SlideShare a Scribd company logo
1 of 5
* GB780009 (A)
Description: GB780009 (A) ? 1957-07-31
Improvements relating to regulating systems for dynamo-electric machines
Description of GB780009 (A)
PATENT SPECIFICATION
Inventor: NiORIMIAN HOARRY 1SHAW Date of filing Complete
Specification: June 10, 1955.
Application Date: June 16, 1954.
No. 17726/54.
1 --Complete Specification Published: July 31, 1957.
Index at acceptance:-Class 38(4), R(4: 21A1A).
International Classification:-G05f.
- COM1PLETE SPECOIFlICATION Improvements relating to Regulating
Systems for DynamoElectric Machines We, THE ENGLISH ELECTRIC COMPANY
LIMITED, of Queens House, 2!8 Kingsway, London, W.C.2, a British
Company, do hereby declare the invention, for which we pray that a
patent may be granted to us,.and the method by which it is to be
performed, to be particularly described in and by 'the following
statement:This invention, relates to regulating systems for
synchronous generators of the kind including an automatic voltage
regulator arranged to control the excitation of the generator
automatically so, as to maintain the output voltage of the generator
substantially constant.
It is well known that in such systems the synchronising torque of the
generator may, under certain conditions, fall below that necessary to
maintain the generator in synchronism with the system to which it is
connected., This loss of synchronising torque may be due, for example,
to the action of the automatic voltage regulator which, in attempting
to maintain the generator output voltage constant with sudden loss of
load, reduces the generator excitation belbw the stability limit.
One object of the present invention is to provide an improved
regulating system which incorporates means for automatically
preventing reduction of the generator excitation below the stability
limit.
According to the invention, in a regulating system for a synchronous
generator of the kind including an automatic voltage regulator
arranged to control the generator excitation automatically in, a sense
to maintain a generator output voltage substantially constant,
overriding automatic control means are 'arranged' to prevent reduction
of generator excitation below.a value determined solely by the
magnitude of the generator load current, which value increases with
the magnitude of the generator load current and' vice versa.
According to a preferred feature of the invention the overriding
control means are arranged to respond to electrical quantities varying
with generator excitation and the [Price 3s. 6fCiet' 4sCo magnitude of
the generator load current respectively, and to boost the generator
excitation automatically if the excitation should fall below a value
determined by the actual magnitude of the generator load current or if
the magnitude of the generator load current should exceed a value
determined by the actual value of generator excitation.
According to 'a further preferred feature of the invention the
overriding control means are arranged to boost the excitation of the
generator by applying an overriding control quantity to the automatic
voltage regulator in, a sense to cause the regulator to increase the
generator excitation.
{According to yet another preferred feature of the invention the
automatic voltage regulator comprises a magnetic amplifier having an
output winding connected in circuit with excitation varying means for
the generator and a control winding connected in a comparison circuit
consisting of a substantially constant electrical reference source and
an electric control source varying with generator output voltage, so
as to be energised in 'a corrective sense in accordance with variation
of generator output voltage from a predetermined value, said
overriding control means being arranged to boost the generator
excitation by injecting an electrical quantity into said comparision
circuit.
Other preferred features of the invention will appear from. the
follovwing description with reference to the drawing accompanying the
Provisional Specification which shows the simplified circuit diagram
of a regulating system for a turbo generator embodying the invention
in preferred form., Referring now to the drawing the generator G
supplies the three phase system busbars S through a step-up
transformer T1, the field winding Gf of the generator being supplied,
from an exciter E having a self-excited field winding Esf and a
control field winding arranged in two mutually opposing sections Ecf.1
and cf'2.. The self-excited field winding Esf is connected in circuit
with a motor 780,009 operated rheostat MR which is remotely controlled
through means, not shown, to provide alternative hand control of the
generator output voltage, whilst the two sections Ecfl, Ecf2 of the
control field winding 'are supplied from a magnetic amplifier MA1
having a control winding MA.lc.
The control winding of the magnetic amplifier MA1i is connected across
the output terminals OT of a comparison circuit which is arranged to
compare a voltage dependent on the average of the generator line
voltages with a voltage drop due to a constant reference current
flowing through resistors. The circuit comprises, in series
relationship, a constant current reference source IR, the star
connected secondary winding of a transformer T2, dry plate rectifiers
DR1, loading resistors R1 and R2, and a variable resistor VR1. The
delta-connected primary winding of the transformer T2 is supplied from
the generator G through a transformer T3 having a star-connected
primary winding and a delta-connected secondary winding. The rectified
output voltage of the transformer T2 is thus dependent on the average
of the generator line voltages.
In operation, the variable resistor VR1 is set so that, at the desired
generator output voltage, the total voltage drop across the resistors
R1, R2 and VR1 is substantially equal in magnitude and opposite in
polarity to the voltage output derived from the rectifiers DR1. Under
these conditions no potential difference will appear across the output
terminals OT of the comparison circuit, and, the control winding MAlc
of the magnetic amplifier MA1i will not be energized.
If now the generator output voltage should rise, then since the
current in the comparison circuit, and thus the voltage drop across
the three resistors therein, is maintained constant, a potential
difference will be developed across the output terminals OT which will
result in the energization of the control winding MAlc of the magnetic
amplifier MA&.
The magnetic amplifier is arranged so that when its control winding is
energized in this way the amplifier develops an output which is
applied to the section Ecfl of the control winding on the exciter so
as to buck the selfexcited winding Esf. The excitation of the
generator G, and thus its output voltage, will accordingly be reduced
until a balanced condition is restored at which just sufficient
potential difference is maintained across the output terminals OT of
the comparison, circuit to provide sufficient energization of the
section Ecfl of the control winding on the exciter E.
On the other hand, if the generator line volts should fall, a
potential difference of opposite polarity will be developed across the
output terminals OT of the comparison circuit with a consequent
energization in the opposite sense of the control winding MAlc of the
magnetic amplifier MAl. Under these conditions the magnetic amplifier
energizes the section Ecf2 of the control winding on the exciter E in
a sense to boost the self-excited winding Esf and thereby increase the
generator output volts until a balanced condition 70 is once more
restored.
In order to prevent loss of synchronism a voltage is applied
automatically across the resistor R2 in a sense to cause the generator
voltage to rise suddenly if the stability limit 75 is approached. This
voltage is derived from a magnetic amplifier MIA2 and is applied to
the resistor R2 through a rectifier DR2.
The magnetic amplifier has three control windings MA2a, MA2b and MA2c
respectively. Winding MA2a is energized from the comparison circuit in
accordance with the rectified output from the transformer T2, i.e. in
accordance with the average of the generator line voltages, a variable
resistor VR2 being 85 included in circuit with this winding. Winding
MA2b is energized through a rectifier bridge RB from a current
transformer IT in one line of the generator load circuit, i.e.
in accordance with generator load current. 90 Smoothing circuits may
be provided for smoothing the D.C. output of the rectifier.
Winding MA2c is connected in series with a variable resistor VR3
across a resistor R3 in the excitation circuit of the generator G so
as 95 to be energized in accordance with generator excitation.
Windings MA2a and MA2c, as shown by the small arrows, act in the same
direction whilst winding MA2b opposes these two windings. 100 The
variable resistors VR2 and VR3 are preset so that, provided the
generator load current does not exceed a limit value which varies with
the generator excitation, increasing with increase thereof, the
winding MA2b 105 will be overcome by the combined effect of the
windings MA2a and MA2c and the magnetic amplifier MA2 will be biased
back to minimum output. Under these conditions the rectifier DR2 will
prevent the flow of reverse 110 current which would otherwise occur as
a result of the normal voltage drop across the resistor R2 due to the
constant circulating current being greater than the output current
from the magnetic amplifier MA2. The magnetic amplifier therefore has
no effect on the operation of the comparison circuit.
If, however, the generator load current should exceed such a value
that the winding MA2b overcomes the combined effect of the 120
windings MA2a and MA2c, the magnetic amplifier will develop a
comparatively large voltage, causing a current to flow in the forward
direction through the rectifier DR2 which will increase the voltage
across the resistor R2. A potential difference will therefore be
developed across the output terminals OT of the comparison circuit
which will cause the magnetic amplifier MA1 to energize the boost
winding Ecf2 of the exciter E. The excitation 130 q780,009 sense to
cause the regulator to increase the generator excitation.
* Sitemap
* Accessibility
* Legal notice
* Terms of use
* Last updated: 08.04.2015
* Worldwide Database
* 5.8.23.4; 93p

More Related Content

What's hot

Automatic voltage regulations And V curves of alternators
Automatic voltage regulations And V curves of alternatorsAutomatic voltage regulations And V curves of alternators
Automatic voltage regulations And V curves of alternatorsMUDASSARHABIB5
 
Development of a Microcontroller Based 12/24 Volts Push-Pull Inverter System
Development of a Microcontroller Based 12/24 Volts Push-Pull Inverter SystemDevelopment of a Microcontroller Based 12/24 Volts Push-Pull Inverter System
Development of a Microcontroller Based 12/24 Volts Push-Pull Inverter Systemiosrjce
 
Power Plant Horror Stories
Power Plant Horror StoriesPower Plant Horror Stories
Power Plant Horror Storiesmichaeljmack
 
5071 5075.output
5071 5075.output5071 5075.output
5071 5075.outputj1075017
 
Effect of converter dc fault on the transient stability of a multi machine po...
Effect of converter dc fault on the transient stability of a multi machine po...Effect of converter dc fault on the transient stability of a multi machine po...
Effect of converter dc fault on the transient stability of a multi machine po...Indra S Wahyudi
 
Generator basic concepts
Generator basic conceptsGenerator basic concepts
Generator basic conceptsmichaeljmack
 
VVVF for Dummies
VVVF for DummiesVVVF for Dummies
VVVF for DummiesMark Bowman
 
Study on Excitation system in Power sector
Study on Excitation system in Power sectorStudy on Excitation system in Power sector
Study on Excitation system in Power sectorBoben Anto Chemmannoor
 
Vocational Training Report (Rajdhani Express)
Vocational Training Report (Rajdhani Express)Vocational Training Report (Rajdhani Express)
Vocational Training Report (Rajdhani Express)shovandey07
 
Harmonics Reduction of Multilevel Inverter Drive Using Sine Carrier Pulse Wid...
Harmonics Reduction of Multilevel Inverter Drive Using Sine Carrier Pulse Wid...Harmonics Reduction of Multilevel Inverter Drive Using Sine Carrier Pulse Wid...
Harmonics Reduction of Multilevel Inverter Drive Using Sine Carrier Pulse Wid...IJERA Editor
 
Sensorless Control of a Fault-tolerant Multi-level PMSM Drive
Sensorless Control of a Fault-tolerant Multi-level PMSM DriveSensorless Control of a Fault-tolerant Multi-level PMSM Drive
Sensorless Control of a Fault-tolerant Multi-level PMSM DriveTELKOMNIKA JOURNAL
 

What's hot (18)

Automatic voltage regulations And V curves of alternators
Automatic voltage regulations And V curves of alternatorsAutomatic voltage regulations And V curves of alternators
Automatic voltage regulations And V curves of alternators
 
Development of a Microcontroller Based 12/24 Volts Push-Pull Inverter System
Development of a Microcontroller Based 12/24 Volts Push-Pull Inverter SystemDevelopment of a Microcontroller Based 12/24 Volts Push-Pull Inverter System
Development of a Microcontroller Based 12/24 Volts Push-Pull Inverter System
 
Power Plant Horror Stories
Power Plant Horror StoriesPower Plant Horror Stories
Power Plant Horror Stories
 
(6) finite
(6) finite(6) finite
(6) finite
 
780060
780060780060
780060
 
780060
780060780060
780060
 
780060
780060780060
780060
 
780060
780060780060
780060
 
5071 5075.output
5071 5075.output5071 5075.output
5071 5075.output
 
Effect of converter dc fault on the transient stability of a multi machine po...
Effect of converter dc fault on the transient stability of a multi machine po...Effect of converter dc fault on the transient stability of a multi machine po...
Effect of converter dc fault on the transient stability of a multi machine po...
 
Generator basic concepts
Generator basic conceptsGenerator basic concepts
Generator basic concepts
 
VVVF for Dummies
VVVF for DummiesVVVF for Dummies
VVVF for Dummies
 
Study on Excitation system in Power sector
Study on Excitation system in Power sectorStudy on Excitation system in Power sector
Study on Excitation system in Power sector
 
Vocational Training Report (Rajdhani Express)
Vocational Training Report (Rajdhani Express)Vocational Training Report (Rajdhani Express)
Vocational Training Report (Rajdhani Express)
 
Harmonics Reduction of Multilevel Inverter Drive Using Sine Carrier Pulse Wid...
Harmonics Reduction of Multilevel Inverter Drive Using Sine Carrier Pulse Wid...Harmonics Reduction of Multilevel Inverter Drive Using Sine Carrier Pulse Wid...
Harmonics Reduction of Multilevel Inverter Drive Using Sine Carrier Pulse Wid...
 
Sensorless Control of a Fault-tolerant Multi-level PMSM Drive
Sensorless Control of a Fault-tolerant Multi-level PMSM DriveSensorless Control of a Fault-tolerant Multi-level PMSM Drive
Sensorless Control of a Fault-tolerant Multi-level PMSM Drive
 
Stabilized Supply in Voltage 14.4 V and 300 A Current for Automotive Applicat...
Stabilized Supply in Voltage 14.4 V and 300 A Current for Automotive Applicat...Stabilized Supply in Voltage 14.4 V and 300 A Current for Automotive Applicat...
Stabilized Supply in Voltage 14.4 V and 300 A Current for Automotive Applicat...
 
Experiment 1 DC Machine
Experiment 1 DC MachineExperiment 1 DC Machine
Experiment 1 DC Machine
 

Viewers also liked (19)

780007
780007780007
780007
 
780019
780019780019
780019
 
780002
780002780002
780002
 
780025
780025780025
780025
 
780020
780020780020
780020
 
780037
780037780037
780037
 
780014
780014780014
780014
 
780015
780015780015
780015
 
780047
780047780047
780047
 
780030
780030780030
780030
 
780004
780004780004
780004
 
780028
780028780028
780028
 
780046
780046780046
780046
 
780023
780023780023
780023
 
780011
780011780011
780011
 
780003
780003780003
780003
 
780025
780025780025
780025
 
780042
780042780042
780042
 
780031
780031780031
780031
 

Similar to 780009

Static Excitation System of Generator in Hydropower Station
Static Excitation System of Generator in Hydropower StationStatic Excitation System of Generator in Hydropower Station
Static Excitation System of Generator in Hydropower Stationijtsrd
 
doubley fed induction motor
doubley fed induction motordoubley fed induction motor
doubley fed induction motorusic123
 
Synchronous generator
Synchronous generatorSynchronous generator
Synchronous generatorPrasant Kumar
 
Simulation of 3-phase matrix converter using space vector modulation
Simulation of 3-phase matrix converter using space vector modulationSimulation of 3-phase matrix converter using space vector modulation
Simulation of 3-phase matrix converter using space vector modulationIJECEIAES
 
Commutation torque ripple in bldc by sepic and npc
Commutation torque ripple in bldc by sepic and npcCommutation torque ripple in bldc by sepic and npc
Commutation torque ripple in bldc by sepic and npcKollimarla Pavankumar
 
USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SU...
USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SU...USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SU...
USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SU...IAEME Publication
 
Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...
Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...
Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...ijsrd.com
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Speed control of dc motors
Speed control of dc motorsSpeed control of dc motors
Speed control of dc motorsSatheesh Kumar
 
Stator flux oriented vector control of wind driven self excited induction gen...
Stator flux oriented vector control of wind driven self excited induction gen...Stator flux oriented vector control of wind driven self excited induction gen...
Stator flux oriented vector control of wind driven self excited induction gen...Alexander Decker
 
Performance of PWM Rectifier with Different Types of Load
Performance of PWM Rectifier with Different Types of LoadPerformance of PWM Rectifier with Different Types of Load
Performance of PWM Rectifier with Different Types of Loadijsrd.com
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Speed Control of DC Motor.pdf
Speed Control of DC Motor.pdfSpeed Control of DC Motor.pdf
Speed Control of DC Motor.pdfMdJobairulAlam1
 

Similar to 780009 (20)

780010
780010780010
780010
 
780010
780010780010
780010
 
780010
780010780010
780010
 
Static Excitation System of Generator in Hydropower Station
Static Excitation System of Generator in Hydropower StationStatic Excitation System of Generator in Hydropower Station
Static Excitation System of Generator in Hydropower Station
 
doubley fed induction motor
doubley fed induction motordoubley fed induction motor
doubley fed induction motor
 
Synchronous generator
Synchronous generatorSynchronous generator
Synchronous generator
 
Simulation of 3-phase matrix converter using space vector modulation
Simulation of 3-phase matrix converter using space vector modulationSimulation of 3-phase matrix converter using space vector modulation
Simulation of 3-phase matrix converter using space vector modulation
 
Unit-2..pdf
Unit-2..pdfUnit-2..pdf
Unit-2..pdf
 
Some Aspects on 3-Phase Bridge Inverter (180 Degree Mode)
Some Aspects on 3-Phase Bridge Inverter (180 Degree Mode)Some Aspects on 3-Phase Bridge Inverter (180 Degree Mode)
Some Aspects on 3-Phase Bridge Inverter (180 Degree Mode)
 
Commutation torque ripple in bldc by sepic and npc
Commutation torque ripple in bldc by sepic and npcCommutation torque ripple in bldc by sepic and npc
Commutation torque ripple in bldc by sepic and npc
 
USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SU...
USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SU...USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SU...
USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SU...
 
Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...
Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...
Analysis Approach for Five Phase Two-Level Voltage Source Inverter with PWM T...
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Speed control of dc motors
Speed control of dc motorsSpeed control of dc motors
Speed control of dc motors
 
Stator flux oriented vector control of wind driven self excited induction gen...
Stator flux oriented vector control of wind driven self excited induction gen...Stator flux oriented vector control of wind driven self excited induction gen...
Stator flux oriented vector control of wind driven self excited induction gen...
 
780150
780150780150
780150
 
Performance of PWM Rectifier with Different Types of Load
Performance of PWM Rectifier with Different Types of LoadPerformance of PWM Rectifier with Different Types of Load
Performance of PWM Rectifier with Different Types of Load
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Speed Control of DC Motor.pdf
Speed Control of DC Motor.pdfSpeed Control of DC Motor.pdf
Speed Control of DC Motor.pdf
 
Dcmachine 1233234542827948-3
Dcmachine 1233234542827948-3Dcmachine 1233234542827948-3
Dcmachine 1233234542827948-3
 

More from j1075017sss (20)

780050
780050780050
780050
 
780048
780048780048
780048
 
780049
780049780049
780049
 
780038
780038780038
780038
 
780044
780044780044
780044
 
780045
780045780045
780045
 
780041
780041780041
780041
 
780043
780043780043
780043
 
780040
780040780040
780040
 
780039
780039780039
780039
 
780036
780036780036
780036
 
780035
780035780035
780035
 
780034
780034780034
780034
 
780033
780033780033
780033
 
780032
780032780032
780032
 
780030
780030780030
780030
 
780029
780029780029
780029
 
780028
780028780028
780028
 
780026
780026780026
780026
 
780027
780027780027
780027
 

Recently uploaded

如何办理(uOttawa毕业证书)渥太华大学毕业证学位证书
如何办理(uOttawa毕业证书)渥太华大学毕业证学位证书如何办理(uOttawa毕业证书)渥太华大学毕业证学位证书
如何办理(uOttawa毕业证书)渥太华大学毕业证学位证书SD DS
 
Trial Tilak t 1897,1909, and 1916 sedition
Trial Tilak t 1897,1909, and 1916 seditionTrial Tilak t 1897,1909, and 1916 sedition
Trial Tilak t 1897,1909, and 1916 seditionNilamPadekar1
 
如何办理佛蒙特大学毕业证学位证书
 如何办理佛蒙特大学毕业证学位证书 如何办理佛蒙特大学毕业证学位证书
如何办理佛蒙特大学毕业证学位证书Fir sss
 
如何办理(ISU毕业证书)爱荷华州立大学毕业证学位证书
如何办理(ISU毕业证书)爱荷华州立大学毕业证学位证书如何办理(ISU毕业证书)爱荷华州立大学毕业证学位证书
如何办理(ISU毕业证书)爱荷华州立大学毕业证学位证书SD DS
 
定制(BU文凭证书)美国波士顿大学毕业证成绩单原版一比一
定制(BU文凭证书)美国波士顿大学毕业证成绩单原版一比一定制(BU文凭证书)美国波士顿大学毕业证成绩单原版一比一
定制(BU文凭证书)美国波士顿大学毕业证成绩单原版一比一st Las
 
如何办理美国波士顿大学(BU)毕业证学位证书
如何办理美国波士顿大学(BU)毕业证学位证书如何办理美国波士顿大学(BU)毕业证学位证书
如何办理美国波士顿大学(BU)毕业证学位证书Fir L
 
Comparison of GenAI benchmarking models for legal use cases
Comparison of GenAI benchmarking models for legal use casesComparison of GenAI benchmarking models for legal use cases
Comparison of GenAI benchmarking models for legal use casesritwikv20
 
Why Every Business Should Invest in a Social Media Fraud Analyst.pdf
Why Every Business Should Invest in a Social Media Fraud Analyst.pdfWhy Every Business Should Invest in a Social Media Fraud Analyst.pdf
Why Every Business Should Invest in a Social Media Fraud Analyst.pdfMilind Agarwal
 
定制(WMU毕业证书)美国西密歇根大学毕业证成绩单原版一比一
定制(WMU毕业证书)美国西密歇根大学毕业证成绩单原版一比一定制(WMU毕业证书)美国西密歇根大学毕业证成绩单原版一比一
定制(WMU毕业证书)美国西密歇根大学毕业证成绩单原版一比一jr6r07mb
 
国外大学毕业证《奥克兰大学毕业证办理成绩单GPA修改》
国外大学毕业证《奥克兰大学毕业证办理成绩单GPA修改》国外大学毕业证《奥克兰大学毕业证办理成绩单GPA修改》
国外大学毕业证《奥克兰大学毕业证办理成绩单GPA修改》o8wvnojp
 
Key Factors That Influence Property Tax Rates
Key Factors That Influence Property Tax RatesKey Factors That Influence Property Tax Rates
Key Factors That Influence Property Tax RatesHome Tax Saver
 
Legal Alert - Vietnam - First draft Decree on mechanisms and policies to enco...
Legal Alert - Vietnam - First draft Decree on mechanisms and policies to enco...Legal Alert - Vietnam - First draft Decree on mechanisms and policies to enco...
Legal Alert - Vietnam - First draft Decree on mechanisms and policies to enco...Dr. Oliver Massmann
 
Law360 - How Duty Of Candor Figures In USPTO AI Ethics Guidance
Law360 - How Duty Of Candor Figures In USPTO AI Ethics GuidanceLaw360 - How Duty Of Candor Figures In USPTO AI Ethics Guidance
Law360 - How Duty Of Candor Figures In USPTO AI Ethics GuidanceMichael Cicero
 
如何办理(GWU毕业证书)乔治华盛顿大学毕业证学位证书
如何办理(GWU毕业证书)乔治华盛顿大学毕业证学位证书如何办理(GWU毕业证书)乔治华盛顿大学毕业证学位证书
如何办理(GWU毕业证书)乔治华盛顿大学毕业证学位证书SD DS
 
POLICE ACT, 1861 the details about police system.pptx
POLICE ACT, 1861 the details about police system.pptxPOLICE ACT, 1861 the details about police system.pptx
POLICE ACT, 1861 the details about police system.pptxAbhishekchatterjee248859
 
如何办理(Rice毕业证书)莱斯大学毕业证学位证书
如何办理(Rice毕业证书)莱斯大学毕业证学位证书如何办理(Rice毕业证书)莱斯大学毕业证学位证书
如何办理(Rice毕业证书)莱斯大学毕业证学位证书SD DS
 
John Hustaix - The Legal Profession: A History
John Hustaix - The Legal Profession:  A HistoryJohn Hustaix - The Legal Profession:  A History
John Hustaix - The Legal Profession: A HistoryJohn Hustaix
 
如何办理(USF文凭证书)美国旧金山大学毕业证学位证书
如何办理(USF文凭证书)美国旧金山大学毕业证学位证书如何办理(USF文凭证书)美国旧金山大学毕业证学位证书
如何办理(USF文凭证书)美国旧金山大学毕业证学位证书Fs Las
 
如何办理(UNK毕业证书)内布拉斯加大学卡尼尔分校毕业证学位证书
如何办理(UNK毕业证书)内布拉斯加大学卡尼尔分校毕业证学位证书如何办理(UNK毕业证书)内布拉斯加大学卡尼尔分校毕业证学位证书
如何办理(UNK毕业证书)内布拉斯加大学卡尼尔分校毕业证学位证书SD DS
 

Recently uploaded (20)

如何办理(uOttawa毕业证书)渥太华大学毕业证学位证书
如何办理(uOttawa毕业证书)渥太华大学毕业证学位证书如何办理(uOttawa毕业证书)渥太华大学毕业证学位证书
如何办理(uOttawa毕业证书)渥太华大学毕业证学位证书
 
Trial Tilak t 1897,1909, and 1916 sedition
Trial Tilak t 1897,1909, and 1916 seditionTrial Tilak t 1897,1909, and 1916 sedition
Trial Tilak t 1897,1909, and 1916 sedition
 
如何办理佛蒙特大学毕业证学位证书
 如何办理佛蒙特大学毕业证学位证书 如何办理佛蒙特大学毕业证学位证书
如何办理佛蒙特大学毕业证学位证书
 
如何办理(ISU毕业证书)爱荷华州立大学毕业证学位证书
如何办理(ISU毕业证书)爱荷华州立大学毕业证学位证书如何办理(ISU毕业证书)爱荷华州立大学毕业证学位证书
如何办理(ISU毕业证书)爱荷华州立大学毕业证学位证书
 
定制(BU文凭证书)美国波士顿大学毕业证成绩单原版一比一
定制(BU文凭证书)美国波士顿大学毕业证成绩单原版一比一定制(BU文凭证书)美国波士顿大学毕业证成绩单原版一比一
定制(BU文凭证书)美国波士顿大学毕业证成绩单原版一比一
 
如何办理美国波士顿大学(BU)毕业证学位证书
如何办理美国波士顿大学(BU)毕业证学位证书如何办理美国波士顿大学(BU)毕业证学位证书
如何办理美国波士顿大学(BU)毕业证学位证书
 
Comparison of GenAI benchmarking models for legal use cases
Comparison of GenAI benchmarking models for legal use casesComparison of GenAI benchmarking models for legal use cases
Comparison of GenAI benchmarking models for legal use cases
 
Why Every Business Should Invest in a Social Media Fraud Analyst.pdf
Why Every Business Should Invest in a Social Media Fraud Analyst.pdfWhy Every Business Should Invest in a Social Media Fraud Analyst.pdf
Why Every Business Should Invest in a Social Media Fraud Analyst.pdf
 
定制(WMU毕业证书)美国西密歇根大学毕业证成绩单原版一比一
定制(WMU毕业证书)美国西密歇根大学毕业证成绩单原版一比一定制(WMU毕业证书)美国西密歇根大学毕业证成绩单原版一比一
定制(WMU毕业证书)美国西密歇根大学毕业证成绩单原版一比一
 
国外大学毕业证《奥克兰大学毕业证办理成绩单GPA修改》
国外大学毕业证《奥克兰大学毕业证办理成绩单GPA修改》国外大学毕业证《奥克兰大学毕业证办理成绩单GPA修改》
国外大学毕业证《奥克兰大学毕业证办理成绩单GPA修改》
 
Russian Call Girls Service Gomti Nagar \ 9548273370 Indian Call Girls Service...
Russian Call Girls Service Gomti Nagar \ 9548273370 Indian Call Girls Service...Russian Call Girls Service Gomti Nagar \ 9548273370 Indian Call Girls Service...
Russian Call Girls Service Gomti Nagar \ 9548273370 Indian Call Girls Service...
 
Key Factors That Influence Property Tax Rates
Key Factors That Influence Property Tax RatesKey Factors That Influence Property Tax Rates
Key Factors That Influence Property Tax Rates
 
Legal Alert - Vietnam - First draft Decree on mechanisms and policies to enco...
Legal Alert - Vietnam - First draft Decree on mechanisms and policies to enco...Legal Alert - Vietnam - First draft Decree on mechanisms and policies to enco...
Legal Alert - Vietnam - First draft Decree on mechanisms and policies to enco...
 
Law360 - How Duty Of Candor Figures In USPTO AI Ethics Guidance
Law360 - How Duty Of Candor Figures In USPTO AI Ethics GuidanceLaw360 - How Duty Of Candor Figures In USPTO AI Ethics Guidance
Law360 - How Duty Of Candor Figures In USPTO AI Ethics Guidance
 
如何办理(GWU毕业证书)乔治华盛顿大学毕业证学位证书
如何办理(GWU毕业证书)乔治华盛顿大学毕业证学位证书如何办理(GWU毕业证书)乔治华盛顿大学毕业证学位证书
如何办理(GWU毕业证书)乔治华盛顿大学毕业证学位证书
 
POLICE ACT, 1861 the details about police system.pptx
POLICE ACT, 1861 the details about police system.pptxPOLICE ACT, 1861 the details about police system.pptx
POLICE ACT, 1861 the details about police system.pptx
 
如何办理(Rice毕业证书)莱斯大学毕业证学位证书
如何办理(Rice毕业证书)莱斯大学毕业证学位证书如何办理(Rice毕业证书)莱斯大学毕业证学位证书
如何办理(Rice毕业证书)莱斯大学毕业证学位证书
 
John Hustaix - The Legal Profession: A History
John Hustaix - The Legal Profession:  A HistoryJohn Hustaix - The Legal Profession:  A History
John Hustaix - The Legal Profession: A History
 
如何办理(USF文凭证书)美国旧金山大学毕业证学位证书
如何办理(USF文凭证书)美国旧金山大学毕业证学位证书如何办理(USF文凭证书)美国旧金山大学毕业证学位证书
如何办理(USF文凭证书)美国旧金山大学毕业证学位证书
 
如何办理(UNK毕业证书)内布拉斯加大学卡尼尔分校毕业证学位证书
如何办理(UNK毕业证书)内布拉斯加大学卡尼尔分校毕业证学位证书如何办理(UNK毕业证书)内布拉斯加大学卡尼尔分校毕业证学位证书
如何办理(UNK毕业证书)内布拉斯加大学卡尼尔分校毕业证学位证书
 

780009

  • 1. * GB780009 (A) Description: GB780009 (A) ? 1957-07-31 Improvements relating to regulating systems for dynamo-electric machines Description of GB780009 (A) PATENT SPECIFICATION Inventor: NiORIMIAN HOARRY 1SHAW Date of filing Complete Specification: June 10, 1955. Application Date: June 16, 1954. No. 17726/54. 1 --Complete Specification Published: July 31, 1957. Index at acceptance:-Class 38(4), R(4: 21A1A). International Classification:-G05f. - COM1PLETE SPECOIFlICATION Improvements relating to Regulating Systems for DynamoElectric Machines We, THE ENGLISH ELECTRIC COMPANY LIMITED, of Queens House, 2!8 Kingsway, London, W.C.2, a British Company, do hereby declare the invention, for which we pray that a patent may be granted to us,.and the method by which it is to be performed, to be particularly described in and by 'the following statement:This invention, relates to regulating systems for synchronous generators of the kind including an automatic voltage regulator arranged to control the excitation of the generator automatically so, as to maintain the output voltage of the generator substantially constant. It is well known that in such systems the synchronising torque of the generator may, under certain conditions, fall below that necessary to maintain the generator in synchronism with the system to which it is connected., This loss of synchronising torque may be due, for example, to the action of the automatic voltage regulator which, in attempting to maintain the generator output voltage constant with sudden loss of load, reduces the generator excitation belbw the stability limit. One object of the present invention is to provide an improved regulating system which incorporates means for automatically preventing reduction of the generator excitation below the stability limit.
  • 2. According to the invention, in a regulating system for a synchronous generator of the kind including an automatic voltage regulator arranged to control the generator excitation automatically in, a sense to maintain a generator output voltage substantially constant, overriding automatic control means are 'arranged' to prevent reduction of generator excitation below.a value determined solely by the magnitude of the generator load current, which value increases with the magnitude of the generator load current and' vice versa. According to a preferred feature of the invention the overriding control means are arranged to respond to electrical quantities varying with generator excitation and the [Price 3s. 6fCiet' 4sCo magnitude of the generator load current respectively, and to boost the generator excitation automatically if the excitation should fall below a value determined by the actual magnitude of the generator load current or if the magnitude of the generator load current should exceed a value determined by the actual value of generator excitation. According to 'a further preferred feature of the invention the overriding control means are arranged to boost the excitation of the generator by applying an overriding control quantity to the automatic voltage regulator in, a sense to cause the regulator to increase the generator excitation. {According to yet another preferred feature of the invention the automatic voltage regulator comprises a magnetic amplifier having an output winding connected in circuit with excitation varying means for the generator and a control winding connected in a comparison circuit consisting of a substantially constant electrical reference source and an electric control source varying with generator output voltage, so as to be energised in 'a corrective sense in accordance with variation of generator output voltage from a predetermined value, said overriding control means being arranged to boost the generator excitation by injecting an electrical quantity into said comparision circuit. Other preferred features of the invention will appear from. the follovwing description with reference to the drawing accompanying the Provisional Specification which shows the simplified circuit diagram of a regulating system for a turbo generator embodying the invention in preferred form., Referring now to the drawing the generator G supplies the three phase system busbars S through a step-up transformer T1, the field winding Gf of the generator being supplied, from an exciter E having a self-excited field winding Esf and a control field winding arranged in two mutually opposing sections Ecf.1 and cf'2.. The self-excited field winding Esf is connected in circuit with a motor 780,009 operated rheostat MR which is remotely controlled through means, not shown, to provide alternative hand control of the
  • 3. generator output voltage, whilst the two sections Ecfl, Ecf2 of the control field winding 'are supplied from a magnetic amplifier MA1 having a control winding MA.lc. The control winding of the magnetic amplifier MA1i is connected across the output terminals OT of a comparison circuit which is arranged to compare a voltage dependent on the average of the generator line voltages with a voltage drop due to a constant reference current flowing through resistors. The circuit comprises, in series relationship, a constant current reference source IR, the star connected secondary winding of a transformer T2, dry plate rectifiers DR1, loading resistors R1 and R2, and a variable resistor VR1. The delta-connected primary winding of the transformer T2 is supplied from the generator G through a transformer T3 having a star-connected primary winding and a delta-connected secondary winding. The rectified output voltage of the transformer T2 is thus dependent on the average of the generator line voltages. In operation, the variable resistor VR1 is set so that, at the desired generator output voltage, the total voltage drop across the resistors R1, R2 and VR1 is substantially equal in magnitude and opposite in polarity to the voltage output derived from the rectifiers DR1. Under these conditions no potential difference will appear across the output terminals OT of the comparison circuit, and, the control winding MAlc of the magnetic amplifier MA1i will not be energized. If now the generator output voltage should rise, then since the current in the comparison circuit, and thus the voltage drop across the three resistors therein, is maintained constant, a potential difference will be developed across the output terminals OT which will result in the energization of the control winding MAlc of the magnetic amplifier MA&. The magnetic amplifier is arranged so that when its control winding is energized in this way the amplifier develops an output which is applied to the section Ecfl of the control winding on the exciter so as to buck the selfexcited winding Esf. The excitation of the generator G, and thus its output voltage, will accordingly be reduced until a balanced condition is restored at which just sufficient potential difference is maintained across the output terminals OT of the comparison, circuit to provide sufficient energization of the section Ecfl of the control winding on the exciter E. On the other hand, if the generator line volts should fall, a potential difference of opposite polarity will be developed across the output terminals OT of the comparison circuit with a consequent energization in the opposite sense of the control winding MAlc of the magnetic amplifier MAl. Under these conditions the magnetic amplifier energizes the section Ecf2 of the control winding on the exciter E in
  • 4. a sense to boost the self-excited winding Esf and thereby increase the generator output volts until a balanced condition 70 is once more restored. In order to prevent loss of synchronism a voltage is applied automatically across the resistor R2 in a sense to cause the generator voltage to rise suddenly if the stability limit 75 is approached. This voltage is derived from a magnetic amplifier MIA2 and is applied to the resistor R2 through a rectifier DR2. The magnetic amplifier has three control windings MA2a, MA2b and MA2c respectively. Winding MA2a is energized from the comparison circuit in accordance with the rectified output from the transformer T2, i.e. in accordance with the average of the generator line voltages, a variable resistor VR2 being 85 included in circuit with this winding. Winding MA2b is energized through a rectifier bridge RB from a current transformer IT in one line of the generator load circuit, i.e. in accordance with generator load current. 90 Smoothing circuits may be provided for smoothing the D.C. output of the rectifier. Winding MA2c is connected in series with a variable resistor VR3 across a resistor R3 in the excitation circuit of the generator G so as 95 to be energized in accordance with generator excitation. Windings MA2a and MA2c, as shown by the small arrows, act in the same direction whilst winding MA2b opposes these two windings. 100 The variable resistors VR2 and VR3 are preset so that, provided the generator load current does not exceed a limit value which varies with the generator excitation, increasing with increase thereof, the winding MA2b 105 will be overcome by the combined effect of the windings MA2a and MA2c and the magnetic amplifier MA2 will be biased back to minimum output. Under these conditions the rectifier DR2 will prevent the flow of reverse 110 current which would otherwise occur as a result of the normal voltage drop across the resistor R2 due to the constant circulating current being greater than the output current from the magnetic amplifier MA2. The magnetic amplifier therefore has no effect on the operation of the comparison circuit. If, however, the generator load current should exceed such a value that the winding MA2b overcomes the combined effect of the 120 windings MA2a and MA2c, the magnetic amplifier will develop a comparatively large voltage, causing a current to flow in the forward direction through the rectifier DR2 which will increase the voltage across the resistor R2. A potential difference will therefore be developed across the output terminals OT of the comparison circuit which will cause the magnetic amplifier MA1 to energize the boost winding Ecf2 of the exciter E. The excitation 130 q780,009 sense to cause the regulator to increase the generator excitation.
  • 5. * Sitemap * Accessibility * Legal notice * Terms of use * Last updated: 08.04.2015 * Worldwide Database * 5.8.23.4; 93p