SlideShare a Scribd company logo
1 of 26
COOLANT MANAGEMENT & TROUBLE
SHOOTING.
presented by
About this presentation -
This presentation will assist you in the “sometimes - confusing” task of selecting and maintaining
metalworking fluids for peak performance.
Chapter: 1
-The functions and basic types of metalworking fluids.
Chapter: 2.
-Contaminations and Controlling them.
Chapter: 3.
- Machine clean-out & charging fresh coolant.
Chapter:4.
- Coolant Maintenance.
Chapter:5.
- Recycling & Disposal.
Chapter:6.
- Trouble Shooting Coolants.
FOR PEAK PERFORMANCE in MANUFACTURING…..
Chapter: 1
- the functions and basic types of metalworking fluids.
Metalworking fluids or coolants play a critical role in most machining processes.
The main functions of a coolant are:
• COOLING. • LUBRICATION. • CHIP REMOVAL.
• PROTECTION AGAINST CORROSION.
COOLING VS. LUBRICATION
Every operation has its own specific requirements for cooling versus lubrication.
By varying the mixing ratio of a water based coolant, you can alter the balance of cooling and lubrication.
In general, the more the water (leaner mix), the better the cooling;
the more the concentrate(richer mix), the better the lubrication provided.
When machining, better lubrication is required, hence a richer concentration
is used.
When grinding, the requirements for cooling are greater; hence a more lean concentration is used (but not
so lean as to cause rust).
Classifications of Metalworking Lubricants
Neat or Straight Oils
• Neat oils are made up primarily of naphthenic or paraffinic base
oils with extreme pressure additives such as chlorine, sulfur and fats.
Neat oils will not emulsify with water nor do they contain any water.
Soluble Oils
• Greater than 30% mineral oil and no water in concentrate. Dilution
appears milky and not translucent.
Semi-Synthetics
• Less than 30% mineral oil content in concentrate and the concentrate
contains water. Dilution appears translucent.
Synthetics
• Zero mineral oil content. Dilution looks transparent and is a true solution
with no droplet formation like semi-synthetics and soluble oils.
Soluble Oil
Advantages
• More economical than straight or neat oils; dilution with water lowers
cost without sacrificing machining effectiveness.
•Cools 2 to 3 times better than straight oils.
•Very versatile and can be used in most machining and grinding applications
on a variety of materials.
•Has better health and safety aspects. No fire hazard, low oil misting and fogging.
Disadvantages
• Higher disposal costs due to high percentage of oil.
• Emulsions are milky; therefore the work-piece is not visible through fluid.
• Less cooling in high-speed applications.
• May tend to pick up tramp oils due to partial mechanical emulsification.
Semi-Synthetics
Advantages
• Leaves oily film on machine and parts for protection.
• Tend to reject tramp oils.
• Very stable emulsion, long lasting.
• Better cooling allows for higher cutting speeds. Good for turning applications.
•Ideal for powder metals components, cast iron and metals giving of powdery chips.
•Great for cleanliness and work-piece visibility.
Disadvantages
• Mists, smoke or disposal may be a problem due to oil.
•Very sensitive to concentration fluctuations and rust and corrosion due to poor fluid management.
Synthetics
Advantages
• Rapid heat dissipation.
• Excellent work-piece visibility.
• Total rejection of tramp oils possible.
• Easy to measure and control concentration.
• Bacterial attack may be easier to control.
• Usually stable and potentially long-lasting.
• No oil mist problem; no oil disposal concerns.
Disadvantages
• High performance products can be expensive.
• Residual films may be sticky, which may cause gumming in the moving parts of the machine.
• Significantly reduced corrosion protection.
• Less tolerant to poor fluid management and to protect against rust and corrosion.
CHAPTER: 2.
CONTAMINATIONS AND CONTROLLING THEM.
-TRAMP OILS.
-SOLIDS.
-BACTERIA AND BAD ODOUR.
TRAMP OILS
• An important factor in coolant life is control of tramp oils.
Tramp oils are any oils which are not part of the
original coolant formulation.
They include way lubes, hydraulic oil, gear lubes, etc.
They contain sulfur, phosphorous or solvents, which can be damaging to the coolant.
They destabilize the emulsion or encourage the growth of bacteria.
If tramp oil is allowed to cover and "seal off" the surface of the sump, bacteria will grow and multiply rapidly,
producing the "rotten egg" odor familiar to many machinists.
Keeping the level of floating oils to a minimum will prevent this.
Another problem with tramp oils is the potential for dermatitis caused by skin contact with these oils.
Control Measures:
- Proper machine maintenance will prevent tramp oil from mixing with coolant.
- They should be skimmed from the surface of the sump by any of a variety of methods, such as oil wheels, rope-
type skimmers, absorbent pads or even shop vacuums.
Solids Contamination.
• An area so often overlooked is the level of chips, fines or swarf
in the sump.
Quantities of these small particles can provide an enormous
surface area for bacteria to attach themselves to and
at the same time creating "dead areas" where coolant
cannot circulate.
Also nowadays it is rare that only one type of metal is machined in a machine tool.
Different metals chips in the sump may trigger galvanic reactions and spoil the coolant. Corrosion is also possible.
Control Measures:
There are many methods available for removal of these particulates such as magnetic wheels, conveyors or
indexable filters.
To take out chips from all the corners of the sump use a mobile sump cleaner to vacuum out the chips.
Bacterial Contamination
Bacteria exists as both aerobic and anaerobic.
While aerobic bacteria survives in air, anaerobic bacteria thrives in water, in the absence of oxygen.
They consume the oil and secrete acid giving rise to bad odor and skin irritation.
Floating oil prevents entry of oxygen helping bacteria to multiply
every 20 minutes.
Ultimately the emulsion breaks.
Control Measures:
-Remove floating tramp oil from surface.
- Use DM water for emulsion preparation.
- Avoid accumulation of chips in the sump for long durations.
- Aerate the coolant when machine is idle.
- Use a good biocide or ozonate the coolant to kill bacteria.
- Use Activated carbon filtration to remove bad smell.
CHAPTER: 3.
MACHINE CLEAN-OUT & CHARGING FRESH COOLANT.
MACHINE CLEANOUT PROCEDURE.
1. Add the cleaning liquid directly to old coolant at 1-3% of volume of sump.
2. Run production for 1-2 shifts to allow the built up residues to release from
the most difficult to reach areas of the machine.
3. Drain system. Use a sump sucker to pull out all of the free tramp oils off first and then the solids.
4. Rinse sump and flush coolant lines. Remove rinse water.
5. Recharge the machine with fresh coolant at the suggested and recommended concentration ratio %.
MACHINE CHARGING PROCEDURE
For best coolant life and successful coolant management program follow
these methods to recharge a freshly cleaned machine.
1. When mixing coolant, it is best to use an automatic
proportioner which accurately and thoroughly mixes coolant.
2. Always replenish the coolant with a mixture of coolant
and water, not just coolant or water.
Never add coolant concentrate directly to the sump.
3. Add the mix to the sump to the proper level.
4. Start the pump and allow the fluid to circulate for at least 1/2 hour.
5. Check concentration with refractometer and make necessary corrections
before machining.
CHAPTER:4.
COOLANT MAINTENANCE.
Daily In-service Coolant Management
Tramp Oil: Oil skimmers are generally more efficient if run during down time, when the coolant is still and
the oils can float to the surface. A wet/dry vacuum can also be used to remove floating oils. Dispose of as waste
oil.
Concentration: Circulate coolant and check concentration with a refractometer. Maintain fluid level. Add rich
or lean pre-mixture of coolant and water where
needed.
Check pH. If pH starts to fall, add coolant to bring up concentration.
If pH does not stabilize, it is time to replace coolant.
Check all filters, chip strainers and canister filters.
Aeration/Ozonation: Provide aeration of coolant during extended periods of idle time. An air lance with 5 psi
pressure allowed to bubble gently in an idle sump is often sufficient to prevent excessive anaerobic bacteria
formation.
Daily Coolant Report Card
Here is a sample machine check sheet which can be used to track the
condition of a particular machine or system in regards to evaporation rates
over a period, deterioration based on pH, and record of cleanouts.
Other fields may be added, including bacterial and fungal levels, water hardness,
conductivity and TDS.
DATE Appearance BRIX pH Coolant
Added.
Liters.
Water
Added
Liters.
Date Last
Changed
Initials
COOLANT ANALYSIS
Your coolant supplier may be able to offer regular analysis of condition of coolants.
A full description and explanation of coolant analysis follows.
M/C No &
Coolant
Brand. Brix. pH Conc
6-11%
Tramp
Oil
Dirt% Bacteria
CFU
Fungus
Conducti
vity
MHO
H2O
Hard
ness
PPM
Sample
No.
4.5 8.7 9.0 0.0 0.0 NIL NIL 1756 120
BRIX:
This is simply the refractometer reading (Brix scale). It can be converted to
% concentration using Brix charts.
pH:
A measure of the acidity or alkalinity of a system. Most fresh dilutions will be between 8.5 and 9.5 pH. It decrease
over time accelerated by contaminants or bacterial growth.
CONCENTRATION:
A measure of percent of coolant based on titration or by refractive index.
TRAMP OIL:
Floating tramp oil seals the coolant surface, excluding oxygen , leads to the growth of bacteria.
DIRT:
When metal fines, grinding swarf, as well as other materials settle to the bottom of the sump bacteria can grow on
them.
BACTERIA: Expressed in colonies per millilitre.
It is determined by dip-slide. A level of 105 colonies/ml is the maximum acceptable limit.
FUNGUS: Expressed as negative, slight, moderate or heavy.
A fungal presence is not generally acceptable, as it can plug screens, filters, and pumps. Unlike bacteria a fungal
mass will remain intact and must be physically removed.
CONDUCTIVITY: Expressed in micro mhos (ÎĽmho)
This indicates the potential for electrical activity such as corrosion and rusting, and is also a function of coolant
concentration. A high conductivity without a high concentration of coolant indicates a higher potential for
corrosion.
WATER HARDNESS: Expressed as parts per million of CaCO3 (calcium carbonate.
A measure of the level of hardness minerals dissolved in the water. As water evaporates the level of minerals
increases, which can result in sticky, hard or crystalline residue on the machine surfaces.
CHAPTER:5.
RECYCLING & DISPOSAL.
RECYCLING
Coolants are a major expense, for any metal working industry like yours.
Most coolants can be recycled and may be treated with biocides, if necessary.
These treated coolants may be reused after treatment, generally at a ratio of 50/50 with fresh coolant, provided
the pH of the used coolant has not dropped below 7.5.
If this has happened, indicating acidic contamination of the coolant, the best recommendation would be to
dispose of the coolant rather than contaminate a fresh batch and risk early rancidity.
Chip Separation Fine Filtration Tramp Oil Separator
Disposal
If the decision is made to dispose of the coolant, an acid-alum, polymer
or de-emulsifier type split procedure is recommended to separate the oil phase from the water portion.
Yet a better alternative is Electrolyzing. It breaks the waste coolant emulsion quickly and filtered output is clear
water. The sludge produced is very small compared to chemical treatment. Electrolyzing process performance is also
very predicable and the plant occupies very little space. The treated water can be reused straight away. Almost any
kind of wastewater can be treated with great results by Electrolyzing thus reducing the load on ETP. It is very
economical and environmentally safe as no chemicals are used.
CHAPTER:6.
TROUBLE SHOOTING COOLANTS.
Troubleshooting Coolants
Problem : Coolant foaming excessively.
Reasons:
A mix that is too rich can contribute to foaming.
Coolant mixed with city water or well water will foam much faster .
Air intake due to a leak on the suction or around the shaft seals of a coolant pump.
Coolant level low and air is drawn into the suction.
Contamination by foam-generating materials such as cleaners.
Very high velocity and pressure at which the coolant is delivered to the cutting zone.
Problem : Rusting of parts
Reason: Coolant mix too lean.
Check concentration and adjust if necessary.
Acidic condition due to contamination or bacterial degradation.
Problem : Short sump life
Reason: Concentration not maintained at high enough level.
Adjust concentration if necessary.
•Floating Tramp oil > No Oxygen supply> Bacterial contamination.
• Excessive dirt and fines in sump> Bacterial contamination.
Problem : Heavy or sticky residues
Reason: Coolant concentration too rich.
Check concentration and adjust with water if necessary.
Water too hard. Use treated water.
Sticky tramp oil contamination.
Problem : Dermatitis or Skin Irritation
Solution : Since many factors can contribute to dermatitis due to coolant determining a specific cause sometimes
be very difficult.
Some of the main factors are:
• Too-frequent contact with strong solutions.
• The type of metal being machined such as nickel or chromium dissolve in solution and can result in an allergic
reaction.
• Any small, sharp or abrasive materials being circulated can damage skin.
• Tramp oil contains components which can initiate or worsen a dermatitis condition.
THANK YOU FOR THE OPPORTUNITY GIVEN TO
US.
HOPE YOU FOUND THE PRESENTATION
USEFUL.
BEST WISHES.
GREEN MACHINES, BANGALORE.
www.greenmachinesind.in

More Related Content

What's hot

Basic Of Lubricants and Lubrication
Basic Of Lubricants and LubricationBasic Of Lubricants and Lubrication
Basic Of Lubricants and LubricationM Hussam Adeni
 
Principles of lubrication new
Principles of lubrication newPrinciples of lubrication new
Principles of lubrication newMamdouh Alhanafy
 
Metal Working Fluids
Metal Working FluidsMetal Working Fluids
Metal Working Fluidsmbhuiya6
 
ROLLING OIL EMULSION MANAGEMENT
ROLLING OIL EMULSION MANAGEMENTROLLING OIL EMULSION MANAGEMENT
ROLLING OIL EMULSION MANAGEMENTEJAJ AHMAD
 
Different types of gear & maintenance By Md. Raijul Islam
Different types of gear & maintenance By Md. Raijul IslamDifferent types of gear & maintenance By Md. Raijul Islam
Different types of gear & maintenance By Md. Raijul IslamMd Raijul Islam
 
199544021-How-to-conduct-Lubrication-Audit.ppt
199544021-How-to-conduct-Lubrication-Audit.ppt199544021-How-to-conduct-Lubrication-Audit.ppt
199544021-How-to-conduct-Lubrication-Audit.pptPatrickFo1
 
Rolling Process
Rolling ProcessRolling Process
Rolling ProcessDeepak Sharma
 
Basic Lubricat Knowledge
Basic Lubricat KnowledgeBasic Lubricat Knowledge
Basic Lubricat KnowledgeAung Htun
 
Lubricanting oil additives
Lubricanting oil additivesLubricanting oil additives
Lubricanting oil additivesSHIVAJI CHOUDHURY
 
cutting-fluids.pptx
cutting-fluids.pptxcutting-fluids.pptx
cutting-fluids.pptxBelalASaid
 
Lubricant properties
Lubricant propertiesLubricant properties
Lubricant propertiesTarique Memon
 
Bearing failure and its Causes and Countermeasures
Bearing failure and its Causes and CountermeasuresBearing failure and its Causes and Countermeasures
Bearing failure and its Causes and Countermeasuresdutt4190
 
Lubrication and lubricants (1)
Lubrication and lubricants (1)Lubrication and lubricants (1)
Lubrication and lubricants (1)Abdul Shakeer
 
Grease product knowledge
Grease   product knowledgeGrease   product knowledge
Grease product knowledgeRAJIV RANJAN
 
Lubricant and coolant
Lubricant and coolantLubricant and coolant
Lubricant and coolantsankaransundaram
 
Broaching machine
Broaching machineBroaching machine
Broaching machineChintan Mehta
 

What's hot (20)

Lubrication
LubricationLubrication
Lubrication
 
Basic Of Lubricants and Lubrication
Basic Of Lubricants and LubricationBasic Of Lubricants and Lubrication
Basic Of Lubricants and Lubrication
 
Properties of Lubricats and Lubrication
Properties of Lubricats and LubricationProperties of Lubricats and Lubrication
Properties of Lubricats and Lubrication
 
Principles of lubrication new
Principles of lubrication newPrinciples of lubrication new
Principles of lubrication new
 
Metal Working Fluids
Metal Working FluidsMetal Working Fluids
Metal Working Fluids
 
ROLLING OIL EMULSION MANAGEMENT
ROLLING OIL EMULSION MANAGEMENTROLLING OIL EMULSION MANAGEMENT
ROLLING OIL EMULSION MANAGEMENT
 
Different types of gear & maintenance By Md. Raijul Islam
Different types of gear & maintenance By Md. Raijul IslamDifferent types of gear & maintenance By Md. Raijul Islam
Different types of gear & maintenance By Md. Raijul Islam
 
199544021-How-to-conduct-Lubrication-Audit.ppt
199544021-How-to-conduct-Lubrication-Audit.ppt199544021-How-to-conduct-Lubrication-Audit.ppt
199544021-How-to-conduct-Lubrication-Audit.ppt
 
Rolling Process
Rolling ProcessRolling Process
Rolling Process
 
Basic Lubricat Knowledge
Basic Lubricat KnowledgeBasic Lubricat Knowledge
Basic Lubricat Knowledge
 
Lubricanting oil additives
Lubricanting oil additivesLubricanting oil additives
Lubricanting oil additives
 
cutting-fluids.pptx
cutting-fluids.pptxcutting-fluids.pptx
cutting-fluids.pptx
 
Lubrication
LubricationLubrication
Lubrication
 
Lubricant properties
Lubricant propertiesLubricant properties
Lubricant properties
 
Bearing failure and its Causes and Countermeasures
Bearing failure and its Causes and CountermeasuresBearing failure and its Causes and Countermeasures
Bearing failure and its Causes and Countermeasures
 
Lubrication and lubricants (1)
Lubrication and lubricants (1)Lubrication and lubricants (1)
Lubrication and lubricants (1)
 
Grease product knowledge
Grease   product knowledgeGrease   product knowledge
Grease product knowledge
 
Lubricant and coolant
Lubricant and coolantLubricant and coolant
Lubricant and coolant
 
Gaskets
GasketsGaskets
Gaskets
 
Broaching machine
Broaching machineBroaching machine
Broaching machine
 

Similar to Machine Coolant Management & Trouble Shooting.

Lubrication
LubricationLubrication
LubricationAhmed Emad
 
Activated Alumina For Oil Filteration
Activated Alumina For Oil FilterationActivated Alumina For Oil Filteration
Activated Alumina For Oil FilterationSORBEAD INDIA
 
saptahrishi saha 001910301105.pptx
saptahrishi saha 001910301105.pptxsaptahrishi saha 001910301105.pptx
saptahrishi saha 001910301105.pptxAnikaPandey8
 
Penyaman udara dan penyejukbekuan
Penyaman udara dan penyejukbekuanPenyaman udara dan penyejukbekuan
Penyaman udara dan penyejukbekuanZyzaa Alias
 
Are you throwing away your expensive machine coolant?
Are you throwing away your expensive machine coolant?Are you throwing away your expensive machine coolant?
Are you throwing away your expensive machine coolant?Krishna iyer
 
Lubrication fundamentals
Lubrication fundamentalsLubrication fundamentals
Lubrication fundamentalsAyman Aljahdali
 
Report on Summer Training by Sayan Roy
Report on Summer Training by Sayan RoyReport on Summer Training by Sayan Roy
Report on Summer Training by Sayan RoySayan Roy
 
Industrial Oil Cleaning Systems & Purification Systems by Klassic Klarol Filt...
Industrial Oil Cleaning Systems & Purification Systems by Klassic Klarol Filt...Industrial Oil Cleaning Systems & Purification Systems by Klassic Klarol Filt...
Industrial Oil Cleaning Systems & Purification Systems by Klassic Klarol Filt...IndiaMART InterMESH Limited
 
ENGINE OIL, Coolant, AC.pptx
ENGINE OIL, Coolant, AC.pptxENGINE OIL, Coolant, AC.pptx
ENGINE OIL, Coolant, AC.pptxAhmed
 
Oil Cleanliness PP.pdf
Oil Cleanliness  PP.pdfOil Cleanliness  PP.pdf
Oil Cleanliness PP.pdfPatrickFonteyne1
 
Lube training how to.ppt
Lube training how to.pptLube training how to.ppt
Lube training how to.pptVinayakGouda5
 
Fuel mineral y lubricantes 123456987.pdf
Fuel mineral y lubricantes 123456987.pdfFuel mineral y lubricantes 123456987.pdf
Fuel mineral y lubricantes 123456987.pdfFranciscoGomezTejada
 
Memolub Lubrication Systems
Memolub Lubrication SystemsMemolub Lubrication Systems
Memolub Lubrication SystemsHeydon McEvaddy
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentationNazmul Alam
 
Chemical Industry Case Study: High Speed Dissolving of Viscosity Index Improv...
Chemical Industry Case Study: High Speed Dissolving of Viscosity Index Improv...Chemical Industry Case Study: High Speed Dissolving of Viscosity Index Improv...
Chemical Industry Case Study: High Speed Dissolving of Viscosity Index Improv...Matt Smith
 
Engineering materials lab report (Lubricating & Insulating Material)s
Engineering materials lab report (Lubricating & Insulating Material)sEngineering materials lab report (Lubricating & Insulating Material)s
Engineering materials lab report (Lubricating & Insulating Material)snabeel sultan
 
Engineers and Consultants Services By SPEC Engineers & Consultants Pvt. Ltd, ...
Engineers and Consultants Services By SPEC Engineers & Consultants Pvt. Ltd, ...Engineers and Consultants Services By SPEC Engineers & Consultants Pvt. Ltd, ...
Engineers and Consultants Services By SPEC Engineers & Consultants Pvt. Ltd, ...IndiaMART InterMESH Limited
 

Similar to Machine Coolant Management & Trouble Shooting. (20)

Lubrication
LubricationLubrication
Lubrication
 
Activated Alumina For Oil Filteration
Activated Alumina For Oil FilterationActivated Alumina For Oil Filteration
Activated Alumina For Oil Filteration
 
saptahrishi saha 001910301105.pptx
saptahrishi saha 001910301105.pptxsaptahrishi saha 001910301105.pptx
saptahrishi saha 001910301105.pptx
 
Penyaman udara dan penyejukbekuan
Penyaman udara dan penyejukbekuanPenyaman udara dan penyejukbekuan
Penyaman udara dan penyejukbekuan
 
Are you throwing away your expensive machine coolant?
Are you throwing away your expensive machine coolant?Are you throwing away your expensive machine coolant?
Are you throwing away your expensive machine coolant?
 
Lubrication fundamentals
Lubrication fundamentalsLubrication fundamentals
Lubrication fundamentals
 
Report on Summer Training by Sayan Roy
Report on Summer Training by Sayan RoyReport on Summer Training by Sayan Roy
Report on Summer Training by Sayan Roy
 
Industrial Oil Cleaning Systems & Purification Systems by Klassic Klarol Filt...
Industrial Oil Cleaning Systems & Purification Systems by Klassic Klarol Filt...Industrial Oil Cleaning Systems & Purification Systems by Klassic Klarol Filt...
Industrial Oil Cleaning Systems & Purification Systems by Klassic Klarol Filt...
 
ENGINE OIL, Coolant, AC.pptx
ENGINE OIL, Coolant, AC.pptxENGINE OIL, Coolant, AC.pptx
ENGINE OIL, Coolant, AC.pptx
 
Oil sludge treatment m2
Oil  sludge treatment m2Oil  sludge treatment m2
Oil sludge treatment m2
 
Oil Cleanliness PP.pdf
Oil Cleanliness  PP.pdfOil Cleanliness  PP.pdf
Oil Cleanliness PP.pdf
 
Lube training how to.ppt
Lube training how to.pptLube training how to.ppt
Lube training how to.ppt
 
Fuel mineral y lubricantes 123456987.pdf
Fuel mineral y lubricantes 123456987.pdfFuel mineral y lubricantes 123456987.pdf
Fuel mineral y lubricantes 123456987.pdf
 
Memolub Lubrication Systems
Memolub Lubrication SystemsMemolub Lubrication Systems
Memolub Lubrication Systems
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
Chemical Industry Case Study: High Speed Dissolving of Viscosity Index Improv...
Chemical Industry Case Study: High Speed Dissolving of Viscosity Index Improv...Chemical Industry Case Study: High Speed Dissolving of Viscosity Index Improv...
Chemical Industry Case Study: High Speed Dissolving of Viscosity Index Improv...
 
Engineering materials lab report (Lubricating & Insulating Material)s
Engineering materials lab report (Lubricating & Insulating Material)sEngineering materials lab report (Lubricating & Insulating Material)s
Engineering materials lab report (Lubricating & Insulating Material)s
 
Engine maintenance guide
Engine maintenance guideEngine maintenance guide
Engine maintenance guide
 
Engineers and Consultants Services By SPEC Engineers & Consultants Pvt. Ltd, ...
Engineers and Consultants Services By SPEC Engineers & Consultants Pvt. Ltd, ...Engineers and Consultants Services By SPEC Engineers & Consultants Pvt. Ltd, ...
Engineers and Consultants Services By SPEC Engineers & Consultants Pvt. Ltd, ...
 
Oil filtration
Oil filtration Oil filtration
Oil filtration
 

Recently uploaded

OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 

Recently uploaded (20)

OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 

Machine Coolant Management & Trouble Shooting.

  • 1. COOLANT MANAGEMENT & TROUBLE SHOOTING. presented by
  • 2. About this presentation - This presentation will assist you in the “sometimes - confusing” task of selecting and maintaining metalworking fluids for peak performance. Chapter: 1 -The functions and basic types of metalworking fluids. Chapter: 2. -Contaminations and Controlling them. Chapter: 3. - Machine clean-out & charging fresh coolant. Chapter:4. - Coolant Maintenance. Chapter:5. - Recycling & Disposal. Chapter:6. - Trouble Shooting Coolants. FOR PEAK PERFORMANCE in MANUFACTURING…..
  • 3. Chapter: 1 - the functions and basic types of metalworking fluids.
  • 4. Metalworking fluids or coolants play a critical role in most machining processes. The main functions of a coolant are: • COOLING. • LUBRICATION. • CHIP REMOVAL. • PROTECTION AGAINST CORROSION. COOLING VS. LUBRICATION Every operation has its own specific requirements for cooling versus lubrication. By varying the mixing ratio of a water based coolant, you can alter the balance of cooling and lubrication. In general, the more the water (leaner mix), the better the cooling; the more the concentrate(richer mix), the better the lubrication provided. When machining, better lubrication is required, hence a richer concentration is used. When grinding, the requirements for cooling are greater; hence a more lean concentration is used (but not so lean as to cause rust).
  • 5. Classifications of Metalworking Lubricants Neat or Straight Oils • Neat oils are made up primarily of naphthenic or paraffinic base oils with extreme pressure additives such as chlorine, sulfur and fats. Neat oils will not emulsify with water nor do they contain any water. Soluble Oils • Greater than 30% mineral oil and no water in concentrate. Dilution appears milky and not translucent. Semi-Synthetics • Less than 30% mineral oil content in concentrate and the concentrate contains water. Dilution appears translucent. Synthetics • Zero mineral oil content. Dilution looks transparent and is a true solution with no droplet formation like semi-synthetics and soluble oils.
  • 6. Soluble Oil Advantages • More economical than straight or neat oils; dilution with water lowers cost without sacrificing machining effectiveness. •Cools 2 to 3 times better than straight oils. •Very versatile and can be used in most machining and grinding applications on a variety of materials. •Has better health and safety aspects. No fire hazard, low oil misting and fogging. Disadvantages • Higher disposal costs due to high percentage of oil. • Emulsions are milky; therefore the work-piece is not visible through fluid. • Less cooling in high-speed applications. • May tend to pick up tramp oils due to partial mechanical emulsification.
  • 7. Semi-Synthetics Advantages • Leaves oily film on machine and parts for protection. • Tend to reject tramp oils. • Very stable emulsion, long lasting. • Better cooling allows for higher cutting speeds. Good for turning applications. •Ideal for powder metals components, cast iron and metals giving of powdery chips. •Great for cleanliness and work-piece visibility. Disadvantages • Mists, smoke or disposal may be a problem due to oil. •Very sensitive to concentration fluctuations and rust and corrosion due to poor fluid management.
  • 8. Synthetics Advantages • Rapid heat dissipation. • Excellent work-piece visibility. • Total rejection of tramp oils possible. • Easy to measure and control concentration. • Bacterial attack may be easier to control. • Usually stable and potentially long-lasting. • No oil mist problem; no oil disposal concerns. Disadvantages • High performance products can be expensive. • Residual films may be sticky, which may cause gumming in the moving parts of the machine. • Significantly reduced corrosion protection. • Less tolerant to poor fluid management and to protect against rust and corrosion.
  • 9. CHAPTER: 2. CONTAMINATIONS AND CONTROLLING THEM. -TRAMP OILS. -SOLIDS. -BACTERIA AND BAD ODOUR.
  • 10. TRAMP OILS • An important factor in coolant life is control of tramp oils. Tramp oils are any oils which are not part of the original coolant formulation. They include way lubes, hydraulic oil, gear lubes, etc. They contain sulfur, phosphorous or solvents, which can be damaging to the coolant. They destabilize the emulsion or encourage the growth of bacteria. If tramp oil is allowed to cover and "seal off" the surface of the sump, bacteria will grow and multiply rapidly, producing the "rotten egg" odor familiar to many machinists. Keeping the level of floating oils to a minimum will prevent this. Another problem with tramp oils is the potential for dermatitis caused by skin contact with these oils. Control Measures: - Proper machine maintenance will prevent tramp oil from mixing with coolant. - They should be skimmed from the surface of the sump by any of a variety of methods, such as oil wheels, rope- type skimmers, absorbent pads or even shop vacuums.
  • 11. Solids Contamination. • An area so often overlooked is the level of chips, fines or swarf in the sump. Quantities of these small particles can provide an enormous surface area for bacteria to attach themselves to and at the same time creating "dead areas" where coolant cannot circulate. Also nowadays it is rare that only one type of metal is machined in a machine tool. Different metals chips in the sump may trigger galvanic reactions and spoil the coolant. Corrosion is also possible. Control Measures: There are many methods available for removal of these particulates such as magnetic wheels, conveyors or indexable filters. To take out chips from all the corners of the sump use a mobile sump cleaner to vacuum out the chips.
  • 12. Bacterial Contamination Bacteria exists as both aerobic and anaerobic. While aerobic bacteria survives in air, anaerobic bacteria thrives in water, in the absence of oxygen. They consume the oil and secrete acid giving rise to bad odor and skin irritation. Floating oil prevents entry of oxygen helping bacteria to multiply every 20 minutes. Ultimately the emulsion breaks. Control Measures: -Remove floating tramp oil from surface. - Use DM water for emulsion preparation. - Avoid accumulation of chips in the sump for long durations. - Aerate the coolant when machine is idle. - Use a good biocide or ozonate the coolant to kill bacteria. - Use Activated carbon filtration to remove bad smell.
  • 13. CHAPTER: 3. MACHINE CLEAN-OUT & CHARGING FRESH COOLANT.
  • 14. MACHINE CLEANOUT PROCEDURE. 1. Add the cleaning liquid directly to old coolant at 1-3% of volume of sump. 2. Run production for 1-2 shifts to allow the built up residues to release from the most difficult to reach areas of the machine. 3. Drain system. Use a sump sucker to pull out all of the free tramp oils off first and then the solids. 4. Rinse sump and flush coolant lines. Remove rinse water. 5. Recharge the machine with fresh coolant at the suggested and recommended concentration ratio %. MACHINE CHARGING PROCEDURE For best coolant life and successful coolant management program follow these methods to recharge a freshly cleaned machine. 1. When mixing coolant, it is best to use an automatic proportioner which accurately and thoroughly mixes coolant. 2. Always replenish the coolant with a mixture of coolant and water, not just coolant or water. Never add coolant concentrate directly to the sump. 3. Add the mix to the sump to the proper level. 4. Start the pump and allow the fluid to circulate for at least 1/2 hour. 5. Check concentration with refractometer and make necessary corrections before machining.
  • 16. Daily In-service Coolant Management Tramp Oil: Oil skimmers are generally more efficient if run during down time, when the coolant is still and the oils can float to the surface. A wet/dry vacuum can also be used to remove floating oils. Dispose of as waste oil. Concentration: Circulate coolant and check concentration with a refractometer. Maintain fluid level. Add rich or lean pre-mixture of coolant and water where needed. Check pH. If pH starts to fall, add coolant to bring up concentration. If pH does not stabilize, it is time to replace coolant. Check all filters, chip strainers and canister filters. Aeration/Ozonation: Provide aeration of coolant during extended periods of idle time. An air lance with 5 psi pressure allowed to bubble gently in an idle sump is often sufficient to prevent excessive anaerobic bacteria formation.
  • 17. Daily Coolant Report Card Here is a sample machine check sheet which can be used to track the condition of a particular machine or system in regards to evaporation rates over a period, deterioration based on pH, and record of cleanouts. Other fields may be added, including bacterial and fungal levels, water hardness, conductivity and TDS. DATE Appearance BRIX pH Coolant Added. Liters. Water Added Liters. Date Last Changed Initials
  • 18. COOLANT ANALYSIS Your coolant supplier may be able to offer regular analysis of condition of coolants. A full description and explanation of coolant analysis follows. M/C No & Coolant Brand. Brix. pH Conc 6-11% Tramp Oil Dirt% Bacteria CFU Fungus Conducti vity MHO H2O Hard ness PPM Sample No. 4.5 8.7 9.0 0.0 0.0 NIL NIL 1756 120 BRIX: This is simply the refractometer reading (Brix scale). It can be converted to % concentration using Brix charts. pH: A measure of the acidity or alkalinity of a system. Most fresh dilutions will be between 8.5 and 9.5 pH. It decrease over time accelerated by contaminants or bacterial growth. CONCENTRATION: A measure of percent of coolant based on titration or by refractive index.
  • 19. TRAMP OIL: Floating tramp oil seals the coolant surface, excluding oxygen , leads to the growth of bacteria. DIRT: When metal fines, grinding swarf, as well as other materials settle to the bottom of the sump bacteria can grow on them. BACTERIA: Expressed in colonies per millilitre. It is determined by dip-slide. A level of 105 colonies/ml is the maximum acceptable limit. FUNGUS: Expressed as negative, slight, moderate or heavy. A fungal presence is not generally acceptable, as it can plug screens, filters, and pumps. Unlike bacteria a fungal mass will remain intact and must be physically removed. CONDUCTIVITY: Expressed in micro mhos (ÎĽmho) This indicates the potential for electrical activity such as corrosion and rusting, and is also a function of coolant concentration. A high conductivity without a high concentration of coolant indicates a higher potential for corrosion. WATER HARDNESS: Expressed as parts per million of CaCO3 (calcium carbonate. A measure of the level of hardness minerals dissolved in the water. As water evaporates the level of minerals increases, which can result in sticky, hard or crystalline residue on the machine surfaces.
  • 21. RECYCLING Coolants are a major expense, for any metal working industry like yours. Most coolants can be recycled and may be treated with biocides, if necessary. These treated coolants may be reused after treatment, generally at a ratio of 50/50 with fresh coolant, provided the pH of the used coolant has not dropped below 7.5. If this has happened, indicating acidic contamination of the coolant, the best recommendation would be to dispose of the coolant rather than contaminate a fresh batch and risk early rancidity. Chip Separation Fine Filtration Tramp Oil Separator
  • 22. Disposal If the decision is made to dispose of the coolant, an acid-alum, polymer or de-emulsifier type split procedure is recommended to separate the oil phase from the water portion. Yet a better alternative is Electrolyzing. It breaks the waste coolant emulsion quickly and filtered output is clear water. The sludge produced is very small compared to chemical treatment. Electrolyzing process performance is also very predicable and the plant occupies very little space. The treated water can be reused straight away. Almost any kind of wastewater can be treated with great results by Electrolyzing thus reducing the load on ETP. It is very economical and environmentally safe as no chemicals are used.
  • 24. Troubleshooting Coolants Problem : Coolant foaming excessively. Reasons: A mix that is too rich can contribute to foaming. Coolant mixed with city water or well water will foam much faster . Air intake due to a leak on the suction or around the shaft seals of a coolant pump. Coolant level low and air is drawn into the suction. Contamination by foam-generating materials such as cleaners. Very high velocity and pressure at which the coolant is delivered to the cutting zone. Problem : Rusting of parts Reason: Coolant mix too lean. Check concentration and adjust if necessary. Acidic condition due to contamination or bacterial degradation. Problem : Short sump life Reason: Concentration not maintained at high enough level. Adjust concentration if necessary. •Floating Tramp oil > No Oxygen supply> Bacterial contamination. • Excessive dirt and fines in sump> Bacterial contamination.
  • 25. Problem : Heavy or sticky residues Reason: Coolant concentration too rich. Check concentration and adjust with water if necessary. Water too hard. Use treated water. Sticky tramp oil contamination. Problem : Dermatitis or Skin Irritation Solution : Since many factors can contribute to dermatitis due to coolant determining a specific cause sometimes be very difficult. Some of the main factors are: • Too-frequent contact with strong solutions. • The type of metal being machined such as nickel or chromium dissolve in solution and can result in an allergic reaction. • Any small, sharp or abrasive materials being circulated can damage skin. • Tramp oil contains components which can initiate or worsen a dermatitis condition.
  • 26. THANK YOU FOR THE OPPORTUNITY GIVEN TO US. HOPE YOU FOUND THE PRESENTATION USEFUL. BEST WISHES. GREEN MACHINES, BANGALORE. www.greenmachinesind.in