR characteristics:
                     • Tip diameter: 820 mm                • 13 Inlet Guide Vanes (IGV’s)
  1-STAGE            • Hub diameter: 380 mm                • British Circular Profile C1
   AXIAL             • Rotation Speed: 2400 rpm
  BLOWER             • Design Flow Rate: 18 m3/s           ROTOR characteristics:
                     • Design Pressure: 1200 Pa            • 9 Blades (127 mm – chord)
                     • Stator-Rotor Configuration          • NACA 65 Profile


 Rear View




                    Front View


             “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                        Rotor-                               Turbomachine”
              Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                                Gijó April,                                           11/64
                                                                                      11/64
2.- Axial Turbomachine

       STATOR Geometrical                                             ROTOR Geometrical
           Parameters                                                    Parameters

• 13 Inlet Guide Vanes                                        • 9 Blades (127 mm – chord)
• British Circular Profile C1                                 • NACA 65 Profile

D (mm)      380       490      600      710      820     D(mm)       380      490     600     710       820
  β1         0º         0º        0º        0º        0º       β3        59,61º   62,01º    64,7º    67,18º    69,36º
  β2       31,17º     24,84º    20,73º    17,81º    15,68º     β4        47,73º   54,82º    60,07º   64,06º    67,16º
           1,71       1,37      1,14      0,98      0,86               1,35       1        0,79     0,65      0,55
 b/l        3%         3%        3%        3%        3%        b/l       12 %     10,49 %   9,43 %   8,63 %     8%
  i        - 0,47º    - 0,82º   - 0,93º   - 0,93º   - 0,88º     i        4,08º     2,45º    1,28º    0,52º      0,03º
          18,12º     14,93º    12,97º    11,66º    10,78º              10,96º    7,17º      5º     3,71º      2,9º
          37,18º     31,51º    27,81º    25,2º     23,21º              13,76º    9,46º    7,43º    6,38º      5,75º
  º       18,12º     14,93º    12,97º    11,66º    10,78º     º        48,64º   54,84º    59,7º    63,47º    66,46º
          5,54º      5,85º     6,15º     6,45º     6,75º               5,97º     4,71º    4,08º    3,78º      3,57º
 β        31,17º     24,84º    20,73º    17,81º    15,68º     β        11,88º    7,19º    4,63º    3,12º      2,2º



                     “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                                Rotor-                               Turbomachine”
                      Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                                        Gijó April,                                                          12/64
                                                                                                             12/64
2.- Axial Turbomachine                                                  Test Facility




Regulation Cone         Venturi Nozzle                                 Hub

                         BS 848 (1980) –                                                   Motor
                       “Methods of Testing
                       Performance”. Fans            Inlet
                      for General Purposes.
                         British Standard
                           Institution.



                     Stabilization Duct

                           L = 20 D

                                                                                 Stator   Rotor



                  “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                             Rotor-                               Turbomachine”
                   Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                                     Gijó April,                                           13/64
                                                                                           13/64
3.- Experimental Work                                                 Methodology

                                     MEASUREMENT TYPES



1.-Pressure Five Hole Probe          2.- Hot Wire Anemometry            3.- Piezoelectric transducer


• Steady measurements              • Unsteady measurements             • Unteady measurements
• Average velocity maps and        • Instantaneous velocity maps       • Instantaneous Pressure signals
pressure distributions             • High Frequency Response: up to    • High Frequency Acquiring: up to
• No BPF Response (0.36 KHz)       30 KHz                              100 KHz




                 “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                            Rotor-                               Turbomachine”
                  Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                                    Gijó April,                                               14/64
                                                                                              14/64
3.- Experimental Work                                           Methodology




 1.- PRESSURE FIVE
     HOLE PROBE




        Measurement Set-Up
                    Set-




                                      Measurement Chain                      Calibration Set-Up
                                                                                         Set-



         “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                    Rotor-                               Turbomachine”
          Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                            Gijó April,                                                 15/64
                                                                                        15/64
3.- Experimental Work                                                Methodology




      2.- HOT WIRE
      ANEMOMETRY




                                             Calibration Set-Up
                                                         Set-




                                                                              Probe repairing
Measurement Set-Up
            Set-                                                                equipment


               “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                          Rotor-                               Turbomachine”
                Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                                  Gijó April,                                              16/64
                                                                                           16/64
3.- Experimental Work                                          Methodology




  3.- TRANSDUCER
      PRESSURE




             Measurement Points




                                                                            Measurement
                                                                             Equipment



        “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                   Rotor-                               Turbomachine”
         Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                           Gijó April,                                            17/64
                                                                                  17/64
3.- Experimental Work                                            Methodology

                           • Upstream and downstream rotor measurements.
                           • Circunferential sectors used as “Windows”.
  MEASUREMENT                    • Tangential direction: Stator pitch = 360º/13  28º.
   LOCATIONS                     • Spanwise: From hub to tip.
                           • Spatial discretization: 15x15 = 225 points/window.
                           • Temporal discretization: 36 KHz (100 instants/passage)



  Circunferential sector




          “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                     Rotor-                               Turbomachine”
           Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                             Gijó April,                                          18/64
                                                                                  18/64
3.- Experimental Work                                                                                           Methodology

MEASUREMENT                                                                                         AXIAL BLOWER PERFORMANCE CURVE
 STRATEGIES                                                    2500                                                                                                         60



                                                                                                                                                                            50
                                                               2000


  1.- Working Point Variations




                                                                                                                                                                                 Total Efficiency (%)
                                                                                                                                                                            40




                                               Pressure (Pa)
                                                               1500

                                                                                                                                                                            30


       N) Nominal Flow Rate (Qn):                              1000
                                                                                                                                                                            20

               16.5 m3/s                                        500
                                                                                                                                                                            10


       P) -15% Nominal Flow Rate                                  0                                                                                                         0

           (0.85Qn): 13.5 m3/s                                        0           2             4         6          8        10
                                                                                                                  Flow Rate (m3/s)
                                                                                                                                          12       14         16       18



                                                                          Static Pressure, Ps       Dinamic Pressure, Pd   Total Pressure, Pt   Numerical Points   Efficiency

       S) -30% Nominal Flow Rate
            (0.7Qn): 11.5 m3/s
                                                                                                       Axial Gap
  2.-Axial Gap Modification


      1.25G) Upper Axial Gap: 100 mm

         G) Lower Axial Gap: 80 mm



           “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                      Rotor-                               Turbomachine”
            Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                              Gijó April,                                                                                                                          19/64
                                                                                                                                                                   19/64
3.- Experimental Work                                                            Results



                EXPERIMENTAL
                   RESULTS


      PASSAGE-              PHASE-AVERAGED
   AVERAGED FLOW                 FLOW

• Averaged Results          • Instantaneous Results
• Mean DHW & FHP            • DHW & Transducer


        STEADY                   UNSTEADY
     Characteristics           Characteristics




               “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                          Rotor-                               Turbomachine”
                Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                                  Gijó April,                                          20/64
                                                                                       20/64
3.- Experimental Results                                       FHP



     PASSAGE-AVERAGED FLOW

                                                                ADIM. AXIAL VELOCITY
                                                               • Between the rows (D), at
                                                               nominal flow rate, there is a
                                                                              rate,
                                                               perfect homogenetation of
                                                               the flow, just broken by
                                                                   flow,
                                                               stator wakes. Both axial
                                                                      wakes.
                                                               gaps.
                                                               gaps.
                                                               • Rotor downstream (R), the
                                                               stator wakes are clearly
                                                               present, more diffused and
                                                               present,
                                                               advected, but perfectly
                                                               advected,
                                                               visible.
                                                               • Boundary layer zones: For
                                                                                  zones:
                                                               (D), wide boundary at tip.
                                                                                       tip.
                                                               Instead, for (R), the hub
                                                               Instead,
                                                               boundary layer seems to be
                                                               thicker.
                                                               thicker.
                                                               • FIRST RESULTS !!




      “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                 Rotor-                               Turbomachine”
       Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                         Gijó April,                                                21/64
                                                                                    21/64
3.- Experimental Results                                      DHW




                STATOR Downstream                     ROTOR Downstream




      “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                 Rotor-                               Turbomachine”
       Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                         Gijó April,                                      22/64
                                                                          22/64
3.- Experimental Results                                      DHW



     PASSAGE-AVERAGED FLOW
                                                                ADIM. AXIAL VELOCITY




      “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                 Rotor-                               Turbomachine”
       Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                         Gijó April,                                            23/64
                                                                                23/64
3.- Experimental Results                                      DHW



     PASSAGE-AVERAGED FLOW
                                                             ADIM. TANGENTIAL VELOCITY




      “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                 Rotor-                               Turbomachine”
       Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                         Gijó April,                                            24/64
                                                                                24/64
3.- Experimental Results                                      DHW



     PASSAGE-AVERAGED FLOW
                                                                ADIM. AXIAL VELOCITY




      “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                 Rotor-                               Turbomachine”
       Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                         Gijó April,                                            25/64
                                                                                25/64
3.- Experimental Results                                      DHW



     PASSAGE-AVERAGED FLOW
                                                                ADIM. AXIAL VELOCITY




      “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                 Rotor-                               Turbomachine”
       Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                         Gijó April,                                            26/64
                                                                                26/64
3.- Experimental Results                                        DHW


 PHASE-AVERAGED FLOW




        “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                   Rotor-                               Turbomachine”
         Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                           Gijó April,                                      27/64
                                                                            27/64
3.- Experimental Results                                        DHW


 PHASE-AVERAGED FLOW




        “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                   Rotor-                               Turbomachine”
         Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                           Gijó April,                                      28/64
                                                                            28/64
3.- Experimental Results                                        DHW


 PHASE-AVERAGED FLOW




        “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                   Rotor-                               Turbomachine”
         Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                           Gijó April,                                      29/64
                                                                            29/64
3.- Experimental Results                                        DHW


 PHASE-AVERAGED FLOW




        “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                   Rotor-                               Turbomachine”
         Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                           Gijó April,                                      30/64
                                                                            30/64
3.- Experimental Results                                          PT


 PHASE-AVERAGED FLOW




        “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                   Rotor-                               Turbomachine”
         Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                           Gijó April,                                      31/64
                                                                            31/64
4.- Numerical Work                           Methodology

                                       NUMERICAL
                                      METHODOLOGY


                         TWO-                          THREE-
                    DIMENSIONAL (2D)              DIMENSIONAL (3D)




     “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                Rotor-                               Turbomachine”
      Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                        Gijó April,                                      32/64
                                                                         32/64
4.- Numerical Work                                                                       Methodology

TWO-DIMENSIONAL DOMAIN (2D)                                                              URANS Sliding Mesh Technique


  • Spatial Discretization: up to 350,000 cells. 12,000 cells/passage. Hybrid
  mesh. O-Grid around the blades. Grid accuracy analysis.
  • Temporal Discretization: 5.34*10-5 s. 468 time steps/rotor rev. (13x9x4).
  • Numerical Scheme: SIMPLE algorithm for pressure-velocity coupling, upwind
  discretizations and second order implicit scheme for the time dependent term.
  • Turbulence modeling: LES-(k-ε)RSM comparison.


                                                                    Nº de celdas por canal                                                                              Nº de celdas por canal
                                                        0    2500     5000     7500    10000   12500                                                        0    2500     5000     7500    10000   12500
                                                 -600                                                  500                                           18.4                                                  1250
                                                 -700                                                  450
                                                                                                                                                     18.2                                                  1200
                                                                                                       400




                                                                                                             Fluctuación Pres (Pa)
                                                 -800
                                                                                                       350                                           18.0
                                                 -900
                               Stat Pres (Pa)




                                                                                                                                     Caudal (m3/s)
                                                                                                                                                                                                           1150
                                                                                 Pres_med (ajuste)     300




                                                                                                                                                                                                                  AP (Pa)
                                                -1000                                                                                                17.8
                                                                                 Pres_med              250                                                                                                 1100
                                                -1100                            Pres_desv (ajuste)                                                  17.6
                                                                                                       200
                                                -1200                            Pres_desv                                                                                                   Q (ajuste)    1050
                                                                                                       150
                                                                                                                                                     17.4                                    Q
                                                -1300                                                  100                                                                                   AP (ajuste)   1000
                                                -1400                                                  50                                            17.2                                    AP
                                                -1500                                             0                                                  17.0                                             950
                                                        0   50000 100000 150000 200000 250000 300000                                                        0   50000 100000 150000 200000 250000 300000
                                                                     Núm ero de celdas
                                                                                                                                                                         Núm ero de celdas




          “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                     Rotor-                               Turbomachine”
           Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                             Gijó April,                                                                                                                                                            33/64
                                                                                                                                                                                                    33/64
4.- Numerical Work                                 Methodology

THREE-DIMENSIONAL DOMAIN (3D)                      URANS Sliding Mesh Technique


  • Spatial Discretization: up to 1,800,000 cells. 3,000 cells/passage 3D. Hybrid
  mesh. O-Grid around the blades. [100x35x25].
  • Temporal Discretization: 1.068*10-4 s. 234 time steps/rotor rev. (13x9x2).
  • Numerical Scheme: SIMPLE algorithm for pressure-velocity coupling, upwind
  discretizations and second order implicit scheme for the time dependent term.
  • Turbulence modeling: LES-(k-ε)RSM comparison.

                                         RSM                LES                Exp




           “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                      Rotor-                               Turbomachine”
            Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                              Gijó April,                                            34/64
                                                                                     34/64
4.- Numerical Work                                               Results



                     NUMERICAL
                      RESULTS


      PASSAGE-              PHASE-AVERAGED
   AVERAGED FLOW                 FLOW

• Two-dimensional           • Two-dimensional
Averaged Results            Instantaneous Results
• Three-dimensional         • Three-dimensional
Averaged Results            Instantaneous Results

      STEADY                        UNSTEADY
   Characteristics                Characteristics




               “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                          Rotor-                               Turbomachine”
                Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                                  Gijó April,                                      35/64
                                                                                   35/64
4.- Numerical Results                                           3D



     PASSAGE-AVERAGED FLOW
                                                                ADIM. AXIAL VELOCITY




      “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                 Rotor-                               Turbomachine”
       Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                         Gijó April,                                            36/64
                                                                                36/64
4.- Numerical Results                                           3D



     PASSAGE-AVERAGED FLOW
                                                             ADIM. TANGENTIAL VELOCITY




      “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                 Rotor-                               Turbomachine”
       Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                         Gijó April,                                            37/64
                                                                                37/64
4.- Numerical Results                                                 3D


PASSAGE-AVERAGED FLOW
   ADIM. AXIAL VELOCITY




            “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                       Rotor-                               Turbomachine”
             Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                               Gijó April,                                      38/64
                                                                                38/64
4.- Numerical Results                               3D



     PASSAGE-AVERAGED FLOW
                                                                    AZIMUT ANGLE




      “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                 Rotor-                               Turbomachine”
       Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                         Gijó April,                                               39/64
                                                                                   39/64
4.- Numerical Results                                             3D


 PHASE-AVERAGED FLOW




        “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                   Rotor-                               Turbomachine”
         Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                           Gijó April,                                      40/64
                                                                            40/64
4.- Numerical Results                                             3D


 PHASE-AVERAGED FLOW




        “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                   Rotor-                               Turbomachine”
         Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                           Gijó April,                                      41/64
                                                                            41/64
4.- Numerical Results                                             3D


 PHASE-AVERAGED FLOW




        “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                   Rotor-                               Turbomachine”
         Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                           Gijó April,                                      42/64
                                                                            42/64
4.- Numerical Results                                 3D


 PHASE-AVERAGED FLOW




        “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                   Rotor-                               Turbomachine”
         Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                           Gijó April,                                      43/64
                                                                            43/64
4.- Numerical Results                                             2D


 PHASE-AVERAGED FLOW




        “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                   Rotor-                               Turbomachine”
         Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                           Gijó April,                                      44/64
                                                                            44/64
4.- Numerical Results                                             2D


 PHASE-AVERAGED FLOW




        “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                   Rotor-                               Turbomachine”
         Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                           Gijó April,                                      45/64
                                                                            45/64
4.- Numerical Results                                             2D


 PHASE-AVERAGED FLOW




        “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                   Rotor-                               Turbomachine”
         Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                           Gijó April,                                      46/64
                                                                            46/64
4.- Numerical Results                                           2D


                          UNSTEADY FORCES




      “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                 Rotor-                               Turbomachine”
       Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                         Gijó April,                                      47/64
                                                                          47/64
4.- Numerical Results                                             3D



 OUTLET PLANE                  PERTURBATIONS                         INLET PLANE
                                PROPAGATION

                              Tyler and Sofrin Rule




                                             Axial Velocity at
                                           Inlet/Outlet planes


        “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                   Rotor-                               Turbomachine”
         Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                           Gijó April,                                         48/64
                                                                               48/64
4.- Numerical Results                                              3D


PERTURBATIONS PROPAGATION




                                   (FIXED)                   (MOVING)




         “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                    Rotor-                               Turbomachine”
          Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                            Gijó April,                                      49/64
                                                                             49/64
5.- Deterministic Analysis

  TURBO                                 NAVIER-STOKES                            GENERAL
MACHINERY                                                                        PURPOSE

      PASSAGE-TO-PASSAGE                                        REYNOLDS
           AVERAGE                                              AVERAGE




      PANS EQUATIONS                                        RANS EQUATIONS
   -Passage-to-passage Average                               -Reynolds Average




                                               CLOSURE
          Navier-Stokes-                                       Navier-Stokes-


             ˆˆ
             
             
     Rij   ui u j   ui u j   uiuj
                        ˆ
                        ˆ                                           ij   uiuj



                                            SOLUTION

           “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                      Rotor-                               Turbomachine”
            Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                              Gijó April,                                             50/64
                                                                                      50/64
5.- Deterministic Analysis
                                                                                                                          • Aperiodic Term: Indexing contribution of different blade row
                                                                                                                                      Term:
                    ˆˆ
                                                                                                                        stages.
                                                                                                                          stages.
            Rij   ui u j   ui u j   uiuj
                             ˆˆ
                                                                                                                        • DETERMINISTIC TERM: Rotor-Stator Interaction at one stage.
                                                                                                                                                    Rotor-                            stage.
                                                                                                                          • Reynolds Stresses: Stochastic unresolved flow-field.
                                                                                                                                      Stresses:                       flow- field.


                                                                                                                                                                                                                N
                                                                                                                                                                                  1
                 1.- Ensemble Average (Phase)                                                                                                               ui (r ,  , z , t ) 
                                                                                                                                                                     e

                                                                                                                                                                                  N
                                                                                                                                                                                                               u ( r ,  , z , )
                                                                                                                                                                                                               i 1
                                                                                                                                                                                                                       i



                 2.- Passage-to-passage Average


                                               Fixed Reference Frame                                                                                                         Moving Reference Frame

                                            TR                                                     NR                                                                                    TS                                                    NS
                                 1                                       1                                                                                              1                                              1
                                                                                                  u                                                                                                                                          u
         t(S )                                                                                                                                   t (R)
                  (r , , z )                ui (r ,  , z, t )  dt                                            (r , , z,  )                         (r , , z )                     ui (r ,  , z , t )  dt                                          (r ,  , z, nS )
     e                                              e                                                          e                  R          e                                                   e                                                         e
ui                                                                                                         i                      n     ui                                                                                                             i
                                TR           0
                                                                         NR                       n 1                                                                  TS                0
                                                                                                                                                                                                                       NS                     n 1


                         TR                                                                                                                                      TS
                     1      u e (r , , z , t )  u e t ( S ) (r , , z )    u e (r , , z , t )  u e t ( S ) (r , , z )   dt                       1           u e (r , , z, t )  u e t ( R ) (r , , z )    u e (r , , z , t )  u e t ( R ) (r , , z )   dt
                         i                                                j                                                                                    i                                               j                                               
      Det ( S )                                                                                                                               Det ( R )
    R                                                                                                                                    R
                                                                                                                                                                                                                                                                   
     ij                                             i                                                   j                                    ij                                                i                                                   j
                    TR   0
                                                                                                                                                            TS       0
             NR

             ui e (r , , z,nR )  ui e (r , , z )   ui e (r , , z,nR )  ui e (r , , z ) 
                                                                                                                                                     NS

                                                                                                                                                     u                                                  (r ,  , z )   ui e (r ,  , z, nS )  ui e               (r , , z ) 
     1                                    t(S )                                        t(S )                                              1                                                       t (R)                                                         t (R)
                                                                                                                                                               e
                                                                                                                                                                     (r ,  , z, nS )  ui e
     NR          
            n 1 
                                                        
                                                                                                  
                                                                                                                                         NS          
                                                                                                                                                      
                                                                                                                                                    n 1
                                                                                                                                                             i                                                          
                                                                                                                                                                                                                                                                                  
                                                                                                                                                                                                                                                                                    



                                                    “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                                                               Rotor-                               Turbomachine”
                                                     Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                                                                       Gijó April,                                                                                                                                                                     51/64
                                                                                                                                                                                                                                                       51/64
5.- Deterministic Analysis – Exp.

 DETERMINISTIC STRESS TENSOR                         Fixed Frame             Tax-ax




         “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                    Rotor-                               Turbomachine”
          Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                            Gijó April,                                        52/64
                                                                               52/64
5.- Deterministic Analysis – Exp.

 DETERMINISTIC STRESS TENSOR                         Fixed Frame             Tcirc-circ




         “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                    Rotor-                               Turbomachine”
          Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                            Gijó April,                                          53/64
                                                                                 53/64
5.- Deterministic Analysis – Exp.

 DETERMINISTIC STRESS TENSOR                         Fixed Frame             Tax-circ




         “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                    Rotor-                               Turbomachine”
          Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                            Gijó April,                                         54/64
                                                                                54/64
5.- Deterministic Analysis – Num.

 DETERMINISTIC STRESS TENSOR                         Fixed Frame             Tax-ax




         “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                    Rotor-                               Turbomachine”
          Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                            Gijó April,                                        55/64
                                                                               55/64
5.- Deterministic Analysis – Num.

 DETERMINISTIC STRESS TENSOR                         Fixed Frame             Tcirc-circ




         “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                    Rotor-                               Turbomachine”
          Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                            Gijó April,                                          56/64
                                                                                 56/64
5.- Deterministic Analysis – Num.

 DETERMINISTIC STRESS TENSOR                         Fixed Frame             Tax-circ




         “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                    Rotor-                               Turbomachine”
          Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                            Gijó April,                                         57/64
                                                                                57/64
5.- Deterministic Analysis – Num.

     DETERMINISTIC STRESS TENSOR                        Blade-to-blade                                    2D

Tax-ax 1.25G - midspan        Tax-ax 1.25G - tip


                                                                                                 1 3
                                                                                        K Det     Tii
                                                                                                 2 i 1

                                                                            70
                                                                            60   1.25G
                                                                                 G
                                                                            50




                                                             Kdet (m2/s2)
 Tax-circ 1.25G - hub        Tax-circ 1.25G - tip                           40
                                                                            30
                                                                            20
                                                                            10
                                                                            0
                                                                                  Hub           Midspan   Tip




              “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                         Rotor-                               Turbomachine”
               Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                                 Gijó April,                                                               58/64
                                                                                                           58/64
5.- Deterministic Analysis

                                   WAKE RECOVERY                                               Theory


                                                     L                               L              1  2  0
                      1  2  u0   u1  v1                u0   u1  v1 
                               1        2    2
                                                 t             1        2    2
                                                                                 t

                               2
                                                         x1
                                                               2
                                                                                         x2     No Recovery
                                         Kin1                            Kex 2
                                                      K                                           1  2  0
                       1  2  Kin1  Kex 2  Kin1 1  ex 2   Kin1  R
                                                      Kin1                                       Recovery




                                                                                              1  (D)



                                                                              2  ( R)

      “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                 Rotor-                               Turbomachine”
       Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                         Gijó April,                                                                      59/64
                                                                                                          59/64
5.- Deterministic Analysis                                       Numerical

     WAKE RECOVERY




      “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                 Rotor-                               Turbomachine”
       Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                         Gijó April,                                      60/64
                                                                          60/64
6.- Conclusions & Future Work

 CONCLUSIONS


 1.- Both NUMERICAL and EXPERIMENTAL studies have been realized in order to
 CHARACTERIZE the UNSTEADY ROTOR-STATOR INTERACTION in an AXIAL FLOW
 BLOWER.
      • Intensive DHW measurements have been achieved for the experimental
      methodology.
      • Instantaneous numerical velocity maps were obtained through a URANS
      simulation in the FLUENT code.

 2.- Both ROTOR and STATOR frames of reference have been considered for a more
 comprehensive understanding of the generation and transport of the unsteady flow
 features.

 3.- An IDENTIFICATION METHODOLOGY based on the deterministic stresses model
 has been employed, so UNSTEADY SOURCES related to BLADE PASSING
 FREQUENCIES have been determinated. Either interaction location, or unsteadiness
 intensity have been properly segregated and estimated.




           “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                      Rotor-                               Turbomachine”
            Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                              Gijó April,                                      61/64
                                                                               61/64
6.- Conclusions & Future Work

 CONCLUSIONS


 4.- Characteristic POTENTIAL EFFECTS (INVISCID mechanisms) and WAKE
 EFFECTS (BOUNDARY LAYER mechanisms) were observed:
      • ROTOR BLOCKAGE (Potential).
      • WAKE-BLADE Interaction (Radial migration of stator wakes).
      • WAKE-RECOVERY Stretching (Stator wakes passing through rotor passages).
      • WAKE-TIP Interaction (Maximum unsteady values at tip locations).
      • WAKE-WAKE Interaction (Residual stator wakes affecting rotor wakes).


 5.- GAP AXIAL MODIFICATIONS and OFF-DESIGN CONDITIONS have been included
 in the study to determine the influence of these parameters. General conclusions
 point out that:
      • Both parameters modify WAKE-ROTOR unsteady patterns.
      • WAKE-WAKE features are less affected by gap reduction and badly related to
      partial load perfomance.

 6.- PROPAGATION mechanisms along DUCTED FAN have been also reviewed in the
 numerical modelling. The relationship between INLET and OULET perturbations and
 VANE and BLADE numbers was established through TURBOFAN NOISE ANALYSIS.


           “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                      Rotor-                               Turbomachine”
            Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                              Gijó April,                                       62/64
                                                                                62/64
6.- Conclusions & Future Work

 CONCLUSIONS


  7.- The construction of the DETERMINISTIC STRESS TENSOR in both fixed and
  moving reference frames has concluded this work. About this issue, it can be said
  that:
        • Deterministic unsteady features are more pronounced at the stator.
        • Blade-to-blade tensor has revealed that stator wake core is unaffected by
        circumferential pressure gradients generated by the rotor.
        • Between the rows, similar values to Reynolds stresses are encountered for
        Deterministic Stresses (former studies).
        • Deterministic unsteadiness sources have been indentified, so all correlations
        can be used as input data for a steady RANS simulation.

 8.- WAKE RECOVERY process has been outlined, with the goal of obtaining an
 estimation on the residual deterministic kinetic energy associated to stator wakes
 at downstream rotor locations.




            “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                       Rotor-                               Turbomachine”
             Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                               Gijó April,                                          63/64
                                                                                    63/64
6.- Conclusions & Future Work

                                                                         FUTURE WORK


 1.- ANALYSIS OF THE ROTOR-STATOR CONFIGURATION, as well as the former
 stator-rotor stage.


 2.- NUMERICAL SOLUTION ENHACEMENT through RADIAL GAP modelling. Also,
 improvement of 3D meshes quality (mainly, high dense zones at blade passages), in
 order to improve LES characteristics (y+ restrictions criterion)

 3.- DEEPER knowledge on Deterministic Stresses Transport and Diffusion. Analysis of
 other physical topics related to DST, like radial and circumferential redistribution of
 the momentum, also reported in the literature.

 4.- INTRODUCTION OF CLOCKING EFFECTS, through consideration of larger
 machines with more than just one single stage.

 5.-A few HOLYDAYS




           “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”.
                      Rotor-                               Turbomachine”
            Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo.
                              Gijó April,                                           64/64
                                                                                    64/64
Doctoral Thesis


   “UNSTEADY ROTOR-STATOR
   INTERACTION IN AN AXIAL
       TURBOMACHINE”

             D. Jesús Manuel Fernández Oro

               Prof. Carlos Santolaria Morros
23/11/2011

More Related Content

Similar to Rotor-Stator Interaction in Turbomachines

Piezoelectric ultrasonic motor.pp
Piezoelectric ultrasonic motor.ppPiezoelectric ultrasonic motor.pp
Piezoelectric ultrasonic motor.ppanbarasuasokan
 
Study of Vibration Analysis of Rotating Shaft with Transverse Crack
Study of Vibration Analysis of Rotating Shaft with Transverse CrackStudy of Vibration Analysis of Rotating Shaft with Transverse Crack
Study of Vibration Analysis of Rotating Shaft with Transverse CrackIJMERJOURNAL
 
B.tech(Vibrational Analysis)-2012
B.tech(Vibrational Analysis)-2012B.tech(Vibrational Analysis)-2012
B.tech(Vibrational Analysis)-2012Soumyajit Sengupta
 
A Single Phase Induction Generator As Wind Generator – A New Concept and Design
A Single Phase Induction Generator As Wind Generator – A New Concept and DesignA Single Phase Induction Generator As Wind Generator – A New Concept and Design
A Single Phase Induction Generator As Wind Generator – A New Concept and DesignIDES Editor
 
Ultrasonic Motor.pdf
Ultrasonic Motor.pdfUltrasonic Motor.pdf
Ultrasonic Motor.pdfRakesh R
 
Ultrasonic motor
Ultrasonic motorUltrasonic motor
Ultrasonic motorPintu Khan
 
Fuzzy control of a vertical shaft single axis controlled repulsive type
Fuzzy control of a vertical shaft single axis controlled repulsive typeFuzzy control of a vertical shaft single axis controlled repulsive type
Fuzzy control of a vertical shaft single axis controlled repulsive typeIAEME Publication
 
SINGLE PHASE INDUCTION MOTOR
SINGLE PHASE INDUCTION MOTORSINGLE PHASE INDUCTION MOTOR
SINGLE PHASE INDUCTION MOTORRiyaRoy60
 
Condition monitoring & vibration analysis
Condition monitoring & vibration analysisCondition monitoring & vibration analysis
Condition monitoring & vibration analysisJai Kishan
 
논문리뷰_Blodt 위주.pptx
논문리뷰_Blodt 위주.pptx논문리뷰_Blodt 위주.pptx
논문리뷰_Blodt 위주.pptxssuserd6ce9f1
 
Vibration analysis at thermal power plants
Vibration analysis at thermal power plantsVibration analysis at thermal power plants
Vibration analysis at thermal power plantsSHIVAJI CHOUDHURY
 

Similar to Rotor-Stator Interaction in Turbomachines (20)

Pbl 1
Pbl 1Pbl 1
Pbl 1
 
Piezoelectric ultrasonic motor.pp
Piezoelectric ultrasonic motor.ppPiezoelectric ultrasonic motor.pp
Piezoelectric ultrasonic motor.pp
 
Study of Vibration Analysis of Rotating Shaft with Transverse Crack
Study of Vibration Analysis of Rotating Shaft with Transverse CrackStudy of Vibration Analysis of Rotating Shaft with Transverse Crack
Study of Vibration Analysis of Rotating Shaft with Transverse Crack
 
Tsi training
Tsi trainingTsi training
Tsi training
 
Ijmet 06 08_006
Ijmet 06 08_006Ijmet 06 08_006
Ijmet 06 08_006
 
Ijmet 06 08_006
Ijmet 06 08_006Ijmet 06 08_006
Ijmet 06 08_006
 
B.tech(Vibrational Analysis)-2012
B.tech(Vibrational Analysis)-2012B.tech(Vibrational Analysis)-2012
B.tech(Vibrational Analysis)-2012
 
A Single Phase Induction Generator As Wind Generator – A New Concept and Design
A Single Phase Induction Generator As Wind Generator – A New Concept and DesignA Single Phase Induction Generator As Wind Generator – A New Concept and Design
A Single Phase Induction Generator As Wind Generator – A New Concept and Design
 
Ultrasonic Motor.pdf
Ultrasonic Motor.pdfUltrasonic Motor.pdf
Ultrasonic Motor.pdf
 
Ultrasonic motor
Ultrasonic motorUltrasonic motor
Ultrasonic motor
 
Ijariie1165
Ijariie1165Ijariie1165
Ijariie1165
 
Fuzzy control of a vertical shaft single axis controlled repulsive type
Fuzzy control of a vertical shaft single axis controlled repulsive typeFuzzy control of a vertical shaft single axis controlled repulsive type
Fuzzy control of a vertical shaft single axis controlled repulsive type
 
SINGLE PHASE INDUCTION MOTOR
SINGLE PHASE INDUCTION MOTORSINGLE PHASE INDUCTION MOTOR
SINGLE PHASE INDUCTION MOTOR
 
Bianchi GT2011
Bianchi GT2011Bianchi GT2011
Bianchi GT2011
 
Condition monitoring & vibration analysis
Condition monitoring & vibration analysisCondition monitoring & vibration analysis
Condition monitoring & vibration analysis
 
논문리뷰_Blodt 위주.pptx
논문리뷰_Blodt 위주.pptx논문리뷰_Blodt 위주.pptx
논문리뷰_Blodt 위주.pptx
 
00843 a
00843 a00843 a
00843 a
 
Ballas1
Ballas1Ballas1
Ballas1
 
ULTRASONIC MOTOR.pdf
ULTRASONIC MOTOR.pdfULTRASONIC MOTOR.pdf
ULTRASONIC MOTOR.pdf
 
Vibration analysis at thermal power plants
Vibration analysis at thermal power plantsVibration analysis at thermal power plants
Vibration analysis at thermal power plants
 

Recently uploaded

Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 

Recently uploaded (20)

Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 

Rotor-Stator Interaction in Turbomachines

  • 1. Doctoral Thesis “UNSTEADY ROTOR-STATOR INTERACTION IN AN AXIAL TURBOMACHINE” D. Jesús Manuel Fernández Oro Dtor: Prof. Carlos Santolaria Morros 23/11/2011
  • 2. Table of Contents “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 2/64
  • 3. Table of Contents 1.- Introduction 2.- Axial Turbomachine 3.- Experimental Work Facilities Results 4.- Numerical Work Methodology Results 5.- Deterministic Analysis 6.- Conclussions & Future Work “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 3/64
  • 4. 1.- Introduction UNSTEADY This unsteady pressure field is TURBOMACHINERY a consequence of the blades FLOW motion of the rotor.   Dh0 P     Why Unsteady      T v   f v    q Flow Analysis? Dt t 1.- Even, an inviscid, adiabatic flow (reversible) is exchanging enthalpy (work) due to the existence of an unsteady pressure field. 2.- Mechanical vibrations and unsteady forces also appear due to the time variations of the pressure field. 3.- Aerodynamically generated noise is associated to the pressure fluctuations inside the turbomachine. “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 4/64
  • 5. 1.- Introduction ROTOR-STATOR INTERACTION TURBOMACHINERY Turbomachinery flows are highly UNSTEADY unsteady because of the relative MECHANISMS motion of rotor and stator stages. In general, unsteadiness may be viewed as a combination of two processes: TIME PERIODIC Chaotic, aperiodic Chaotic, the INVISCID POTENTIAL EFFECT phenomena PHENOMENA and the PERIODIC PASSING OF WAKES generated by the upstream blade rows. The former is due to the Turbulence relative motion of the rotors with Related to Speed Non related to respect to the stators, and this effect stators Rotation Speed Rotation Transitional becomes stronger when the gap Operation – between rotor and stator is small. Vortex Speed Range shedding Variations The latter arises from the interaction Stable Unstable of the blade boundary layers with the Operation Operation vortices shed from the blunt trailing edge of upstream blade rows, and Rotating from the variation of the angle of ROTOR-STATOR ROTOR- Stall INTERACTION attack at the leading edge due to the wake velocity deficit. All these unsteady features and the Potential Origin interaction between them make the simulation of unsteady Boundary Layer Which Unsteady turbomachinery flows a highly challenging task. (C.HIRSCH) Shock Waves Flow Analysis? “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 5/64
  • 6. 1.- Introduction ROTOR-STATOR INTERACTION • Wake Decay (Mixing Loss) PERIODIC PASSING • Wake Transport (Chopping effects, Redistribution of Moment, OF WAKES Hot Spots) • Wake Recovery (Wake Stretching) INVISCID POTENTIAL EFFECT Vortex shedding Rotor 1 Stator 2 Stator wakes Rotor 2 “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 6/64
  • 7. 1.- Introduction ROTOR-STATOR INTERACTION PERIODIC PASSING OF WAKES • Axial gap variations. Pitch effect. • Circunferential variations in total pressure due to the blades INVISCID POTENTIAL EFFECT downstream response. • Time circunferential variations and response to an uniform inlet conditions.      t t   “A steady flow pattern in a relative frame of reference with a velocity gradient in the tangential direction generates an unsteady absolute flow pattern”. (Lyman, 1993) The static pressure field upstream and downstream of a blade row is varying circumferentially (and radially) due to the blade load. load This causes a flow defect, which is felt as unsteady pressure waves by the relative moving blade rows. (Jöcker, 2002) (J cker, “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 7/64
  • 8. 1.- Introduction How Unsteady Flow? Mathematical Models For TURBOMACHINERY Turbomachinery Flows FLOW SCALES Blade-passing frequencies Spectral Gap Averaging Technique Segregation Ensemble Average Energy Turbulence Time Average scales Passage Average Frequency “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 8/64
  • 9. 1.- Introduction DETERMINISTIC FLOW INSIDE A 1. Ensemble-average TURBOMACHINE (Adamzcyk, 1986) 2 M 1  f  r , , z ,   m  1 ; t1  t  T  t1 e f  lim  t M  M m 1  2. Time-average 1 H G  r , , z , t dt 1 T 0 H G  r , , z, t   f  r , , z, t  dt T   t f  e T T 0 3. Passage-to-passage average 1 2   gl  r , , z d L  1 N 1  2 n   2 n  2 l 1  G  r ,  N , z   f t  r ,  N , z  l j 0 f ap  N     G  r , , z    l 1 gl  r , , z  n0 L • Aperiodic Term: Indexing contribution of different blade row stages. stages. URANS • DETERMINISTIC TERM: Rotor-Stator Interaction at one stage. Rotor- stage. Equations • Reynolds Stresses: Stochastic unresolved flow-field. flow- field. PANS Equations + ˆˆ  Closure requirements Rij   ui u j   ui u j   uiuj  ˆˆ  “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 9/64
  • 10. 1.- Introduction OBJECTIVES OVERVIEW 1.- Analysis of the unsteady scenario inside an axial turbomachine 2.- Both numerical and experimental characterization of the flow patterns 3.- Segregation of instantaneous turbulent phenomena through a time average for every rotor phase 4.- Identification of dynamic unsteadiness sources, either generated by rotor blades or generated by stator vanes 5.- Analysis of these dynamics phenomena (axial gap influence, mass flow rate variations) associated to blade passing frequency (BPF) 6.- Deterministic analysis of the flow: wake transport, wake convection and wake recovery “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 10/64 10/64
  • 11. 2.- Axial Turbomachine FAN characteristics: STATOR characteristics: • Tip diameter: 820 mm • 13 Inlet Guide Vanes (IGV’s) 1-STAGE • Hub diameter: 380 mm • British Circular Profile C1 AXIAL • Rotation Speed: 2400 rpm BLOWER • Design Flow Rate: 18 m3/s ROTOR characteristics: • Design Pressure: 1200 Pa • 9 Blades (127 mm – chord) • Stator-Rotor Configuration • NACA 65 Profile Rear View Front View “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 11/64 11/64
  • 12. 2.- Axial Turbomachine STATOR Geometrical ROTOR Geometrical Parameters Parameters • 13 Inlet Guide Vanes • 9 Blades (127 mm – chord) • British Circular Profile C1 • NACA 65 Profile D (mm)  380  490  600  710  820 D(mm)  380  490  600  710  820 β1 0º 0º 0º 0º 0º β3 59,61º 62,01º 64,7º 67,18º 69,36º β2 31,17º 24,84º 20,73º 17,81º 15,68º β4 47,73º 54,82º 60,07º 64,06º 67,16º  1,71 1,37 1,14 0,98 0,86  1,35 1 0,79 0,65 0,55 b/l 3% 3% 3% 3% 3% b/l 12 % 10,49 % 9,43 % 8,63 % 8% i - 0,47º - 0,82º - 0,93º - 0,93º - 0,88º i 4,08º 2,45º 1,28º 0,52º 0,03º  18,12º 14,93º 12,97º 11,66º 10,78º  10,96º 7,17º 5º 3,71º 2,9º  37,18º 31,51º 27,81º 25,2º 23,21º  13,76º 9,46º 7,43º 6,38º 5,75º º 18,12º 14,93º 12,97º 11,66º 10,78º º 48,64º 54,84º 59,7º 63,47º 66,46º  5,54º 5,85º 6,15º 6,45º 6,75º  5,97º 4,71º 4,08º 3,78º 3,57º β 31,17º 24,84º 20,73º 17,81º 15,68º β 11,88º 7,19º 4,63º 3,12º 2,2º “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 12/64 12/64
  • 13. 2.- Axial Turbomachine Test Facility Regulation Cone Venturi Nozzle Hub BS 848 (1980) – Motor “Methods of Testing Performance”. Fans Inlet for General Purposes. British Standard Institution. Stabilization Duct L = 20 D Stator Rotor “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 13/64 13/64
  • 14. 3.- Experimental Work Methodology MEASUREMENT TYPES 1.-Pressure Five Hole Probe 2.- Hot Wire Anemometry 3.- Piezoelectric transducer • Steady measurements • Unsteady measurements • Unteady measurements • Average velocity maps and • Instantaneous velocity maps • Instantaneous Pressure signals pressure distributions • High Frequency Response: up to • High Frequency Acquiring: up to • No BPF Response (0.36 KHz) 30 KHz 100 KHz “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 14/64 14/64
  • 15. 3.- Experimental Work Methodology 1.- PRESSURE FIVE HOLE PROBE Measurement Set-Up Set- Measurement Chain Calibration Set-Up Set- “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 15/64 15/64
  • 16. 3.- Experimental Work Methodology 2.- HOT WIRE ANEMOMETRY Calibration Set-Up Set- Probe repairing Measurement Set-Up Set- equipment “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 16/64 16/64
  • 17. 3.- Experimental Work Methodology 3.- TRANSDUCER PRESSURE Measurement Points Measurement Equipment “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 17/64 17/64
  • 18. 3.- Experimental Work Methodology • Upstream and downstream rotor measurements. • Circunferential sectors used as “Windows”. MEASUREMENT • Tangential direction: Stator pitch = 360º/13  28º. LOCATIONS • Spanwise: From hub to tip. • Spatial discretization: 15x15 = 225 points/window. • Temporal discretization: 36 KHz (100 instants/passage) Circunferential sector “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 18/64 18/64
  • 19. 3.- Experimental Work Methodology MEASUREMENT AXIAL BLOWER PERFORMANCE CURVE STRATEGIES 2500 60 50 2000 1.- Working Point Variations Total Efficiency (%) 40 Pressure (Pa) 1500 30 N) Nominal Flow Rate (Qn): 1000 20 16.5 m3/s 500 10 P) -15% Nominal Flow Rate 0 0 (0.85Qn): 13.5 m3/s 0 2 4 6 8 10 Flow Rate (m3/s) 12 14 16 18 Static Pressure, Ps Dinamic Pressure, Pd Total Pressure, Pt Numerical Points Efficiency S) -30% Nominal Flow Rate (0.7Qn): 11.5 m3/s Axial Gap 2.-Axial Gap Modification 1.25G) Upper Axial Gap: 100 mm G) Lower Axial Gap: 80 mm “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 19/64 19/64
  • 20. 3.- Experimental Work Results EXPERIMENTAL RESULTS PASSAGE- PHASE-AVERAGED AVERAGED FLOW FLOW • Averaged Results • Instantaneous Results • Mean DHW & FHP • DHW & Transducer STEADY UNSTEADY Characteristics Characteristics “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 20/64 20/64
  • 21. 3.- Experimental Results FHP PASSAGE-AVERAGED FLOW ADIM. AXIAL VELOCITY • Between the rows (D), at nominal flow rate, there is a rate, perfect homogenetation of the flow, just broken by flow, stator wakes. Both axial wakes. gaps. gaps. • Rotor downstream (R), the stator wakes are clearly present, more diffused and present, advected, but perfectly advected, visible. • Boundary layer zones: For zones: (D), wide boundary at tip. tip. Instead, for (R), the hub Instead, boundary layer seems to be thicker. thicker. • FIRST RESULTS !! “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 21/64 21/64
  • 22. 3.- Experimental Results DHW STATOR Downstream ROTOR Downstream “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 22/64 22/64
  • 23. 3.- Experimental Results DHW PASSAGE-AVERAGED FLOW ADIM. AXIAL VELOCITY “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 23/64 23/64
  • 24. 3.- Experimental Results DHW PASSAGE-AVERAGED FLOW ADIM. TANGENTIAL VELOCITY “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 24/64 24/64
  • 25. 3.- Experimental Results DHW PASSAGE-AVERAGED FLOW ADIM. AXIAL VELOCITY “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 25/64 25/64
  • 26. 3.- Experimental Results DHW PASSAGE-AVERAGED FLOW ADIM. AXIAL VELOCITY “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 26/64 26/64
  • 27. 3.- Experimental Results DHW PHASE-AVERAGED FLOW “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 27/64 27/64
  • 28. 3.- Experimental Results DHW PHASE-AVERAGED FLOW “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 28/64 28/64
  • 29. 3.- Experimental Results DHW PHASE-AVERAGED FLOW “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 29/64 29/64
  • 30. 3.- Experimental Results DHW PHASE-AVERAGED FLOW “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 30/64 30/64
  • 31. 3.- Experimental Results PT PHASE-AVERAGED FLOW “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 31/64 31/64
  • 32. 4.- Numerical Work Methodology NUMERICAL METHODOLOGY TWO- THREE- DIMENSIONAL (2D) DIMENSIONAL (3D) “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 32/64 32/64
  • 33. 4.- Numerical Work Methodology TWO-DIMENSIONAL DOMAIN (2D) URANS Sliding Mesh Technique • Spatial Discretization: up to 350,000 cells. 12,000 cells/passage. Hybrid mesh. O-Grid around the blades. Grid accuracy analysis. • Temporal Discretization: 5.34*10-5 s. 468 time steps/rotor rev. (13x9x4). • Numerical Scheme: SIMPLE algorithm for pressure-velocity coupling, upwind discretizations and second order implicit scheme for the time dependent term. • Turbulence modeling: LES-(k-ε)RSM comparison. Nº de celdas por canal Nº de celdas por canal 0 2500 5000 7500 10000 12500 0 2500 5000 7500 10000 12500 -600 500 18.4 1250 -700 450 18.2 1200 400 Fluctuación Pres (Pa) -800 350 18.0 -900 Stat Pres (Pa) Caudal (m3/s) 1150 Pres_med (ajuste) 300 AP (Pa) -1000 17.8 Pres_med 250 1100 -1100 Pres_desv (ajuste) 17.6 200 -1200 Pres_desv Q (ajuste) 1050 150 17.4 Q -1300 100 AP (ajuste) 1000 -1400 50 17.2 AP -1500 0 17.0 950 0 50000 100000 150000 200000 250000 300000 0 50000 100000 150000 200000 250000 300000 Núm ero de celdas Núm ero de celdas “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 33/64 33/64
  • 34. 4.- Numerical Work Methodology THREE-DIMENSIONAL DOMAIN (3D) URANS Sliding Mesh Technique • Spatial Discretization: up to 1,800,000 cells. 3,000 cells/passage 3D. Hybrid mesh. O-Grid around the blades. [100x35x25]. • Temporal Discretization: 1.068*10-4 s. 234 time steps/rotor rev. (13x9x2). • Numerical Scheme: SIMPLE algorithm for pressure-velocity coupling, upwind discretizations and second order implicit scheme for the time dependent term. • Turbulence modeling: LES-(k-ε)RSM comparison. RSM LES Exp “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 34/64 34/64
  • 35. 4.- Numerical Work Results NUMERICAL RESULTS PASSAGE- PHASE-AVERAGED AVERAGED FLOW FLOW • Two-dimensional • Two-dimensional Averaged Results Instantaneous Results • Three-dimensional • Three-dimensional Averaged Results Instantaneous Results STEADY UNSTEADY Characteristics Characteristics “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 35/64 35/64
  • 36. 4.- Numerical Results 3D PASSAGE-AVERAGED FLOW ADIM. AXIAL VELOCITY “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 36/64 36/64
  • 37. 4.- Numerical Results 3D PASSAGE-AVERAGED FLOW ADIM. TANGENTIAL VELOCITY “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 37/64 37/64
  • 38. 4.- Numerical Results 3D PASSAGE-AVERAGED FLOW ADIM. AXIAL VELOCITY “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 38/64 38/64
  • 39. 4.- Numerical Results 3D PASSAGE-AVERAGED FLOW AZIMUT ANGLE “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 39/64 39/64
  • 40. 4.- Numerical Results 3D PHASE-AVERAGED FLOW “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 40/64 40/64
  • 41. 4.- Numerical Results 3D PHASE-AVERAGED FLOW “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 41/64 41/64
  • 42. 4.- Numerical Results 3D PHASE-AVERAGED FLOW “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 42/64 42/64
  • 43. 4.- Numerical Results 3D PHASE-AVERAGED FLOW “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 43/64 43/64
  • 44. 4.- Numerical Results 2D PHASE-AVERAGED FLOW “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 44/64 44/64
  • 45. 4.- Numerical Results 2D PHASE-AVERAGED FLOW “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 45/64 45/64
  • 46. 4.- Numerical Results 2D PHASE-AVERAGED FLOW “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 46/64 46/64
  • 47. 4.- Numerical Results 2D UNSTEADY FORCES “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 47/64 47/64
  • 48. 4.- Numerical Results 3D OUTLET PLANE PERTURBATIONS INLET PLANE PROPAGATION Tyler and Sofrin Rule Axial Velocity at Inlet/Outlet planes “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 48/64 48/64
  • 49. 4.- Numerical Results 3D PERTURBATIONS PROPAGATION (FIXED) (MOVING) “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 49/64 49/64
  • 50. 5.- Deterministic Analysis TURBO NAVIER-STOKES GENERAL MACHINERY PURPOSE PASSAGE-TO-PASSAGE REYNOLDS AVERAGE AVERAGE PANS EQUATIONS RANS EQUATIONS -Passage-to-passage Average -Reynolds Average CLOSURE Navier-Stokes- Navier-Stokes- ˆˆ   Rij   ui u j   ui u j   uiuj ˆ ˆ  ij   uiuj SOLUTION “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 50/64 50/64
  • 51. 5.- Deterministic Analysis • Aperiodic Term: Indexing contribution of different blade row Term: ˆˆ  stages. stages. Rij   ui u j   ui u j   uiuj  ˆˆ  • DETERMINISTIC TERM: Rotor-Stator Interaction at one stage. Rotor- stage. • Reynolds Stresses: Stochastic unresolved flow-field. Stresses: flow- field. N 1 1.- Ensemble Average (Phase) ui (r ,  , z , t )  e N  u ( r ,  , z , ) i 1 i 2.- Passage-to-passage Average Fixed Reference Frame Moving Reference Frame TR NR TS NS 1 1 1 1 u u t(S ) t (R) (r , , z )   ui (r ,  , z, t )  dt  (r , , z,  ) (r , , z )   ui (r ,  , z , t )  dt  (r ,  , z, nS ) e e e R e e e ui i n ui i TR 0 NR n 1 TS 0 NS n 1 TR TS 1  u e (r , , z , t )  u e t ( S ) (r , , z )    u e (r , , z , t )  u e t ( S ) (r , , z )   dt 1  u e (r , , z, t )  u e t ( R ) (r , , z )    u e (r , , z , t )  u e t ( R ) (r , , z )   dt   i   j    i   j  Det ( S ) Det ( R ) R R         ij i j ij i j TR 0 TS 0 NR  ui e (r , , z,nR )  ui e (r , , z )   ui e (r , , z,nR )  ui e (r , , z )  NS  u (r ,  , z )   ui e (r ,  , z, nS )  ui e (r , , z )  1 t(S ) t(S ) 1 t (R) t (R)   e (r ,  , z, nS )  ui e NR  n 1        NS   n 1 i       “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 51/64 51/64
  • 52. 5.- Deterministic Analysis – Exp. DETERMINISTIC STRESS TENSOR Fixed Frame Tax-ax “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 52/64 52/64
  • 53. 5.- Deterministic Analysis – Exp. DETERMINISTIC STRESS TENSOR Fixed Frame Tcirc-circ “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 53/64 53/64
  • 54. 5.- Deterministic Analysis – Exp. DETERMINISTIC STRESS TENSOR Fixed Frame Tax-circ “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 54/64 54/64
  • 55. 5.- Deterministic Analysis – Num. DETERMINISTIC STRESS TENSOR Fixed Frame Tax-ax “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 55/64 55/64
  • 56. 5.- Deterministic Analysis – Num. DETERMINISTIC STRESS TENSOR Fixed Frame Tcirc-circ “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 56/64 56/64
  • 57. 5.- Deterministic Analysis – Num. DETERMINISTIC STRESS TENSOR Fixed Frame Tax-circ “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 57/64 57/64
  • 58. 5.- Deterministic Analysis – Num. DETERMINISTIC STRESS TENSOR Blade-to-blade 2D Tax-ax 1.25G - midspan Tax-ax 1.25G - tip 1 3 K Det   Tii 2 i 1 70 60 1.25G G 50 Kdet (m2/s2) Tax-circ 1.25G - hub Tax-circ 1.25G - tip 40 30 20 10 0 Hub Midspan Tip “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 58/64 58/64
  • 59. 5.- Deterministic Analysis WAKE RECOVERY Theory L L 1  2  0 1  2  u0   u1  v1   u0   u1  v1  1 2 2 t 1 2 2 t 2 x1 2 x2 No Recovery Kin1 Kex 2  K  1  2  0 1  2  Kin1  Kex 2  Kin1 1  ex 2   Kin1  R  Kin1  Recovery 1  (D) 2  ( R) “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 59/64 59/64
  • 60. 5.- Deterministic Analysis Numerical WAKE RECOVERY “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 60/64 60/64
  • 61. 6.- Conclusions & Future Work CONCLUSIONS 1.- Both NUMERICAL and EXPERIMENTAL studies have been realized in order to CHARACTERIZE the UNSTEADY ROTOR-STATOR INTERACTION in an AXIAL FLOW BLOWER. • Intensive DHW measurements have been achieved for the experimental methodology. • Instantaneous numerical velocity maps were obtained through a URANS simulation in the FLUENT code. 2.- Both ROTOR and STATOR frames of reference have been considered for a more comprehensive understanding of the generation and transport of the unsteady flow features. 3.- An IDENTIFICATION METHODOLOGY based on the deterministic stresses model has been employed, so UNSTEADY SOURCES related to BLADE PASSING FREQUENCIES have been determinated. Either interaction location, or unsteadiness intensity have been properly segregated and estimated. “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 61/64 61/64
  • 62. 6.- Conclusions & Future Work CONCLUSIONS 4.- Characteristic POTENTIAL EFFECTS (INVISCID mechanisms) and WAKE EFFECTS (BOUNDARY LAYER mechanisms) were observed: • ROTOR BLOCKAGE (Potential). • WAKE-BLADE Interaction (Radial migration of stator wakes). • WAKE-RECOVERY Stretching (Stator wakes passing through rotor passages). • WAKE-TIP Interaction (Maximum unsteady values at tip locations). • WAKE-WAKE Interaction (Residual stator wakes affecting rotor wakes). 5.- GAP AXIAL MODIFICATIONS and OFF-DESIGN CONDITIONS have been included in the study to determine the influence of these parameters. General conclusions point out that: • Both parameters modify WAKE-ROTOR unsteady patterns. • WAKE-WAKE features are less affected by gap reduction and badly related to partial load perfomance. 6.- PROPAGATION mechanisms along DUCTED FAN have been also reviewed in the numerical modelling. The relationship between INLET and OULET perturbations and VANE and BLADE numbers was established through TURBOFAN NOISE ANALYSIS. “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 62/64 62/64
  • 63. 6.- Conclusions & Future Work CONCLUSIONS 7.- The construction of the DETERMINISTIC STRESS TENSOR in both fixed and moving reference frames has concluded this work. About this issue, it can be said that: • Deterministic unsteady features are more pronounced at the stator. • Blade-to-blade tensor has revealed that stator wake core is unaffected by circumferential pressure gradients generated by the rotor. • Between the rows, similar values to Reynolds stresses are encountered for Deterministic Stresses (former studies). • Deterministic unsteadiness sources have been indentified, so all correlations can be used as input data for a steady RANS simulation. 8.- WAKE RECOVERY process has been outlined, with the goal of obtaining an estimation on the residual deterministic kinetic energy associated to stator wakes at downstream rotor locations. “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 63/64 63/64
  • 64. 6.- Conclusions & Future Work FUTURE WORK 1.- ANALYSIS OF THE ROTOR-STATOR CONFIGURATION, as well as the former stator-rotor stage. 2.- NUMERICAL SOLUTION ENHACEMENT through RADIAL GAP modelling. Also, improvement of 3D meshes quality (mainly, high dense zones at blade passages), in order to improve LES characteristics (y+ restrictions criterion) 3.- DEEPER knowledge on Deterministic Stresses Transport and Diffusion. Analysis of other physical topics related to DST, like radial and circumferential redistribution of the momentum, also reported in the literature. 4.- INTRODUCTION OF CLOCKING EFFECTS, through consideration of larger machines with more than just one single stage. 5.-A few HOLYDAYS “Unsteady Rotor-Stator Interaction in an Axial Turbomachine”. Rotor- Turbomachine” Doctoral Thesis - Gijón. April, 7th, 2005. University of Oviedo. Gijó April, 64/64 64/64
  • 65. Doctoral Thesis “UNSTEADY ROTOR-STATOR INTERACTION IN AN AXIAL TURBOMACHINE” D. Jesús Manuel Fernández Oro Prof. Carlos Santolaria Morros 23/11/2011