SlideShare a Scribd company logo
1 of 15
Download to read offline
Linear	Regression	Model	
selection	using	a	hybrid genetic	-
improved	harmony	search	
parallelized	algorithm
Blanka	Láng,	László	Kovács,	László	Mohácsi
Corvinus University	of	Budapest
Institute	of	Information Technology
Contents
Linear
Regression
Model Selection
Problem
Datasets Used
Performance	of	
Selection
Algorithms on
Our Data
The	Need for a	
New	Solution
The	
Performance	of	
our Hybrid
Algoirthm
Linear Regression
We have:
§ Y:	dependent variable
§ 𝑋 = 𝑋#, 𝑋%, … , 𝑋' vectors of	independent variables
Goal:
𝑌 = 𝛽* + 𝛽# 𝑋# + 𝛽% 𝑋% + ⋯ + 𝛽' 𝑋' + 𝜀
OLS	Model:	𝑌. = 𝛽/* + 𝛽/# 𝑋# + 𝛽/% 𝑋% + ⋯ + 𝛽/' 𝑋' = 𝛽/* + ∑ 𝛽/1 𝑋1
'
12#
Parsimony:	𝑋3 ⊆ 𝑋 àminimalize residuals,	with the use of	as few independents as
possible
maximalize the model’s ability to generalize
Partial effects of	independentsàonly significant variables in the model
these hypotheses can an	be	statistically tested
Objective functions
AIC
SBC
HQC
adjusted R2	à MAX
MIN
Linear Regression
Model Selection
Problem
Datasets Used
Performance	of	
Selection Algorithms
on Our Data
The	Need for a	New	
Solution
The	Performance	of	
out	Hybrid Algoirthm
Dataset #1
Body	Fat Measurements – real dataset from 1996
	 𝑛 = 252
	 𝑌:	Percent	of	body	fat to muscle tissue
	 𝑚 = 16 (age,	abdomen circumference,	weight,	height,	etc.)
Multicollinearity:	Redundancy between independents.
Pl.:
Which of	these two independents matters	most	when	predicting	𝑌?
How can we interpret the partial effects of	these independents?
Measure:	Regress the independents on each otheràVIF	indicator for each independent
if VIF>2àmulticollinearity
Linear
Regression
Model Selection
Problem
Datasets Used
Performance	of	
Selection
Algorithms on
Our Data
The	Need for a	
New	Solution
The	
Performance	of	
out	Hybrid
Algoirthm
Dataset #2
DATA26	– simulated dataset from Gumbel Copula
	 𝑛 = 1000
	 𝑚 = 25 (plus	𝑌)
Generating Correlation Matrix (CM)	with high correlations in absolute value
vineBeta method (Lewandowskia et.	al,	2009)
Simulating Multicollinearity
All 26	generated variables follow N(µ,s)
distributions,	where µ and	s are
randomly generated for each variable
Linear
Regression
Model Selection
Problem
Datasets Used
Performance	of	
Selection
Algorithms on
Our Data
The	Need for a	
New	Solution
The	
Performance	of	
out	Hybrid
Algoirthm
Performance	of	Selection Algorithms–
FAT
Linear Regression
Model Selection
Problem
Datasets Used
Performance	of	
Selection Algorithms
on Our Data
The	Need for a	New	
Solution
The	Performance	of	
out	Hybrid Algoirthm
AIC SBC 𝑅>% Runtime (sec) St Dev (sec)
Best	Subsets (SPSS	Leaps
and	Bound)
-2,013
(Variables:	1)
-1,987
(Variables:	1)
0,9829
(Variables:	1,	2,	3,	
5,	6,	8,	11,	12,	15)
4,558 0,878
Best	Subsets (Minerva:	
GARS)
-2,013
(Variables:	1)
-1,987
(Variables:	1)
0,9829
(Variables:	1,	2,	3,	
5,	6,	8,	11,	12,	15)
5,921 1,658
improved GARS
-2,013
(Variables:	1)
-1,987
(Variables:	1)
0,9822
(Variables:	1,	3,	5,	
6,	8,	12,	15)
11,268 2,941
IHSRS
-2,013
(Variables:	1)
-1,987
(Variables:	1)
0,9822
(Variables:	1,	3,	5,	
6,	8,	12,	15)
0,968 0,188
Forward+Backward
0,058
(Variables:	1,	3,	5,	
6,	8,	12,	15)
0,239
(Variables:	1,	3,	5,	
6,	8,	12,	15)
0,9822
(Variables:	1,	3,	5,	
6,	8,	12,	15)
0,976 0,050
Variable Importance in
Projection	(Partial Least
Squares)
-0,247
(Variables:	1,	2,	5,	
6,	8,	9)
-0,092
(Variables:	1,	2,	5,	
6,	8,	9)
0,9618
(Variables:	1, 2, 5,	
6,	8,	9)
1,807 0,896
Elastic Net
-2,013
(Variables:	1)
-1,987
(Variables:	1)
0,9410
(Variables:	1)
50,858 9,019
Stepwise	VIF	Selection
-0,189	(Variables:	
1,	2,	15)
-0,008	(Variables:	
1,	2,	15)
0,954
(Variables:	1,	2,	15)
0,832 0,034
Nested Estimate Procedure
-1,402
(Variables:	1,	8)
-1,351
(Variables:	1,	8)
0,9538
(Variables:	1,	8)
0,352 0,047
Performance	of	Selection Algorithms
DATA26
Linear Regression
Model Selection
Problem
Datasets Used
Performance	of	
Selection Algorithms
on Our Data
The	Need for a	New	
Solution
The	Performance	of	
out	Hybrid Algoirthm
AIC SBC 𝑅% Runtime	(sec) St	Dev	(sec)
Best	Subsets (SPSS	Leaps and	
Bound)
-8,840
(Variables:	X24,	X23,	X10,	X6,	
X4,	X15,	X17,	X1,	X13,	X14,	X12,	
X16,	X5,	X25,	X9,	X21,	X18)
-8,756
(Variables:	X24,	X23,	X10,	X6,	X4,	
X15,	X17,	X1,	X13,	X14,	X12,	X16,	
X5,	X25,	X9,	X21,	X18)
0,9999944
(Variables:	X15,	X6,	X24,	X23,	X5,	
X12,	X9,	X4,	X1,	X25,	X10,	X21,	
X13,	X17,	X16,	X18,	X14,	X3)
32,352745 7,04028
Best	Subsets (Minerva:	GARS)
-8,841
(Variables:	X15,	X6,	X24,	X23,	
X5,	X12,	X9,	X4,	X1,	X25,	X10,	
X21,	X13,	X17,	X16,	X18,	X14,	
X3)
-8,826
(Variables:	X25,	X10,	X17,	X13,	
X1,	X16,	X24,	X18,	X5,	X21,	X8,	
X23,	X15,	X12,	X6,	X4)
0,9999944
(Variables:	X15,	X6,	X24,	X23,	X5,	
X12,	X9,	X4,	X1,	X25,	X10,	X21,	
X13,	X17,	X16,	X18,	X14,	X3)
52,714638 12,62692
improved GARS
-8,731
(Variables:	X25,	X10,	X17,	X13,	
X1,	X16,	X24,	X18,	X5,	X21,	X8,	
X23,	X15,	X12,	X6,	X4)
-8,826
(Variables:	X25,	X10,	X17,	X13,	
X1,	X16,	X24,	X18,	X5,	X21,	X8,	
X23,	X15,	X12,	X6,	X4)
0,99999744	
(Variables:	X25,	X10,	X17,	X13,	
X1,	X16,	X24,	X18,	X5,	X21,	X8,	
X23,	X15,	X12,	X6,	X4)
1281,45823 380,10328
IHSRS
-8,731
(Variables:	X25,	X10,	X17,	X13,	
X1,	X16,	X24,	X18,	X5,	X21,	X8,	
X23,	X15,	X12,	X6,	X4)
-8,826
(Variables:	X25,	X10,	X17,	X13,	
X1,	X16,	X24,	X18,	X5,	X21,	X8,	
X23,	X15,	X12,	X6,	X4)
0,99999744
(Variables:	X25,	X10,	X17,	X13,	
X1,	X16,	X24,	X18,	X5,	X21,	X8,	
X23,	X15,	X12,	X6,	X4)
402,1666233 79,070735
Forward+Backward
-8,840
(Variables:	X24,	X23,	X10,	X6,	
X4,	X15,	X17,	X1,	X13,	X14,	X12,	
X16,	X5,	X25,	X9,	X21,	X18)
-8,756
(Variables:	X24,	X23,	X10,	X6,	X4,	
X15,	X17,	X1,	X13,	X14,	X12,	X16,	
X5,	X25,	X9,	X21,	X18)
0,9999944
(Variables:	X24,	X23,	X10,	X6,	X4,	
X15,	X17,	X1,	X13,	X14,	X12,	X16,	
X5,	X25,	X9,	X21,	X18)
1,0744 0,0937
Variable Importance in
Projection	(Partial Least
Squares)
-5,196	(Variables:	X24,	X5,	X4,	
X10,	X20,	X18,	X8,	X22,	X23,	
X11,	X15,	X6,	X12)
-5,132	(Variables:	X24,	X5,	X4,	
X10,	X20,	X18,	X8,	X22,	X23,	X11,	
X15,	X6,	X12)
0,99979 (Variables:	X24,	X5,	X4,	
X10,	X20,	X18,	X8,	X22,	X23,	X11,	
X15,	X6,	X12)
15,095273 7,19626
Elastic Net
-4,363
(Full model,	not significant:	X5,	
X13)
-4,240
(Full model,	not significant:	X5,	
X13)
0,993
(Full model,	not significant:	X5,	
X13)
478,683794 99,82244
Stepwise	VIF	Selection
0,434
(Variables:	X6,	X10,	X16,	X17,	
X19,	X24)
0,464
(Variables:	X6,	X10,	X16,	X17,	
X19,	X24)
0,940
(Variables:	X6,	X10,	X16,	X17,	
X19,	X24)
0,93415 0,02986
Nested Estimate Procedure
0,760
(Variables:	X10,	X15,	X23,	X24)
0,780	
(Variables:	X10,	X15,	X23,	X24)
0,917
(Variables:	X10,	X15,	X23,	X24)
0,39289 0,0533
Problem with the results
Model
Collinearity	Statistics
Tolerance VIF
X1 ,069 14,490
X3 ,017 59,097
X5 ,089 11,271
X6 ,030 33,682
X8 ,105 9,540
X12 ,239 4,182
X15 ,399 2,509
Linear Regression
Model Selection
Problem
Datasets Used
Performance	of	
Selection
Algorithms on Our
Data
The	Need for a	
New	Solution
The	Performance	
of	out	Hybrid
Algoirthm
Model
Collinearity	Statistics
Tolerance VIF
(Constant)
X1 ,065 15,347
X4 ,001 1644,939
X5 ,003 388,860
X6 ,002 538,248
X8 ,005 197,505
X10 ,050 20,165
X12 ,001 1366,452
X13 ,030 33,293
X15 ,001 1133,939
X16 ,048 20,828
X17 ,041 24,297
X18 ,016 64,340
X21 ,003 393,569
X23 ,002 554,800
X24 ,004 262,232
X25 ,001 825,023
FAT DATA26
Optimal solutions of	IHSRS	for 𝑹@ 𝟐
Modify the IHRSRS
Include an	all VIFs<2	condition to the optimalization task
Optimal solutions of	IHSRS	with VIF	conditions:
Linear Regression
Model Selection
Problem
Datasets Used
Performance	of	
Selection
Algorithms on Our
Data
The	Need for a	
New	Solution
The	Performance	
of	out	Hybrid
Algoirthm
Model
Collinearity	Statistics
Tolerance VIF
X1 ,508 1,970
X2 ,879 1,138
X8 ,558 1,791
𝑹@%
=0,9854
FAT
Model
Collinearity	Statistics
Tolerance VIF
(Constant)
X2 ,503 1,986
X6 ,548 1,825
X10 ,500 1,999
X14 ,526 1,902
X23 ,565 1,770
DATA26
𝑹@%
=0,991
Other models with VIF	values smaller than 2:
Backward	– VIF:	𝑹@%
=	0,9540	(FAT);	0,940	(DATA26)
Nested Estimates:	𝑹@%
=	0,9538	(FAT);	0,917	(DATA26)
A	Great	Setback for
the modified IHSRS
Linear Regression
Model Selection
Problem
Datasets Used
Performance	of	
Selection
Algorithms on Our
Data
The	Need for a	
New	Solution
The	Performance	
of	out	Hybrid
Algoirthm
0
10000
20000
30000
40000
50000
60000
average	solution	time	(number	of	steps) standard	deviation	of	solution	times	
(number	of	steps)
FAT
IHSRS	without	VIF IHSRS	with	VIF
0
10
20
30
40
50
60
70
average	solution	time	(sec) standard	deviation	of	solution	times	(sec)
FAT
IHSRS	without	VIF IHSRS	with	VIF
0
50000
100000
150000
200000
250000
average	solution	time	(number	of	steps) standard	deviation	of	solution	times	
(number	of	steps)
DATA26
IHSRS	without	VIF IHSRS	with	VIF
0
500
1000
1500
2000
2500
3000
3500
average	solution	time	(sec) standard	deviation	of	solution	times	(sec)
DATA26
IHSRS	without	VIF IHSRS	with	VIF
Average runtime
is	almost	an	hour!
We can not parallelize
the IHSRS
Linear Regression
Model Selection
Problem
Datasets Used
Performance	of	
Selection Algorithms
on Our Data
The	Need for a	New	
Solution
The	Performance	of	
out	Hybrid Algoirthm
individual/melody: ● = 0 0 1 0 1 1 1
population/harmony	memory: ● ● ● ●
STEP	1&2:	Generate	a	random	harmony	and	evaluate	the	regressions	for	each	individual
● ● ● ●
HMCR	prob 1-HMCR	prob
● ● ● ● Generate	a	RANDOM	indvidual
PAR	prob 1-PAR	prob
Mutate	● with	mutation	(bw)	prob No	modification on ●
Increase PAR	+	Decrease bw
Is	new	● better	than	the	worst individual?
YES NO
Change	the	worst	individual
YES Termination	Criterion? NO
STOP
Our GA-HS	hybrid
solution
Linear Regression
Model Selection
Problem
Datasets Used
Performance	of	
Selection Algorithms
on Our Data
The	Need for a	New	
Solution
The	Performance	of	
out	Hybrid Algoirthm
individual: ● = 0 0 1 0 1 1 1
population: ● ● ● ●
STEP	1&2:	Generate	a	random	harmony	and	evaluate	the	regressions	for	each	individual
● ● ● ●
Select	better	than	average	individuals
● ● ● ●
Start	a	new population: ● ● x x
Can	be	
Parallel
ized!
HMCR	prob 1-HMCR	prob
● ● x x Generate RANDOM	indvidual
Mutate	● with	mutation	(bw)	prob
Increase	HMCR	+	Decrease	bw
Is	every	x	filled? NO
YES
Evaluate	the	regressions	for	the	new	individuals	in	our	population
YES Termination	Criterion? NO
STOP
Differences from GA
1. More	than one kind of	mutation
2. No	crossover
In Linear Regression Model Selection randomization is	more	important,	than
inhereted good properties
The	inclusion or exculsion of	a	single independent can save
or ruin a model
We could observe that GA	is	a	relatively slow algorithm when applied to Model
Selecton
Linear Regression
Model Selection
Problem
Datasets Used
Performance	of	
Selection Algorithms
on Our Data
The	Need for a	New	
Solution
The	Performance	of	
out	Hybrid Algoirthm
The	Performance
0
50000
100000
150000
200000
250000
average	solution	time	(number	of	steps) standard	deviation	of	solution	times	
(number	of	steps)
DATA26
IHSRS	+	VIF GAIHSRS	+VIF
0
10
20
30
40
50
60
70
average	solution	time	(sec) standard	deviation	of	solution	times	(sec)
FAT
Standard Parallel
0
500
1000
1500
2000
2500
3000
3500
4000
average	solution	time	(sec) standard	deviation	of	solution	times	(sec)
DATA26
Standard Parallel
Average runtime and	St.	Dev.
are decreased by 2/3
Thank you for your
attention!
0
10000
20000
30000
40000
50000
60000
average	solution	time	(number	of	steps) standard	deviation	of	solution	times	(number	of	
steps)
FAT
IHSRS	+	VIF GAIHSRS	+VIF
Linear Regression
Model Selection
Problem
Datasets Used
Performance	of	
Selection Algorithms
on Our Data
The	Need for a	New	
Solution
The	Performance	of	
our Hybrid Algoirthm
Enviroment
The	solution times are an	average of	30	runs.	The	standard	deviation of	the
runtimes is	determined from the same 30	runs.
Most	Selection Algorithms were used in IBM	SPSS	Statistics 22
Elastic Net:	Catgreg SPSS	macro by the University	of	Leiden
Numpy and	Scipy Python	libraries for Partial Least Squares
Metaheuristics (GARS,	improved GARS,	IHSRS,	GAIHSRS)	are implemented in C#
OS	and	Hardware	Configurations
OS:	Windows	8.1	Ultimate 64	bit
CPU:	Intel	Core i7-2700K,	3.5GHz
RAM:	16GB	DDR3	SDRAM

More Related Content

Viewers also liked

Harmony Search for Multi-objective Optimization - SBRN 2012
Harmony Search for Multi-objective Optimization - SBRN 2012Harmony Search for Multi-objective Optimization - SBRN 2012
Harmony Search for Multi-objective Optimization - SBRN 2012lucasmpavelski
 
ForecastIT 2. Linear Regression & Model Statistics
ForecastIT 2. Linear Regression & Model StatisticsForecastIT 2. Linear Regression & Model Statistics
ForecastIT 2. Linear Regression & Model StatisticsDeepThought, Inc.
 
Multiple regression analysis
Multiple regression analysisMultiple regression analysis
Multiple regression analysisDushyant Bheda
 
Multiple Regression Analysis
Multiple Regression AnalysisMultiple Regression Analysis
Multiple Regression AnalysisMinha Hwang
 
Harmony search algorithm
Harmony search algorithmHarmony search algorithm
Harmony search algorithmAhmed Fouad Ali
 
Multiple regression presentation
Multiple regression presentationMultiple regression presentation
Multiple regression presentationCarlo Magno
 
Regression analysis ppt
Regression analysis pptRegression analysis ppt
Regression analysis pptElkana Rorio
 

Viewers also liked (8)

Harmony Search for Multi-objective Optimization - SBRN 2012
Harmony Search for Multi-objective Optimization - SBRN 2012Harmony Search for Multi-objective Optimization - SBRN 2012
Harmony Search for Multi-objective Optimization - SBRN 2012
 
ForecastIT 2. Linear Regression & Model Statistics
ForecastIT 2. Linear Regression & Model StatisticsForecastIT 2. Linear Regression & Model Statistics
ForecastIT 2. Linear Regression & Model Statistics
 
Multiple regression analysis
Multiple regression analysisMultiple regression analysis
Multiple regression analysis
 
Multiple Regression Analysis
Multiple Regression AnalysisMultiple Regression Analysis
Multiple Regression Analysis
 
Multiple regression
Multiple regressionMultiple regression
Multiple regression
 
Harmony search algorithm
Harmony search algorithmHarmony search algorithm
Harmony search algorithm
 
Multiple regression presentation
Multiple regression presentationMultiple regression presentation
Multiple regression presentation
 
Regression analysis ppt
Regression analysis pptRegression analysis ppt
Regression analysis ppt
 

Similar to Blanka Láng, László Kovács and László Mohácsi: Linear regression model selection using a hibrid genetic improved harmony search parallelized algorithm

Variable Selection Methods
Variable Selection MethodsVariable Selection Methods
Variable Selection Methodsjoycemi_la
 
Variable Selection Methods
Variable Selection MethodsVariable Selection Methods
Variable Selection Methodsjoycemi_la
 
MM - KBAC: Using mixed models to adjust for population structure in a rare-va...
MM - KBAC: Using mixed models to adjust for population structure in a rare-va...MM - KBAC: Using mixed models to adjust for population structure in a rare-va...
MM - KBAC: Using mixed models to adjust for population structure in a rare-va...Golden Helix Inc
 
Introduction of Feature Hashing
Introduction of Feature HashingIntroduction of Feature Hashing
Introduction of Feature HashingWush Wu
 
House Sale Price Prediction
House Sale Price PredictionHouse Sale Price Prediction
House Sale Price Predictionsriram30691
 
Using HOG Descriptors on Superpixels for Human Detection of UAV Imagery
Using HOG Descriptors on Superpixels for Human Detection of UAV ImageryUsing HOG Descriptors on Superpixels for Human Detection of UAV Imagery
Using HOG Descriptors on Superpixels for Human Detection of UAV ImageryWai Nwe Tun
 
Kinetic bands versus Bollinger Bands
Kinetic bands versus Bollinger  BandsKinetic bands versus Bollinger  Bands
Kinetic bands versus Bollinger BandsAlexandru Daia
 
Machine Learning Notes for beginners ,Step by step
Machine Learning Notes for beginners ,Step by stepMachine Learning Notes for beginners ,Step by step
Machine Learning Notes for beginners ,Step by stepSanjanaSaxena17
 
safe and efficient off policy reinforcement learning
safe and efficient off policy reinforcement learningsafe and efficient off policy reinforcement learning
safe and efficient off policy reinforcement learningRyo Iwaki
 
Discovery Bus: UK QSAR meeting at GSK
Discovery Bus: UK QSAR meeting at GSKDiscovery Bus: UK QSAR meeting at GSK
Discovery Bus: UK QSAR meeting at GSKDavid Leahy
 
Evolutionary Optimization Algorithms & Large-Scale Machine Learning
Evolutionary Optimization Algorithms & Large-Scale Machine LearningEvolutionary Optimization Algorithms & Large-Scale Machine Learning
Evolutionary Optimization Algorithms & Large-Scale Machine LearningUniversity of Maribor
 
MM-KBAC – Using Mixed Models to Adjust for Population Structure in a Rare-var...
MM-KBAC – Using Mixed Models to Adjust for Population Structure in a Rare-var...MM-KBAC – Using Mixed Models to Adjust for Population Structure in a Rare-var...
MM-KBAC – Using Mixed Models to Adjust for Population Structure in a Rare-var...Golden Helix Inc
 
Lab 2: Classification and Regression Prediction Models, training and testing ...
Lab 2: Classification and Regression Prediction Models, training and testing ...Lab 2: Classification and Regression Prediction Models, training and testing ...
Lab 2: Classification and Regression Prediction Models, training and testing ...Yao Yao
 
Enm fy17nano qsar
Enm fy17nano qsarEnm fy17nano qsar
Enm fy17nano qsarPaulHarten1
 
A Cooperative Coevolutionary Approach to Maximise Surveillance Coverage of UA...
A Cooperative Coevolutionary Approach to Maximise Surveillance Coverage of UA...A Cooperative Coevolutionary Approach to Maximise Surveillance Coverage of UA...
A Cooperative Coevolutionary Approach to Maximise Surveillance Coverage of UA...Daniel H. Stolfi
 

Similar to Blanka Láng, László Kovács and László Mohácsi: Linear regression model selection using a hibrid genetic improved harmony search parallelized algorithm (20)

SASA Presentation 2013
SASA Presentation 2013SASA Presentation 2013
SASA Presentation 2013
 
Variable Selection Methods
Variable Selection MethodsVariable Selection Methods
Variable Selection Methods
 
Variable Selection Methods
Variable Selection MethodsVariable Selection Methods
Variable Selection Methods
 
MM - KBAC: Using mixed models to adjust for population structure in a rare-va...
MM - KBAC: Using mixed models to adjust for population structure in a rare-va...MM - KBAC: Using mixed models to adjust for population structure in a rare-va...
MM - KBAC: Using mixed models to adjust for population structure in a rare-va...
 
Introduction of Feature Hashing
Introduction of Feature HashingIntroduction of Feature Hashing
Introduction of Feature Hashing
 
House Sale Price Prediction
House Sale Price PredictionHouse Sale Price Prediction
House Sale Price Prediction
 
Using HOG Descriptors on Superpixels for Human Detection of UAV Imagery
Using HOG Descriptors on Superpixels for Human Detection of UAV ImageryUsing HOG Descriptors on Superpixels for Human Detection of UAV Imagery
Using HOG Descriptors on Superpixels for Human Detection of UAV Imagery
 
Atomreaktor
AtomreaktorAtomreaktor
Atomreaktor
 
Kinetic bands versus Bollinger Bands
Kinetic bands versus Bollinger  BandsKinetic bands versus Bollinger  Bands
Kinetic bands versus Bollinger Bands
 
Explainable AI Workshop
Explainable AI WorkshopExplainable AI Workshop
Explainable AI Workshop
 
Machine Learning Notes for beginners ,Step by step
Machine Learning Notes for beginners ,Step by stepMachine Learning Notes for beginners ,Step by step
Machine Learning Notes for beginners ,Step by step
 
safe and efficient off policy reinforcement learning
safe and efficient off policy reinforcement learningsafe and efficient off policy reinforcement learning
safe and efficient off policy reinforcement learning
 
Discovery Bus: UK QSAR meeting at GSK
Discovery Bus: UK QSAR meeting at GSKDiscovery Bus: UK QSAR meeting at GSK
Discovery Bus: UK QSAR meeting at GSK
 
Real Time Geodemographics
Real Time GeodemographicsReal Time Geodemographics
Real Time Geodemographics
 
Evolutionary Optimization Algorithms & Large-Scale Machine Learning
Evolutionary Optimization Algorithms & Large-Scale Machine LearningEvolutionary Optimization Algorithms & Large-Scale Machine Learning
Evolutionary Optimization Algorithms & Large-Scale Machine Learning
 
MM-KBAC – Using Mixed Models to Adjust for Population Structure in a Rare-var...
MM-KBAC – Using Mixed Models to Adjust for Population Structure in a Rare-var...MM-KBAC – Using Mixed Models to Adjust for Population Structure in a Rare-var...
MM-KBAC – Using Mixed Models to Adjust for Population Structure in a Rare-var...
 
Lab 2: Classification and Regression Prediction Models, training and testing ...
Lab 2: Classification and Regression Prediction Models, training and testing ...Lab 2: Classification and Regression Prediction Models, training and testing ...
Lab 2: Classification and Regression Prediction Models, training and testing ...
 
Enm fy17nano qsar
Enm fy17nano qsarEnm fy17nano qsar
Enm fy17nano qsar
 
Tree building 2
Tree building 2Tree building 2
Tree building 2
 
A Cooperative Coevolutionary Approach to Maximise Surveillance Coverage of UA...
A Cooperative Coevolutionary Approach to Maximise Surveillance Coverage of UA...A Cooperative Coevolutionary Approach to Maximise Surveillance Coverage of UA...
A Cooperative Coevolutionary Approach to Maximise Surveillance Coverage of UA...
 

More from Informatikai Intézet

Fintech Workshop D00: Tuan Trinh Anh - Hallgatói fintech projekt kezdeménye...
Fintech Workshop D00: Tuan Trinh Anh - Hallgatói fintech projekt kezdeménye...Fintech Workshop D00: Tuan Trinh Anh - Hallgatói fintech projekt kezdeménye...
Fintech Workshop D00: Tuan Trinh Anh - Hallgatói fintech projekt kezdeménye...Informatikai Intézet
 
FinTech Workshop 00: FinTech és banki digitalizáció workshop bevezető
FinTech Workshop 00: FinTech és banki digitalizáció workshop bevezetőFinTech Workshop 00: FinTech és banki digitalizáció workshop bevezető
FinTech Workshop 00: FinTech és banki digitalizáció workshop bevezetőInformatikai Intézet
 
FinTech Workshop 01: Kenesei Zsófia - Service experience design a banki gyak...
FinTech Workshop 01: Kenesei Zsófia - Service experience design a banki gyak...FinTech Workshop 01: Kenesei Zsófia - Service experience design a banki gyak...
FinTech Workshop 01: Kenesei Zsófia - Service experience design a banki gyak...Informatikai Intézet
 
FinTech Workshop 02: Varga Krisztián - A digitális átalakulás lehetőségeinek...
FinTech Workshop 02: Varga Krisztián - A digitális átalakulás lehetőségeinek...FinTech Workshop 02: Varga Krisztián - A digitális átalakulás lehetőségeinek...
FinTech Workshop 02: Varga Krisztián - A digitális átalakulás lehetőségeinek...Informatikai Intézet
 
Fintech Workshop 03: Racskó Péter - Blokklánc és demokrácia
Fintech Workshop 03: Racskó Péter - Blokklánc és demokráciaFintech Workshop 03: Racskó Péter - Blokklánc és demokrácia
Fintech Workshop 03: Racskó Péter - Blokklánc és demokráciaInformatikai Intézet
 
FinTech Workshop 05: Michael Puhle - An introduction to Robo-Advisors
FinTech Workshop 05: Michael Puhle - An introduction to Robo-AdvisorsFinTech Workshop 05: Michael Puhle - An introduction to Robo-Advisors
FinTech Workshop 05: Michael Puhle - An introduction to Robo-AdvisorsInformatikai Intézet
 
FinTech Workshop 04: Csóka Péter - The Effects of Blockchain on central cle...
FinTech Workshop 04: Csóka Péter - The Effects of Blockchain on central cle...FinTech Workshop 04: Csóka Péter - The Effects of Blockchain on central cle...
FinTech Workshop 04: Csóka Péter - The Effects of Blockchain on central cle...Informatikai Intézet
 
FinTech Workshop D01: Horváth András - Currency Clusterer
FinTech Workshop D01: Horváth András - Currency ClustererFinTech Workshop D01: Horváth András - Currency Clusterer
FinTech Workshop D01: Horváth András - Currency ClustererInformatikai Intézet
 
FinTech Workshop D02: Kádár Bence - Pénzes Gábor: Blockchain technológia ...
FinTech Workshop D02: Kádár Bence - Pénzes Gábor: Blockchain technológia ...FinTech Workshop D02: Kádár Bence - Pénzes Gábor: Blockchain technológia ...
FinTech Workshop D02: Kádár Bence - Pénzes Gábor: Blockchain technológia ...Informatikai Intézet
 
Fehér Péter - Varga Krisztián: A digitális átalakulás lehetőségeinek vizsgála...
Fehér Péter - Varga Krisztián: A digitális átalakulás lehetőségeinek vizsgála...Fehér Péter - Varga Krisztián: A digitális átalakulás lehetőségeinek vizsgála...
Fehér Péter - Varga Krisztián: A digitális átalakulás lehetőségeinek vizsgála...Informatikai Intézet
 
Kiss András Károly: Szöveg alapú dokumentumok összehasonlításának optimális p...
Kiss András Károly: Szöveg alapú dokumentumok összehasonlításának optimális p...Kiss András Károly: Szöveg alapú dokumentumok összehasonlításának optimális p...
Kiss András Károly: Szöveg alapú dokumentumok összehasonlításának optimális p...Informatikai Intézet
 
Dávid Burka: Comparing different scenarios of Hungarian demographic processes
Dávid Burka: Comparing different scenarios of Hungarian demographic processesDávid Burka: Comparing different scenarios of Hungarian demographic processes
Dávid Burka: Comparing different scenarios of Hungarian demographic processesInformatikai Intézet
 
Gabriella Baksa-Haskó - Ilona Béres: Development of General Skills
Gabriella Baksa-Haskó - Ilona Béres: Development of General SkillsGabriella Baksa-Haskó - Ilona Béres: Development of General Skills
Gabriella Baksa-Haskó - Ilona Béres: Development of General SkillsInformatikai Intézet
 
Brunner Csaba: Behatolási adatok feldolgozása gépi tanulás és MapReduce segít...
Brunner Csaba: Behatolási adatok feldolgozása gépi tanulás és MapReduce segít...Brunner Csaba: Behatolási adatok feldolgozása gépi tanulás és MapReduce segít...
Brunner Csaba: Behatolási adatok feldolgozása gépi tanulás és MapReduce segít...Informatikai Intézet
 
Agnes Dede: Bureaucratic processes and the IT
Agnes Dede: Bureaucratic processes and the ITAgnes Dede: Bureaucratic processes and the IT
Agnes Dede: Bureaucratic processes and the ITInformatikai Intézet
 
Szabó Zoltán: Digitális Üzleti Átalakulás
Szabó Zoltán: Digitális Üzleti ÁtalakulásSzabó Zoltán: Digitális Üzleti Átalakulás
Szabó Zoltán: Digitális Üzleti ÁtalakulásInformatikai Intézet
 

More from Informatikai Intézet (20)

Fókuszban a digitalizáció
Fókuszban a digitalizációFókuszban a digitalizáció
Fókuszban a digitalizáció
 
Fintech Workshop D00: Tuan Trinh Anh - Hallgatói fintech projekt kezdeménye...
Fintech Workshop D00: Tuan Trinh Anh - Hallgatói fintech projekt kezdeménye...Fintech Workshop D00: Tuan Trinh Anh - Hallgatói fintech projekt kezdeménye...
Fintech Workshop D00: Tuan Trinh Anh - Hallgatói fintech projekt kezdeménye...
 
FinTech Workshop 00: FinTech és banki digitalizáció workshop bevezető
FinTech Workshop 00: FinTech és banki digitalizáció workshop bevezetőFinTech Workshop 00: FinTech és banki digitalizáció workshop bevezető
FinTech Workshop 00: FinTech és banki digitalizáció workshop bevezető
 
FinTech Workshop 01: Kenesei Zsófia - Service experience design a banki gyak...
FinTech Workshop 01: Kenesei Zsófia - Service experience design a banki gyak...FinTech Workshop 01: Kenesei Zsófia - Service experience design a banki gyak...
FinTech Workshop 01: Kenesei Zsófia - Service experience design a banki gyak...
 
FinTech Workshop 02: Varga Krisztián - A digitális átalakulás lehetőségeinek...
FinTech Workshop 02: Varga Krisztián - A digitális átalakulás lehetőségeinek...FinTech Workshop 02: Varga Krisztián - A digitális átalakulás lehetőségeinek...
FinTech Workshop 02: Varga Krisztián - A digitális átalakulás lehetőségeinek...
 
Fintech Workshop 03: Racskó Péter - Blokklánc és demokrácia
Fintech Workshop 03: Racskó Péter - Blokklánc és demokráciaFintech Workshop 03: Racskó Péter - Blokklánc és demokrácia
Fintech Workshop 03: Racskó Péter - Blokklánc és demokrácia
 
FinTech Workshop 05: Michael Puhle - An introduction to Robo-Advisors
FinTech Workshop 05: Michael Puhle - An introduction to Robo-AdvisorsFinTech Workshop 05: Michael Puhle - An introduction to Robo-Advisors
FinTech Workshop 05: Michael Puhle - An introduction to Robo-Advisors
 
FinTech Workshop 04: Csóka Péter - The Effects of Blockchain on central cle...
FinTech Workshop 04: Csóka Péter - The Effects of Blockchain on central cle...FinTech Workshop 04: Csóka Péter - The Effects of Blockchain on central cle...
FinTech Workshop 04: Csóka Péter - The Effects of Blockchain on central cle...
 
FinTech Workshop D01: Horváth András - Currency Clusterer
FinTech Workshop D01: Horváth András - Currency ClustererFinTech Workshop D01: Horváth András - Currency Clusterer
FinTech Workshop D01: Horváth András - Currency Clusterer
 
FinTech Workshop D02: Kádár Bence - Pénzes Gábor: Blockchain technológia ...
FinTech Workshop D02: Kádár Bence - Pénzes Gábor: Blockchain technológia ...FinTech Workshop D02: Kádár Bence - Pénzes Gábor: Blockchain technológia ...
FinTech Workshop D02: Kádár Bence - Pénzes Gábor: Blockchain technológia ...
 
Digitális Üzleti Átalakulás 2016
Digitális Üzleti Átalakulás 2016Digitális Üzleti Átalakulás 2016
Digitális Üzleti Átalakulás 2016
 
Fehér Péter - Varga Krisztián: A digitális átalakulás lehetőségeinek vizsgála...
Fehér Péter - Varga Krisztián: A digitális átalakulás lehetőségeinek vizsgála...Fehér Péter - Varga Krisztián: A digitális átalakulás lehetőségeinek vizsgála...
Fehér Péter - Varga Krisztián: A digitális átalakulás lehetőségeinek vizsgála...
 
Kiss András Károly: Szöveg alapú dokumentumok összehasonlításának optimális p...
Kiss András Károly: Szöveg alapú dokumentumok összehasonlításának optimális p...Kiss András Károly: Szöveg alapú dokumentumok összehasonlításának optimális p...
Kiss András Károly: Szöveg alapú dokumentumok összehasonlításának optimális p...
 
Dávid Burka: Comparing different scenarios of Hungarian demographic processes
Dávid Burka: Comparing different scenarios of Hungarian demographic processesDávid Burka: Comparing different scenarios of Hungarian demographic processes
Dávid Burka: Comparing different scenarios of Hungarian demographic processes
 
Gabriella Baksa-Haskó - Ilona Béres: Development of General Skills
Gabriella Baksa-Haskó - Ilona Béres: Development of General SkillsGabriella Baksa-Haskó - Ilona Béres: Development of General Skills
Gabriella Baksa-Haskó - Ilona Béres: Development of General Skills
 
Brunner Csaba: Behatolási adatok feldolgozása gépi tanulás és MapReduce segít...
Brunner Csaba: Behatolási adatok feldolgozása gépi tanulás és MapReduce segít...Brunner Csaba: Behatolási adatok feldolgozása gépi tanulás és MapReduce segít...
Brunner Csaba: Behatolási adatok feldolgozása gépi tanulás és MapReduce segít...
 
Agnes Dede: Bureaucratic processes and the IT
Agnes Dede: Bureaucratic processes and the ITAgnes Dede: Bureaucratic processes and the IT
Agnes Dede: Bureaucratic processes and the IT
 
Varga Krisztián: ITSM kutatás 2016
Varga Krisztián: ITSM kutatás 2016Varga Krisztián: ITSM kutatás 2016
Varga Krisztián: ITSM kutatás 2016
 
Szabó Zoltán: Digitális Üzleti Átalakulás
Szabó Zoltán: Digitális Üzleti ÁtalakulásSzabó Zoltán: Digitális Üzleti Átalakulás
Szabó Zoltán: Digitális Üzleti Átalakulás
 
Fehér Péter - IT kontrolling
Fehér Péter - IT kontrollingFehér Péter - IT kontrolling
Fehér Péter - IT kontrolling
 

Recently uploaded

Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1kcpayne
 
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service NoidaCall Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service Noidadlhescort
 
Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Neil Kimberley
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with CultureSeta Wicaksana
 
Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...Roland Driesen
 
Business Model Canvas (BMC)- A new venture concept
Business Model Canvas (BMC)-  A new venture conceptBusiness Model Canvas (BMC)-  A new venture concept
Business Model Canvas (BMC)- A new venture conceptP&CO
 
Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxAndy Lambert
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Dave Litwiller
 
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesMysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesDipal Arora
 
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...rajveerescorts2022
 
John Halpern sued for sexual assault.pdf
John Halpern sued for sexual assault.pdfJohn Halpern sued for sexual assault.pdf
John Halpern sued for sexual assault.pdfAmzadHosen3
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMANIlamathiKannappan
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Serviceritikaroy0888
 
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...allensay1
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdfRenandantas16
 
RSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataRSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataExhibitors Data
 
Cracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptxCracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptxWorkforce Group
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLSeo
 

Recently uploaded (20)

Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1
 
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
 
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service NoidaCall Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
 
Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023
 
Falcon Invoice Discounting platform in india
Falcon Invoice Discounting platform in indiaFalcon Invoice Discounting platform in india
Falcon Invoice Discounting platform in india
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with Culture
 
Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...
 
Business Model Canvas (BMC)- A new venture concept
Business Model Canvas (BMC)-  A new venture conceptBusiness Model Canvas (BMC)-  A new venture concept
Business Model Canvas (BMC)- A new venture concept
 
Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptx
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
 
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesMysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
 
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
 
John Halpern sued for sexual assault.pdf
John Halpern sued for sexual assault.pdfJohn Halpern sued for sexual assault.pdf
John Halpern sued for sexual assault.pdf
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMAN
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Service
 
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
 
RSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataRSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors Data
 
Cracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptxCracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptx
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
 

Blanka Láng, László Kovács and László Mohácsi: Linear regression model selection using a hibrid genetic improved harmony search parallelized algorithm

  • 2. Contents Linear Regression Model Selection Problem Datasets Used Performance of Selection Algorithms on Our Data The Need for a New Solution The Performance of our Hybrid Algoirthm
  • 3. Linear Regression We have: § Y: dependent variable § 𝑋 = 𝑋#, 𝑋%, … , 𝑋' vectors of independent variables Goal: 𝑌 = 𝛽* + 𝛽# 𝑋# + 𝛽% 𝑋% + ⋯ + 𝛽' 𝑋' + 𝜀 OLS Model: 𝑌. = 𝛽/* + 𝛽/# 𝑋# + 𝛽/% 𝑋% + ⋯ + 𝛽/' 𝑋' = 𝛽/* + ∑ 𝛽/1 𝑋1 ' 12# Parsimony: 𝑋3 ⊆ 𝑋 àminimalize residuals, with the use of as few independents as possible maximalize the model’s ability to generalize Partial effects of independentsàonly significant variables in the model these hypotheses can an be statistically tested Objective functions AIC SBC HQC adjusted R2 à MAX MIN Linear Regression Model Selection Problem Datasets Used Performance of Selection Algorithms on Our Data The Need for a New Solution The Performance of out Hybrid Algoirthm
  • 4. Dataset #1 Body Fat Measurements – real dataset from 1996 𝑛 = 252 𝑌: Percent of body fat to muscle tissue 𝑚 = 16 (age, abdomen circumference, weight, height, etc.) Multicollinearity: Redundancy between independents. Pl.: Which of these two independents matters most when predicting 𝑌? How can we interpret the partial effects of these independents? Measure: Regress the independents on each otheràVIF indicator for each independent if VIF>2àmulticollinearity Linear Regression Model Selection Problem Datasets Used Performance of Selection Algorithms on Our Data The Need for a New Solution The Performance of out Hybrid Algoirthm
  • 5. Dataset #2 DATA26 – simulated dataset from Gumbel Copula 𝑛 = 1000 𝑚 = 25 (plus 𝑌) Generating Correlation Matrix (CM) with high correlations in absolute value vineBeta method (Lewandowskia et. al, 2009) Simulating Multicollinearity All 26 generated variables follow N(µ,s) distributions, where µ and s are randomly generated for each variable Linear Regression Model Selection Problem Datasets Used Performance of Selection Algorithms on Our Data The Need for a New Solution The Performance of out Hybrid Algoirthm
  • 6. Performance of Selection Algorithms– FAT Linear Regression Model Selection Problem Datasets Used Performance of Selection Algorithms on Our Data The Need for a New Solution The Performance of out Hybrid Algoirthm AIC SBC 𝑅>% Runtime (sec) St Dev (sec) Best Subsets (SPSS Leaps and Bound) -2,013 (Variables: 1) -1,987 (Variables: 1) 0,9829 (Variables: 1, 2, 3, 5, 6, 8, 11, 12, 15) 4,558 0,878 Best Subsets (Minerva: GARS) -2,013 (Variables: 1) -1,987 (Variables: 1) 0,9829 (Variables: 1, 2, 3, 5, 6, 8, 11, 12, 15) 5,921 1,658 improved GARS -2,013 (Variables: 1) -1,987 (Variables: 1) 0,9822 (Variables: 1, 3, 5, 6, 8, 12, 15) 11,268 2,941 IHSRS -2,013 (Variables: 1) -1,987 (Variables: 1) 0,9822 (Variables: 1, 3, 5, 6, 8, 12, 15) 0,968 0,188 Forward+Backward 0,058 (Variables: 1, 3, 5, 6, 8, 12, 15) 0,239 (Variables: 1, 3, 5, 6, 8, 12, 15) 0,9822 (Variables: 1, 3, 5, 6, 8, 12, 15) 0,976 0,050 Variable Importance in Projection (Partial Least Squares) -0,247 (Variables: 1, 2, 5, 6, 8, 9) -0,092 (Variables: 1, 2, 5, 6, 8, 9) 0,9618 (Variables: 1, 2, 5, 6, 8, 9) 1,807 0,896 Elastic Net -2,013 (Variables: 1) -1,987 (Variables: 1) 0,9410 (Variables: 1) 50,858 9,019 Stepwise VIF Selection -0,189 (Variables: 1, 2, 15) -0,008 (Variables: 1, 2, 15) 0,954 (Variables: 1, 2, 15) 0,832 0,034 Nested Estimate Procedure -1,402 (Variables: 1, 8) -1,351 (Variables: 1, 8) 0,9538 (Variables: 1, 8) 0,352 0,047
  • 7. Performance of Selection Algorithms DATA26 Linear Regression Model Selection Problem Datasets Used Performance of Selection Algorithms on Our Data The Need for a New Solution The Performance of out Hybrid Algoirthm AIC SBC 𝑅% Runtime (sec) St Dev (sec) Best Subsets (SPSS Leaps and Bound) -8,840 (Variables: X24, X23, X10, X6, X4, X15, X17, X1, X13, X14, X12, X16, X5, X25, X9, X21, X18) -8,756 (Variables: X24, X23, X10, X6, X4, X15, X17, X1, X13, X14, X12, X16, X5, X25, X9, X21, X18) 0,9999944 (Variables: X15, X6, X24, X23, X5, X12, X9, X4, X1, X25, X10, X21, X13, X17, X16, X18, X14, X3) 32,352745 7,04028 Best Subsets (Minerva: GARS) -8,841 (Variables: X15, X6, X24, X23, X5, X12, X9, X4, X1, X25, X10, X21, X13, X17, X16, X18, X14, X3) -8,826 (Variables: X25, X10, X17, X13, X1, X16, X24, X18, X5, X21, X8, X23, X15, X12, X6, X4) 0,9999944 (Variables: X15, X6, X24, X23, X5, X12, X9, X4, X1, X25, X10, X21, X13, X17, X16, X18, X14, X3) 52,714638 12,62692 improved GARS -8,731 (Variables: X25, X10, X17, X13, X1, X16, X24, X18, X5, X21, X8, X23, X15, X12, X6, X4) -8,826 (Variables: X25, X10, X17, X13, X1, X16, X24, X18, X5, X21, X8, X23, X15, X12, X6, X4) 0,99999744 (Variables: X25, X10, X17, X13, X1, X16, X24, X18, X5, X21, X8, X23, X15, X12, X6, X4) 1281,45823 380,10328 IHSRS -8,731 (Variables: X25, X10, X17, X13, X1, X16, X24, X18, X5, X21, X8, X23, X15, X12, X6, X4) -8,826 (Variables: X25, X10, X17, X13, X1, X16, X24, X18, X5, X21, X8, X23, X15, X12, X6, X4) 0,99999744 (Variables: X25, X10, X17, X13, X1, X16, X24, X18, X5, X21, X8, X23, X15, X12, X6, X4) 402,1666233 79,070735 Forward+Backward -8,840 (Variables: X24, X23, X10, X6, X4, X15, X17, X1, X13, X14, X12, X16, X5, X25, X9, X21, X18) -8,756 (Variables: X24, X23, X10, X6, X4, X15, X17, X1, X13, X14, X12, X16, X5, X25, X9, X21, X18) 0,9999944 (Variables: X24, X23, X10, X6, X4, X15, X17, X1, X13, X14, X12, X16, X5, X25, X9, X21, X18) 1,0744 0,0937 Variable Importance in Projection (Partial Least Squares) -5,196 (Variables: X24, X5, X4, X10, X20, X18, X8, X22, X23, X11, X15, X6, X12) -5,132 (Variables: X24, X5, X4, X10, X20, X18, X8, X22, X23, X11, X15, X6, X12) 0,99979 (Variables: X24, X5, X4, X10, X20, X18, X8, X22, X23, X11, X15, X6, X12) 15,095273 7,19626 Elastic Net -4,363 (Full model, not significant: X5, X13) -4,240 (Full model, not significant: X5, X13) 0,993 (Full model, not significant: X5, X13) 478,683794 99,82244 Stepwise VIF Selection 0,434 (Variables: X6, X10, X16, X17, X19, X24) 0,464 (Variables: X6, X10, X16, X17, X19, X24) 0,940 (Variables: X6, X10, X16, X17, X19, X24) 0,93415 0,02986 Nested Estimate Procedure 0,760 (Variables: X10, X15, X23, X24) 0,780 (Variables: X10, X15, X23, X24) 0,917 (Variables: X10, X15, X23, X24) 0,39289 0,0533
  • 8. Problem with the results Model Collinearity Statistics Tolerance VIF X1 ,069 14,490 X3 ,017 59,097 X5 ,089 11,271 X6 ,030 33,682 X8 ,105 9,540 X12 ,239 4,182 X15 ,399 2,509 Linear Regression Model Selection Problem Datasets Used Performance of Selection Algorithms on Our Data The Need for a New Solution The Performance of out Hybrid Algoirthm Model Collinearity Statistics Tolerance VIF (Constant) X1 ,065 15,347 X4 ,001 1644,939 X5 ,003 388,860 X6 ,002 538,248 X8 ,005 197,505 X10 ,050 20,165 X12 ,001 1366,452 X13 ,030 33,293 X15 ,001 1133,939 X16 ,048 20,828 X17 ,041 24,297 X18 ,016 64,340 X21 ,003 393,569 X23 ,002 554,800 X24 ,004 262,232 X25 ,001 825,023 FAT DATA26 Optimal solutions of IHSRS for 𝑹@ 𝟐
  • 9. Modify the IHRSRS Include an all VIFs<2 condition to the optimalization task Optimal solutions of IHSRS with VIF conditions: Linear Regression Model Selection Problem Datasets Used Performance of Selection Algorithms on Our Data The Need for a New Solution The Performance of out Hybrid Algoirthm Model Collinearity Statistics Tolerance VIF X1 ,508 1,970 X2 ,879 1,138 X8 ,558 1,791 𝑹@% =0,9854 FAT Model Collinearity Statistics Tolerance VIF (Constant) X2 ,503 1,986 X6 ,548 1,825 X10 ,500 1,999 X14 ,526 1,902 X23 ,565 1,770 DATA26 𝑹@% =0,991 Other models with VIF values smaller than 2: Backward – VIF: 𝑹@% = 0,9540 (FAT); 0,940 (DATA26) Nested Estimates: 𝑹@% = 0,9538 (FAT); 0,917 (DATA26)
  • 10. A Great Setback for the modified IHSRS Linear Regression Model Selection Problem Datasets Used Performance of Selection Algorithms on Our Data The Need for a New Solution The Performance of out Hybrid Algoirthm 0 10000 20000 30000 40000 50000 60000 average solution time (number of steps) standard deviation of solution times (number of steps) FAT IHSRS without VIF IHSRS with VIF 0 10 20 30 40 50 60 70 average solution time (sec) standard deviation of solution times (sec) FAT IHSRS without VIF IHSRS with VIF 0 50000 100000 150000 200000 250000 average solution time (number of steps) standard deviation of solution times (number of steps) DATA26 IHSRS without VIF IHSRS with VIF 0 500 1000 1500 2000 2500 3000 3500 average solution time (sec) standard deviation of solution times (sec) DATA26 IHSRS without VIF IHSRS with VIF Average runtime is almost an hour!
  • 11. We can not parallelize the IHSRS Linear Regression Model Selection Problem Datasets Used Performance of Selection Algorithms on Our Data The Need for a New Solution The Performance of out Hybrid Algoirthm individual/melody: ● = 0 0 1 0 1 1 1 population/harmony memory: ● ● ● ● STEP 1&2: Generate a random harmony and evaluate the regressions for each individual ● ● ● ● HMCR prob 1-HMCR prob ● ● ● ● Generate a RANDOM indvidual PAR prob 1-PAR prob Mutate ● with mutation (bw) prob No modification on ● Increase PAR + Decrease bw Is new ● better than the worst individual? YES NO Change the worst individual YES Termination Criterion? NO STOP
  • 12. Our GA-HS hybrid solution Linear Regression Model Selection Problem Datasets Used Performance of Selection Algorithms on Our Data The Need for a New Solution The Performance of out Hybrid Algoirthm individual: ● = 0 0 1 0 1 1 1 population: ● ● ● ● STEP 1&2: Generate a random harmony and evaluate the regressions for each individual ● ● ● ● Select better than average individuals ● ● ● ● Start a new population: ● ● x x Can be Parallel ized! HMCR prob 1-HMCR prob ● ● x x Generate RANDOM indvidual Mutate ● with mutation (bw) prob Increase HMCR + Decrease bw Is every x filled? NO YES Evaluate the regressions for the new individuals in our population YES Termination Criterion? NO STOP
  • 13. Differences from GA 1. More than one kind of mutation 2. No crossover In Linear Regression Model Selection randomization is more important, than inhereted good properties The inclusion or exculsion of a single independent can save or ruin a model We could observe that GA is a relatively slow algorithm when applied to Model Selecton Linear Regression Model Selection Problem Datasets Used Performance of Selection Algorithms on Our Data The Need for a New Solution The Performance of out Hybrid Algoirthm
  • 14. The Performance 0 50000 100000 150000 200000 250000 average solution time (number of steps) standard deviation of solution times (number of steps) DATA26 IHSRS + VIF GAIHSRS +VIF 0 10 20 30 40 50 60 70 average solution time (sec) standard deviation of solution times (sec) FAT Standard Parallel 0 500 1000 1500 2000 2500 3000 3500 4000 average solution time (sec) standard deviation of solution times (sec) DATA26 Standard Parallel Average runtime and St. Dev. are decreased by 2/3 Thank you for your attention! 0 10000 20000 30000 40000 50000 60000 average solution time (number of steps) standard deviation of solution times (number of steps) FAT IHSRS + VIF GAIHSRS +VIF Linear Regression Model Selection Problem Datasets Used Performance of Selection Algorithms on Our Data The Need for a New Solution The Performance of our Hybrid Algoirthm
  • 15. Enviroment The solution times are an average of 30 runs. The standard deviation of the runtimes is determined from the same 30 runs. Most Selection Algorithms were used in IBM SPSS Statistics 22 Elastic Net: Catgreg SPSS macro by the University of Leiden Numpy and Scipy Python libraries for Partial Least Squares Metaheuristics (GARS, improved GARS, IHSRS, GAIHSRS) are implemented in C# OS and Hardware Configurations OS: Windows 8.1 Ultimate 64 bit CPU: Intel Core i7-2700K, 3.5GHz RAM: 16GB DDR3 SDRAM