SlideShare a Scribd company logo
1 of 10
Download to read offline
International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011
20
SLIDING MODE CONTROLLER DESIGN FOR
SYNCHRONIZATION OF SHIMIZU-MORIOKA
CHAOTIC SYSTEMS
Sundarapandian Vaidyanathan1
1
Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University
Avadi, Chennai-600 062, Tamil Nadu, INDIA
sundarvtu@gmail.com
ABSTRACT
This paper investigates the global chaos synchronization of identical Shimizhu-Morioka chaotic systems
(Shimizu and Morioka, 1980) by sliding mode control. The stability results derived in this paper for the
complete synchronization of identical Shimizu-Morioka chaotic systems are established using Lyapunov
stability theory. Since the Lyapunov exponents are not required for these calculations, the sliding mode
control method is very effective and convenient to achieve global chaos synchronization of the identical
Shimizu-Morioka chaotic systems. Numerical simulations are shown to illustrate and validate the
synchronization schemes derived in this paper for the identical Shimizu-Morioka systems.
KEYWORDS
Sliding Mode Control, Chaos Synchronization, Chaotic Systems, Shimizu-Morioka Systems.
1. INTRODUCTION
Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The
sensitive nature of chaotic systems is commonly called as the butterfly effect [1]. Synchronization
of chaotic systems is a phenomenon which may occur when two or more chaotic oscillators are
coupled or when a chaotic oscillator drives another chaotic oscillator. Because of the butterfly
effect which causes the exponential divergence of the trajectories of two identical chaotic systems
started with nearly the same initial conditions, synchronizing two chaotic systems is seemingly a
very challenging problem.
In most of the chaos synchronization approaches, the master-slave or drive-response formalism is
used. If a particular chaotic system is called the master or drive system and another chaotic
system is called the slave or response system, then the idea of the synchronization is to use the
output of the master system to control the slave system so that the output of the slave system
tracks the output of the master system asymptotically.
Since the pioneering work by Pecora and Carroll ([2], 1990), chaos synchronization problem has
been studied extensively and intensively in the literature [2-17]. Chaos theory has been applied to
a variety of fields such as physical systems [3], chemical systems [4], ecological systems [5],
secure communications [6-8], etc.
In the last two decades, various schemes have been successfully applied for chaos
synchronization such as PC method [2], OGY method [9], active control method [10-12],
adaptive control method [13-14], time-delay feedback method [15], backstepping design method
[16], sampled-data feedback method [17], etc.
International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011
21
In this paper, we derive new results based on the sliding mode control [18-20] for the global
chaos synchronization of identical Shimizu-Morioka systems ([21], Shimizu and Morioka, 1980).
In robust control systems, the sliding mode control method is often adopted due to its inherent
advantages of easy realization, fast response and good transient performance as well as its
insensitivity to parameter uncertainties and external disturbances.
This paper has been organized as follows. In Section 2, we describe the problem statement and
our methodology using sliding mode control (SMC). In Section 3, we discuss the global chaos
synchronization of identical Shimizu-Morioka chaotic systems. In Section 4, we summarize the
main results obtained in this paper.
2. PROBLEM STATEMENT AND OUR METHODOLOGY USING SMC
In this section, we describe the problem statement for the global chaos synchronization for
identical chaotic systems and our methodology using sliding mode control (SMC).
Consider the chaotic system described by
( )
x Ax f x
= +
& (1)
where n
x∈R is the state of the system, A is the n n
× matrix of the system parameters and
: n n
f →
R R is the nonlinear part of the system.
We consider the system (1) as the master or drive system.
As the slave or response system, we consider the following chaotic system described by the
dynamics
( )
y Ay f y u
= + +
& (2)
where n
y ∈R is the state of the system and m
u ∈R is the controller to be designed.
If we define the synchronization error as
,
e y x
= − (3)
then the error dynamics is obtained as
( , ) ,
e Ae x y u
η
= + +
& (4)
where
( , ) ( ) ( )
x y f y f x
η = − (5)
The objective of the global chaos synchronization problem is to find a controller u such that
lim ( ) 0
t
e t
→∞
= for all (0) .
n
e ∈R
International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011
22
To solve this problem, we first define the control u as
( , )
u x y Bv
η
= − + (6)
where B is a constant gain vector selected such that ( , )
A B is controllable.
Substituting (5) into (4), the error dynamics simplifies to
e Ae Bv
= +
& (7)
which is a linear time-invariant control system with single input .
v
Thus, the original global chaos synchronization problem can be replaced by an equivalent
problem of stabilizing the zero solution 0
e = of the system (7) by a suitable choice of the sliding
mode control. In the sliding mode control, we define the variable
1 1 2 2
( ) n n
s e Ce c e c e c e
= = + + +
L (8)
where [ ]
1 2 n
C c c c
= L is a constant vector to be determined.
In the sliding mode control, we constrain the motion of the system (7) to the sliding manifold
defined by
{ }
| ( ) 0
n
S x s e
= ∈ =
R
which is required to be invariant under the flow of the error dynamics (7).
When in sliding manifold ,
S the system (7) satisfies the following conditions:
( ) 0
s e = (9)
which is the defining equation for the manifold S and
( ) 0
s e =
& (10)
which is the necessary condition for the state trajectory ( )
e t of (7) to stay on the sliding manifold
.
S
Using (7) and (8), the equation (10) can be rewritten as
[ ]
( ) 0
s e C Ae Bv
= + =
& (11)
Solving (11) for ,
v we obtain the equivalent control law
1
eq ( ) ( ) ( )
v t CB CA e t
−
= − (12)
where C is chosen such that 0.
CB ≠
Substituting (12) into the error dynamics (7), we obtain the closed-loop dynamics as
International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011
23
1
( )
e I B CB C Ae
−
 
= −
 
& (13)
The row vector C is selected such that the system matrix of the controlled dynamics
1
( )
I B CB C A
−
 
−
  is Hurwitz, i.e. it has all eigenvalues with negative real parts. Then the
controlled system (13) is globally asymptotically stable.
To design the sliding mode controller for (7), we apply the constant plus proportional rate
reaching law
sgn( )
s q s k s
= − −
& (14)
where sgn( )
⋅ denotes the sign function and the gains 0,
q > 0
k > are determined such that the
sliding condition is satisfied and sliding motion will occur.
From equations (11) and (14), we can obtain the control ( )
v t as
[ ]
1
( ) ( ) ( ) sgn( )
v t CB C kI A e q s
−
= − + + (15)
which yields
[ ]
[ ]
1
1
( ) ( ) , if ( ) 0
( )
( ) ( ) , if ( ) 0
CB C kI A e q s e
v t
CB C kI A e q s e
−
−
− + + >
=
− + − <



(16)
Theorem 1. The master system (1) and the slave system (2) are globally and asymptotically
synchronized for all initial conditions (0), (0) n
x y R
∈ by the feedback control law
( ) ( , ) ( )
u t x y Bv t
η
= − + (17)
where ( )
v t is defined by (15) and B is a column vector such that ( , )
A B is controllable. Also, the
sliding mode gains ,
k q are positive.
Proof. First, we note that substituting (17) and (15) into the error dynamics (4), we obtain the
closed-loop error dynamics as
[ ]
1
( ) ( ) sgn( )
e Ae B CB C kI A e q s
−
= − + +
& (18)
To prove that the error dynamics (18) is globally asymptotically stable, we consider the candidate
Lyapunov function defined by the equation
2
1
( ) ( )
2
V e s e
= (19)
which is a positive definite function on .
n
R
International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011
24
Differentiating V along the trajectories of (18) or the equivalent dynamics (14), we get
2
( ) ( ) ( ) sgn( )
V e s e s e ks q s s
= = − −
& & (20)
which is a negative definite function on .
n
R
This calculation shows that V is a globally defined, positive definite, Lyapunov function for the
error dynamics (18), which has a globally defined, negative definite time derivative .
V
&
Thus, by Lyapunov stability theory [22], it is immediate that the error dynamics (18) is globally
asymptotically stable for all initial conditions (0) .
n
e ∈R
This means that for all initial conditions (0) ,
n
e R
∈ we have
lim ( ) 0
t
e t
→∞
=
Hence, it follows that the master system (1) and the slave system (2) are globally and
asymptotically synchronized for all initial conditions (0), (0) .
n
x y ∈R
This completes the proof. 
3. GLOBAL SYNCHRONIZATION OF IDENTICAL SHIMIZU-MORIOKA
CHAOTIC SYSTEMS USING SLIDING MODE CONTROL
3.1 Theoretical Results
In this section, we apply the sliding mode control results derived in Section 2 for the global chaos
synchronization of identical Shimizu-Morioka (SM) chaotic systems ([21], Shimizu and Morioka,
1980).
Thus, the master system is described by the SM dynamics
1 2
2 1 2 1 3
2
3 1 3
x x
x x x x x
x x x
λ
ξ
=
= − −
= −



(21)
where 1 2 3
, ,
x x x are state variables and , , ,
α β γ ω are positive, constant parameters of the system.
The slave system is described by the controlled SM dynamics
1 2 1
2 1 2 1 3 2
2
3 1 3 3
y y u
y y y y y u
y y y u
λ
ξ
= +
= − − +
= − +



(22)
where 1 2 3
, ,
y y y are state variables and 1 2 3
, ,
u u u are the controllers to be designed.
The Shimizu-Morioka systems (21) and (22) are chaotic when 0.75
λ = and 0.45.
ξ =
International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011
25
Figure 1 illustrates the double-wing butterfly-shaped attractor of the SM system (21).
Figure 1. State Orbits of the Shimizu-Morioka Chaotic System
The chaos synchronization error is defined by
, ( 1,2,3)
i i i
e y x i
= − = (23)
The error dynamics is easily obtained as
1 2 1
2 1 2 1 3 1 3 2
2 2
3 3 1 1 3
e e u
e e e y y x x u
e e y x u
λ
ξ
= +
= − − + +
= − + − +



(24)
We write the error dynamics (24) in the matrix notation as
( , )
e Ae x y u
η
= + +
 (25)
where
0 1 0
1 0 ,
0 0
A λ
ξ
 
 
= −
 
 
−
 
1 3 1 3
2 2
1 1
0
( , )
x y y y x x
y x
η
 
 
= − +
 
 
−
 
and
1
2
3
u
u u
u
 
 
=  
 
 
. (26)
The sliding mode controller design is carried out as detailed in Section 2.
First, we set u as
International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011
26
( , )
u x y Bv
η
= − + (27)
where B is chosen such that ( , )
A B is controllable.
We take B as
1
1 .
1
B
 
 
=  
 
 
(28)
In the chaotic case, the parameter values are
0.75
λ = and 0.45.
ξ =
The sliding mode variable is selected as
[ ] 1 2 3
2 1 2 2 2
s Ce e e e e
= = − = + − (29)
which makes the sliding mode state equation asymptotically stable.
We choose the sliding mode gains as 5
k = and 0.1.
q =
We note that a large value of k can cause chattering and an appropriate value of q is chosen to
speed up the time taken to reach the sliding manifold as well as to reduce the system chattering.
From Eq. (15), we can obtain ( )
v t as
1 2 3
( ) 11 6.25 9.1 0.1 sgn( )
v t e e e s
= − − + − (30)
Thus, the required sliding mode controller is obtained as
( , )
u x y Bv
η
= − + (31)
where ( , ),
x y B
η and ( )
v t are defined as in the equations (26), (28) and (30).
By Theorem 1, we obtain the following result.
Theorem 2. The identical Shimizu-Morioka chaotic systems (21) and (22) are globally and
asymptotically synchronized for all initial conditions with the sliding mode controller u defined
by (31). 
3.2 Numerical Results
In this section For the numerical simulations, the fourth-order Runge-Kutta method with time-
step 6
10
h −
= is used to solve the Shimizu-Morioka chaotic systems (21) and (22) with the sliding
mode controller u given by (31) using MATLAB.
In the chaotic case, the parameter values are
International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011
27
0.75
λ = and 0.45.
ξ =
The sliding mode gains are chosen as
5
k = and 0.1.
q =
The initial values of the master system (21) are taken as
1 2 3
(0) 30, (0) 25, (0) 14
x x x
= = =
and the initial values of the slave system (22) are taken as
1 2 3
(0) 4, (0) 18, (0) 20
y y y
= = =
Figure 2 illustrates the complete synchronization of the identical Shimizu-Morioka chaotic
systems (21) and (22).
Figure 2. Synchronization of Identical Shimizu-Morioka Chaotic Systems
International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011
28
4. CONCLUSIONS
In this paper, we have deployed sliding mode control (SMC) to achieve global chaos
synchronization for the identical Shimizu-Morioka chaotic systems (1980). Our synchronization
results for the identical Shimizu-Morioka chaotic systems have been proved using Lyapunov
stability theory. Since the Lyapunov exponents are not required for these calculations, the sliding
mode control method is very effective and convenient to achieve global chaos synchronization for
the identical Shimizu-Morioka chaotic systems. Numerical simulations are also shown to
illustrate the effectiveness of the synchronization results derived in this paper using the sliding
mode control.
REFERENCES
[1] Alligood, K.T., Sauer, T.  Yorke, J.A. (1997) Chaos: An Introduction to Dynamical Systems,
Springer, New York.
[2] Pecora, L.M.  Carroll, T.L. (1990) “Synchronization in chaotic systems”, Phys. Rev. Lett., Vol.
64, pp 821-824.
[3] Lakshmanan, M.  Murali, K. (1996) Nonlinear Oscillators: Controlling and Synchronization,
World Scientific, Singapore.
[4] Han, S.K., Kerrer, C.  Kuramoto, Y. (1995) “Dephasing and burstling in coupled neural
oscillators”, Phys. Rev. Lett., Vol. 75, pp 3190-3193.
[5] Blasius, B., Huppert, A.  Stone, L. (1999) “Complex dynamics and phase synchronization in
spatially extended ecological system”, Nature, Vol. 399, pp 354-359.
[6] Cuomo, K.M.  Oppenheim, A.V. (1993) “Circuit implementation of synchronized chaos with
applications to communications,” Physical Review Letters, Vol. 71, pp 65-68.
[7] Kocarev, L.  Parlitz, U. (1995) “General approach for chaotic synchronization with applications
to communication,” Physical Review Letters, Vol. 74, pp 5028-5030.
[8] Tao, Y. (1999) “Chaotic secure communication systems – history and new results,” Telecommun.
Review, Vol. 9, pp 597-634.
[9] Ott, E., Grebogi, C.  Yorke, J.A. (1990) “Controlling chaos”, Phys. Rev. Lett., Vol. 64, pp 1196-
1199.
[10] Ho, M.C.  Hung, Y.C. (2002) “Synchronization of two different chaotic systems using
generalized active network,” Physics Letters A, Vol. 301, pp 424-428.
[11] Huang, L., Feng, R.  Wang, M. (2005) “Synchronization of chaotic systems via nonlinear
control,” Physical Letters A, Vol. 320, pp 271-275.
[12] Chen, H.K. (2005) “Global chaos synchronization of new chaotic systems via nonlinear control,”
Chaos, Solitons  Fractals, Vol. 23, pp 1245-1251.
[13] Lu, J., Wu, X., Han, X.  Lü, J. (2004) “Adaptive feedback synchronization of a unified chaotic
system,” Physics Letters A, Vol. 329, pp 327-333.
[14] Chen, S.H.  Lü, J. (2002) “Synchronization of an uncertain unified system via adaptive control,”
Chaos, Solitons  Fractals, Vol. 14, pp 643-647.
[15] Park, J.H.  Kwon, O.M. (2003) “A novel criterion for delayed feedback control of time-delay
chaotic systems,” Chaos, Solitons  Fractals, Vol. 17, pp 709-716.
[16] Wu, X.  Lü, J. (2003) “Parameter identification and backstepping control of uncertain Lü
system,” Chaos, Solitons  Fractals, Vol. 18, pp 721-729.
[17] Zhao, J.  J. Lu (2006) “Using sampled-data feedback control and linear feedback
synchronization in a new hyperchaotic system,” Chaos, Solitons  Fractals, Vol. 35, pp 376-382.
International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011
29
[18] Slotine, J.E.  Sastry, S.S. (1983) “Tracking control of nonlinear systems using sliding surface
with application to robotic manipulators,” Internat. J. Control, Vol. 38, pp 465-492.
[19] Utkin, V.I. (1993) “Sliding mode control design principles and applications to electric drives,”
IEEE Trans. Industrial Electronics, Vol. 40, pp 23-36, 1993.
[20] Saravanakumar, R., Vinoth Kumar, K.  Ray, K.K. (2009) “Sliding mode control of induction
motor using simulation approach,” Internat. J. Control of Comp. Sci. Network Security, Vol. 9, pp
93-104.
[21] Shimizu, T.  Morioka, N. (1980) “On the bifurcation of a symmetric limit cycle to an
asymmetric one in a simple model,” Physics Letters A, Vol. 76, pp. 201-204.
[22] Hahn, W. (1967) The Stability of Motion, Springer, New York.
Author
Dr. V. Sundarapandian is a Professor (Systems  Control Engineering) in the R
 D Centre at Vel Tech Dr. RR  Dr. SR Technical University, Chennai, India. His
current research areas are Linear and Nonlinear Control Systems, Chaos Theory,
Dynamical Systems, Soft Computing, etc. He has published over 150 refereed
international journal publications. He has published over 45 papers in International
Conferences and over 90 papers in National Conferences. He has published two
text-books titled Numerical Linear Algebra and Probability, Statistics and
Queueing Theory with Prentice Hall of India, New Delhi, India. He is a Senior
Member of AIRCC and the Editor-in-Chief of the AIRCC international journals –
International Journal of Instrumentation and Control Systems and International
Journal of Control Theory and Computer Modeling. He is the Associate Editor of
many Control Journals like International Journal of Control Theory and Applications, International
Journal of Computer Information and Sciences, and International Journal of Advances in Science and
Technology. He has delivered many Key Note Lectures on Nonlinear Control Systems, Modern Control
Systems, Chaos and Control, Mathematical Modelling, Scientific Computing with SCILAB/MATLAB, etc.

More Related Content

Similar to SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC SYSTEMS

SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...ijait
 
Hybrid Chaos Synchronization of Hyperchaotic Newton-Leipnik Systems by Slidin...
Hybrid Chaos Synchronization of Hyperchaotic Newton-Leipnik Systems by Slidin...Hybrid Chaos Synchronization of Hyperchaotic Newton-Leipnik Systems by Slidin...
Hybrid Chaos Synchronization of Hyperchaotic Newton-Leipnik Systems by Slidin...ijctcm
 
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...IJCSEA Journal
 
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...Zac Darcy
 
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTORADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTORijcseit
 
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC WANG AND HYPERCHAOTIC LI SYSTEMS WITH UN...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC WANG AND HYPERCHAOTIC LI SYSTEMS WITH UN...ANTI-SYNCHRONIZATION OF HYPERCHAOTIC WANG AND HYPERCHAOTIC LI SYSTEMS WITH UN...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC WANG AND HYPERCHAOTIC LI SYSTEMS WITH UN...ijcseit
 
International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...ijcseit
 
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...ijitcs
 
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID  SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...ACTIVE CONTROLLER DESIGN FOR THE HYBRID  SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...ijscai
 
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING  HYPERCHAOTIC SYSTEMSYNCHRONIZATION OF A FOUR-WING  HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEMijccmsjournal
 
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEMSYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEMijccmsjournal
 
ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU ...
ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU ...ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU ...
ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU ...ijait
 
ADAPTIVE CONTROL AND SYNCHRONIZATION OF LIU’S FOUR-WING CHAOTIC SYSTEM WITH C...
ADAPTIVE CONTROL AND SYNCHRONIZATION OF LIU’S FOUR-WING CHAOTIC SYSTEM WITH C...ADAPTIVE CONTROL AND SYNCHRONIZATION OF LIU’S FOUR-WING CHAOTIC SYSTEM WITH C...
ADAPTIVE CONTROL AND SYNCHRONIZATION OF LIU’S FOUR-WING CHAOTIC SYSTEM WITH C...IJCSEA Journal
 
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...IJCSEIT Journal
 
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEMSYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEMijccmsjournal
 
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTORADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTORijistjournal
 
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTORADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTORijistjournal
 
THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...
THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...
THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...ijait
 
International Journal of Instrumentation and Control Systems (IJICS)
International Journal of Instrumentation and Control Systems (IJICS)International Journal of Instrumentation and Control Systems (IJICS)
International Journal of Instrumentation and Control Systems (IJICS)ijcisjournal
 
ADAPTIVE CONTROLLER DESIGN FOR THE ANTI-SYNCHRONIZATION OF HYPERCHAOTIC YANG ...
ADAPTIVE CONTROLLER DESIGN FOR THE ANTI-SYNCHRONIZATION OF HYPERCHAOTIC YANG ...ADAPTIVE CONTROLLER DESIGN FOR THE ANTI-SYNCHRONIZATION OF HYPERCHAOTIC YANG ...
ADAPTIVE CONTROLLER DESIGN FOR THE ANTI-SYNCHRONIZATION OF HYPERCHAOTIC YANG ...ijics
 

Similar to SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC SYSTEMS (20)

SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
 
Hybrid Chaos Synchronization of Hyperchaotic Newton-Leipnik Systems by Slidin...
Hybrid Chaos Synchronization of Hyperchaotic Newton-Leipnik Systems by Slidin...Hybrid Chaos Synchronization of Hyperchaotic Newton-Leipnik Systems by Slidin...
Hybrid Chaos Synchronization of Hyperchaotic Newton-Leipnik Systems by Slidin...
 
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...
 
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...
 
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTORADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
 
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC WANG AND HYPERCHAOTIC LI SYSTEMS WITH UN...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC WANG AND HYPERCHAOTIC LI SYSTEMS WITH UN...ANTI-SYNCHRONIZATION OF HYPERCHAOTIC WANG AND HYPERCHAOTIC LI SYSTEMS WITH UN...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC WANG AND HYPERCHAOTIC LI SYSTEMS WITH UN...
 
International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...
 
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...
 
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID  SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...ACTIVE CONTROLLER DESIGN FOR THE HYBRID  SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...
 
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING  HYPERCHAOTIC SYSTEMSYNCHRONIZATION OF A FOUR-WING  HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
 
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEMSYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
 
ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU ...
ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU ...ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU ...
ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU ...
 
ADAPTIVE CONTROL AND SYNCHRONIZATION OF LIU’S FOUR-WING CHAOTIC SYSTEM WITH C...
ADAPTIVE CONTROL AND SYNCHRONIZATION OF LIU’S FOUR-WING CHAOTIC SYSTEM WITH C...ADAPTIVE CONTROL AND SYNCHRONIZATION OF LIU’S FOUR-WING CHAOTIC SYSTEM WITH C...
ADAPTIVE CONTROL AND SYNCHRONIZATION OF LIU’S FOUR-WING CHAOTIC SYSTEM WITH C...
 
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...
ANTI-SYNCHRONIZATION OF HYPERCHAOTIC BAO AND HYPERCHAOTIC XU SYSTEMS VIA ACTI...
 
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEMSYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
 
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTORADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR
 
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTORADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR
ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR
 
THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...
THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...
THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZA...
 
International Journal of Instrumentation and Control Systems (IJICS)
International Journal of Instrumentation and Control Systems (IJICS)International Journal of Instrumentation and Control Systems (IJICS)
International Journal of Instrumentation and Control Systems (IJICS)
 
ADAPTIVE CONTROLLER DESIGN FOR THE ANTI-SYNCHRONIZATION OF HYPERCHAOTIC YANG ...
ADAPTIVE CONTROLLER DESIGN FOR THE ANTI-SYNCHRONIZATION OF HYPERCHAOTIC YANG ...ADAPTIVE CONTROLLER DESIGN FOR THE ANTI-SYNCHRONIZATION OF HYPERCHAOTIC YANG ...
ADAPTIVE CONTROLLER DESIGN FOR THE ANTI-SYNCHRONIZATION OF HYPERCHAOTIC YANG ...
 

More from ijistjournal

A MEDIAN BASED DIRECTIONAL CASCADED WITH MASK FILTER FOR REMOVAL OF RVIN
A MEDIAN BASED DIRECTIONAL CASCADED WITH MASK FILTER FOR REMOVAL OF RVINA MEDIAN BASED DIRECTIONAL CASCADED WITH MASK FILTER FOR REMOVAL OF RVIN
A MEDIAN BASED DIRECTIONAL CASCADED WITH MASK FILTER FOR REMOVAL OF RVINijistjournal
 
DECEPTION AND RACISM IN THE TUSKEGEE SYPHILIS STUDY
DECEPTION AND RACISM IN THE TUSKEGEE  SYPHILIS STUDYDECEPTION AND RACISM IN THE TUSKEGEE  SYPHILIS STUDY
DECEPTION AND RACISM IN THE TUSKEGEE SYPHILIS STUDYijistjournal
 
Online Paper Submission - International Journal of Information Sciences and T...
Online Paper Submission - International Journal of Information Sciences and T...Online Paper Submission - International Journal of Information Sciences and T...
Online Paper Submission - International Journal of Information Sciences and T...ijistjournal
 
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...ijistjournal
 
Call for Papers - International Journal of Information Sciences and Technique...
Call for Papers - International Journal of Information Sciences and Technique...Call for Papers - International Journal of Information Sciences and Technique...
Call for Papers - International Journal of Information Sciences and Technique...ijistjournal
 
Online Paper Submission - 4th International Conference on NLP & Data Mining (...
Online Paper Submission - 4th International Conference on NLP & Data Mining (...Online Paper Submission - 4th International Conference on NLP & Data Mining (...
Online Paper Submission - 4th International Conference on NLP & Data Mining (...ijistjournal
 
TOWARDS AUTOMATIC DETECTION OF SENTIMENTS IN CUSTOMER REVIEWS
TOWARDS AUTOMATIC DETECTION OF SENTIMENTS IN CUSTOMER REVIEWSTOWARDS AUTOMATIC DETECTION OF SENTIMENTS IN CUSTOMER REVIEWS
TOWARDS AUTOMATIC DETECTION OF SENTIMENTS IN CUSTOMER REVIEWSijistjournal
 
Research Articles Submission - International Journal of Information Sciences ...
Research Articles Submission - International Journal of Information Sciences ...Research Articles Submission - International Journal of Information Sciences ...
Research Articles Submission - International Journal of Information Sciences ...ijistjournal
 
ANALYSIS OF IMAGE WATERMARKING USING LEAST SIGNIFICANT BIT ALGORITHM
ANALYSIS OF IMAGE WATERMARKING USING LEAST SIGNIFICANT BIT ALGORITHMANALYSIS OF IMAGE WATERMARKING USING LEAST SIGNIFICANT BIT ALGORITHM
ANALYSIS OF IMAGE WATERMARKING USING LEAST SIGNIFICANT BIT ALGORITHMijistjournal
 
Call for Research Articles - 6th International Conference on Machine Learning...
Call for Research Articles - 6th International Conference on Machine Learning...Call for Research Articles - 6th International Conference on Machine Learning...
Call for Research Articles - 6th International Conference on Machine Learning...ijistjournal
 
Online Paper Submission - International Journal of Information Sciences and T...
Online Paper Submission - International Journal of Information Sciences and T...Online Paper Submission - International Journal of Information Sciences and T...
Online Paper Submission - International Journal of Information Sciences and T...ijistjournal
 
Colour Image Steganography Based on Pixel Value Differencing in Spatial Domain
Colour Image Steganography Based on Pixel Value Differencing in Spatial DomainColour Image Steganography Based on Pixel Value Differencing in Spatial Domain
Colour Image Steganography Based on Pixel Value Differencing in Spatial Domainijistjournal
 
Call for Research Articles - 5th International conference on Advanced Natural...
Call for Research Articles - 5th International conference on Advanced Natural...Call for Research Articles - 5th International conference on Advanced Natural...
Call for Research Articles - 5th International conference on Advanced Natural...ijistjournal
 
International Journal of Information Sciences and Techniques (IJIST)
International Journal of Information Sciences and Techniques (IJIST)International Journal of Information Sciences and Techniques (IJIST)
International Journal of Information Sciences and Techniques (IJIST)ijistjournal
 
Research Article Submission - International Journal of Information Sciences a...
Research Article Submission - International Journal of Information Sciences a...Research Article Submission - International Journal of Information Sciences a...
Research Article Submission - International Journal of Information Sciences a...ijistjournal
 
Design and Implementation of LZW Data Compression Algorithm
Design and Implementation of LZW Data Compression AlgorithmDesign and Implementation of LZW Data Compression Algorithm
Design and Implementation of LZW Data Compression Algorithmijistjournal
 
Online Paper Submission - 5th International Conference on Soft Computing, Art...
Online Paper Submission - 5th International Conference on Soft Computing, Art...Online Paper Submission - 5th International Conference on Soft Computing, Art...
Online Paper Submission - 5th International Conference on Soft Computing, Art...ijistjournal
 
Submit Your Research Articles - International Journal of Information Sciences...
Submit Your Research Articles - International Journal of Information Sciences...Submit Your Research Articles - International Journal of Information Sciences...
Submit Your Research Articles - International Journal of Information Sciences...ijistjournal
 
PUNJABI SPEECH SYNTHESIS SYSTEM USING HTK
PUNJABI SPEECH SYNTHESIS SYSTEM USING HTKPUNJABI SPEECH SYNTHESIS SYSTEM USING HTK
PUNJABI SPEECH SYNTHESIS SYSTEM USING HTKijistjournal
 
Call for Papers - 13th International Conference on Cloud Computing: Services ...
Call for Papers - 13th International Conference on Cloud Computing: Services ...Call for Papers - 13th International Conference on Cloud Computing: Services ...
Call for Papers - 13th International Conference on Cloud Computing: Services ...ijistjournal
 

More from ijistjournal (20)

A MEDIAN BASED DIRECTIONAL CASCADED WITH MASK FILTER FOR REMOVAL OF RVIN
A MEDIAN BASED DIRECTIONAL CASCADED WITH MASK FILTER FOR REMOVAL OF RVINA MEDIAN BASED DIRECTIONAL CASCADED WITH MASK FILTER FOR REMOVAL OF RVIN
A MEDIAN BASED DIRECTIONAL CASCADED WITH MASK FILTER FOR REMOVAL OF RVIN
 
DECEPTION AND RACISM IN THE TUSKEGEE SYPHILIS STUDY
DECEPTION AND RACISM IN THE TUSKEGEE  SYPHILIS STUDYDECEPTION AND RACISM IN THE TUSKEGEE  SYPHILIS STUDY
DECEPTION AND RACISM IN THE TUSKEGEE SYPHILIS STUDY
 
Online Paper Submission - International Journal of Information Sciences and T...
Online Paper Submission - International Journal of Information Sciences and T...Online Paper Submission - International Journal of Information Sciences and T...
Online Paper Submission - International Journal of Information Sciences and T...
 
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...
A NOVEL APPROACH FOR SEGMENTATION OF SECTOR SCAN SONAR IMAGES USING ADAPTIVE ...
 
Call for Papers - International Journal of Information Sciences and Technique...
Call for Papers - International Journal of Information Sciences and Technique...Call for Papers - International Journal of Information Sciences and Technique...
Call for Papers - International Journal of Information Sciences and Technique...
 
Online Paper Submission - 4th International Conference on NLP & Data Mining (...
Online Paper Submission - 4th International Conference on NLP & Data Mining (...Online Paper Submission - 4th International Conference on NLP & Data Mining (...
Online Paper Submission - 4th International Conference on NLP & Data Mining (...
 
TOWARDS AUTOMATIC DETECTION OF SENTIMENTS IN CUSTOMER REVIEWS
TOWARDS AUTOMATIC DETECTION OF SENTIMENTS IN CUSTOMER REVIEWSTOWARDS AUTOMATIC DETECTION OF SENTIMENTS IN CUSTOMER REVIEWS
TOWARDS AUTOMATIC DETECTION OF SENTIMENTS IN CUSTOMER REVIEWS
 
Research Articles Submission - International Journal of Information Sciences ...
Research Articles Submission - International Journal of Information Sciences ...Research Articles Submission - International Journal of Information Sciences ...
Research Articles Submission - International Journal of Information Sciences ...
 
ANALYSIS OF IMAGE WATERMARKING USING LEAST SIGNIFICANT BIT ALGORITHM
ANALYSIS OF IMAGE WATERMARKING USING LEAST SIGNIFICANT BIT ALGORITHMANALYSIS OF IMAGE WATERMARKING USING LEAST SIGNIFICANT BIT ALGORITHM
ANALYSIS OF IMAGE WATERMARKING USING LEAST SIGNIFICANT BIT ALGORITHM
 
Call for Research Articles - 6th International Conference on Machine Learning...
Call for Research Articles - 6th International Conference on Machine Learning...Call for Research Articles - 6th International Conference on Machine Learning...
Call for Research Articles - 6th International Conference on Machine Learning...
 
Online Paper Submission - International Journal of Information Sciences and T...
Online Paper Submission - International Journal of Information Sciences and T...Online Paper Submission - International Journal of Information Sciences and T...
Online Paper Submission - International Journal of Information Sciences and T...
 
Colour Image Steganography Based on Pixel Value Differencing in Spatial Domain
Colour Image Steganography Based on Pixel Value Differencing in Spatial DomainColour Image Steganography Based on Pixel Value Differencing in Spatial Domain
Colour Image Steganography Based on Pixel Value Differencing in Spatial Domain
 
Call for Research Articles - 5th International conference on Advanced Natural...
Call for Research Articles - 5th International conference on Advanced Natural...Call for Research Articles - 5th International conference on Advanced Natural...
Call for Research Articles - 5th International conference on Advanced Natural...
 
International Journal of Information Sciences and Techniques (IJIST)
International Journal of Information Sciences and Techniques (IJIST)International Journal of Information Sciences and Techniques (IJIST)
International Journal of Information Sciences and Techniques (IJIST)
 
Research Article Submission - International Journal of Information Sciences a...
Research Article Submission - International Journal of Information Sciences a...Research Article Submission - International Journal of Information Sciences a...
Research Article Submission - International Journal of Information Sciences a...
 
Design and Implementation of LZW Data Compression Algorithm
Design and Implementation of LZW Data Compression AlgorithmDesign and Implementation of LZW Data Compression Algorithm
Design and Implementation of LZW Data Compression Algorithm
 
Online Paper Submission - 5th International Conference on Soft Computing, Art...
Online Paper Submission - 5th International Conference on Soft Computing, Art...Online Paper Submission - 5th International Conference on Soft Computing, Art...
Online Paper Submission - 5th International Conference on Soft Computing, Art...
 
Submit Your Research Articles - International Journal of Information Sciences...
Submit Your Research Articles - International Journal of Information Sciences...Submit Your Research Articles - International Journal of Information Sciences...
Submit Your Research Articles - International Journal of Information Sciences...
 
PUNJABI SPEECH SYNTHESIS SYSTEM USING HTK
PUNJABI SPEECH SYNTHESIS SYSTEM USING HTKPUNJABI SPEECH SYNTHESIS SYSTEM USING HTK
PUNJABI SPEECH SYNTHESIS SYSTEM USING HTK
 
Call for Papers - 13th International Conference on Cloud Computing: Services ...
Call for Papers - 13th International Conference on Cloud Computing: Services ...Call for Papers - 13th International Conference on Cloud Computing: Services ...
Call for Papers - 13th International Conference on Cloud Computing: Services ...
 

Recently uploaded

CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 

Recently uploaded (20)

CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 

SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC SYSTEMS

  • 1. International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011 20 SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC SYSTEMS Sundarapandian Vaidyanathan1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi, Chennai-600 062, Tamil Nadu, INDIA sundarvtu@gmail.com ABSTRACT This paper investigates the global chaos synchronization of identical Shimizhu-Morioka chaotic systems (Shimizu and Morioka, 1980) by sliding mode control. The stability results derived in this paper for the complete synchronization of identical Shimizu-Morioka chaotic systems are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the sliding mode control method is very effective and convenient to achieve global chaos synchronization of the identical Shimizu-Morioka chaotic systems. Numerical simulations are shown to illustrate and validate the synchronization schemes derived in this paper for the identical Shimizu-Morioka systems. KEYWORDS Sliding Mode Control, Chaos Synchronization, Chaotic Systems, Shimizu-Morioka Systems. 1. INTRODUCTION Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The sensitive nature of chaotic systems is commonly called as the butterfly effect [1]. Synchronization of chaotic systems is a phenomenon which may occur when two or more chaotic oscillators are coupled or when a chaotic oscillator drives another chaotic oscillator. Because of the butterfly effect which causes the exponential divergence of the trajectories of two identical chaotic systems started with nearly the same initial conditions, synchronizing two chaotic systems is seemingly a very challenging problem. In most of the chaos synchronization approaches, the master-slave or drive-response formalism is used. If a particular chaotic system is called the master or drive system and another chaotic system is called the slave or response system, then the idea of the synchronization is to use the output of the master system to control the slave system so that the output of the slave system tracks the output of the master system asymptotically. Since the pioneering work by Pecora and Carroll ([2], 1990), chaos synchronization problem has been studied extensively and intensively in the literature [2-17]. Chaos theory has been applied to a variety of fields such as physical systems [3], chemical systems [4], ecological systems [5], secure communications [6-8], etc. In the last two decades, various schemes have been successfully applied for chaos synchronization such as PC method [2], OGY method [9], active control method [10-12], adaptive control method [13-14], time-delay feedback method [15], backstepping design method [16], sampled-data feedback method [17], etc.
  • 2. International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011 21 In this paper, we derive new results based on the sliding mode control [18-20] for the global chaos synchronization of identical Shimizu-Morioka systems ([21], Shimizu and Morioka, 1980). In robust control systems, the sliding mode control method is often adopted due to its inherent advantages of easy realization, fast response and good transient performance as well as its insensitivity to parameter uncertainties and external disturbances. This paper has been organized as follows. In Section 2, we describe the problem statement and our methodology using sliding mode control (SMC). In Section 3, we discuss the global chaos synchronization of identical Shimizu-Morioka chaotic systems. In Section 4, we summarize the main results obtained in this paper. 2. PROBLEM STATEMENT AND OUR METHODOLOGY USING SMC In this section, we describe the problem statement for the global chaos synchronization for identical chaotic systems and our methodology using sliding mode control (SMC). Consider the chaotic system described by ( ) x Ax f x = + & (1) where n x∈R is the state of the system, A is the n n × matrix of the system parameters and : n n f → R R is the nonlinear part of the system. We consider the system (1) as the master or drive system. As the slave or response system, we consider the following chaotic system described by the dynamics ( ) y Ay f y u = + + & (2) where n y ∈R is the state of the system and m u ∈R is the controller to be designed. If we define the synchronization error as , e y x = − (3) then the error dynamics is obtained as ( , ) , e Ae x y u η = + + & (4) where ( , ) ( ) ( ) x y f y f x η = − (5) The objective of the global chaos synchronization problem is to find a controller u such that lim ( ) 0 t e t →∞ = for all (0) . n e ∈R
  • 3. International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011 22 To solve this problem, we first define the control u as ( , ) u x y Bv η = − + (6) where B is a constant gain vector selected such that ( , ) A B is controllable. Substituting (5) into (4), the error dynamics simplifies to e Ae Bv = + & (7) which is a linear time-invariant control system with single input . v Thus, the original global chaos synchronization problem can be replaced by an equivalent problem of stabilizing the zero solution 0 e = of the system (7) by a suitable choice of the sliding mode control. In the sliding mode control, we define the variable 1 1 2 2 ( ) n n s e Ce c e c e c e = = + + + L (8) where [ ] 1 2 n C c c c = L is a constant vector to be determined. In the sliding mode control, we constrain the motion of the system (7) to the sliding manifold defined by { } | ( ) 0 n S x s e = ∈ = R which is required to be invariant under the flow of the error dynamics (7). When in sliding manifold , S the system (7) satisfies the following conditions: ( ) 0 s e = (9) which is the defining equation for the manifold S and ( ) 0 s e = & (10) which is the necessary condition for the state trajectory ( ) e t of (7) to stay on the sliding manifold . S Using (7) and (8), the equation (10) can be rewritten as [ ] ( ) 0 s e C Ae Bv = + = & (11) Solving (11) for , v we obtain the equivalent control law 1 eq ( ) ( ) ( ) v t CB CA e t − = − (12) where C is chosen such that 0. CB ≠ Substituting (12) into the error dynamics (7), we obtain the closed-loop dynamics as
  • 4. International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011 23 1 ( ) e I B CB C Ae −   = −   & (13) The row vector C is selected such that the system matrix of the controlled dynamics 1 ( ) I B CB C A −   −   is Hurwitz, i.e. it has all eigenvalues with negative real parts. Then the controlled system (13) is globally asymptotically stable. To design the sliding mode controller for (7), we apply the constant plus proportional rate reaching law sgn( ) s q s k s = − − & (14) where sgn( ) ⋅ denotes the sign function and the gains 0, q > 0 k > are determined such that the sliding condition is satisfied and sliding motion will occur. From equations (11) and (14), we can obtain the control ( ) v t as [ ] 1 ( ) ( ) ( ) sgn( ) v t CB C kI A e q s − = − + + (15) which yields [ ] [ ] 1 1 ( ) ( ) , if ( ) 0 ( ) ( ) ( ) , if ( ) 0 CB C kI A e q s e v t CB C kI A e q s e − − − + + > = − + − <    (16) Theorem 1. The master system (1) and the slave system (2) are globally and asymptotically synchronized for all initial conditions (0), (0) n x y R ∈ by the feedback control law ( ) ( , ) ( ) u t x y Bv t η = − + (17) where ( ) v t is defined by (15) and B is a column vector such that ( , ) A B is controllable. Also, the sliding mode gains , k q are positive. Proof. First, we note that substituting (17) and (15) into the error dynamics (4), we obtain the closed-loop error dynamics as [ ] 1 ( ) ( ) sgn( ) e Ae B CB C kI A e q s − = − + + & (18) To prove that the error dynamics (18) is globally asymptotically stable, we consider the candidate Lyapunov function defined by the equation 2 1 ( ) ( ) 2 V e s e = (19) which is a positive definite function on . n R
  • 5. International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011 24 Differentiating V along the trajectories of (18) or the equivalent dynamics (14), we get 2 ( ) ( ) ( ) sgn( ) V e s e s e ks q s s = = − − & & (20) which is a negative definite function on . n R This calculation shows that V is a globally defined, positive definite, Lyapunov function for the error dynamics (18), which has a globally defined, negative definite time derivative . V & Thus, by Lyapunov stability theory [22], it is immediate that the error dynamics (18) is globally asymptotically stable for all initial conditions (0) . n e ∈R This means that for all initial conditions (0) , n e R ∈ we have lim ( ) 0 t e t →∞ = Hence, it follows that the master system (1) and the slave system (2) are globally and asymptotically synchronized for all initial conditions (0), (0) . n x y ∈R This completes the proof. 3. GLOBAL SYNCHRONIZATION OF IDENTICAL SHIMIZU-MORIOKA CHAOTIC SYSTEMS USING SLIDING MODE CONTROL 3.1 Theoretical Results In this section, we apply the sliding mode control results derived in Section 2 for the global chaos synchronization of identical Shimizu-Morioka (SM) chaotic systems ([21], Shimizu and Morioka, 1980). Thus, the master system is described by the SM dynamics 1 2 2 1 2 1 3 2 3 1 3 x x x x x x x x x x λ ξ = = − − = − (21) where 1 2 3 , , x x x are state variables and , , , α β γ ω are positive, constant parameters of the system. The slave system is described by the controlled SM dynamics 1 2 1 2 1 2 1 3 2 2 3 1 3 3 y y u y y y y y u y y y u λ ξ = + = − − + = − + (22) where 1 2 3 , , y y y are state variables and 1 2 3 , , u u u are the controllers to be designed. The Shimizu-Morioka systems (21) and (22) are chaotic when 0.75 λ = and 0.45. ξ =
  • 6. International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011 25 Figure 1 illustrates the double-wing butterfly-shaped attractor of the SM system (21). Figure 1. State Orbits of the Shimizu-Morioka Chaotic System The chaos synchronization error is defined by , ( 1,2,3) i i i e y x i = − = (23) The error dynamics is easily obtained as 1 2 1 2 1 2 1 3 1 3 2 2 2 3 3 1 1 3 e e u e e e y y x x u e e y x u λ ξ = + = − − + + = − + − + (24) We write the error dynamics (24) in the matrix notation as ( , ) e Ae x y u η = + + (25) where 0 1 0 1 0 , 0 0 A λ ξ     = −     −   1 3 1 3 2 2 1 1 0 ( , ) x y y y x x y x η     = − +     −   and 1 2 3 u u u u     =       . (26) The sliding mode controller design is carried out as detailed in Section 2. First, we set u as
  • 7. International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011 26 ( , ) u x y Bv η = − + (27) where B is chosen such that ( , ) A B is controllable. We take B as 1 1 . 1 B     =       (28) In the chaotic case, the parameter values are 0.75 λ = and 0.45. ξ = The sliding mode variable is selected as [ ] 1 2 3 2 1 2 2 2 s Ce e e e e = = − = + − (29) which makes the sliding mode state equation asymptotically stable. We choose the sliding mode gains as 5 k = and 0.1. q = We note that a large value of k can cause chattering and an appropriate value of q is chosen to speed up the time taken to reach the sliding manifold as well as to reduce the system chattering. From Eq. (15), we can obtain ( ) v t as 1 2 3 ( ) 11 6.25 9.1 0.1 sgn( ) v t e e e s = − − + − (30) Thus, the required sliding mode controller is obtained as ( , ) u x y Bv η = − + (31) where ( , ), x y B η and ( ) v t are defined as in the equations (26), (28) and (30). By Theorem 1, we obtain the following result. Theorem 2. The identical Shimizu-Morioka chaotic systems (21) and (22) are globally and asymptotically synchronized for all initial conditions with the sliding mode controller u defined by (31). 3.2 Numerical Results In this section For the numerical simulations, the fourth-order Runge-Kutta method with time- step 6 10 h − = is used to solve the Shimizu-Morioka chaotic systems (21) and (22) with the sliding mode controller u given by (31) using MATLAB. In the chaotic case, the parameter values are
  • 8. International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011 27 0.75 λ = and 0.45. ξ = The sliding mode gains are chosen as 5 k = and 0.1. q = The initial values of the master system (21) are taken as 1 2 3 (0) 30, (0) 25, (0) 14 x x x = = = and the initial values of the slave system (22) are taken as 1 2 3 (0) 4, (0) 18, (0) 20 y y y = = = Figure 2 illustrates the complete synchronization of the identical Shimizu-Morioka chaotic systems (21) and (22). Figure 2. Synchronization of Identical Shimizu-Morioka Chaotic Systems
  • 9. International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011 28 4. CONCLUSIONS In this paper, we have deployed sliding mode control (SMC) to achieve global chaos synchronization for the identical Shimizu-Morioka chaotic systems (1980). Our synchronization results for the identical Shimizu-Morioka chaotic systems have been proved using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the sliding mode control method is very effective and convenient to achieve global chaos synchronization for the identical Shimizu-Morioka chaotic systems. Numerical simulations are also shown to illustrate the effectiveness of the synchronization results derived in this paper using the sliding mode control. REFERENCES [1] Alligood, K.T., Sauer, T. Yorke, J.A. (1997) Chaos: An Introduction to Dynamical Systems, Springer, New York. [2] Pecora, L.M. Carroll, T.L. (1990) “Synchronization in chaotic systems”, Phys. Rev. Lett., Vol. 64, pp 821-824. [3] Lakshmanan, M. Murali, K. (1996) Nonlinear Oscillators: Controlling and Synchronization, World Scientific, Singapore. [4] Han, S.K., Kerrer, C. Kuramoto, Y. (1995) “Dephasing and burstling in coupled neural oscillators”, Phys. Rev. Lett., Vol. 75, pp 3190-3193. [5] Blasius, B., Huppert, A. Stone, L. (1999) “Complex dynamics and phase synchronization in spatially extended ecological system”, Nature, Vol. 399, pp 354-359. [6] Cuomo, K.M. Oppenheim, A.V. (1993) “Circuit implementation of synchronized chaos with applications to communications,” Physical Review Letters, Vol. 71, pp 65-68. [7] Kocarev, L. Parlitz, U. (1995) “General approach for chaotic synchronization with applications to communication,” Physical Review Letters, Vol. 74, pp 5028-5030. [8] Tao, Y. (1999) “Chaotic secure communication systems – history and new results,” Telecommun. Review, Vol. 9, pp 597-634. [9] Ott, E., Grebogi, C. Yorke, J.A. (1990) “Controlling chaos”, Phys. Rev. Lett., Vol. 64, pp 1196- 1199. [10] Ho, M.C. Hung, Y.C. (2002) “Synchronization of two different chaotic systems using generalized active network,” Physics Letters A, Vol. 301, pp 424-428. [11] Huang, L., Feng, R. Wang, M. (2005) “Synchronization of chaotic systems via nonlinear control,” Physical Letters A, Vol. 320, pp 271-275. [12] Chen, H.K. (2005) “Global chaos synchronization of new chaotic systems via nonlinear control,” Chaos, Solitons Fractals, Vol. 23, pp 1245-1251. [13] Lu, J., Wu, X., Han, X. Lü, J. (2004) “Adaptive feedback synchronization of a unified chaotic system,” Physics Letters A, Vol. 329, pp 327-333. [14] Chen, S.H. Lü, J. (2002) “Synchronization of an uncertain unified system via adaptive control,” Chaos, Solitons Fractals, Vol. 14, pp 643-647. [15] Park, J.H. Kwon, O.M. (2003) “A novel criterion for delayed feedback control of time-delay chaotic systems,” Chaos, Solitons Fractals, Vol. 17, pp 709-716. [16] Wu, X. Lü, J. (2003) “Parameter identification and backstepping control of uncertain Lü system,” Chaos, Solitons Fractals, Vol. 18, pp 721-729. [17] Zhao, J. J. Lu (2006) “Using sampled-data feedback control and linear feedback synchronization in a new hyperchaotic system,” Chaos, Solitons Fractals, Vol. 35, pp 376-382.
  • 10. International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011 29 [18] Slotine, J.E. Sastry, S.S. (1983) “Tracking control of nonlinear systems using sliding surface with application to robotic manipulators,” Internat. J. Control, Vol. 38, pp 465-492. [19] Utkin, V.I. (1993) “Sliding mode control design principles and applications to electric drives,” IEEE Trans. Industrial Electronics, Vol. 40, pp 23-36, 1993. [20] Saravanakumar, R., Vinoth Kumar, K. Ray, K.K. (2009) “Sliding mode control of induction motor using simulation approach,” Internat. J. Control of Comp. Sci. Network Security, Vol. 9, pp 93-104. [21] Shimizu, T. Morioka, N. (1980) “On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model,” Physics Letters A, Vol. 76, pp. 201-204. [22] Hahn, W. (1967) The Stability of Motion, Springer, New York. Author Dr. V. Sundarapandian is a Professor (Systems Control Engineering) in the R D Centre at Vel Tech Dr. RR Dr. SR Technical University, Chennai, India. His current research areas are Linear and Nonlinear Control Systems, Chaos Theory, Dynamical Systems, Soft Computing, etc. He has published over 150 refereed international journal publications. He has published over 45 papers in International Conferences and over 90 papers in National Conferences. He has published two text-books titled Numerical Linear Algebra and Probability, Statistics and Queueing Theory with Prentice Hall of India, New Delhi, India. He is a Senior Member of AIRCC and the Editor-in-Chief of the AIRCC international journals – International Journal of Instrumentation and Control Systems and International Journal of Control Theory and Computer Modeling. He is the Associate Editor of many Control Journals like International Journal of Control Theory and Applications, International Journal of Computer Information and Sciences, and International Journal of Advances in Science and Technology. He has delivered many Key Note Lectures on Nonlinear Control Systems, Modern Control Systems, Chaos and Control, Mathematical Modelling, Scientific Computing with SCILAB/MATLAB, etc.