SlideShare a Scribd company logo
1 of 7
Download to read offline
ISSN (e): 2250 – 3005 || Vol, 04 || Issue, 10 || October – 2014 ||
International Journal of Computational Engineering Research (IJCER)
www.ijceronline.com Open Access Journal Page 24
On The Derivatives and Partial Derivatives of A Certain
Generalized Hyper geometric Function
1
Yashwant Singh, 2
Nandavasanthnadiger Kulkarni
1
Department of Mathematics, Government College, Kaladera, Jaipur, Rajasthan, India
2
Department of Mathematics, Dayananda Sagar college of arts, science and commerce, Kumaraswamy layout,
Bangalore, Karnataka, India
I. INTRODUCTION
The H -function of two variables defined and represented by Singh and Mandia [12] in the following manner:
           
         1 2 2 3 2 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
1 1 2 2 2 2
1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
, ; , , ; , , , , ; , ,, : , : ,
, : , ; ,
, ; , , , , ; , , , , ;
,
j j j j j j j j j j j j j
p n n p n n p
j j j j j j j j j j j j j
q m m q m m q
a A c K c e E R e Eo n m n m n
x x
p q p q p qy y b B d d L f F f F S
H x y H H
  
  
 
 
 
     
 
=  
1 2
1 2 32
1
, ( ) ( )
4 L L
x y d d
 
        

   (1.1)
Where
 
 
   
1
1 1
1
1
1
1 1
1
,
1
n
j j j
j
p q
j j j j j j
j n j
a A
a A b B
  
  
     

  
   

      

 
(1.2)
 
    
    
2 2
2 2
2 2
1 1
2
1 1
1
1
j
j
n m
K
j j j j
j j
p q
L
j j j j
j n j m
c d
c d
   
 
   
 
   
    

    
 
 
(1.3)
 
    
    
3 3
3 3
3 3
1 1
3
1 1
1
1
j
j
n m
R
j j j j
j j
p q
S
j j j j
j n j m
e E f F
e E f F
 
 
 
 
   
    

    
 
 
(1.4)
ABSTRACT
In this paper, methods involving derivatives and the Mellin transformation are employed in obtaining finite
summations for the H -function of two variables and certain special partial derivatives for the H -function
of two variables with respect to parameters.
KEY WORDS: Derivatives, Partial derivatives, H -function of two variables, Mellin transformation.
(2000 Mathematics Subject Classification: 33C99)
On The Derivatives and Partial Derivatives…
www.ijceronline.com Open Access Journal Page 25
Where x and y are not equal to zero (real or complex), and an empty product is interpreted as unity
, , ,i i i j
p q n m are non-negative integers such that 0 , ( 1, 2, 3; 2, 3)i i j j
n p o m q i j      . All the
1 1 2 2
( 1, 2, ..., ), ( 1, 2, ..., ), ( 1, 2, ..., ), ( 1, 2, ..., ),j j j j
a j p b j q c j p d j q   
3 3
( 1, 2, ..., ), ( 1, 2, ..., )j j
e j p f j q  are complex
parameters. 2 2
0 ( 1, 2, ..., ), 0 ( 1, 2, ..., )j j
j p j q     (not all zero simultaneously), similarly
3 3
0 ( 1, 2, ..., ), 0 ( 1, 2, ..., )j j
E j p F j q    (not all zero simultaneously). The exponents
3 2 2 3 3 3
( 1, 2, ..., ), ( 1, ..., ), ( 1, 2, ..., ), ( 1, ..., )j j j j
K j n L j m q R j n S j m q      can take on non-
negative values.
The contour 1
L is in  -plane and runs from i  to i  . The poles of   2
( 1, 2, ..., )j j
d j m    lie to
the right and the poles of     2 1
1 ( 1, 2, ..., ), 1 ( 1, 2, ..., )
jK
j j j j j
c j n a A j n             to
the left of the contour. For 2
( 1, 2, ..., )j
K j n not an integer, the poles of gamma functions of the numerator
in (1.3) are converted to the branch points.
The contour 2
L is in  -plane and runs from i  to i  . The poles of   3
( 1, 2, ..., )j j
f F j m   lie to
the right and the poles of     3 1
1 ( 1, 2, ..., ), 1 ( 1, 2, ..., )
jR
j j j j j
e E j n a A j n            to
the left of the contour. For 3
( 1, 2, ..., )j
R j n not an integer, the poles of gamma functions of the numerator in
(1.4) are converted to the branch points.
The functions defined in (1.1) is an analytic function of x and y , if
1 2 1 2
1 1 1 1
0
p p q q
j j j j
j j j j
U    
   
        (1.5)
3 31 1
1 1 1 1
0
p qp q
j j j j
j j j j
V A E B F
   
        (1.6)
The integral in (1.1) converges under the following set of conditions:
1 1 2 2 2 2 1
1 2 21 1 1 1 1 1 1
0
n p m q n p q
j j j j j j j j j
j j n j j m j j n j
L K      
         
               (1.7)
3 31 1 2 2 1
1 2 21 1 1 1 1 1 1
0
n pn p m q q
j j j j j j j j j
j j n j j m j j n j
A A F F S E R E B
         
               (1.8)
1 1
| arg | , | arg |
2 2
x y     (1.9)
The behavior of the H -function of two variables for small values of | |z follows as:
On The Derivatives and Partial Derivatives…
www.ijceronline.com Open Access Journal Page 26
 [ , ] 0 (| | | | ), m ax | |, | | 0H x y x y x y
 
  (1.10)
Where
21
m in R e
j
j m
j
d

 
  
   
 
   
21
m in R e
j
j m
j
f
F

 
  
   
 
   
(1.11)
For large value of | |z ,
   
' '
[ , ] 0 | | , | | , m in | |, | | 0H x y x y x y
 
  (1.12)
Where
21
1
' m ax R e
j
j
j n
j
c
K
 
 
  
 
 
,
31
1
' m ax R e
j
j
j n
j
e
R
E

 
 
  
 
 
(1.13)
Provided that 0U  and 0V  .
If we
take 2 2 2 3 3 3
1( 1, 2, ..., ), 1( 1, ..., ), 1( 1, 2, ..., ), 1( 1, ..., )j j j j
K j n L j m q R j n S j m q          i
n (2.1), the H -function of two variables reduces to H -function of two variables due to [9].
If we set 1 1 1
0n p q   , the H -function of two variables breaks up into a product of two H -function of
one variable namely
       
       2 2 3 3 1 , 1 , 1 , 1 ,2 2 3 3 3
2 2 3 3
1 , 1 , 1 , 1 ,2 2 2 3 3 3
: , ; , , : , ; , ,0 ,0: , : ,
0 ,0: , : ,
: , , , ; : , , , ;
j j j j j j j j j j
n n p n n p
j j j j j j j j j j
m m q m m q
c K c e E R e Em n m n
x
p q p q y d d L f F f F S
H
 
 
 
 
 
 
 
 
 
=
   
   
   
   2 2 3 3 1 , 1 ,1 , 1 , 3 3 32 2 2
2 2 3 3
1 , 1 , 1 , 1 ,2 2 2 3 3 3
, ; , ,, ; , ,, ,
, ,
, , , ; , , , ;
j j j j jj j j j j
n n pn n p
j j j j j j j j j j
m m q m m q
e E R e Ec K cm n m n
p q p q
d d L f F f F S
H x H y
 
 

 
  
  
   
(1.14)
If 0  , we then obtain
         
         1 2 2 3 3 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
1 1 2 2 3 3
1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
, ; , , ; , , , , ; , ,0 , : , : ,
2
, : , : ,
, ; , , , , ; , , , , ;
j j j j j j j j j j j j j
p n n p n n p
j j j j j j j j j j j j j
q m m q m m q
a A c K c e E R e En m n m n
x
p q p q p q
y b B d d L f F f F S
H


       
       

 
 
 
 
 
=
         
         1 2 2 3 3 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
1 1 2 2 3 3
1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
, ; , , ; , , , , ; , ,0 , : , : ,
, : , : ,
, ; , , , , ; , , , , ;
j j j j j j j j j j j j j
p n n p n n p
j j j j j j j j j j j j j
q m m q m m q
a A c K c e E R e En m n m n
x
p q p q p q y b B d d L f F f F S
H
  
  
 
 
 
 
 
(1.15)
         
         1 2 2 3 3 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
1 1 2 2 3 3
1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
, ; , , ; , , , , ; , ,10 , : , : ,
, : , : , 1 , ; , , , , ; , , , , ;
j j j j j j j j j j j j j
p n n p n n p
j j j j j j j j j j j j j
q m m q m m q
a A c K c e E R e En m n m n
x
p q p q p q
b B d d L f F f F S
y
H
  
  
 
 
 
 
 
=
         
         1 2 2 3 3 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
1 1 2 2 3 3
1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
1 , ; , 1 , , 1 , ; , 1 , , 1 , ;0 , : , : ,
, : , : ,
1 , ; , 1 , ; , 1 , , 1 , ; , 1 ,
j j j j j j j j j j j j j
q m m q m m q
j j j j j j j j j j j j j
p n n p n n p
b B d d L f F f F Sn m n m n
x
p q p q p q y a A c K c e E R e E
H
  
  
 
 
    
    
 
 
 
(1.16)
On The Derivatives and Partial Derivatives…
www.ijceronline.com Open Access Journal Page 27
II. MAIN RESULTS
If t be an arbitrary parameter and ', ''  be positive real numbers, then it can be verified that

         
     
1 2 2 3 2
1 1 2 2 2 2
'
1 , 1 ,1 21
''
2
1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
, 1: , : ,
'' ' '' 3
1, 1: , ; ,1 2
(1 ; ', ''), , ; , , ; , ,
, ; ,(1 ; ', ''), , , , ; , , , , ;
,
j j j j j j j j
p n n
j j j j j j j j j j j j j
q m m q m m q
o n m n m n
e
p q p q p q
e n a A c K c
z t
z t b B e d d L f F f F S
D H z t z t t H


 
    
    
 


 
 

  
 
   1 , 1 , 1 ,2 2 3 3 3
, , ; , ,j j j j j
p n n p
e E R e E
 
 
 
 
(2.1)
And
       
       '2 2 3 3 1 , 1 , 1 , 1 ,2 2 3 3 31
''2 2 3 3
2
1 , 1 , 1 , 1 ,2 2 2 3 3 3
: , ; , , : , ; , ,0 ,0: , : ,
1
0 ,0: , : ,
: , , , ; : , , , ;
j j j j j j j j j j
n n p n n p
j j j j j j j j j j
m m q m m q
c K c e E R e Em n m n
z te
p q p q
z t d d L f F f F S
t H


 
 
 
 
 

 
 
 
 
=
   
   
   
   2 2 3 3 1 , 1 ,1 , 1 , 3 3 32 2 2
2 2 3 3
1 , 1 , 1 , 1 ,2 2 2 3 3 3
( 1) ( 1)
, ; , ,, ; , ,, ,
' ''2 2
, ,1 2, , , ; , , , ;
j j j j jj j j j j
n n pn n p
j j j j j j j j j j
m m q m m q
e e
e E R e Ec K cm n m n
p q p q
d d L f F f F S
t H z t t H z t
 
 
 

 
 
  
   
   
(2.2)
Differentiating (2.2) two times w.r.t. t and simplifying, it follows by induction that
       
2 2 3 3
2 2 3 3
1 2
1 2
' 1
1
''
2
1 , 1 , 1 , 1 ,2 2 2 3 3 3
0 ,0: , 1: , 1
0 ,0: 1, 1: 1, 1
, 0 1 2
1
: 1 , ';1 , ;
2
1 1
: , , , ; , 1 , ';1 : , , , ; , 1 , '';1
2 2
!
! !
j j
j j j j j j j j j j
m m q m m q
n
m n m n
p q p q
n n
n n n
e
n c K
z t
e ez t
d d L f F f F S
n
H
n n


 
   
 
 
   

 
 
    
 
    
      
   
 
       2
1 , 1 , 1 , 1 ,2 2 3 3 3
1
, , : 1 , '';1 , ; , ,
2
j j j j j j j j
n n p n n p
e
c n e E R e E 
 
 
  
 
 
 
  
(2.3)
(2.3)readily admits an extension and we have
         
 
1 2 2 3 2
1 1 2 2 2 2
1 2
1 2
' 1
1 , 11
''
2
1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
, : , 1: , 1
, : 1, 1; 1, 1
, 0 1 2
, ; , 1
1 1
, ; , , , , ; , 1 , ';1 , , , , ; , 1 , '';1
2 2
!
! !
j j j
p
j j j j j j j j j j j j j
q m m q m m q
n
o n m n m n
p q p q p q
n n
n n n
a A n
z t
e ez t
b B d d L f F f F S
n
H
n n



    
 
 
   

 

    
    
   
 
       2
1 , 1 , 1 , 1 ,2 2 2 3 3 3
1 1
, ';1 , , ; , , , 1 , '';1 , , ; , ,
2 2
j j j j j j j j j j
n n p n n p
e e
c K c n e E R e E   
 
    
     
   
 
 
  
(2.4)
Considering various other forms that (2.1)admits, similar other results can be obtained.
In the next place, in view of (2.1) we note that the 2-dimensional Mellin-transformation ([6],11.2)
''
M of the
H -function of two variables is given by
''( ) ( , )M H Q    
Provided
2 2
1 1
1
m in R e m ax R e
j j
j
j m j n
j j
d c
K
    
   
     
   
   
       
       '2 2 3 3 1 , 1 , 1 , 1 ,2 2 3 3 31
''2 2 3 3
2
1 , 1 , 1 , 1 ,2 2 2 3 3 3
(1 ; ', ''): , ; , , : , ; , ,0 ,1: , : ,
1,1: , : ,
(1 ; ', ''): , , , ; : , , , ;
j j j j j j j j j j
n n p n n p
j j j j j j j j j j
m m q m m q
e n c K c e E R e Em n m n
z t
p q p q
z t e d d L f F f F S
H


   
   
 
 
 

 
 
 
On The Derivatives and Partial Derivatives…
www.ijceronline.com Open Access Journal Page 28
3 3
1 1
1
m in R e m ax R e
j j
j
j m j n
j j
f e
R
F E

   
   
     
   
   
We also note that, since (1.7 (30) of Erdelyi [7]) for a positive integer N ,
1
1
( 1) ! ( ) '( )
( ) ( ) ; ( ) ,
( ) ! ( ) ( )
kN
k
N a a
a N a a
k N k a k a

  



 
   
  

Partial differentiation of the gamma product 1 ' '' 1 ' ''
2 2
e e
       
   
          
   
w.r.t. the
arbitrary parameter e at e N can be expressed as a finite sum
1 ' '' 1 ' ''
2 2
e N
e e
e
       

     
           
     
1
1
1 ' ''
1 ( 1) ! 2
1 ' ''
2 2 ( ) !
1 ' ''
2
kN
k
N
N N
Nk N k
k
   
   
   


 
    
   
     
   
     
 
 ,
Where ', ''  are positive real numbers.
Thus for 0, 0,n N  we have

         
 
1 2 2 3 2
1
1 1 2 2 2 2
2
1 , 1
1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
, 2: , : ,
2 , : , ; ,
; ', '' , ; ', '' , , ; ,, ,
2 2
1 1
, ; , , , , ; , 1 , ';1 , , , , ; , 1 , '';1
2 2
''
j j j j j
p
j j j j j j j j j j j j j
q m m q m m q
o n m n m n
z
p q p q p q z
e e
a A c
e e
b B d d L f F f F S
M H
     
    
 


   
   
   
    
    
   


       2
1 , 1 , 1 , 1 ,2 2 2 3 3 3
1
; , , , 1 , '';1 , , ; , ,
2
j j j j j j j j
n n p n n p
e
K c n e E R e E
e N
 
 
 
  
 



 
  
1
1
1 ' '' 1 ' ''
! ( 1) ! 2 2
2 ( ) !
1 ' ''
2
kN
k
N N
N N
Nk N k
k
       
   


   
          
    

  
     
 

( , )Q    
         
1 2 2 3 2
1
1 1 2 2 2 2
2
1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
1
, 3: , : ,
3 , 1: , ; ,
1
; ', '' , ; ', '' , ; ', ''
2 2 2
, ; , ; ', '' , , , , ; , , , , ;
2
! ( 1)
''
2 ( ) !
j j j j j j j j j j j j j
q m m q m m q
kN
o n m n m n
z
p q p q p q z
k
N N N
N
b B k d d L f F f F S
N
M H
k N k
     
    
 


 

   
    
   
 
  
 
 
 

         1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
, , ; ,, , ; , , , , ; , ,j j j j j j j j j j j j j
p n n p n n p
a A c K c e E R e E  
 
 
 
 


 
  
(2.5)
But for
( )
( )
, 1, 2
i
i
z u i

  , (2.5) can be written as
On The Derivatives and Partial Derivatives…
www.ijceronline.com Open Access Journal Page 29

         
       
1 2 2 3 2
1
1 1 2 2 2 2
2
1 , 1 , 1 , 1 ,1 2 2 2 3
1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
, 2: , : ,
2 , : , ; ,
; ', '' , ; ', '' , , ; ,, , ; , , , , ; , ,
2 2
, ; , , , , ; , , , , ;
j j j j j j j j j j j j
p n n p n
j j j j j j j j j j j j j
q m m q m m q
o n m n m n
z
p q p q p q z
e e
a A c K c e E R e
b B d d L f F f F S
H
e
      
  

 


   
   
   



  1 ,3 3
j
n p
E
e N


 
 
  
2
1
! ( 1)
2 ( ) !
N
NN
k
N u
k N k




         
     
1 2 2 3 2
1
1 1 2 2 2 2
2
1 , 1 , 1 ,1 2 2 2
1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
, 2: , : ,
2
2 , : , ; ,
; ', '' , ; ', '' , , ; ,, , ; , , , , ;
2 2
, ; , , , , ; , , , , ;
j j j j j j j j j j
p n n p
j j j j j j j j j j j j j
q m m q m m q
N
k o n m n m n
zN k
p q p q p qu z
N N
a A c K c e E
b B d d L f F f F S
D u H
      
  

 
 


   
   
   

 

   1 , 1 ,3 3 3
, ,j j j
n n p
R e E

 
 
  
(2.6)
If we express the derivative into a sum, carry out the differentiations, interchange the order of summation and
simplify, we obtain

         
       
1 2 2 3 2
1
1 1 2 2 2 2
2
1 , 1 , 1 , 1 ,1 2 2 2 3
1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
, 2: , : ,
2 , : , ; ,
; ', '' , ; ', '' , , ; ,, , ; , , , , ; , ,
2 2
, ; , , , , ; , , , , ;
j j j j j j j j j j j j
p n n p n
j j j j j j j j j j j j j
q m m q m m q
o n m n m n
z
p q p q p q z
e e
a A c K c e E R e
b B d d L f F f F S
H
e
      
  

 


   
   
   



  1 ,3 3
j
n p
E
e N


 
 
  
1 2 2 3 2
1 1 2 2 2 2
1
, 2: , : ,
2 , : , ; ,
0
! ( 1)
2 !( ) !
N
o n m n m n
p q p q p q
p
N
H
p N p








         
         1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 31
2
1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
; ', '' , ; ', '' , , ; ,, , ; , , , , ; , ,
2 2
, ; , , , , ; , , , , ;
j j j j j j j j j j j j j
p n n p n n p
j j j j j j j j j j j j j
q m m q m m q
N N
p a A c K c e E R e E
z
z b B d d L f F f F S
      
  
 
 
   
    
   
 
  
  
(2.7)
Similar other results can be obtained by considering products or quotients of such gamma functions whose
partial derivatives w.r.t. the arbitrary parameter involved can be expressed as a finite sum.
For example, for the quotient
(1 ' '' )
(1 ' '' )
e N
e
   
   
    
   
,
We have

         
         
1 2 2 3 2
1
1 1 2 2 2 2
2
1 , 1 , 1 , 11 2 2 2
1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
, 1: , : ,
1, 1: , ; ,
; ', '' , ; ', '' , , ; ,, , ; , , , , ;
2
, ; ,( ; ', ''), , , , ; , , , , ;
j j j j j j j j j j j
p n n p
j j j j j j j j j j j j j
q m m q m m q
o n m n m n
z
p q p q p q z
e
e N a A c K c e E R
b B e d d L f F f F S
H
e
      
    

 

 
 
  
 



 , 1 ,3 3 3
, ,j j
n n p
e E

 
 
  
On The Derivatives and Partial Derivatives…
www.ijceronline.com Open Access Journal Page 30
1 2 2 3 2
1 1 2 2 2 2
1
, 1: , : ,
1, 1: , ; ,
0
( 1)
!
( ) !
kN
o n m n m n
p q p q p q
k
N H
p N k


 





         
           1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 31
2
1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3
; ', '' , , ; , , ; , , , , ; , ,
, ; ,( ; ', ''), , , , ; , , , , ;
j j j j j j j j j j j j j
p n n p n n p
j j j j j j j j j j j j j
q m m q m m q
e N a A c K c e E R e E
z
z b B e k d d L f F f F S
    
    
 
 



 
 
(2.8)
REFERENCES
[1]. Buschman, R.G.; Contigous relations and related formulas for the H-function of Fox, Jnanabha, A2, (1972)39-47.
[2]. Buschman, R.G.; Partial derivatives of the H-function with respect to parameters expressed as finite sums and as integrals, Univ.
Nac. Tucuman Rev. Ser., A24, (1974),149-155.
[3]. Buschman, R.G. and Gupta, K.C.; Contigous relations for the H-function of two variables, Indian J. Pure Appl.
Math.,6(1975),1416-1421.
[4]. Deshpande, V.L.; On the derivatives of G-function of two variables and their applications, Proc. Nat. Acad. Sci. India, 41A,
(1971), 60-68.
[5]. Deshpande, V.L.; Finite sum representations of the H-function of two and more variables with respect to parameters, Indian J.
Pure Appl. Math., 10, (1979), 1514-1524.
[6]. Doetsch, Gustav; Handbuch der Laplace-transformation, Vol. I, Verlag Birkhauser, Basel (1950).
[7]. Erdelyi, A. et. al.; Higher Transcendental Functions, vol. I, McGraw-Hill Book Co., Inc., New York (1953).
[8]. Mathai, A.M.; Products and ratios of generalized gamma variables, Skand. Akt., 55(1972), 193-198.
[9]. Mittal, P.K. & Gupta, K.C.; An integral involving generalized function of two variables. Proc. Indian Acad. Sci. Sect. A(
75)1961), 67-73.
[10]. Reed, I.S.; The Mellin type of double integral, Duke Math. J., 17(1971), 565-572.
[11]. Saxena, R.K.; On the H-function of n-variables, Kyungpook Math. J., 17(1977), 221-226.
[12]. Singh,Y. and Mandia, H.; A study of H -function of two variables, International Journal of Innovative research in
science,engineering and technology,Vol.2,(9)(2013),4914-4921.
[13]. Srivastava, H.M. and Daoust, M.C.; Certain generalized Neumann expansions associated with the Kampe de Feriet function,
Nederl. Akad. Wetensch. Proc. Ser. A, 72=Indag. Math., 31(1969),449-457.
[14]. Srivastava, H.M. and Panda, R.; Some bilateral generating functions for a class of generalized hypergeometric polynomials, J.
Reine Angew. Math., 283/284 (1976a), 265-274.
[15]. Srivastava, H.M. and Panda, R.; Expansion theorems for the H-function of several complex variables, J. Reine Angew. Math.,
228(1976b), 129-145.
[16]. Srivastava, H.M. and Singhal, J.P.; On a class of generalized hypergeometric distributions, Jnanabha, A2(1972), 1-9.
[17]. Tandon, O.P.; Contigous relations for the H-function of n-variables, Indian J. Pure Appl. Math., 11(1980), 321-325.

More Related Content

What's hot

+2 maths pta question bank come book english medium
+2 maths  pta question bank come book  english medium+2 maths  pta question bank come book  english medium
+2 maths pta question bank come book english mediumMdk Raja
 
Certain D - Operator for Srivastava H B - Hypergeometric Functions of Three V...
Certain D - Operator for Srivastava H B - Hypergeometric Functions of Three V...Certain D - Operator for Srivastava H B - Hypergeometric Functions of Three V...
Certain D - Operator for Srivastava H B - Hypergeometric Functions of Three V...inventionjournals
 
Decomposition formulas for H B - hypergeometric functions of three variables
Decomposition formulas for H B - hypergeometric functions of three variablesDecomposition formulas for H B - hypergeometric functions of three variables
Decomposition formulas for H B - hypergeometric functions of three variablesinventionjournals
 
Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...
Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...
Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...inventionjournals
 
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-ssusere0a682
 
International journal of applied sciences and innovation vol 2015 - no 1 - ...
International journal of applied sciences and innovation   vol 2015 - no 1 - ...International journal of applied sciences and innovation   vol 2015 - no 1 - ...
International journal of applied sciences and innovation vol 2015 - no 1 - ...sophiabelthome
 
Chapter 11 16 solucionario larson
Chapter 11 16 solucionario larson  Chapter 11 16 solucionario larson
Chapter 11 16 solucionario larson Bruno Ignacio
 
communication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manualcommunication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manualamirhosseinozgoli
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableAlexander Decker
 
Communication systems solution manual 5th edition
Communication systems solution manual 5th editionCommunication systems solution manual 5th edition
Communication systems solution manual 5th editionTayeen Ahmed
 
Ppfunctions 1
Ppfunctions 1Ppfunctions 1
Ppfunctions 1haleca
 
Geurdes Monte Växjö
Geurdes Monte VäxjöGeurdes Monte Växjö
Geurdes Monte VäxjöRichard Gill
 
Some Special Functions of Complex Variable
Some Special Functions of Complex VariableSome Special Functions of Complex Variable
Some Special Functions of Complex Variablerahulmonikasharma
 
Bpt logarit ltdh 2013
Bpt logarit  ltdh 2013Bpt logarit  ltdh 2013
Bpt logarit ltdh 2013Huynh ICT
 
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...IJERA Editor
 

What's hot (20)

+2 maths pta question bank come book english medium
+2 maths  pta question bank come book  english medium+2 maths  pta question bank come book  english medium
+2 maths pta question bank come book english medium
 
Certain D - Operator for Srivastava H B - Hypergeometric Functions of Three V...
Certain D - Operator for Srivastava H B - Hypergeometric Functions of Three V...Certain D - Operator for Srivastava H B - Hypergeometric Functions of Three V...
Certain D - Operator for Srivastava H B - Hypergeometric Functions of Three V...
 
Decomposition formulas for H B - hypergeometric functions of three variables
Decomposition formulas for H B - hypergeometric functions of three variablesDecomposition formulas for H B - hypergeometric functions of three variables
Decomposition formulas for H B - hypergeometric functions of three variables
 
Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...
Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...
Solving Poisson’s Equation Using Preconditioned Nine-Point Group SOR Iterativ...
 
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
 
International journal of applied sciences and innovation vol 2015 - no 1 - ...
International journal of applied sciences and innovation   vol 2015 - no 1 - ...International journal of applied sciences and innovation   vol 2015 - no 1 - ...
International journal of applied sciences and innovation vol 2015 - no 1 - ...
 
Chapter 11 16 solucionario larson
Chapter 11 16 solucionario larson  Chapter 11 16 solucionario larson
Chapter 11 16 solucionario larson
 
communication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manualcommunication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manual
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariable
 
E2 f1 bộ binh
E2 f1 bộ binhE2 f1 bộ binh
E2 f1 bộ binh
 
Communication systems solution manual 5th edition
Communication systems solution manual 5th editionCommunication systems solution manual 5th edition
Communication systems solution manual 5th edition
 
Función de Bessel y la función hipergeométrica
Función de Bessel y la función hipergeométricaFunción de Bessel y la función hipergeométrica
Función de Bessel y la función hipergeométrica
 
E1 f1 bộ binh
E1 f1 bộ binhE1 f1 bộ binh
E1 f1 bộ binh
 
Ppfunctions 1
Ppfunctions 1Ppfunctions 1
Ppfunctions 1
 
Geurdes Monte Växjö
Geurdes Monte VäxjöGeurdes Monte Växjö
Geurdes Monte Växjö
 
Some Special Functions of Complex Variable
Some Special Functions of Complex VariableSome Special Functions of Complex Variable
Some Special Functions of Complex Variable
 
Indefinite Integral 3
Indefinite Integral 3Indefinite Integral 3
Indefinite Integral 3
 
Bpt logarit ltdh 2013
Bpt logarit  ltdh 2013Bpt logarit  ltdh 2013
Bpt logarit ltdh 2013
 
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
 
Math IV (1st monthly)
Math IV (1st monthly)Math IV (1st monthly)
Math IV (1st monthly)
 

Viewers also liked

Presentation 1
Presentation 1Presentation 1
Presentation 1ktoconnor9
 
Integrated English-dance lesson
Integrated English-dance lessonIntegrated English-dance lesson
Integrated English-dance lessonSaulius Rudelis
 
A project for people who are extremely anxiety prone and in stress and specia...
A project for people who are extremely anxiety prone and in stress and specia...A project for people who are extremely anxiety prone and in stress and specia...
A project for people who are extremely anxiety prone and in stress and specia...Dr Rupa Talukdar
 
Creative Arts in Counseling: Chapter 5 Presentation by Jera Dykes
Creative Arts in Counseling: Chapter 5 Presentation by Jera DykesCreative Arts in Counseling: Chapter 5 Presentation by Jera Dykes
Creative Arts in Counseling: Chapter 5 Presentation by Jera DykesJera Dykes
 
Dance in the ESL Classroom
Dance in the ESL ClassroomDance in the ESL Classroom
Dance in the ESL Classroomariellels
 
Benefits of Art Therapy for Children
Benefits of Art Therapy for ChildrenBenefits of Art Therapy for Children
Benefits of Art Therapy for ChildrenMiriam Galindo
 
Art As A Therapeutic Tool (revised)
Art As A Therapeutic Tool (revised)Art As A Therapeutic Tool (revised)
Art As A Therapeutic Tool (revised)guest8240eb2
 
Expressive Art Therapy
Expressive Art TherapyExpressive Art Therapy
Expressive Art Therapyguestf9ec826
 
Art Therapy by sonya Carrillo
Art Therapy by sonya CarrilloArt Therapy by sonya Carrillo
Art Therapy by sonya CarrilloSonya Carrillo
 
The Role Of Art Therapy In Healing
The Role Of Art Therapy In HealingThe Role Of Art Therapy In Healing
The Role Of Art Therapy In Healingcbyma
 
Dance Movement Therapy with clients with Eating Disorders
Dance Movement Therapy with clients with Eating DisordersDance Movement Therapy with clients with Eating Disorders
Dance Movement Therapy with clients with Eating DisordersMonarch Cove
 

Viewers also liked (17)

Presentation 1
Presentation 1Presentation 1
Presentation 1
 
Croatia school
Croatia schoolCroatia school
Croatia school
 
ZagrebZagreb
ZagrebZagrebZagrebZagreb
ZagrebZagreb
 
Integrated English-dance lesson
Integrated English-dance lessonIntegrated English-dance lesson
Integrated English-dance lesson
 
A project for people who are extremely anxiety prone and in stress and specia...
A project for people who are extremely anxiety prone and in stress and specia...A project for people who are extremely anxiety prone and in stress and specia...
A project for people who are extremely anxiety prone and in stress and specia...
 
Creative Arts in Counseling: Chapter 5 Presentation by Jera Dykes
Creative Arts in Counseling: Chapter 5 Presentation by Jera DykesCreative Arts in Counseling: Chapter 5 Presentation by Jera Dykes
Creative Arts in Counseling: Chapter 5 Presentation by Jera Dykes
 
Dance therapy
Dance therapyDance therapy
Dance therapy
 
Dance in the ESL Classroom
Dance in the ESL ClassroomDance in the ESL Classroom
Dance in the ESL Classroom
 
Benefits of Art Therapy for Children
Benefits of Art Therapy for ChildrenBenefits of Art Therapy for Children
Benefits of Art Therapy for Children
 
Dance therapy
Dance therapyDance therapy
Dance therapy
 
Guidance and Counseling
Guidance and CounselingGuidance and Counseling
Guidance and Counseling
 
Art As A Therapeutic Tool (revised)
Art As A Therapeutic Tool (revised)Art As A Therapeutic Tool (revised)
Art As A Therapeutic Tool (revised)
 
Expressive Art Therapy
Expressive Art TherapyExpressive Art Therapy
Expressive Art Therapy
 
Art Therapy by sonya Carrillo
Art Therapy by sonya CarrilloArt Therapy by sonya Carrillo
Art Therapy by sonya Carrillo
 
The Role Of Art Therapy In Healing
The Role Of Art Therapy In HealingThe Role Of Art Therapy In Healing
The Role Of Art Therapy In Healing
 
Dance Movement Therapy with clients with Eating Disorders
Dance Movement Therapy with clients with Eating DisordersDance Movement Therapy with clients with Eating Disorders
Dance Movement Therapy with clients with Eating Disorders
 
Types of counselling
Types of counsellingTypes of counselling
Types of counselling
 

Similar to D41024030

IRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An ApplicationIRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An ApplicationIRJET Journal
 
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...IOSRJM
 
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )iosrjce
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)paperpublications3
 
The Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletThe Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletScientific Review SR
 
presentation.pptx
presentation.pptxpresentation.pptx
presentation.pptxahmed219190
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671MatcontYu Zhang
 
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...AIST
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) inventionjournals
 
About testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulliAbout testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulliAlexander Decker
 
M.sheela complex ppt
M.sheela complex pptM.sheela complex ppt
M.sheela complex pptMSheelaSheela
 

Similar to D41024030 (20)

Lect17
Lect17Lect17
Lect17
 
IRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An ApplicationIRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An Application
 
D028036046
D028036046D028036046
D028036046
 
End sem solution
End sem solutionEnd sem solution
End sem solution
 
A02402001011
A02402001011A02402001011
A02402001011
 
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
 
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
 
B02404014
B02404014B02404014
B02404014
 
The Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletThe Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar Wavelet
 
presentation.pptx
presentation.pptxpresentation.pptx
presentation.pptx
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671Matcont
 
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
C023014030
C023014030C023014030
C023014030
 
C023014030
C023014030C023014030
C023014030
 
About testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulliAbout testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulli
 
Finite difference & interpolation
Finite difference & interpolationFinite difference & interpolation
Finite difference & interpolation
 
C024015024
C024015024C024015024
C024015024
 
M.sheela complex ppt
M.sheela complex pptM.sheela complex ppt
M.sheela complex ppt
 

D41024030

  • 1. ISSN (e): 2250 – 3005 || Vol, 04 || Issue, 10 || October – 2014 || International Journal of Computational Engineering Research (IJCER) www.ijceronline.com Open Access Journal Page 24 On The Derivatives and Partial Derivatives of A Certain Generalized Hyper geometric Function 1 Yashwant Singh, 2 Nandavasanthnadiger Kulkarni 1 Department of Mathematics, Government College, Kaladera, Jaipur, Rajasthan, India 2 Department of Mathematics, Dayananda Sagar college of arts, science and commerce, Kumaraswamy layout, Bangalore, Karnataka, India I. INTRODUCTION The H -function of two variables defined and represented by Singh and Mandia [12] in the following manner:                      1 2 2 3 2 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 1 1 2 2 2 2 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 , ; , , ; , , , , ; , ,, : , : , , : , ; , , ; , , , , ; , , , , ; , j j j j j j j j j j j j j p n n p n n p j j j j j j j j j j j j j q m m q m m q a A c K c e E R e Eo n m n m n x x p q p q p qy y b B d d L f F f F S H x y H H                     =   1 2 1 2 32 1 , ( ) ( ) 4 L L x y d d                (1.1) Where         1 1 1 1 1 1 1 1 1 , 1 n j j j j p q j j j j j j j n j a A a A b B                                (1.2)             2 2 2 2 2 2 1 1 2 1 1 1 1 j j n m K j j j j j j p q L j j j j j n j m c d c d                                (1.3)             3 3 3 3 3 3 1 1 3 1 1 1 1 j j n m R j j j j j j p q S j j j j j n j m e E f F e E f F                            (1.4) ABSTRACT In this paper, methods involving derivatives and the Mellin transformation are employed in obtaining finite summations for the H -function of two variables and certain special partial derivatives for the H -function of two variables with respect to parameters. KEY WORDS: Derivatives, Partial derivatives, H -function of two variables, Mellin transformation. (2000 Mathematics Subject Classification: 33C99)
  • 2. On The Derivatives and Partial Derivatives… www.ijceronline.com Open Access Journal Page 25 Where x and y are not equal to zero (real or complex), and an empty product is interpreted as unity , , ,i i i j p q n m are non-negative integers such that 0 , ( 1, 2, 3; 2, 3)i i j j n p o m q i j      . All the 1 1 2 2 ( 1, 2, ..., ), ( 1, 2, ..., ), ( 1, 2, ..., ), ( 1, 2, ..., ),j j j j a j p b j q c j p d j q    3 3 ( 1, 2, ..., ), ( 1, 2, ..., )j j e j p f j q  are complex parameters. 2 2 0 ( 1, 2, ..., ), 0 ( 1, 2, ..., )j j j p j q     (not all zero simultaneously), similarly 3 3 0 ( 1, 2, ..., ), 0 ( 1, 2, ..., )j j E j p F j q    (not all zero simultaneously). The exponents 3 2 2 3 3 3 ( 1, 2, ..., ), ( 1, ..., ), ( 1, 2, ..., ), ( 1, ..., )j j j j K j n L j m q R j n S j m q      can take on non- negative values. The contour 1 L is in  -plane and runs from i  to i  . The poles of   2 ( 1, 2, ..., )j j d j m    lie to the right and the poles of     2 1 1 ( 1, 2, ..., ), 1 ( 1, 2, ..., ) jK j j j j j c j n a A j n             to the left of the contour. For 2 ( 1, 2, ..., )j K j n not an integer, the poles of gamma functions of the numerator in (1.3) are converted to the branch points. The contour 2 L is in  -plane and runs from i  to i  . The poles of   3 ( 1, 2, ..., )j j f F j m   lie to the right and the poles of     3 1 1 ( 1, 2, ..., ), 1 ( 1, 2, ..., ) jR j j j j j e E j n a A j n            to the left of the contour. For 3 ( 1, 2, ..., )j R j n not an integer, the poles of gamma functions of the numerator in (1.4) are converted to the branch points. The functions defined in (1.1) is an analytic function of x and y , if 1 2 1 2 1 1 1 1 0 p p q q j j j j j j j j U                 (1.5) 3 31 1 1 1 1 1 0 p qp q j j j j j j j j V A E B F             (1.6) The integral in (1.1) converges under the following set of conditions: 1 1 2 2 2 2 1 1 2 21 1 1 1 1 1 1 0 n p m q n p q j j j j j j j j j j j n j j m j j n j L K                                (1.7) 3 31 1 2 2 1 1 2 21 1 1 1 1 1 1 0 n pn p m q q j j j j j j j j j j j n j j m j j n j A A F F S E R E B                          (1.8) 1 1 | arg | , | arg | 2 2 x y     (1.9) The behavior of the H -function of two variables for small values of | |z follows as:
  • 3. On The Derivatives and Partial Derivatives… www.ijceronline.com Open Access Journal Page 26  [ , ] 0 (| | | | ), m ax | |, | | 0H x y x y x y     (1.10) Where 21 m in R e j j m j d                 21 m in R e j j m j f F                 (1.11) For large value of | |z ,     ' ' [ , ] 0 | | , | | , m in | |, | | 0H x y x y x y     (1.12) Where 21 1 ' m ax R e j j j n j c K            , 31 1 ' m ax R e j j j n j e R E             (1.13) Provided that 0U  and 0V  . If we take 2 2 2 3 3 3 1( 1, 2, ..., ), 1( 1, ..., ), 1( 1, 2, ..., ), 1( 1, ..., )j j j j K j n L j m q R j n S j m q          i n (2.1), the H -function of two variables reduces to H -function of two variables due to [9]. If we set 1 1 1 0n p q   , the H -function of two variables breaks up into a product of two H -function of one variable namely                2 2 3 3 1 , 1 , 1 , 1 ,2 2 3 3 3 2 2 3 3 1 , 1 , 1 , 1 ,2 2 2 3 3 3 : , ; , , : , ; , ,0 ,0: , : , 0 ,0: , : , : , , , ; : , , , ; j j j j j j j j j j n n p n n p j j j j j j j j j j m m q m m q c K c e E R e Em n m n x p q p q y d d L f F f F S H                   =                2 2 3 3 1 , 1 ,1 , 1 , 3 3 32 2 2 2 2 3 3 1 , 1 , 1 , 1 ,2 2 2 3 3 3 , ; , ,, ; , ,, , , , , , , ; , , , ; j j j j jj j j j j n n pn n p j j j j j j j j j j m m q m m q e E R e Ec K cm n m n p q p q d d L f F f F S H x H y                  (1.14) If 0  , we then obtain                    1 2 2 3 3 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 1 1 2 2 3 3 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 , ; , , ; , , , , ; , ,0 , : , : , 2 , : , : , , ; , , , , ; , , , , ; j j j j j j j j j j j j j p n n p n n p j j j j j j j j j j j j j q m m q m m q a A c K c e E R e En m n m n x p q p q p q y b B d d L f F f F S H                              =                    1 2 2 3 3 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 1 1 2 2 3 3 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 , ; , , ; , , , , ; , ,0 , : , : , , : , : , , ; , , , , ; , , , , ; j j j j j j j j j j j j j p n n p n n p j j j j j j j j j j j j j q m m q m m q a A c K c e E R e En m n m n x p q p q p q y b B d d L f F f F S H                 (1.15)                    1 2 2 3 3 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 1 1 2 2 3 3 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 , ; , , ; , , , , ; , ,10 , : , : , , : , : , 1 , ; , , , , ; , , , , ; j j j j j j j j j j j j j p n n p n n p j j j j j j j j j j j j j q m m q m m q a A c K c e E R e En m n m n x p q p q p q b B d d L f F f F S y H                 =                    1 2 2 3 3 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 1 1 2 2 3 3 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 1 , ; , 1 , , 1 , ; , 1 , , 1 , ;0 , : , : , , : , : , 1 , ; , 1 , ; , 1 , , 1 , ; , 1 , j j j j j j j j j j j j j q m m q m m q j j j j j j j j j j j j j p n n p n n p b B d d L f F f F Sn m n m n x p q p q p q y a A c K c e E R e E H                           (1.16)
  • 4. On The Derivatives and Partial Derivatives… www.ijceronline.com Open Access Journal Page 27 II. MAIN RESULTS If t be an arbitrary parameter and ', ''  be positive real numbers, then it can be verified that                  1 2 2 3 2 1 1 2 2 2 2 ' 1 , 1 ,1 21 '' 2 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 , 1: , : , '' ' '' 3 1, 1: , ; ,1 2 (1 ; ', ''), , ; , , ; , , , ; ,(1 ; ', ''), , , , ; , , , , ; , j j j j j j j j p n n j j j j j j j j j j j j j q m m q m m q o n m n m n e p q p q p q e n a A c K c z t z t b B e d d L f F f F S D H z t z t t H                                1 , 1 , 1 ,2 2 3 3 3 , , ; , ,j j j j j p n n p e E R e E         (2.1) And                '2 2 3 3 1 , 1 , 1 , 1 ,2 2 3 3 31 ''2 2 3 3 2 1 , 1 , 1 , 1 ,2 2 2 3 3 3 : , ; , , : , ; , ,0 ,0: , : , 1 0 ,0: , : , : , , , ; : , , , ; j j j j j j j j j j n n p n n p j j j j j j j j j j m m q m m q c K c e E R e Em n m n z te p q p q z t d d L f F f F S t H                      =                2 2 3 3 1 , 1 ,1 , 1 , 3 3 32 2 2 2 2 3 3 1 , 1 , 1 , 1 ,2 2 2 3 3 3 ( 1) ( 1) , ; , ,, ; , ,, , ' ''2 2 , ,1 2, , , ; , , , ; j j j j jj j j j j n n pn n p j j j j j j j j j j m m q m m q e e e E R e Ec K cm n m n p q p q d d L f F f F S t H z t t H z t                       (2.2) Differentiating (2.2) two times w.r.t. t and simplifying, it follows by induction that         2 2 3 3 2 2 3 3 1 2 1 2 ' 1 1 '' 2 1 , 1 , 1 , 1 ,2 2 2 3 3 3 0 ,0: , 1: , 1 0 ,0: 1, 1: 1, 1 , 0 1 2 1 : 1 , ';1 , ; 2 1 1 : , , , ; , 1 , ';1 : , , , ; , 1 , '';1 2 2 ! ! ! j j j j j j j j j j j j m m q m m q n m n m n p q p q n n n n n e n c K z t e ez t d d L f F f F S n H n n                                                      2 1 , 1 , 1 , 1 ,2 2 3 3 3 1 , , : 1 , '';1 , ; , , 2 j j j j j j j j n n p n n p e c n e E R e E                  (2.3) (2.3)readily admits an extension and we have             1 2 2 3 2 1 1 2 2 2 2 1 2 1 2 ' 1 1 , 11 '' 2 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 , : , 1: , 1 , : 1, 1; 1, 1 , 0 1 2 , ; , 1 1 1 , ; , , , , ; , 1 , ';1 , , , , ; , 1 , '';1 2 2 ! ! ! j j j p j j j j j j j j j j j j j q m m q m m q n o n m n m n p q p q p q n n n n n a A n z t e ez t b B d d L f F f F S n H n n                                            2 1 , 1 , 1 , 1 ,2 2 2 3 3 3 1 1 , ';1 , , ; , , , 1 , '';1 , , ; , , 2 2 j j j j j j j j j j n n p n n p e e c K c n e E R e E                            (2.4) Considering various other forms that (2.1)admits, similar other results can be obtained. In the next place, in view of (2.1) we note that the 2-dimensional Mellin-transformation ([6],11.2) '' M of the H -function of two variables is given by ''( ) ( , )M H Q     Provided 2 2 1 1 1 m in R e m ax R e j j j j m j n j j d c K                                       '2 2 3 3 1 , 1 , 1 , 1 ,2 2 3 3 31 ''2 2 3 3 2 1 , 1 , 1 , 1 ,2 2 2 3 3 3 (1 ; ', ''): , ; , , : , ; , ,0 ,1: , : , 1,1: , : , (1 ; ', ''): , , , ; : , , , ; j j j j j j j j j j n n p n n p j j j j j j j j j j m m q m m q e n c K c e E R e Em n m n z t p q p q z t e d d L f F f F S H                       
  • 5. On The Derivatives and Partial Derivatives… www.ijceronline.com Open Access Journal Page 28 3 3 1 1 1 m in R e m ax R e j j j j m j n j j f e R F E                        We also note that, since (1.7 (30) of Erdelyi [7]) for a positive integer N , 1 1 ( 1) ! ( ) '( ) ( ) ( ) ; ( ) , ( ) ! ( ) ( ) kN k N a a a N a a k N k a k a                  Partial differentiation of the gamma product 1 ' '' 1 ' '' 2 2 e e                            w.r.t. the arbitrary parameter e at e N can be expressed as a finite sum 1 ' '' 1 ' '' 2 2 e N e e e                                  1 1 1 ' '' 1 ( 1) ! 2 1 ' '' 2 2 ( ) ! 1 ' '' 2 kN k N N N Nk N k k                                             , Where ', ''  are positive real numbers. Thus for 0, 0,n N  we have              1 2 2 3 2 1 1 1 2 2 2 2 2 1 , 1 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 , 2: , : , 2 , : , ; , ; ', '' , ; ', '' , , ; ,, , 2 2 1 1 , ; , , , , ; , 1 , ';1 , , , , ; , 1 , '';1 2 2 '' j j j j j p j j j j j j j j j j j j j q m m q m m q o n m n m n z p q p q p q z e e a A c e e b B d d L f F f F S M H                                                   2 1 , 1 , 1 , 1 ,2 2 2 3 3 3 1 ; , , , 1 , '';1 , , ; , , 2 j j j j j j j j n n p n n p e K c n e E R e E e N                    1 1 1 ' '' 1 ' '' ! ( 1) ! 2 2 2 ( ) ! 1 ' '' 2 kN k N N N N Nk N k k                                                ( , )Q               1 2 2 3 2 1 1 1 2 2 2 2 2 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 1 , 3: , : , 3 , 1: , ; , 1 ; ', '' , ; ', '' , ; ', '' 2 2 2 , ; , ; ', '' , , , , ; , , , , ; 2 ! ( 1) '' 2 ( ) ! j j j j j j j j j j j j j q m m q m m q kN o n m n m n z p q p q p q z k N N N N b B k d d L f F f F S N M H k N k                                                     1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 , , ; ,, , ; , , , , ; , ,j j j j j j j j j j j j j p n n p n n p a A c K c e E R e E                  (2.5) But for ( ) ( ) , 1, 2 i i z u i    , (2.5) can be written as
  • 6. On The Derivatives and Partial Derivatives… www.ijceronline.com Open Access Journal Page 29                    1 2 2 3 2 1 1 1 2 2 2 2 2 1 , 1 , 1 , 1 ,1 2 2 2 3 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 , 2: , : , 2 , : , ; , ; ', '' , ; ', '' , , ; ,, , ; , , , , ; , , 2 2 , ; , , , , ; , , , , ; j j j j j j j j j j j j p n n p n j j j j j j j j j j j j j q m m q m m q o n m n m n z p q p q p q z e e a A c K c e E R e b B d d L f F f F S H e                                 1 ,3 3 j n p E e N          2 1 ! ( 1) 2 ( ) ! N NN k N u k N k                     1 2 2 3 2 1 1 1 2 2 2 2 2 1 , 1 , 1 ,1 2 2 2 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 , 2: , : , 2 2 , : , ; , ; ', '' , ; ', '' , , ; ,, , ; , , , , ; 2 2 , ; , , , , ; , , , , ; j j j j j j j j j j p n n p j j j j j j j j j j j j j q m m q m m q N k o n m n m n zN k p q p q p qu z N N a A c K c e E b B d d L f F f F S D u H                                     1 , 1 ,3 3 3 , ,j j j n n p R e E         (2.6) If we express the derivative into a sum, carry out the differentiations, interchange the order of summation and simplify, we obtain                    1 2 2 3 2 1 1 1 2 2 2 2 2 1 , 1 , 1 , 1 ,1 2 2 2 3 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 , 2: , : , 2 , : , ; , ; ', '' , ; ', '' , , ; ,, , ; , , , , ; , , 2 2 , ; , , , , ; , , , , ; j j j j j j j j j j j j p n n p n j j j j j j j j j j j j j q m m q m m q o n m n m n z p q p q p q z e e a A c K c e E R e b B d d L f F f F S H e                                 1 ,3 3 j n p E e N          1 2 2 3 2 1 1 2 2 2 2 1 , 2: , : , 2 , : , ; , 0 ! ( 1) 2 !( ) ! N o n m n m n p q p q p q p N H p N p                            1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 31 2 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 ; ', '' , ; ', '' , , ; ,, , ; , , , , ; , , 2 2 , ; , , , , ; , , , , ; j j j j j j j j j j j j j p n n p n n p j j j j j j j j j j j j j q m m q m m q N N p a A c K c e E R e E z z b B d d L f F f F S                                    (2.7) Similar other results can be obtained by considering products or quotients of such gamma functions whose partial derivatives w.r.t. the arbitrary parameter involved can be expressed as a finite sum. For example, for the quotient (1 ' '' ) (1 ' '' ) e N e                  , We have                      1 2 2 3 2 1 1 1 2 2 2 2 2 1 , 1 , 1 , 11 2 2 2 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 , 1: , : , 1, 1: , ; , ; ', '' , ; ', '' , , ; ,, , ; , , , , ; 2 , ; ,( ; ', ''), , , , ; , , , , ; j j j j j j j j j j j p n n p j j j j j j j j j j j j j q m m q m m q o n m n m n z p q p q p q z e e N a A c K c e E R b B e d d L f F f F S H e                              , 1 ,3 3 3 , ,j j n n p e E        
  • 7. On The Derivatives and Partial Derivatives… www.ijceronline.com Open Access Journal Page 30 1 2 2 3 2 1 1 2 2 2 2 1 , 1: , : , 1, 1: , ; , 0 ( 1) ! ( ) ! kN o n m n m n p q p q p q k N H p N k                               1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 31 2 1 , 1 , 1 , 1 , 1 ,1 2 2 2 3 3 3 ; ', '' , , ; , , ; , , , , ; , , , ; ,( ; ', ''), , , , ; , , , , ; j j j j j j j j j j j j j p n n p n n p j j j j j j j j j j j j j q m m q m m q e N a A c K c e E R e E z z b B e k d d L f F f F S                      (2.8) REFERENCES [1]. Buschman, R.G.; Contigous relations and related formulas for the H-function of Fox, Jnanabha, A2, (1972)39-47. [2]. Buschman, R.G.; Partial derivatives of the H-function with respect to parameters expressed as finite sums and as integrals, Univ. Nac. Tucuman Rev. Ser., A24, (1974),149-155. [3]. Buschman, R.G. and Gupta, K.C.; Contigous relations for the H-function of two variables, Indian J. Pure Appl. Math.,6(1975),1416-1421. [4]. Deshpande, V.L.; On the derivatives of G-function of two variables and their applications, Proc. Nat. Acad. Sci. India, 41A, (1971), 60-68. [5]. Deshpande, V.L.; Finite sum representations of the H-function of two and more variables with respect to parameters, Indian J. Pure Appl. Math., 10, (1979), 1514-1524. [6]. Doetsch, Gustav; Handbuch der Laplace-transformation, Vol. I, Verlag Birkhauser, Basel (1950). [7]. Erdelyi, A. et. al.; Higher Transcendental Functions, vol. I, McGraw-Hill Book Co., Inc., New York (1953). [8]. Mathai, A.M.; Products and ratios of generalized gamma variables, Skand. Akt., 55(1972), 193-198. [9]. Mittal, P.K. & Gupta, K.C.; An integral involving generalized function of two variables. Proc. Indian Acad. Sci. Sect. A( 75)1961), 67-73. [10]. Reed, I.S.; The Mellin type of double integral, Duke Math. J., 17(1971), 565-572. [11]. Saxena, R.K.; On the H-function of n-variables, Kyungpook Math. J., 17(1977), 221-226. [12]. Singh,Y. and Mandia, H.; A study of H -function of two variables, International Journal of Innovative research in science,engineering and technology,Vol.2,(9)(2013),4914-4921. [13]. Srivastava, H.M. and Daoust, M.C.; Certain generalized Neumann expansions associated with the Kampe de Feriet function, Nederl. Akad. Wetensch. Proc. Ser. A, 72=Indag. Math., 31(1969),449-457. [14]. Srivastava, H.M. and Panda, R.; Some bilateral generating functions for a class of generalized hypergeometric polynomials, J. Reine Angew. Math., 283/284 (1976a), 265-274. [15]. Srivastava, H.M. and Panda, R.; Expansion theorems for the H-function of several complex variables, J. Reine Angew. Math., 228(1976b), 129-145. [16]. Srivastava, H.M. and Singhal, J.P.; On a class of generalized hypergeometric distributions, Jnanabha, A2(1972), 1-9. [17]. Tandon, O.P.; Contigous relations for the H-function of n-variables, Indian J. Pure Appl. Math., 11(1980), 321-325.