SlideShare a Scribd company logo
1 of 36
Get Homework/Assignment Done
Homeworkping.com
Homework Help
https://www.homeworkping.com/
Research Paper help
https://www.homeworkping.com/
Online Tutoring
https://www.homeworkping.com/
click here for freelancing tutoring sites
EXPERIMENT 1
COMPUTATION OF PARAMETERS AND MODELLING OF TRANSMISSION LINES
1.1 AIM
(i) To determine the positive sequence line parameters L and C per phase per kilometer of a three phase
single and double circuit transmission lines for different conductor arrangements.
(ii) To understand modelling and performance of short, medium and long lines.
1.2 OBJECTIVES
i. To become familiar with different arrangements of conductors of a three phase single and double circuit
transmission lines and to compute the GMD and GMR for different
arrangements.
ii. To compute the series inductance and shunt capacitance per phase, per km of a three phase single and
double circuit overhead transmission lines with solid and bundled conductors.
iii. To become familiar with per phase equivalent of a three phase short and medium lines and to evaluate
the performances for different load conditions.
iv. (a) To become familiar with the theory of long transmission line and study the effect of distributed
parameters on voltage and currents, along the line, (b) calculate the surge
Impedance and surge impedance loading.
Three Phase - Symmetrical Spacing:
Three Phase - Asymmetrical Transposed:
Nominal П-Model
Bundle conductors
Equivalent П-Model
1 EXERCISES:
1.1 A three-phase transposed line composed of one ACSR, 1,43,000 cmil, 47/7 Bobolink conductor
per phase with flat horizontal spacing of 11m between phases a and b and between phases b and c. The
conductors have a diameter of 3.625 cm and a GMR of
1.439 cm. The line is to be replaced by a three conductor bundle of ACSR 477,000-cmil,
26/7 Hawk conductors having the same cross sectional area of aluminum as the single conductor line. The
conductors have a diameter of 2.1793 cm and a GMR of 0.8839 cm.
The new line will also have a flat horizontal configurations, but it is to be operated at a
Higher voltage and therefore the phase spacing is increased to 14m as measured from the
Centre of the bundles. The spacing between the conductors in the bundle is 45 cm.
(a) Determine the inductance and capacitance per phase per kilometer of the above two
Lines.
(b) Verify the results using the available program.
(c) Determine the percentage change in the inductance and capacitance in the bundle
Conductor system. Which system is better and why?
1.2 A single circuit three phase transposed transmission line is composed of four ACSR 1,272,000 cmil
conductors per phase with flat horizontal spacing of 14 m between
Phases a and b and between phases b and c. The bundle spacing is 45 cm. The
Conductor diameter is 3.16 cm.
a) Determine the inductance and capacitance per phase per kilometer of the line.
b) Verify the results using available program.
1.3 A 345 kV double circuit three phase transposed line is composed of two ACSR,
1,431,000 cmil, 45/7 bobolink conductors per phase with vertical conductor configuration
as shown in Fig. 1.13. The conductors have a diameter of 1.427 in and the bundle spacing
is 18 in.
a) Find the inductance and capacitance per phase per kilometer of the line.
b) Verify the results using the available program.
c) If we change the relative phase position to acb-a’b’c’, determine the inductance and
Capacitance per unit length using available program.
d) Which relative phase position is better and why?
1.4 A 230 kV, 60 HZ three phase transmissions is 160 km long. The per phase resistance is 0.124 Ω per
km and the reactance is 0.497 Ω per km and the shunt admittance is 3.30 x 10-6
∟900
seimens per km It
delivers 40MW at 220 KV with 0.9 power factor lagging. Use medium line П model
i. Determine the voltage and current at sending end and also compute voltage
regulation and efficiency.
ii. Verify the results using the available program
1.5 A three phase transmission line has a per phase impedance of Z=0.03+j0.04 Ω per km and a per phase
shunt admittance of y=j4.0 x 10-6
Simens per km. The line is 200
km long. Obtain ABCD parameters of the transmission line. The line is sending 407 MW
and 7.833 MVAR at 350KV.Use medium П model
1.6 A three phase 50 Hz, 400 kV transmission line is 250 km long. The line parameters per phase per unit
length are found to be
r=0.02 Ω/km L=1.06mH/km C=0.011 µF/km
Determine the following using the program available use long line model.
(a) The sending end voltage, current and efficiency when the load at the receiving end is
640 MW at 0.8 power factor logging at 400 kV.
(b) The receiving end voltage, current, efficiency and losses when 480 MW and 320
MVAR are being transmitted at 400 kV from the sending end.
c) The sending end voltage, current and efficiency and losses when the receiving end load
Impedance is 230 Ω at 400KV
(d) The receiving end voltage when the line is open circuited and is energized with
400kV at the sending end. Also, determine the reactance and MVAR of a three phase shunt reactor to be
installed at the receiving end in order to limit the no load receiving end voltage to 400 kV.
(e) The MVAR and capacitance to be installed at the receiving end for the loading
Condition in (a) to keep the receiving end voltage at 400 kV when the line is
Energized with 400 kV at the sending end.
(f) The line voltage profile along the line for the following cases: no load, rated load of
800 MW at 0.8 power factor at sending end at 400 kV, line terminated in the SIL and
Short circuited line.
EXPERIMENT 2
FORMATION OF BUS ADMITTANCE AND IMPEDANCE MATRICES AND SOLUTION OF
NETWORKS
1. Using a text editor create an input file in the sequence given below for formation of
Y and Z matrix for the 6-bus system. Check the results obtained using the available Software. Run the
program and print the modified Y matrix for the 6 bus system for the removal
of the following components, one at-a-time:
a. Line 4-6
b. Transformer 4-3
SYSTEM DATA
NO OF BUSES : 6 NO OF TRANSMISSION LINES: 5
NO OF TRANSFORMERS : 2 NO OF SHUNT ELEMENTS : 2
SYSTEM BASE MVA : 100.00
TRANSMISSION LINE DATA
To understand the formation of network matrices, the bus admittance matrix Y and the bus impedance
2.1 AIM
solution using these matrices.
matrix Z of a power network, to effect certain required changes on these matrices and to obtain network
2.2 OBJECTIVES
i. To write a computer program to form bus admittance matrix Y, given the impedances of
the elements of a power network and their connectivity (mutual coupling between elements
neglected)
ii. To modify the matrix Y to effect specified changes in the configuration of the network.
iii. To obtain network solution, that is, to determine the bus voltages given bus current injections.
iv. To obtain certain specified columns of the bus impedance matrix Z or the full matrix Z using the
factors of Y or the inverse of Y.
L NO S BUS R BUS R_IN_PU X_IN_PU HBC_IN_PU RAT
1 1 6 .1230 .5180 .0000 55.0000
2 1 4 .0800 .3700 .0000 65.0000
3 4 6 .0870 .4070 .0000 30.0000
4 5 2 .2820 .6400 .0000 55.0000
5 2 3 .7230 1.0500 .0000 40.0000
TRANSFORMER DATA
TNO S BUS R BUS R_IN_PU X_IN_PU TAP_IN_PU RAT
1 6 5 .0000 .3000 1.0000 30.0000
2 4 3 .0000 1330 1.0000 55.0000
SHUNT CAP/REACTOR DATA
S NO BUS NO SHUNT_MVAR
1 4 2.0000
2 6 2.5000
EXPERIMENT 3
LOAD FLOW ANALYSIS - I: SOLUTION OF LOAD FLOW AND RELATED
PROBLEMS USING GAUSS-SEIDEL METHOD
AIM
(i) To understand, the basic aspects of steady state analysis of power systems that are
required for effective planning and operation of power systems.
(ii) To understand, in particular, the mathematical formulation of load flow model in complex form and a
simple method of solving load flow problems of small sized system using Gauss-Seidel iterative
algorithm
OBJECTIVES
i. To write a computer program to solve the set of non-linear load flow equations using Gauss-Seidel Load
Flow (GSLF) algorithm and present the results in the format required for system studies.
ii. To investigate the convergence characteristics of GSLF algorithm for normally loaded small system for
different acceleration factors.
iii. To investigate the effects on the load flow results, load bus voltages and line transformer loadings, due
to the following control actions:
a. Variation of voltage settings of P-V buses
b. Variation of shunt compensation at P-Q buses
c. Variation of tap settings of transformer
d. Generation shifting or rescheduling.
INPUT FILE:
POWER FLOW ANALYSIS I: SOLUTION OF POWER FLOW RELATED PROBLEMS BY GAUSS-
SEIDEL
CASE:1 6-BUS SYSTEM-BASE CASE-POOR VOLTAGE PROFILE:
ACCN FACTOR=1
NAME:
ROLL NO:
VII SEMESTER
DATE:
6 2 4 5 2 1 2 100 100.00 .0001 1.0000
1 0.0000 .0000 .0000 0.0 0.00 1.020
2 50.0000 .0000 .0000 100.0 -20.00 1.020
3 55.000 13.000 1.000
4 0.000 0.000 1.000
5 30.000 18.000 1.000
6 50.000 5.000 1.000
1 1 6 0.1230 0.518 0.000 55.0
2 1 4 0.0800 0.370 0.000 65.0
3 4 6 0.0870 0.407 0.000 30.0
4 5 2 0.2820 0.640 0.000 55.0
5 2 3 0.7230 1.050 0.000 40.0
1 4 3 0.0000 0.1330 1.000 30.0
2 6 5 0.0000 0.3000 1.000 55.0
1 4 2.0
2 6 2.5
EXPERIMENT 4
PROBLEMS USING NEWTON-RAPHSON AND FAST DECOUPLED
METHOD
AIM:
(i} To understand the following for medium and large scale power systems.
a) Mathematical formulation of load flow problem in real variable form.
b) Newton Raphson method of load flow (NRLF) solution.
c) Fast decoupled method of load flow (FDLP) solution.
(ii) To become proficient in the usage of software for practical problem solving in the
areas of power system planning and operation.
(iii) To become proficient in the usage of software in solving problems using Newton-
Raphson and Fast decoupled load flow methods.
OBJECTIVES:
(i) To investigate the convergence characteristics of load flow solutions using NRLF and FDLP
algorithms for different sized systems and compare the same with that of GSLF algorithm.
(ii) To investigate the effect of variation of voltage control parameters such as generator voltage
magnitude setting, off nominal tap ratio of transformer and MVAR injections of shunt
capacitors/inductor on the voltage profile and transmission loss of the system.
(iii) To assess the effect of single outage contingencies such as a line outages and generator
outages.
(iv) To investigate the convergence of load flow solution of a two bus system for different load
conditions, understand the existence of maximum load ability condition and to verify the both,
numerically (using load flow package) analytically using the two bus system equations.
EXERCISE:
1. Obtain the load flow solution for the given 6 bus 5 line power system shown in experiment 2
using NRLF method using AU POWER LAB SOFTWARE.
EXPERIMENT 5
FAULT ANALYSIS
AIM:
To become familiar with modeling and analysis of power system under faulted condition and to
compute the fault level post fault voltage and current for different types of fault both symmetrical and
unsymmetrical.
OBJECTIVES:
1. To carryout fault analysis for symmetrical and unsymmetrical faults in small systems using the
Thevenin’s equivalent circuit in the sequences and phase domains at the faulted bus but without
the use of software.
2. To conduct fault analysis on a given system using software available and obtain fault analysis
report with fault level and current at the faulted point and post-fault voltages and currents in the
network for the following faults
(a) Three-phase-to-ground
(b) Line-to-ground
(c) Line-to-Line
(d) Double-line-to-ground
3. To study the variation in fault levels and currents in the system when it is interconnected to
neighboring systems.
EXERCISE:
1. It is proposed to conduct fault analysis on two alternative configurations of 4-bus system given in
fig shown below.
G1, G2: 100MVA, 20KV, x+
= x-
=xd” = 20%; x0
=4%; xn = 5%
T1, T2: 100MVA, 20KV/345KV; xleak = 8%
L1, L2: x+
=x-
=15%; x0
=50% on the base of 100MVA
The first configuration, case (a), comprises star-star transformers and the second configuration, case
(b), comprises star-delta transformers.
i. For a three phase to ground (solid) fault, line to line fault, line to ground fault, double line to
ground fault at bus 4, determine the fault current and MVA at faulted bus, post fault bus voltages,
fault current distribution in different elements of the network using Thevenin equivalent circuit.
Draw a single-line diagram showing the above results.
ii. Check the results obtained in (i) using available fault analysis software.
The 4-bus system in (i) above is interconnected to a neighboring system at tie bus 5, through a tie-line 3-
5, whose parameters are the same as that of lines L1 and L2. The fault level at bus 5 in the neighboring
system is 500MVA. Recompute the fault distribution in different elements of the network using available
software.
2. (i) For the system given in the figure apply a line-to-ground (solid) fault at bus 4 and determine the
fault current and fault MVA at faulted bus, post-fault bus voltages and fault current contribution by each
generator, both in sequences and phase domain using the available software.
(ii) Check the fault current at bus 4 computed in (i) above using Thevenin equivalent and the
respective sequence network connection.
EXPERIMENT 6
TRANSIENT AND SMALL SIGNAL STABILITY ANALYSIS OF
SINGLE-MACHINE INFINITE BUS SYSTEM
AIM :
To become familiar with various aspects of the transient and small signal stability analysis of
Single-Machine Infinite Bus (SMIB) system.
OBJECTIVES :
(i) To understand modeling and analysis of transient and small signal stability of a SMIB power
system.
(ii) To examine the transient stability of a SMIB and determine the critical clearing time of the system
through simulation by trial and error.
(iii) To determine transient stability margin (MW) for different fault conditions.
(iv) To obtain linearised swing equation and to determine the roots of characteristic equation ,
damped frequency of oscillation and undamped natural frequency.
EXERCISE :
(i) A power system comprising a thermal generating plant with four 555 MVA,
24kV, 60HZ units supplies power to an infinite bus through a transformer and two transmission
lines. The data for the system in p.u on a base of 2220 MVA, 24 kV is given below. An equivalent
generator representing the 4 units, characterized by classical model:
Xd’ = 0.3 p.u H= 3.5 MW-s/MVA Transformer : X = 0.15 p.u
Line 1 : X = 0.5 p.u Line 2 : X = 0.93 p.u
Plant operating condition: P = 0.9 p.u ; pf= 0.9(lag) ; Et = 1.0 p.u
It is proposed to examine the transient stability of the system for a three-phase-to ground fault at
the end of line 2 near H.T bus occurring at time t= 0 sec. The fault is cleared at 0.07 sec. by
simultaneous opening of the two circuit breakers at both the ends of line 2.(case1)
(a) Calculate the initial conditions necessary for the classical model of the
machine for the above pre-fault operating condition, determine the
critical clearing angle and time for the fault using “Equal Area Criterion”
and hence comment on the stability of the system for this fault.
SOLUTION:
Computation of stator current
It = S*
/ E * T = (0.9-j0.436) / 1.0 = 0.9- j0.436
Computation of the terminal voltage
E’
= Et + jXd’
It = 1.1305 + j0.27
Computation of infinite bus voltage
EB = Et –Jx4(i4+Ji)
X4 = Xtr + X3 = 0.47 p.u.
Ir = P / Et = 0.9 p.u.
I = -Q / E = - 0.435p.u.
Eb = 0.7933-j0.4275
Computation of angle of separation between E’
and Eb
δ = ∟E1’
- ∟Eb = 0.7282 rad
If the infinite bus is taken as reference then
E’
= 1.16 ∟41074
It = 0.99∟2.52 Et =1∟28.31
Critical clearing angle:
Cosδ = {PM(δMAX – δ0) + P3MAXcosδMAX – P2MAXcosδ0 } / { P3MAX – P2MAX}
P3MAX = Eb E’
/ (Xd’
+ Xtr + Xline-1) = 1.098
P2MAX = 0
To find δMAX :
After the fault clearance
δMAX = 180 – sin-1
(Pe / P3max) = 124.94 degree = 2.18 rad
Substituting in the above formula
Cos δc= (0.9(2.18-0.728) + 1.09 * cos124.94)/1.09
δc = 51.88 deg = 0.905 rad
To find critical clearing time:
Tc = √(2H(δc – δ0)) / Π f0 PM = 0.085s
b) Simulate the above sequence of fault occurrence and clearance using the
Software available and plot the swing curve (rotor angle versus time) as
well as the curves showing angular velocity and real power delivered by
the plant versus time
(c) Determine the critical clearing angle and time for the above fault through
trial and error method by repeating the simulation in (b) for different fault
clearing times and compare the critical clearing angle and time obtained.(case2)
Case 3:
Three-phase-to-ground fault at the mid point of line 2 occurs at t=0 sec and is
cleared at t=0.07 sec by the simultaneous opening of two breakers in line 2.
Comment on the transient stability of the system under case 2 and case 3 and
compare the severity of the faults; cases 1,2 and 3 from the point of view of
maximum rotor swing and also by comparing the clearing time margin available.
3. Determine the steady-state stability margin (MW) available for the system
under the given operating condition in exercise 6.5.1. Also determine the
transient stability margin (MW) available for the operating condition given in
exercise 6.5.1. for the three cases of fault, case 1, case 2 and case 3. Can the
severity of the fault be measured using this margin?
Steady state stability margin = (Pmax – P0)* base .MW.
Pmax = EV / X = E’
Eb / X
= 1.16 * 0.9 / (0.328 + 0.3 + 0.15 )
= 1.347 M.W.
Substituting the value in the above formula
Stability margin = (1.347 – 0.9) * 2220
= 992.34 M.W.
Transient stability margin = (Pmax (stable) – P0) M.W.
4. Is proposed to examine the small-signal stability characteristics of the
system given in exercise 1. about the steady-state operating condition
following the loss of line 2; Assume the damping coefficient KD = 1.5 p.u
torque / p.u speed deviation.
(a) Write the linearized swing equation of the system. Obtain the
characteristic equation, its roots, damped frequency of oscillation in Hz,
damping ratio and undamped natural frequency. Obtain also the force-free
time response Δδ (t) for an aintial condition perturbation Δδ = 5 degree and Δω(t) = 0.
5. Repeat the small-signal stability analysis carried out using the software
package in exercise 4 with the following parameters and comment on the
relative stability of each case:
(a) KD = 0 p.u and –1.5 p.u
(b) KD = 1.5 p.u but with P = 1.2, 1.5 and 2.0 p.u
EXPERIMENT 7
TRANSIENT STABILITY ANALYSIS OF MULTIMACHINE POWER SYSTEMS
AIM:
(i) To become familiar with modelling aspects of synchronous machines and network for
transient stability analysis of multi-machine power systems.
(ii) To become familiar with the state-of-the-art algorithm for simplified transient stability
simulation involving only classical machine models for synchronous machines.
(iii) To understand system behaviour when subjected to large disturbances in the presence of
synchronous machine controllers.
(iv) To become proficient in the usage of the software to tackle real life problems
encountered in the areas of power system planning and operation.
OBJECTIVES
(i) To assess the transient stability of a multimachine power system when subjected to a
common disturbance sequence: fault application on a transmission line followed by fault
removal and line opening.
(ii) To determine the critical clearing time.
(iii) To observe system response and understand its behaviour during a full load rejection at a
substation with and without controllers.
(iv) To observe system response and understand its behaviour during loss of a major
generating station.
(v) To understand machine and system behaviour during loss of excitation.
(vi) To study the effect of load relief provided by under frequency load shedding scheme.
SOFTWARE REQUIRED
MULTIMACHINE TRANSIENT STABILITY module of AU Power lab or equivalent
EXERCISES
1.. Transient stability analysis of a 9-bus, 3-machine, 60 Hz power system with the following system
modelling requirements:
i. Classical model for all synchronous machines, models for excitation and speed
governing systems not included.
(a) Simulate a three-phase fault at the end of the line from bus 5 to bus 7 near bus 7 at time = 0.0 sec. Assume
that the fault is cleared successfully by opening the line 5-7 after 5 cycles
( 0.083 sec) . Observe the system for 2.0 seconds
(b) Obtain the following time domain plots:
- Relative angles of machines 2 and 3 with respect to machine 1
- Angular speed deviations of machines 1, 2 and 3 from synchronous speed
- Active power variation of machines 1, 2 and 3.
(c) Determine the critical clearing time by progressively increasing the fault clearing
time.
EXPERIMENT 8
ELECTROMAGNETIC TRANSIENTS IN POWER SYSTEMS
AIM:
a. To study and understand the electromagnetic transient phenomena in power systems caused due to
switching and fault by using Electromagnetic Transients Program (EMTP).
b. To become proficient in the usage of EMTP to address problems in the areas of over voltage
protection and mitigation and insulation coordination of EHV systems.
OBJECTIVES:
(i) To study the transients due to energization of a single-phase and three-phase load from a non-
ideal source with line represented by Π – model.
(ii) To study the transients due to energization of a single-phase and three-phase load from a non-
ideal source and line represented by distributed parameters.
(iii) To study the transient over voltages due to faults for a SLG fault at far end of a line.
(iv) To study the Transient Recovery Voltage (TRV) associated with a breaker for a three-phase
fault.
SOFTWARE REQUIRED: ELECTROMAGNETIC TRANSIENTS PROGRAM –
UBC version module of AU Power lab or equivalent
EXCERCISE:
Prepare the data for the network given in the Annexure and run EMTP. Obtain the plots of source
voltage, load bus voltage and load current following the Energization of a single-phase load. Comment on
the results. Double the source inductance and obtain the plots of the variables mentioned earlier.
Comment on the effect of doubling the source inductance.
Energization of a single phase 0.95 pf load from a non ideal source and a more realistic line
representation (lumped R, L, C):
Circuit Diagram:
Exercise
1 Prepare the data for the network given in the Annexure 8.1 and run EMTP. Obtain the plots of
source voltage, load bus voltage and load current following the energisation of a single-phase load
and obtain the plots
Output
2. Prepare the data for the network given in the Annexure 8.2 and run EMTP. Obtain the plots of
voltages of phases a, b, c at the load bus and switch A current of phase a following energisation of
the three-phase load by closing the switches simultaneously.
Output
3. Prepare the data for the network given in the Annexure 8.3 and run EMTP. Obtain the plots of
voltages at source, Bus 1 and Bus 12 following the energisation of the single phase open ended line
represented by distributed parameters. Obtain the plot of voltage at Bus 12 by expanding the time
scale by a factor of ten, i.e, plot the voltage for the first 2.5 millisecond.
Output
4 Prepare the data for energisation of a three-phase load fed by a three-phase distributed
parameter line as given in the Annexure 8.4 and run EMTP. Obtain the plots of voltages at source,
Bus 1 and phase a voltage at Bus 12 following the energisation by simultaneous closing of all the
three phases
Output
5 Prepare the data for the network given in the Annexure 8.5 and run EMTP. Obtain the plots of
voltages at source, Bus 1 and Bus 2 following a single lineto- ground fault at the far end, Bus 2.
Output
6. Prepare the data for the network given in Annexure 8.6 and run EMTP. Obtain the transient
recovery voltage (TRV) in each phase for a three-phase fault at Bus 1. The TRVs are the voltages
across the switches between Bus1 and BKR1.
Output
INPUT DATA:
ENERGIZATION OF LOAD-EMTP EXPERIMENT NO: 1
.5E-4 .5E-1 -1 1
SRC BUS1 .0 6.0 .0
BUS1 BUS12 .05 2.0 .0
BUS1 .0 .0 .81
BUS12 .0 .0 .84
BUS12BUS13S .0 6.0 .0
BUS13L 22.61 19.72 .0
BUS13SBUS13L .1E-2 .9999E+4 1
14 SRC 1 .5634E+2 .60E+2 .0E+0 -.1E+1 .9999E+4
SRCBUS13L
EXPERIMENT 9
LOAD-FREQUENCY DYNAMICS OF SINGLE-AREA AND TWO AREA POWER
SYSTEMS
AIM:
To become familiar with the modeling and analysis of load-frequency and tie-line flow dynamics
of a power system with load-frequency controller (LFC) under different control modes and to design
improved controllers to obtain the best system response.
OBJECTIVES:
1. To study the time response (both steady state and transient) of area frequency deviation and
transient power output change of regulating generator following a small load change in a single-
area power system with the regulating generator under “free governor action”, for different
operating conditions and different system parameters.
2. To study the time response (both steady state and transient) of area frequency deviation and
turbine power output change of regulating generator following a small load change in a single-
area power system provided with an integral frequency controller, to study the effect of changing
the gain of the controller and to select the best gain for the controller to obtain the best response.
3. To analyze the time response of area frequency deviations and net interchange deviation
following a small load change in one of the areas in an inter connected two-area power system
under different control modes, to study the effect of changes in controller parameters on the
response and to select the optimal set of parameters for the controller to obtain the best response
under different operating conditions.
SOFTWARE REQUIRED:
‘LOAD FREQUENCY CONTROL’ module of AU Power Lab or equivalent
EXERCISES
1. It is proposed to simulate using the software available the load-frequency dynamics of a single-
area power system whose data are given below:
Rated capacity of the area = 2000 MW
Normal operating load = 1000 MW
Nominal frequency = 50 Hz
Inertia constant of the area = 5.0 s
Speed regulation (governor droop)
of all regulating generators = 4 percent
Governor time constant = 0.08 s
Turbine time constant = 0.3 s
Assume linear load–frequency characteristics which means the connected system load increases by one
percent if the system frequency increases by one percent. The area has a governor control but not a load-
frequency controller. The area is subjected to a load increase of 20 MW.
(a) Simulate the load-frequency dynamics of this area using available software and check the following:
(i) Steady – state frequency deviation ∆fs in Hz. Compare it with the hand-calculated value using “Area
Frequency Response Coefficient” (AFRC).
(ii) Plot the time response of frequency deviation ∆f in Hz and change in turbine power ∆PT in p.u MW
upto 20 sec. What is value of the peak overshoot in ∆f?
(b) Repeat the simulation with the following changes in operating condition, plot the time
response of ∆f and compare the steady-state error and peak overshoot.
(i) Speed regulation = 3 percent
(ii) Normal operating load = 1500 MW
Hz
MANUAL CALCULATION: A)LOAD FREQ SINGLE AREA- PROBLEM 1(a)
Steady State frequency deviation Δfs=-(M/β) Hz
where
β=Area Frequency Response Coefficient(AFRC)=D+(1/R) Hz/p.u.M.W.
M is in p.u.MW =20/2000=0.01 p.u.MW/Hz
HzMWD /20
50*
100
1
1000*
100
1
=












= D =20/2000=0.01 p.u.MW/Hz
HzMW
R
/1000
50*
100
4
20001
=






=
1/R=1000/2000=0.5 p.u.MW/Hz
β=0.01+0.5=0.51 p.u MW/Hz
Δfs = -(M/β)Hz = -(0.01)/(0.51)
Δfs = -0.0196 Hz
MANUAL CALCULATION: B)LOAD FREQ SINGLE AREA- PROBLEM 1(b)
Steady State frequency deviation Δfs=-(M/β) Hz
where
β=Area Frequency Response Coefficient(AFRC)=D+(1/R) Hz/p.u.M.W.
M is in p.u.MW =20/2000=0.01 p.u.MW/Hz
HzMWD /30
50*
100
1
1500*
100
1
=












= D =30/2000=0.015 p.u.MW/Hz
HzMW
R
/1333
50*
100
3
20001
=






=
1/R=1333/2000=0.666 p.u.MW/Hz
β=0.015+0.666=0.681 p.u MW/Hz
Δfs = -(M/β)Hz = -(0.01)/(0.681)
Δfs = -0.01467 Hz
COMPARISON OF A AND B:
D R Δfs Hz Δf peak Hz
0.01 4% -0.0196 -0.0256
0.015 3% -0.0155 -0.0215
2. Assume that the single-area power system given in exercise 9.5.1 is provided with a load frequency
controller (an integral controller) whose gain KI can be tuned.
(a) Carryout the simulation for the same disturbance of load change of 20 MW for different values of KI,
obtain the time response ∆f for each case, critically compare these responses and comment on their
suitability for practical application.
9-13
(Hint: For choosing different values of KI, first set the governor and turbine time
constants to zero and determine analytically the value of integral gain KI,cr to have
critical damping on the response ∆f (t). Choose the range of KI to include
KI,cr as 0 ≤ KI ≤ ( KI,cr + 1.0 ) )
(b) From the investigations made in (a) above, choose the best value of KI which gives an “optimal”
response ∆f (t) with regard to peak overshoot, settling time, steady-state error and Mean Sum- Squared-
Error (MSSE).
3 It is proposed to simulate the load frequency dynamics of a two-area power system. Both the areas are
identical and has the system parameters given in exercise 9.5.1. Assume that the tie-line has a capacity of
Pmax 1-2 = 200 MW and is operating at a power angle of ( δ01- δ20 ) = 300. Assume that both the areas do
not have load –frequency controller. Area 2 is subjected to a load increase of 20 MW.
(a) Simulate the load-frequency dynamics of this system using available software and
check the following:(i). Steady-State frequency deviation ∆fs in Hz and tie-line flow deviation, ∆P12,S
inp.u. MW. Compare them with hand-calculated values using AFRC’s
(ii) Compare result ∆fs with that obtained in single area simulation in exercise 1
(a), and comment on the support received from area 1 and the advantages of
interconnecting with neighbouring areas .
(iii) Plot the time responses, ∆f1(t), ∆f2 (t), ∆PT1(t) , ∆PT2(t) and ∆P12(t). Comment
on the peak overshoot of ∆f1, and ∆f2.
MANUAL CALCULATION:TWO AREA LOAD FREQUENCY CONTROL PROGRAM
OUTPUT
Δfs = -(M1+M2)/( β1+β2)
M1 =0;M2=0.01 p.u .MW/Hz
β1 =β2=0.51 p.u .MW/Hz (identical areas)
Δfs = - (0.01)/(0.51+0.51)= - 0.0098 Hz
ΔP1-2s = - ΔP1-2s = ( β1M2- β2M1)/ ( β1+β2) p.u .MW
= (0.51*0.01)/(0.51+0.51)
= 10 MW.
Comparison of manual calculation and simulated values.
MANUALY CALCULATED VALUES SIMULATED VALUES
Δfs = - 0.0098 Hz
ΔP1-2s=10MW
EXPERIMENT 10
ECONOMIC DISPATCH IN POWER SYSTEM
AIM:
To understand the basics of the problem of Economic Dispatch of optimally adjusting the
generation schedules of thermal generating units to meet the system load which are required for unit
commitment & Economic operation of power systems.
To understand the development of co-ordination equation (the mathematical model for ED)
without and with losses & operating constraints and solution of these equations using direct and iterative
methods.
OBJECTIVE:
 To write a program for solving ED problem without and with transmission losses for a given load
condition/daily load cycle using
(a)Direct method
(b)Lambda-iteration method
 To study the effect of reduction in operation cost resulting due to changing from simple load
dispatch to economic load dispatch.
 To study the effect of change in fuel cost on the economic dispatch for a given load.
 To study the use of ED in finalizing the unit commitment for tomorrow’s operating conditions of
power system.
EXERCISE:
1. The system load in a power system varies from 250MW to 1250MW. Two thermal units are
operating at all times and meeting the system load. Incremental fuel cost in hundreds of rupees per Megawatt
hour for the units are
dF1/dP1 = 0.0056P1 + 5.6 ; P1 in MW
dF2/dP2 = 0.0067P2 + 4.5 ; P2 in MW
The operating limits of both the units are given by
100<=P1, P2<=625MW
Assume that the transmission loss is negligible.
a) Determine the economic (minimum fuel cost) generation schedule of each unit, the incremental
fuel cost of each unit and the incremental cost of received power for different load levels from 250
to 1250MW in steps of 100MW.
b) Draw the following characteristics from the results obtained in (a)
i. Incremental cost of received power in hundreds of rupees per MW hr versus system load
in MW.
ii. Unit outputs P1 and P2 in MW versus system load in MW.
c) Determine the saving in fuel cost in hundreds of rupees per hour for the economic distribution of a
total load of 550MW between the two units compared with equal distribution of that load between
the two units.
INPUT:
Economic Dispatch - Lambda Iteration Method Without Loss
AU Power lab
VII
0.001 0.05 10
2 $/hr $/MWhr
0.0028 5.6 0 100 625
0.00335 4.5 0 100 625
1
250 1250 100
OUTPUT:
Manual Calculation:
λ = (PD + b1/2a1 +b2/2a2)/(1/2a1+1/2a2)
For PD = 550 MW
λ= 550 + ((5.6/0.0056 + 4.5/0.0067)/(1/0.0056 + 1/0.0067))
⇒ λ = 6.77691 Rs MW/Hr
PG1
*
= λ-b1/2a1 = (6.77691-5.6)/0.0056 = 210.626 MW
PG2
*
= λ-b2/2a2 = (6.77691-4.5)/0.0067 = 339.8374 MW
Fuel Cost:
FC1 = 0.0028 PG12 + 5.6 PG1 + C1 Rs/Hr
FC2 = 0.00335 PG12 + 4.5 PG1 + C2 Rs/Hr
Where C1 & C2 are unknown constants
Fuel Cost for optimal schedule (PG1
*
, PG2
*
)
FC1 = 0.0028(210.1626) 2+5.6(210.1626) + C1 Rs/Hr
FC2 = 0.00335(339.8374) 2 + 4.5(339.8374) + C2 Rs/Hr
FC
*
=FC1+FC2=3216.74+C1C2 Rs/Hr
Fuel Cost for equal Sharing: [PG1 = 275 = PG2]
FC1 = 0.0028(275) 2+5.6(275) + C1 Rs/Hr
FC2 = 0.00335(275) 2 + 4.5(275) + C2 Rs/Hr
FC1 + FC2 = 3242.59 + C1C2 Rs/Hr
Total Saving:
FC = FC – FC
*
= 3242.59 – 3216.74 = 25.85 Rs/Hr
EXERCISE :
2. For the system in exercise 4.3 take into account the transmission loss.
a. Determine the economic loading of each unit to meet a total customer load of 550MW, using
the program developed in 4.2
b. What is transmission loss of the system at the economic loading?
c. Determine the penalty factor for each unit and the incremental fuel cost at each generating bus.
d. Determine also the incremental cost of received power (or system λ).Assume that the loss
coefficient in per unit on a 100MVA base of customer load level of 550MW are given by
B11 = 0.008383183
B12 = B21 = -0.000049448
B10/2 = 0.000375082
B22 = 0.005963568
B20/2 = 0.000194971
B00 = 0.000090121
INPUT:
Economic Dispatch - Lambda Iteration Method With Loss
AU Powerlab
2001399126
VII
0.01 0.05 10
2 $/hr $/MWhr
0.0028 5.6 0 100 625
0.00335 4.5 0 100 625
0.008383183 -0.000049448
0.000049448 0.005963568
0.000375082 0.000194971
0.000090121 100
0
550OUTPUT :
Manual Calculation:
B11 = 8.38*10-3
B12 = -0.049*10-3
B21 = 0
B22 = 5.96*10-3
PL = B11P1
2
+ P2
2
B22 + P1P2B12
PD = P1 + P2 – PL
PD = 550 MW
λ = (550 + 5.6/0.0056 + 4.5/0.0067) / (1/0.0056 + 1/0.0067)
⇒ λ = 6.7767 Rs/MW-Hr
For First Iteration
Assume P2 = 0
P1 = [1-(b1/λ)-(2B12P2)]/[(2a1/λ)+2B11]
P1 = [1-(5.6/6.776)-0]/[(0.0056/6.776)+0.01676]
P1 = 9.8686 MW
P2 = [1-(b2/λ)-(2B21P1)]/[(2a2/λ)+2B22]
P2 = [1-(4.5/6.776)-0]/[(0.0067/6.776)+0.01192]
P2 = 23.02 MW
PL = P1
2
B11 + P2
2
B22 + P1P2B12
= [(9.8686)2
*(0.00838) + (26.02)2
*(0.00596) + 9.8686*26.02*-0.049*10-3
]
PL = 4.8387 MW
PD = P1 + P2 – PL
= 9.8686 + 26.02 – 4.838
PD = 31.04 MW
: 3292.06 $/hr
EXERCISE :
3. A power system with negligible transmission loss, the system load varies from a peak of 1200MW
to a valley of 500MW. There are three thermal generating units which can be committed to take
the system load. The fuel cost data and generation operation limit data are given below
In hundreds of rupees per hour:
F1 = 392.7 + 5.544P1 + 0.001093P1
2
; P1 in MW
F2 = 217.0 + 5.495P2 + 0.001358P2
2
; P2 in MW
F3 = 65.5 + 6.695P3 + 0.004049P3
2
; P3 in MW
Generation Limit:
150<=P1<=600 MW
100<=P2<=400 MW
50<=P3<=200 MW
There are no other constant on system operation. Obtain an optimum (minimum fuel cost)
with commitment table for each load level taken in steps of 100 MW from 1200 to 500.Adopt
“Brute force enumeration” technique. For each load level obtain economic schedule using
economic dispatch program developed in ex 4.3 for each feasible combination of units and choose
the lowest fuel cost schedule among the combination.
Show the details of economic schedule and the component and total cost of operation for
each feasible combination of unit for the load level of 900MW.
INPUT:
Economic Dispatch - Lambda Iteration Method
Without Loss
AU Power lab
2003557
VII
0.001 0.05 5
3 $/hr $/MWhr
0.001093 5.544 392.7 150 600
0.001358 5.495 217.0 100 400
0.004049 6.695 65.50 50 200
1
500 1200 100

More Related Content

What's hot

POWER SYSTEM ANALYSIS-2
POWER SYSTEM ANALYSIS-2POWER SYSTEM ANALYSIS-2
POWER SYSTEM ANALYSIS-2M Ugur Kebir
 
Static analysis of power systems
Static analysis of power systemsStatic analysis of power systems
Static analysis of power systemsJhon Miranda Ramos
 
power system analysis lecture 1
power system analysis lecture 1power system analysis lecture 1
power system analysis lecture 1Audih Alfaoury
 
Exp 2 (1)2. To plot Swing Curve for one Machine System
Exp 2 (1)2.	To plot Swing Curve for one Machine SystemExp 2 (1)2.	To plot Swing Curve for one Machine System
Exp 2 (1)2. To plot Swing Curve for one Machine SystemShweta Yadav
 
L 3,t-1,eee, 2018-2019
L 3,t-1,eee, 2018-2019L 3,t-1,eee, 2018-2019
L 3,t-1,eee, 2018-2019TamimAhmed43
 
Power System Simulation Lab (Formation of Y-Bus & Z-Bus Matrix)
Power System Simulation Lab (Formation of Y-Bus  & Z-Bus Matrix)Power System Simulation Lab (Formation of Y-Bus  & Z-Bus Matrix)
Power System Simulation Lab (Formation of Y-Bus & Z-Bus Matrix)Mathankumar S
 
Matlab simpowersystem
Matlab simpowersystemMatlab simpowersystem
Matlab simpowersystemAmeen San
 
Power System Modelling And Simulation Lab
Power System Modelling And Simulation LabPower System Modelling And Simulation Lab
Power System Modelling And Simulation LabSachin Airan
 
Exp 1 (1) 1. To compute the fault level, post-fault voltages and currents for...
Exp 1 (1) 1.	To compute the fault level, post-fault voltages and currents for...Exp 1 (1) 1.	To compute the fault level, post-fault voltages and currents for...
Exp 1 (1) 1. To compute the fault level, post-fault voltages and currents for...Shweta Yadav
 
Power system analysis material -Mathankumar.s VMKVEC
Power system analysis material -Mathankumar.s  VMKVECPower system analysis material -Mathankumar.s  VMKVEC
Power system analysis material -Mathankumar.s VMKVECMathankumar S
 
Power System Analysis unit - I
Power System Analysis unit - IPower System Analysis unit - I
Power System Analysis unit - Iarunatshare
 
Unit I - Basic Electrical and Electronics Engineering
Unit I - Basic Electrical and Electronics EngineeringUnit I - Basic Electrical and Electronics Engineering
Unit I - Basic Electrical and Electronics Engineeringarunatshare
 
Ee423 fault analysis_notes
Ee423  fault analysis_notesEe423  fault analysis_notes
Ee423 fault analysis_notesAcot Benard
 
Power flow solution
Power flow solutionPower flow solution
Power flow solutionBalaram Das
 
Exp 5 (1)5. Newton Raphson load flow analysis Matlab Software
Exp 5 (1)5.	Newton Raphson load flow analysis Matlab SoftwareExp 5 (1)5.	Newton Raphson load flow analysis Matlab Software
Exp 5 (1)5. Newton Raphson load flow analysis Matlab SoftwareShweta Yadav
 

What's hot (20)

POWER SYSTEM ANALYSIS-2
POWER SYSTEM ANALYSIS-2POWER SYSTEM ANALYSIS-2
POWER SYSTEM ANALYSIS-2
 
Static analysis of power systems
Static analysis of power systemsStatic analysis of power systems
Static analysis of power systems
 
EE6501 - Power System Analysis
EE6501 - Power System AnalysisEE6501 - Power System Analysis
EE6501 - Power System Analysis
 
power system analysis lecture 1
power system analysis lecture 1power system analysis lecture 1
power system analysis lecture 1
 
Exp 2 (1)2. To plot Swing Curve for one Machine System
Exp 2 (1)2.	To plot Swing Curve for one Machine SystemExp 2 (1)2.	To plot Swing Curve for one Machine System
Exp 2 (1)2. To plot Swing Curve for one Machine System
 
L 3,t-1,eee, 2018-2019
L 3,t-1,eee, 2018-2019L 3,t-1,eee, 2018-2019
L 3,t-1,eee, 2018-2019
 
Fundamental Power System
Fundamental Power SystemFundamental Power System
Fundamental Power System
 
Power System Simulation Lab (Formation of Y-Bus & Z-Bus Matrix)
Power System Simulation Lab (Formation of Y-Bus  & Z-Bus Matrix)Power System Simulation Lab (Formation of Y-Bus  & Z-Bus Matrix)
Power System Simulation Lab (Formation of Y-Bus & Z-Bus Matrix)
 
Matlab simpowersystem
Matlab simpowersystemMatlab simpowersystem
Matlab simpowersystem
 
Power System Modelling And Simulation Lab
Power System Modelling And Simulation LabPower System Modelling And Simulation Lab
Power System Modelling And Simulation Lab
 
Exp 1 (1) 1. To compute the fault level, post-fault voltages and currents for...
Exp 1 (1) 1.	To compute the fault level, post-fault voltages and currents for...Exp 1 (1) 1.	To compute the fault level, post-fault voltages and currents for...
Exp 1 (1) 1. To compute the fault level, post-fault voltages and currents for...
 
PROBLEMSETEE443.docx
PROBLEMSETEE443.docxPROBLEMSETEE443.docx
PROBLEMSETEE443.docx
 
Power system analysis material -Mathankumar.s VMKVEC
Power system analysis material -Mathankumar.s  VMKVECPower system analysis material -Mathankumar.s  VMKVEC
Power system analysis material -Mathankumar.s VMKVEC
 
Unit1 8
Unit1 8Unit1 8
Unit1 8
 
Power System Analysis unit - I
Power System Analysis unit - IPower System Analysis unit - I
Power System Analysis unit - I
 
Unit I - Basic Electrical and Electronics Engineering
Unit I - Basic Electrical and Electronics EngineeringUnit I - Basic Electrical and Electronics Engineering
Unit I - Basic Electrical and Electronics Engineering
 
Ee423 fault analysis_notes
Ee423  fault analysis_notesEe423  fault analysis_notes
Ee423 fault analysis_notes
 
Power flow solution
Power flow solutionPower flow solution
Power flow solution
 
Exp 5 (1)5. Newton Raphson load flow analysis Matlab Software
Exp 5 (1)5.	Newton Raphson load flow analysis Matlab SoftwareExp 5 (1)5.	Newton Raphson load flow analysis Matlab Software
Exp 5 (1)5. Newton Raphson load flow analysis Matlab Software
 
Loadflowsynopsis
LoadflowsynopsisLoadflowsynopsis
Loadflowsynopsis
 

Similar to 199833536 ee2404-lab-manual

Load Flow and PV Curve Analysis of a 220kV Substation
Load Flow and PV Curve Analysis of a 220kV SubstationLoad Flow and PV Curve Analysis of a 220kV Substation
Load Flow and PV Curve Analysis of a 220kV SubstationIRJET Journal
 
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter Topology
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter TopologyApplication of SVM Technique for Three Phase Three Leg Ac/Ac Converter Topology
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter TopologyIOSR Journals
 
EXPERIMENTAL DETERMINATION AND ANALYSIS OF TRANSMISSION LINE PERFORMANCE
EXPERIMENTAL DETERMINATION AND ANALYSIS OF TRANSMISSION LINE PERFORMANCEEXPERIMENTAL DETERMINATION AND ANALYSIS OF TRANSMISSION LINE PERFORMANCE
EXPERIMENTAL DETERMINATION AND ANALYSIS OF TRANSMISSION LINE PERFORMANCEijiert bestjournal
 
High Voltage Direct Current Transmission Systems 2Mark Materials
High Voltage Direct Current Transmission Systems 2Mark MaterialsHigh Voltage Direct Current Transmission Systems 2Mark Materials
High Voltage Direct Current Transmission Systems 2Mark MaterialsSanthosh Kumar
 
Capacitive voltage and current induction phenomena in GIS substation
Capacitive voltage and current induction phenomena in GIS substationCapacitive voltage and current induction phenomena in GIS substation
Capacitive voltage and current induction phenomena in GIS substationIOSR Journals
 
Three phase bridge controlled by microprocessor(eee499.blogspot.com)
Three phase bridge controlled by microprocessor(eee499.blogspot.com)Three phase bridge controlled by microprocessor(eee499.blogspot.com)
Three phase bridge controlled by microprocessor(eee499.blogspot.com)slmnsvn
 
Laboratory Setup for Long Transmission Line
Laboratory Setup for Long Transmission LineLaboratory Setup for Long Transmission Line
Laboratory Setup for Long Transmission LineIRJET Journal
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
The effect of ripple steering on control loop stability for ac cm pfc boost c...
The effect of ripple steering on control loop stability for ac cm pfc boost c...The effect of ripple steering on control loop stability for ac cm pfc boost c...
The effect of ripple steering on control loop stability for ac cm pfc boost c...Murray Edington
 
Emec 1 bank nee 301
Emec 1 bank nee 301Emec 1 bank nee 301
Emec 1 bank nee 301Ravi Anand
 
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...IJERD Editor
 
Physical designing of low power operational amplifier
Physical designing of low power operational amplifierPhysical designing of low power operational amplifier
Physical designing of low power operational amplifierDevendra Kushwaha
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 

Similar to 199833536 ee2404-lab-manual (20)

Load Flow and PV Curve Analysis of a 220kV Substation
Load Flow and PV Curve Analysis of a 220kV SubstationLoad Flow and PV Curve Analysis of a 220kV Substation
Load Flow and PV Curve Analysis of a 220kV Substation
 
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter Topology
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter TopologyApplication of SVM Technique for Three Phase Three Leg Ac/Ac Converter Topology
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter Topology
 
EHVAC-question-bank-pdf.pdf
EHVAC-question-bank-pdf.pdfEHVAC-question-bank-pdf.pdf
EHVAC-question-bank-pdf.pdf
 
EXPERIMENTAL DETERMINATION AND ANALYSIS OF TRANSMISSION LINE PERFORMANCE
EXPERIMENTAL DETERMINATION AND ANALYSIS OF TRANSMISSION LINE PERFORMANCEEXPERIMENTAL DETERMINATION AND ANALYSIS OF TRANSMISSION LINE PERFORMANCE
EXPERIMENTAL DETERMINATION AND ANALYSIS OF TRANSMISSION LINE PERFORMANCE
 
High Voltage Direct Current Transmission Systems 2Mark Materials
High Voltage Direct Current Transmission Systems 2Mark MaterialsHigh Voltage Direct Current Transmission Systems 2Mark Materials
High Voltage Direct Current Transmission Systems 2Mark Materials
 
Capacitive voltage and current induction phenomena in GIS substation
Capacitive voltage and current induction phenomena in GIS substationCapacitive voltage and current induction phenomena in GIS substation
Capacitive voltage and current induction phenomena in GIS substation
 
Three phase bridge controlled by microprocessor(eee499.blogspot.com)
Three phase bridge controlled by microprocessor(eee499.blogspot.com)Three phase bridge controlled by microprocessor(eee499.blogspot.com)
Three phase bridge controlled by microprocessor(eee499.blogspot.com)
 
Irjet v4 i6288
Irjet v4 i6288Irjet v4 i6288
Irjet v4 i6288
 
Laboratory Setup for Long Transmission Line
Laboratory Setup for Long Transmission LineLaboratory Setup for Long Transmission Line
Laboratory Setup for Long Transmission Line
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Ee6503(r 13) qb-2013_regulation
Ee6503(r 13) qb-2013_regulationEe6503(r 13) qb-2013_regulation
Ee6503(r 13) qb-2013_regulation
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
The effect of ripple steering on control loop stability for ac cm pfc boost c...
The effect of ripple steering on control loop stability for ac cm pfc boost c...The effect of ripple steering on control loop stability for ac cm pfc boost c...
The effect of ripple steering on control loop stability for ac cm pfc boost c...
 
Predictive_uni
Predictive_uniPredictive_uni
Predictive_uni
 
Emec 1 bank nee 301
Emec 1 bank nee 301Emec 1 bank nee 301
Emec 1 bank nee 301
 
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
 
Physical designing of low power operational amplifier
Physical designing of low power operational amplifierPhysical designing of low power operational amplifier
Physical designing of low power operational amplifier
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
C04721623
C04721623C04721623
C04721623
 

More from homeworkping4

242269855 dell-case-study
242269855 dell-case-study242269855 dell-case-study
242269855 dell-case-studyhomeworkping4
 
242266287 case-study-on-guil
242266287 case-study-on-guil242266287 case-study-on-guil
242266287 case-study-on-guilhomeworkping4
 
242259868 legal-research-cases
242259868 legal-research-cases242259868 legal-research-cases
242259868 legal-research-caseshomeworkping4
 
241999259 case-hemstoma-sukonjungtiva
241999259 case-hemstoma-sukonjungtiva241999259 case-hemstoma-sukonjungtiva
241999259 case-hemstoma-sukonjungtivahomeworkping4
 
241985748 plm-case-study
241985748 plm-case-study241985748 plm-case-study
241985748 plm-case-studyhomeworkping4
 
241946212 case-study-for-ocd
241946212 case-study-for-ocd241946212 case-study-for-ocd
241946212 case-study-for-ocdhomeworkping4
 
241941333 case-digest-statcon
241941333 case-digest-statcon241941333 case-digest-statcon
241941333 case-digest-statconhomeworkping4
 
241909563 impact-of-emergency
241909563 impact-of-emergency241909563 impact-of-emergency
241909563 impact-of-emergencyhomeworkping4
 
241905839 mpcvv-report
241905839 mpcvv-report241905839 mpcvv-report
241905839 mpcvv-reporthomeworkping4
 
241767629 ethics-cases
241767629 ethics-cases241767629 ethics-cases
241767629 ethics-caseshomeworkping4
 
241716493 separation-of-powers-cases
241716493 separation-of-powers-cases241716493 separation-of-powers-cases
241716493 separation-of-powers-caseshomeworkping4
 
241603963 drug-study-final
241603963 drug-study-final241603963 drug-study-final
241603963 drug-study-finalhomeworkping4
 
241573114 persons-cases
241573114 persons-cases241573114 persons-cases
241573114 persons-caseshomeworkping4
 
241566373 workshop-on-case-study
241566373 workshop-on-case-study241566373 workshop-on-case-study
241566373 workshop-on-case-studyhomeworkping4
 
241524597 succession-full-cases
241524597 succession-full-cases241524597 succession-full-cases
241524597 succession-full-caseshomeworkping4
 
241299249 pale-cases-batch-2
241299249 pale-cases-batch-2241299249 pale-cases-batch-2
241299249 pale-cases-batch-2homeworkping4
 
241262134 rubab-thesis
241262134 rubab-thesis241262134 rubab-thesis
241262134 rubab-thesishomeworkping4
 
241259161 citizenship-case-digests
241259161 citizenship-case-digests241259161 citizenship-case-digests
241259161 citizenship-case-digestshomeworkping4
 

More from homeworkping4 (20)

242269855 dell-case-study
242269855 dell-case-study242269855 dell-case-study
242269855 dell-case-study
 
242266287 case-study-on-guil
242266287 case-study-on-guil242266287 case-study-on-guil
242266287 case-study-on-guil
 
242259868 legal-research-cases
242259868 legal-research-cases242259868 legal-research-cases
242259868 legal-research-cases
 
241999259 case-hemstoma-sukonjungtiva
241999259 case-hemstoma-sukonjungtiva241999259 case-hemstoma-sukonjungtiva
241999259 case-hemstoma-sukonjungtiva
 
241985748 plm-case-study
241985748 plm-case-study241985748 plm-case-study
241985748 plm-case-study
 
241946212 case-study-for-ocd
241946212 case-study-for-ocd241946212 case-study-for-ocd
241946212 case-study-for-ocd
 
241941333 case-digest-statcon
241941333 case-digest-statcon241941333 case-digest-statcon
241941333 case-digest-statcon
 
241909563 impact-of-emergency
241909563 impact-of-emergency241909563 impact-of-emergency
241909563 impact-of-emergency
 
241905839 mpcvv-report
241905839 mpcvv-report241905839 mpcvv-report
241905839 mpcvv-report
 
241767629 ethics-cases
241767629 ethics-cases241767629 ethics-cases
241767629 ethics-cases
 
241716493 separation-of-powers-cases
241716493 separation-of-powers-cases241716493 separation-of-powers-cases
241716493 separation-of-powers-cases
 
241603963 drug-study-final
241603963 drug-study-final241603963 drug-study-final
241603963 drug-study-final
 
241585426 cases-vii
241585426 cases-vii241585426 cases-vii
241585426 cases-vii
 
241573114 persons-cases
241573114 persons-cases241573114 persons-cases
241573114 persons-cases
 
241566373 workshop-on-case-study
241566373 workshop-on-case-study241566373 workshop-on-case-study
241566373 workshop-on-case-study
 
241524597 succession-full-cases
241524597 succession-full-cases241524597 succession-full-cases
241524597 succession-full-cases
 
241356684 citibank
241356684 citibank241356684 citibank
241356684 citibank
 
241299249 pale-cases-batch-2
241299249 pale-cases-batch-2241299249 pale-cases-batch-2
241299249 pale-cases-batch-2
 
241262134 rubab-thesis
241262134 rubab-thesis241262134 rubab-thesis
241262134 rubab-thesis
 
241259161 citizenship-case-digests
241259161 citizenship-case-digests241259161 citizenship-case-digests
241259161 citizenship-case-digests
 

Recently uploaded

How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 

Recently uploaded (20)

How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 

199833536 ee2404-lab-manual

  • 1. Get Homework/Assignment Done Homeworkping.com Homework Help https://www.homeworkping.com/ Research Paper help https://www.homeworkping.com/ Online Tutoring https://www.homeworkping.com/ click here for freelancing tutoring sites EXPERIMENT 1 COMPUTATION OF PARAMETERS AND MODELLING OF TRANSMISSION LINES 1.1 AIM (i) To determine the positive sequence line parameters L and C per phase per kilometer of a three phase single and double circuit transmission lines for different conductor arrangements. (ii) To understand modelling and performance of short, medium and long lines. 1.2 OBJECTIVES i. To become familiar with different arrangements of conductors of a three phase single and double circuit transmission lines and to compute the GMD and GMR for different arrangements. ii. To compute the series inductance and shunt capacitance per phase, per km of a three phase single and double circuit overhead transmission lines with solid and bundled conductors. iii. To become familiar with per phase equivalent of a three phase short and medium lines and to evaluate the performances for different load conditions. iv. (a) To become familiar with the theory of long transmission line and study the effect of distributed parameters on voltage and currents, along the line, (b) calculate the surge Impedance and surge impedance loading. Three Phase - Symmetrical Spacing:
  • 2. Three Phase - Asymmetrical Transposed: Nominal П-Model Bundle conductors
  • 3. Equivalent П-Model 1 EXERCISES: 1.1 A three-phase transposed line composed of one ACSR, 1,43,000 cmil, 47/7 Bobolink conductor per phase with flat horizontal spacing of 11m between phases a and b and between phases b and c. The conductors have a diameter of 3.625 cm and a GMR of 1.439 cm. The line is to be replaced by a three conductor bundle of ACSR 477,000-cmil, 26/7 Hawk conductors having the same cross sectional area of aluminum as the single conductor line. The conductors have a diameter of 2.1793 cm and a GMR of 0.8839 cm. The new line will also have a flat horizontal configurations, but it is to be operated at a Higher voltage and therefore the phase spacing is increased to 14m as measured from the Centre of the bundles. The spacing between the conductors in the bundle is 45 cm. (a) Determine the inductance and capacitance per phase per kilometer of the above two Lines. (b) Verify the results using the available program. (c) Determine the percentage change in the inductance and capacitance in the bundle
  • 4. Conductor system. Which system is better and why? 1.2 A single circuit three phase transposed transmission line is composed of four ACSR 1,272,000 cmil conductors per phase with flat horizontal spacing of 14 m between Phases a and b and between phases b and c. The bundle spacing is 45 cm. The Conductor diameter is 3.16 cm. a) Determine the inductance and capacitance per phase per kilometer of the line. b) Verify the results using available program. 1.3 A 345 kV double circuit three phase transposed line is composed of two ACSR, 1,431,000 cmil, 45/7 bobolink conductors per phase with vertical conductor configuration as shown in Fig. 1.13. The conductors have a diameter of 1.427 in and the bundle spacing is 18 in. a) Find the inductance and capacitance per phase per kilometer of the line. b) Verify the results using the available program. c) If we change the relative phase position to acb-a’b’c’, determine the inductance and Capacitance per unit length using available program. d) Which relative phase position is better and why? 1.4 A 230 kV, 60 HZ three phase transmissions is 160 km long. The per phase resistance is 0.124 Ω per km and the reactance is 0.497 Ω per km and the shunt admittance is 3.30 x 10-6 ∟900 seimens per km It delivers 40MW at 220 KV with 0.9 power factor lagging. Use medium line П model i. Determine the voltage and current at sending end and also compute voltage regulation and efficiency. ii. Verify the results using the available program 1.5 A three phase transmission line has a per phase impedance of Z=0.03+j0.04 Ω per km and a per phase shunt admittance of y=j4.0 x 10-6 Simens per km. The line is 200 km long. Obtain ABCD parameters of the transmission line. The line is sending 407 MW and 7.833 MVAR at 350KV.Use medium П model 1.6 A three phase 50 Hz, 400 kV transmission line is 250 km long. The line parameters per phase per unit length are found to be r=0.02 Ω/km L=1.06mH/km C=0.011 µF/km Determine the following using the program available use long line model. (a) The sending end voltage, current and efficiency when the load at the receiving end is 640 MW at 0.8 power factor logging at 400 kV.
  • 5. (b) The receiving end voltage, current, efficiency and losses when 480 MW and 320 MVAR are being transmitted at 400 kV from the sending end. c) The sending end voltage, current and efficiency and losses when the receiving end load Impedance is 230 Ω at 400KV (d) The receiving end voltage when the line is open circuited and is energized with 400kV at the sending end. Also, determine the reactance and MVAR of a three phase shunt reactor to be installed at the receiving end in order to limit the no load receiving end voltage to 400 kV. (e) The MVAR and capacitance to be installed at the receiving end for the loading Condition in (a) to keep the receiving end voltage at 400 kV when the line is Energized with 400 kV at the sending end. (f) The line voltage profile along the line for the following cases: no load, rated load of 800 MW at 0.8 power factor at sending end at 400 kV, line terminated in the SIL and Short circuited line. EXPERIMENT 2 FORMATION OF BUS ADMITTANCE AND IMPEDANCE MATRICES AND SOLUTION OF NETWORKS
  • 6. 1. Using a text editor create an input file in the sequence given below for formation of Y and Z matrix for the 6-bus system. Check the results obtained using the available Software. Run the program and print the modified Y matrix for the 6 bus system for the removal of the following components, one at-a-time: a. Line 4-6 b. Transformer 4-3 SYSTEM DATA NO OF BUSES : 6 NO OF TRANSMISSION LINES: 5 NO OF TRANSFORMERS : 2 NO OF SHUNT ELEMENTS : 2 SYSTEM BASE MVA : 100.00 TRANSMISSION LINE DATA To understand the formation of network matrices, the bus admittance matrix Y and the bus impedance 2.1 AIM solution using these matrices. matrix Z of a power network, to effect certain required changes on these matrices and to obtain network 2.2 OBJECTIVES i. To write a computer program to form bus admittance matrix Y, given the impedances of the elements of a power network and their connectivity (mutual coupling between elements neglected) ii. To modify the matrix Y to effect specified changes in the configuration of the network. iii. To obtain network solution, that is, to determine the bus voltages given bus current injections. iv. To obtain certain specified columns of the bus impedance matrix Z or the full matrix Z using the factors of Y or the inverse of Y.
  • 7. L NO S BUS R BUS R_IN_PU X_IN_PU HBC_IN_PU RAT 1 1 6 .1230 .5180 .0000 55.0000 2 1 4 .0800 .3700 .0000 65.0000 3 4 6 .0870 .4070 .0000 30.0000 4 5 2 .2820 .6400 .0000 55.0000 5 2 3 .7230 1.0500 .0000 40.0000 TRANSFORMER DATA TNO S BUS R BUS R_IN_PU X_IN_PU TAP_IN_PU RAT 1 6 5 .0000 .3000 1.0000 30.0000 2 4 3 .0000 1330 1.0000 55.0000 SHUNT CAP/REACTOR DATA S NO BUS NO SHUNT_MVAR 1 4 2.0000 2 6 2.5000 EXPERIMENT 3 LOAD FLOW ANALYSIS - I: SOLUTION OF LOAD FLOW AND RELATED PROBLEMS USING GAUSS-SEIDEL METHOD AIM
  • 8. (i) To understand, the basic aspects of steady state analysis of power systems that are required for effective planning and operation of power systems. (ii) To understand, in particular, the mathematical formulation of load flow model in complex form and a simple method of solving load flow problems of small sized system using Gauss-Seidel iterative algorithm OBJECTIVES i. To write a computer program to solve the set of non-linear load flow equations using Gauss-Seidel Load Flow (GSLF) algorithm and present the results in the format required for system studies. ii. To investigate the convergence characteristics of GSLF algorithm for normally loaded small system for different acceleration factors. iii. To investigate the effects on the load flow results, load bus voltages and line transformer loadings, due to the following control actions: a. Variation of voltage settings of P-V buses b. Variation of shunt compensation at P-Q buses c. Variation of tap settings of transformer d. Generation shifting or rescheduling. INPUT FILE: POWER FLOW ANALYSIS I: SOLUTION OF POWER FLOW RELATED PROBLEMS BY GAUSS- SEIDEL CASE:1 6-BUS SYSTEM-BASE CASE-POOR VOLTAGE PROFILE: ACCN FACTOR=1 NAME: ROLL NO: VII SEMESTER DATE: 6 2 4 5 2 1 2 100 100.00 .0001 1.0000 1 0.0000 .0000 .0000 0.0 0.00 1.020 2 50.0000 .0000 .0000 100.0 -20.00 1.020 3 55.000 13.000 1.000 4 0.000 0.000 1.000 5 30.000 18.000 1.000 6 50.000 5.000 1.000 1 1 6 0.1230 0.518 0.000 55.0 2 1 4 0.0800 0.370 0.000 65.0 3 4 6 0.0870 0.407 0.000 30.0 4 5 2 0.2820 0.640 0.000 55.0 5 2 3 0.7230 1.050 0.000 40.0 1 4 3 0.0000 0.1330 1.000 30.0 2 6 5 0.0000 0.3000 1.000 55.0 1 4 2.0
  • 9. 2 6 2.5 EXPERIMENT 4 PROBLEMS USING NEWTON-RAPHSON AND FAST DECOUPLED METHOD AIM: (i} To understand the following for medium and large scale power systems.
  • 10. a) Mathematical formulation of load flow problem in real variable form. b) Newton Raphson method of load flow (NRLF) solution. c) Fast decoupled method of load flow (FDLP) solution. (ii) To become proficient in the usage of software for practical problem solving in the areas of power system planning and operation. (iii) To become proficient in the usage of software in solving problems using Newton- Raphson and Fast decoupled load flow methods. OBJECTIVES: (i) To investigate the convergence characteristics of load flow solutions using NRLF and FDLP algorithms for different sized systems and compare the same with that of GSLF algorithm. (ii) To investigate the effect of variation of voltage control parameters such as generator voltage magnitude setting, off nominal tap ratio of transformer and MVAR injections of shunt capacitors/inductor on the voltage profile and transmission loss of the system. (iii) To assess the effect of single outage contingencies such as a line outages and generator outages. (iv) To investigate the convergence of load flow solution of a two bus system for different load conditions, understand the existence of maximum load ability condition and to verify the both, numerically (using load flow package) analytically using the two bus system equations. EXERCISE: 1. Obtain the load flow solution for the given 6 bus 5 line power system shown in experiment 2 using NRLF method using AU POWER LAB SOFTWARE. EXPERIMENT 5 FAULT ANALYSIS AIM:
  • 11. To become familiar with modeling and analysis of power system under faulted condition and to compute the fault level post fault voltage and current for different types of fault both symmetrical and unsymmetrical. OBJECTIVES: 1. To carryout fault analysis for symmetrical and unsymmetrical faults in small systems using the Thevenin’s equivalent circuit in the sequences and phase domains at the faulted bus but without the use of software. 2. To conduct fault analysis on a given system using software available and obtain fault analysis report with fault level and current at the faulted point and post-fault voltages and currents in the network for the following faults (a) Three-phase-to-ground (b) Line-to-ground (c) Line-to-Line (d) Double-line-to-ground 3. To study the variation in fault levels and currents in the system when it is interconnected to neighboring systems. EXERCISE: 1. It is proposed to conduct fault analysis on two alternative configurations of 4-bus system given in fig shown below. G1, G2: 100MVA, 20KV, x+ = x- =xd” = 20%; x0 =4%; xn = 5% T1, T2: 100MVA, 20KV/345KV; xleak = 8% L1, L2: x+ =x- =15%; x0 =50% on the base of 100MVA The first configuration, case (a), comprises star-star transformers and the second configuration, case (b), comprises star-delta transformers. i. For a three phase to ground (solid) fault, line to line fault, line to ground fault, double line to ground fault at bus 4, determine the fault current and MVA at faulted bus, post fault bus voltages, fault current distribution in different elements of the network using Thevenin equivalent circuit. Draw a single-line diagram showing the above results. ii. Check the results obtained in (i) using available fault analysis software.
  • 12. The 4-bus system in (i) above is interconnected to a neighboring system at tie bus 5, through a tie-line 3- 5, whose parameters are the same as that of lines L1 and L2. The fault level at bus 5 in the neighboring system is 500MVA. Recompute the fault distribution in different elements of the network using available software. 2. (i) For the system given in the figure apply a line-to-ground (solid) fault at bus 4 and determine the fault current and fault MVA at faulted bus, post-fault bus voltages and fault current contribution by each generator, both in sequences and phase domain using the available software. (ii) Check the fault current at bus 4 computed in (i) above using Thevenin equivalent and the respective sequence network connection. EXPERIMENT 6 TRANSIENT AND SMALL SIGNAL STABILITY ANALYSIS OF
  • 13. SINGLE-MACHINE INFINITE BUS SYSTEM AIM : To become familiar with various aspects of the transient and small signal stability analysis of Single-Machine Infinite Bus (SMIB) system. OBJECTIVES : (i) To understand modeling and analysis of transient and small signal stability of a SMIB power system. (ii) To examine the transient stability of a SMIB and determine the critical clearing time of the system through simulation by trial and error. (iii) To determine transient stability margin (MW) for different fault conditions. (iv) To obtain linearised swing equation and to determine the roots of characteristic equation , damped frequency of oscillation and undamped natural frequency. EXERCISE : (i) A power system comprising a thermal generating plant with four 555 MVA, 24kV, 60HZ units supplies power to an infinite bus through a transformer and two transmission lines. The data for the system in p.u on a base of 2220 MVA, 24 kV is given below. An equivalent generator representing the 4 units, characterized by classical model: Xd’ = 0.3 p.u H= 3.5 MW-s/MVA Transformer : X = 0.15 p.u Line 1 : X = 0.5 p.u Line 2 : X = 0.93 p.u Plant operating condition: P = 0.9 p.u ; pf= 0.9(lag) ; Et = 1.0 p.u It is proposed to examine the transient stability of the system for a three-phase-to ground fault at the end of line 2 near H.T bus occurring at time t= 0 sec. The fault is cleared at 0.07 sec. by simultaneous opening of the two circuit breakers at both the ends of line 2.(case1) (a) Calculate the initial conditions necessary for the classical model of the machine for the above pre-fault operating condition, determine the critical clearing angle and time for the fault using “Equal Area Criterion” and hence comment on the stability of the system for this fault.
  • 14. SOLUTION: Computation of stator current It = S* / E * T = (0.9-j0.436) / 1.0 = 0.9- j0.436 Computation of the terminal voltage E’ = Et + jXd’ It = 1.1305 + j0.27 Computation of infinite bus voltage EB = Et –Jx4(i4+Ji) X4 = Xtr + X3 = 0.47 p.u. Ir = P / Et = 0.9 p.u. I = -Q / E = - 0.435p.u. Eb = 0.7933-j0.4275 Computation of angle of separation between E’ and Eb δ = ∟E1’ - ∟Eb = 0.7282 rad If the infinite bus is taken as reference then E’ = 1.16 ∟41074 It = 0.99∟2.52 Et =1∟28.31 Critical clearing angle: Cosδ = {PM(δMAX – δ0) + P3MAXcosδMAX – P2MAXcosδ0 } / { P3MAX – P2MAX} P3MAX = Eb E’ / (Xd’ + Xtr + Xline-1) = 1.098 P2MAX = 0 To find δMAX : After the fault clearance δMAX = 180 – sin-1 (Pe / P3max) = 124.94 degree = 2.18 rad Substituting in the above formula Cos δc= (0.9(2.18-0.728) + 1.09 * cos124.94)/1.09 δc = 51.88 deg = 0.905 rad To find critical clearing time: Tc = √(2H(δc – δ0)) / Π f0 PM = 0.085s b) Simulate the above sequence of fault occurrence and clearance using the Software available and plot the swing curve (rotor angle versus time) as well as the curves showing angular velocity and real power delivered by the plant versus time (c) Determine the critical clearing angle and time for the above fault through trial and error method by repeating the simulation in (b) for different fault clearing times and compare the critical clearing angle and time obtained.(case2) Case 3: Three-phase-to-ground fault at the mid point of line 2 occurs at t=0 sec and is cleared at t=0.07 sec by the simultaneous opening of two breakers in line 2. Comment on the transient stability of the system under case 2 and case 3 and compare the severity of the faults; cases 1,2 and 3 from the point of view of maximum rotor swing and also by comparing the clearing time margin available.
  • 15. 3. Determine the steady-state stability margin (MW) available for the system under the given operating condition in exercise 6.5.1. Also determine the transient stability margin (MW) available for the operating condition given in exercise 6.5.1. for the three cases of fault, case 1, case 2 and case 3. Can the severity of the fault be measured using this margin? Steady state stability margin = (Pmax – P0)* base .MW. Pmax = EV / X = E’ Eb / X = 1.16 * 0.9 / (0.328 + 0.3 + 0.15 ) = 1.347 M.W. Substituting the value in the above formula Stability margin = (1.347 – 0.9) * 2220 = 992.34 M.W. Transient stability margin = (Pmax (stable) – P0) M.W. 4. Is proposed to examine the small-signal stability characteristics of the system given in exercise 1. about the steady-state operating condition following the loss of line 2; Assume the damping coefficient KD = 1.5 p.u torque / p.u speed deviation. (a) Write the linearized swing equation of the system. Obtain the characteristic equation, its roots, damped frequency of oscillation in Hz, damping ratio and undamped natural frequency. Obtain also the force-free time response Δδ (t) for an aintial condition perturbation Δδ = 5 degree and Δω(t) = 0. 5. Repeat the small-signal stability analysis carried out using the software package in exercise 4 with the following parameters and comment on the relative stability of each case: (a) KD = 0 p.u and –1.5 p.u (b) KD = 1.5 p.u but with P = 1.2, 1.5 and 2.0 p.u EXPERIMENT 7
  • 16. TRANSIENT STABILITY ANALYSIS OF MULTIMACHINE POWER SYSTEMS AIM: (i) To become familiar with modelling aspects of synchronous machines and network for transient stability analysis of multi-machine power systems. (ii) To become familiar with the state-of-the-art algorithm for simplified transient stability simulation involving only classical machine models for synchronous machines. (iii) To understand system behaviour when subjected to large disturbances in the presence of synchronous machine controllers. (iv) To become proficient in the usage of the software to tackle real life problems encountered in the areas of power system planning and operation. OBJECTIVES (i) To assess the transient stability of a multimachine power system when subjected to a common disturbance sequence: fault application on a transmission line followed by fault removal and line opening. (ii) To determine the critical clearing time. (iii) To observe system response and understand its behaviour during a full load rejection at a substation with and without controllers. (iv) To observe system response and understand its behaviour during loss of a major generating station. (v) To understand machine and system behaviour during loss of excitation. (vi) To study the effect of load relief provided by under frequency load shedding scheme. SOFTWARE REQUIRED MULTIMACHINE TRANSIENT STABILITY module of AU Power lab or equivalent EXERCISES 1.. Transient stability analysis of a 9-bus, 3-machine, 60 Hz power system with the following system modelling requirements: i. Classical model for all synchronous machines, models for excitation and speed governing systems not included. (a) Simulate a three-phase fault at the end of the line from bus 5 to bus 7 near bus 7 at time = 0.0 sec. Assume that the fault is cleared successfully by opening the line 5-7 after 5 cycles ( 0.083 sec) . Observe the system for 2.0 seconds (b) Obtain the following time domain plots: - Relative angles of machines 2 and 3 with respect to machine 1 - Angular speed deviations of machines 1, 2 and 3 from synchronous speed - Active power variation of machines 1, 2 and 3. (c) Determine the critical clearing time by progressively increasing the fault clearing time.
  • 17.
  • 18. EXPERIMENT 8 ELECTROMAGNETIC TRANSIENTS IN POWER SYSTEMS AIM: a. To study and understand the electromagnetic transient phenomena in power systems caused due to switching and fault by using Electromagnetic Transients Program (EMTP). b. To become proficient in the usage of EMTP to address problems in the areas of over voltage protection and mitigation and insulation coordination of EHV systems. OBJECTIVES: (i) To study the transients due to energization of a single-phase and three-phase load from a non- ideal source with line represented by Π – model. (ii) To study the transients due to energization of a single-phase and three-phase load from a non- ideal source and line represented by distributed parameters. (iii) To study the transient over voltages due to faults for a SLG fault at far end of a line. (iv) To study the Transient Recovery Voltage (TRV) associated with a breaker for a three-phase fault. SOFTWARE REQUIRED: ELECTROMAGNETIC TRANSIENTS PROGRAM – UBC version module of AU Power lab or equivalent EXCERCISE: Prepare the data for the network given in the Annexure and run EMTP. Obtain the plots of source voltage, load bus voltage and load current following the Energization of a single-phase load. Comment on the results. Double the source inductance and obtain the plots of the variables mentioned earlier. Comment on the effect of doubling the source inductance. Energization of a single phase 0.95 pf load from a non ideal source and a more realistic line representation (lumped R, L, C): Circuit Diagram: Exercise 1 Prepare the data for the network given in the Annexure 8.1 and run EMTP. Obtain the plots of source voltage, load bus voltage and load current following the energisation of a single-phase load and obtain the plots
  • 19. Output 2. Prepare the data for the network given in the Annexure 8.2 and run EMTP. Obtain the plots of voltages of phases a, b, c at the load bus and switch A current of phase a following energisation of
  • 20. the three-phase load by closing the switches simultaneously. Output
  • 21.
  • 22. 3. Prepare the data for the network given in the Annexure 8.3 and run EMTP. Obtain the plots of voltages at source, Bus 1 and Bus 12 following the energisation of the single phase open ended line represented by distributed parameters. Obtain the plot of voltage at Bus 12 by expanding the time scale by a factor of ten, i.e, plot the voltage for the first 2.5 millisecond.
  • 23. Output 4 Prepare the data for energisation of a three-phase load fed by a three-phase distributed parameter line as given in the Annexure 8.4 and run EMTP. Obtain the plots of voltages at source, Bus 1 and phase a voltage at Bus 12 following the energisation by simultaneous closing of all the three phases Output
  • 24. 5 Prepare the data for the network given in the Annexure 8.5 and run EMTP. Obtain the plots of voltages at source, Bus 1 and Bus 2 following a single lineto- ground fault at the far end, Bus 2.
  • 25. Output 6. Prepare the data for the network given in Annexure 8.6 and run EMTP. Obtain the transient recovery voltage (TRV) in each phase for a three-phase fault at Bus 1. The TRVs are the voltages across the switches between Bus1 and BKR1.
  • 27. INPUT DATA: ENERGIZATION OF LOAD-EMTP EXPERIMENT NO: 1 .5E-4 .5E-1 -1 1 SRC BUS1 .0 6.0 .0 BUS1 BUS12 .05 2.0 .0
  • 28. BUS1 .0 .0 .81 BUS12 .0 .0 .84 BUS12BUS13S .0 6.0 .0 BUS13L 22.61 19.72 .0 BUS13SBUS13L .1E-2 .9999E+4 1 14 SRC 1 .5634E+2 .60E+2 .0E+0 -.1E+1 .9999E+4 SRCBUS13L
  • 29. EXPERIMENT 9 LOAD-FREQUENCY DYNAMICS OF SINGLE-AREA AND TWO AREA POWER SYSTEMS AIM: To become familiar with the modeling and analysis of load-frequency and tie-line flow dynamics of a power system with load-frequency controller (LFC) under different control modes and to design improved controllers to obtain the best system response. OBJECTIVES: 1. To study the time response (both steady state and transient) of area frequency deviation and transient power output change of regulating generator following a small load change in a single- area power system with the regulating generator under “free governor action”, for different operating conditions and different system parameters. 2. To study the time response (both steady state and transient) of area frequency deviation and turbine power output change of regulating generator following a small load change in a single- area power system provided with an integral frequency controller, to study the effect of changing the gain of the controller and to select the best gain for the controller to obtain the best response. 3. To analyze the time response of area frequency deviations and net interchange deviation following a small load change in one of the areas in an inter connected two-area power system under different control modes, to study the effect of changes in controller parameters on the response and to select the optimal set of parameters for the controller to obtain the best response under different operating conditions. SOFTWARE REQUIRED: ‘LOAD FREQUENCY CONTROL’ module of AU Power Lab or equivalent EXERCISES 1. It is proposed to simulate using the software available the load-frequency dynamics of a single- area power system whose data are given below: Rated capacity of the area = 2000 MW Normal operating load = 1000 MW Nominal frequency = 50 Hz Inertia constant of the area = 5.0 s Speed regulation (governor droop) of all regulating generators = 4 percent Governor time constant = 0.08 s Turbine time constant = 0.3 s Assume linear load–frequency characteristics which means the connected system load increases by one percent if the system frequency increases by one percent. The area has a governor control but not a load- frequency controller. The area is subjected to a load increase of 20 MW. (a) Simulate the load-frequency dynamics of this area using available software and check the following:
  • 30. (i) Steady – state frequency deviation ∆fs in Hz. Compare it with the hand-calculated value using “Area Frequency Response Coefficient” (AFRC). (ii) Plot the time response of frequency deviation ∆f in Hz and change in turbine power ∆PT in p.u MW upto 20 sec. What is value of the peak overshoot in ∆f? (b) Repeat the simulation with the following changes in operating condition, plot the time response of ∆f and compare the steady-state error and peak overshoot. (i) Speed regulation = 3 percent (ii) Normal operating load = 1500 MW Hz MANUAL CALCULATION: A)LOAD FREQ SINGLE AREA- PROBLEM 1(a) Steady State frequency deviation Δfs=-(M/β) Hz where β=Area Frequency Response Coefficient(AFRC)=D+(1/R) Hz/p.u.M.W. M is in p.u.MW =20/2000=0.01 p.u.MW/Hz HzMWD /20 50* 100 1 1000* 100 1 =             = D =20/2000=0.01 p.u.MW/Hz HzMW R /1000 50* 100 4 20001 =       = 1/R=1000/2000=0.5 p.u.MW/Hz β=0.01+0.5=0.51 p.u MW/Hz Δfs = -(M/β)Hz = -(0.01)/(0.51) Δfs = -0.0196 Hz MANUAL CALCULATION: B)LOAD FREQ SINGLE AREA- PROBLEM 1(b) Steady State frequency deviation Δfs=-(M/β) Hz where β=Area Frequency Response Coefficient(AFRC)=D+(1/R) Hz/p.u.M.W. M is in p.u.MW =20/2000=0.01 p.u.MW/Hz HzMWD /30 50* 100 1 1500* 100 1 =             = D =30/2000=0.015 p.u.MW/Hz HzMW R /1333 50* 100 3 20001 =       = 1/R=1333/2000=0.666 p.u.MW/Hz β=0.015+0.666=0.681 p.u MW/Hz Δfs = -(M/β)Hz = -(0.01)/(0.681) Δfs = -0.01467 Hz COMPARISON OF A AND B: D R Δfs Hz Δf peak Hz
  • 31. 0.01 4% -0.0196 -0.0256 0.015 3% -0.0155 -0.0215 2. Assume that the single-area power system given in exercise 9.5.1 is provided with a load frequency controller (an integral controller) whose gain KI can be tuned. (a) Carryout the simulation for the same disturbance of load change of 20 MW for different values of KI, obtain the time response ∆f for each case, critically compare these responses and comment on their suitability for practical application. 9-13 (Hint: For choosing different values of KI, first set the governor and turbine time constants to zero and determine analytically the value of integral gain KI,cr to have critical damping on the response ∆f (t). Choose the range of KI to include KI,cr as 0 ≤ KI ≤ ( KI,cr + 1.0 ) ) (b) From the investigations made in (a) above, choose the best value of KI which gives an “optimal” response ∆f (t) with regard to peak overshoot, settling time, steady-state error and Mean Sum- Squared- Error (MSSE). 3 It is proposed to simulate the load frequency dynamics of a two-area power system. Both the areas are identical and has the system parameters given in exercise 9.5.1. Assume that the tie-line has a capacity of Pmax 1-2 = 200 MW and is operating at a power angle of ( δ01- δ20 ) = 300. Assume that both the areas do not have load –frequency controller. Area 2 is subjected to a load increase of 20 MW. (a) Simulate the load-frequency dynamics of this system using available software and check the following:(i). Steady-State frequency deviation ∆fs in Hz and tie-line flow deviation, ∆P12,S inp.u. MW. Compare them with hand-calculated values using AFRC’s (ii) Compare result ∆fs with that obtained in single area simulation in exercise 1 (a), and comment on the support received from area 1 and the advantages of interconnecting with neighbouring areas . (iii) Plot the time responses, ∆f1(t), ∆f2 (t), ∆PT1(t) , ∆PT2(t) and ∆P12(t). Comment on the peak overshoot of ∆f1, and ∆f2. MANUAL CALCULATION:TWO AREA LOAD FREQUENCY CONTROL PROGRAM OUTPUT Δfs = -(M1+M2)/( β1+β2) M1 =0;M2=0.01 p.u .MW/Hz β1 =β2=0.51 p.u .MW/Hz (identical areas) Δfs = - (0.01)/(0.51+0.51)= - 0.0098 Hz ΔP1-2s = - ΔP1-2s = ( β1M2- β2M1)/ ( β1+β2) p.u .MW = (0.51*0.01)/(0.51+0.51) = 10 MW. Comparison of manual calculation and simulated values. MANUALY CALCULATED VALUES SIMULATED VALUES
  • 32. Δfs = - 0.0098 Hz ΔP1-2s=10MW EXPERIMENT 10 ECONOMIC DISPATCH IN POWER SYSTEM AIM: To understand the basics of the problem of Economic Dispatch of optimally adjusting the generation schedules of thermal generating units to meet the system load which are required for unit commitment & Economic operation of power systems. To understand the development of co-ordination equation (the mathematical model for ED) without and with losses & operating constraints and solution of these equations using direct and iterative methods. OBJECTIVE:  To write a program for solving ED problem without and with transmission losses for a given load condition/daily load cycle using (a)Direct method (b)Lambda-iteration method  To study the effect of reduction in operation cost resulting due to changing from simple load dispatch to economic load dispatch.  To study the effect of change in fuel cost on the economic dispatch for a given load.  To study the use of ED in finalizing the unit commitment for tomorrow’s operating conditions of power system. EXERCISE: 1. The system load in a power system varies from 250MW to 1250MW. Two thermal units are operating at all times and meeting the system load. Incremental fuel cost in hundreds of rupees per Megawatt hour for the units are dF1/dP1 = 0.0056P1 + 5.6 ; P1 in MW dF2/dP2 = 0.0067P2 + 4.5 ; P2 in MW The operating limits of both the units are given by 100<=P1, P2<=625MW Assume that the transmission loss is negligible. a) Determine the economic (minimum fuel cost) generation schedule of each unit, the incremental fuel cost of each unit and the incremental cost of received power for different load levels from 250 to 1250MW in steps of 100MW. b) Draw the following characteristics from the results obtained in (a) i. Incremental cost of received power in hundreds of rupees per MW hr versus system load in MW. ii. Unit outputs P1 and P2 in MW versus system load in MW.
  • 33. c) Determine the saving in fuel cost in hundreds of rupees per hour for the economic distribution of a total load of 550MW between the two units compared with equal distribution of that load between the two units. INPUT: Economic Dispatch - Lambda Iteration Method Without Loss AU Power lab VII 0.001 0.05 10 2 $/hr $/MWhr 0.0028 5.6 0 100 625 0.00335 4.5 0 100 625 1 250 1250 100 OUTPUT: Manual Calculation: λ = (PD + b1/2a1 +b2/2a2)/(1/2a1+1/2a2) For PD = 550 MW λ= 550 + ((5.6/0.0056 + 4.5/0.0067)/(1/0.0056 + 1/0.0067)) ⇒ λ = 6.77691 Rs MW/Hr PG1 * = λ-b1/2a1 = (6.77691-5.6)/0.0056 = 210.626 MW PG2 * = λ-b2/2a2 = (6.77691-4.5)/0.0067 = 339.8374 MW Fuel Cost: FC1 = 0.0028 PG12 + 5.6 PG1 + C1 Rs/Hr FC2 = 0.00335 PG12 + 4.5 PG1 + C2 Rs/Hr Where C1 & C2 are unknown constants Fuel Cost for optimal schedule (PG1 * , PG2 * ) FC1 = 0.0028(210.1626) 2+5.6(210.1626) + C1 Rs/Hr FC2 = 0.00335(339.8374) 2 + 4.5(339.8374) + C2 Rs/Hr FC * =FC1+FC2=3216.74+C1C2 Rs/Hr Fuel Cost for equal Sharing: [PG1 = 275 = PG2] FC1 = 0.0028(275) 2+5.6(275) + C1 Rs/Hr FC2 = 0.00335(275) 2 + 4.5(275) + C2 Rs/Hr FC1 + FC2 = 3242.59 + C1C2 Rs/Hr Total Saving: FC = FC – FC * = 3242.59 – 3216.74 = 25.85 Rs/Hr EXERCISE : 2. For the system in exercise 4.3 take into account the transmission loss. a. Determine the economic loading of each unit to meet a total customer load of 550MW, using the program developed in 4.2 b. What is transmission loss of the system at the economic loading? c. Determine the penalty factor for each unit and the incremental fuel cost at each generating bus.
  • 34. d. Determine also the incremental cost of received power (or system λ).Assume that the loss coefficient in per unit on a 100MVA base of customer load level of 550MW are given by B11 = 0.008383183 B12 = B21 = -0.000049448 B10/2 = 0.000375082 B22 = 0.005963568 B20/2 = 0.000194971 B00 = 0.000090121 INPUT: Economic Dispatch - Lambda Iteration Method With Loss AU Powerlab 2001399126 VII 0.01 0.05 10 2 $/hr $/MWhr 0.0028 5.6 0 100 625 0.00335 4.5 0 100 625 0.008383183 -0.000049448 0.000049448 0.005963568 0.000375082 0.000194971 0.000090121 100 0 550OUTPUT : Manual Calculation: B11 = 8.38*10-3 B12 = -0.049*10-3 B21 = 0 B22 = 5.96*10-3 PL = B11P1 2 + P2 2 B22 + P1P2B12 PD = P1 + P2 – PL PD = 550 MW λ = (550 + 5.6/0.0056 + 4.5/0.0067) / (1/0.0056 + 1/0.0067) ⇒ λ = 6.7767 Rs/MW-Hr For First Iteration Assume P2 = 0 P1 = [1-(b1/λ)-(2B12P2)]/[(2a1/λ)+2B11] P1 = [1-(5.6/6.776)-0]/[(0.0056/6.776)+0.01676] P1 = 9.8686 MW P2 = [1-(b2/λ)-(2B21P1)]/[(2a2/λ)+2B22]
  • 35. P2 = [1-(4.5/6.776)-0]/[(0.0067/6.776)+0.01192] P2 = 23.02 MW PL = P1 2 B11 + P2 2 B22 + P1P2B12 = [(9.8686)2 *(0.00838) + (26.02)2 *(0.00596) + 9.8686*26.02*-0.049*10-3 ] PL = 4.8387 MW PD = P1 + P2 – PL = 9.8686 + 26.02 – 4.838 PD = 31.04 MW : 3292.06 $/hr EXERCISE : 3. A power system with negligible transmission loss, the system load varies from a peak of 1200MW to a valley of 500MW. There are three thermal generating units which can be committed to take the system load. The fuel cost data and generation operation limit data are given below In hundreds of rupees per hour: F1 = 392.7 + 5.544P1 + 0.001093P1 2 ; P1 in MW F2 = 217.0 + 5.495P2 + 0.001358P2 2 ; P2 in MW F3 = 65.5 + 6.695P3 + 0.004049P3 2 ; P3 in MW Generation Limit: 150<=P1<=600 MW 100<=P2<=400 MW 50<=P3<=200 MW There are no other constant on system operation. Obtain an optimum (minimum fuel cost) with commitment table for each load level taken in steps of 100 MW from 1200 to 500.Adopt “Brute force enumeration” technique. For each load level obtain economic schedule using economic dispatch program developed in ex 4.3 for each feasible combination of units and choose the lowest fuel cost schedule among the combination. Show the details of economic schedule and the component and total cost of operation for each feasible combination of unit for the load level of 900MW. INPUT: Economic Dispatch - Lambda Iteration Method Without Loss AU Power lab 2003557 VII 0.001 0.05 5 3 $/hr $/MWhr
  • 36. 0.001093 5.544 392.7 150 600 0.001358 5.495 217.0 100 400 0.004049 6.695 65.50 50 200 1 500 1200 100