More Related Content
PDF
PDF
PDF
PosGIS/pgRoutingãšRã®é£æºã«ããéè·¯ãããã¯ãŒã¯åæïŒåŒç倧åŠã»åœåºç°æ§ïŒ PDF
[DL茪èªäŒ]Reverse engineering recurrent networks for sentiment classification re... PDF
QGISã«ããå³é¢æ
å ±ãžã®äœçœ®æ
å ±ä»äžææ³ã®æ€èš ã¢ãžã¢èªæž¬æ ªåŒäŒç€Ÿ éäž ç§æš¹æ§ PDF
120414 foss4g nagoya_presentation2 PDF
PDF
13 1002 sdãã©ãŒã©ã ãã¹ã¿ãŒ What's hot
PDF
é路網ã«ãããçµè·¯æ¢çŽ¢ã®ããã®ååŠçããŒã¿æ§é PDF
El text.tokuron a(2019).yamamoto190620 PPTX
20131109 TokyoR#35 Rã§ãããã¯ãŒã¯è§£æãšGIS PDF
ICML 2020 æé©èŒžéãŸãšã PDF
æ°å€èšç®çµæã®Pythonã«ããåŸåŠçã«ã€ããŠïŒ1次å
ããŒã¿ã®ããŒã¯å€ããã³ãã®äœçœ®ã®æšå®ïŒ PDF
El text.tokuron a(2019).yamamoto190627 Viewers also liked
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
Similar to katayama b
PDF
PDF
PPTX
ODPTããŒã¿ã§çµè·¯çµè·¯æ€çŽ¢ããããããã PPTX
Gravity of Location-Based Service:Analyzing the Effects for Mobility Pattern ... PDF
éåç¥ããã°ã©ãã³ã°5ç« åå PDF
倧山éå·± - æŽ»åæ¬²æ±ãèæ
®ãã颿£-é£ç¶ã¢ãã«ã«ããå°æ»åšçºçã¡ã«ããºã ã®åæ PDF
ãZansaã 人工瀟äŒ-è€éç³»ãšãã«ããšãŒãžã§ã³ãã·ãã¥ã¬ãŒã·ã§ã³ã®ç޹ä»- PDF
PDF
PDF
PDF
Yuki Oyama - Master Project - Design method for spatial domain with urban edg... PDF
芳å
çšãªã¢ã«ã¿ã€ã ç»åèªèã·ã¹ãã ã®æ§ç¯ | Development of the real-time image recognition system ... More from harmonylab
PDF
Data Scaling Laws for End-to-End Autonomous Driving PDF
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Lea... PDF
UniPAD: A Universal Pre-training Paradigm for Autonomous Driving PDF
TransitReID: Transit OD Data Collection with Occlusion-Resistant Dynamic Pass... PDF
Mixture-of-Personas Language Models for Population Simulation PDF
Encoding and Controlling Global Semantics for Long-form Video Question Answering PDF
Can Large Language Models perform Relation-based Argument Mining? PDF
APT-LLM Embedding-Based Anomaly Detection of Cyber Advanced Persistent Threat... PDF
Enhancing Zero-Shot Chain-of-Thought Reasoning in Large Language Models throu... PDF
CTINexus: Automatic Cyber Threat Intelligence Knowledge Graph Construction Us... PDF
QuASAR: A Question-Driven Structure-Aware Approach for Table-to-Text Generation PDF
Multiple Object Tracking as ID Prediction PDF
Towards Scalable Human-aligned Benchmark for Text-guided Image Editing PDF
Efficient anomaly detection in tabular cybersecurity data using large languag... PDF
Large Language Model based Multi-Agents: A Survey of Progress and Challenges PDF
Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? PDF
AECR: Automatic attack technique intelligence extraction based on fine-tuned ... PDF
Mixture-of-Personas Language Models for Population Simulation PDF
Collaborative Document Simplification Using Multi-Agent Systems PDF
ãåæ¥è«æãLLMãçšããMulti-Agent-Debateã«ãããåè«ã®å¹æã«é¢ããç ç©¶ katayama b
- 1.
- 2.
èæ¯
åæ(åæã«å察象ãéžæ) 茻茳ã®çºç
⢠ããŒãããŒã¯ã«ãããæ··éã®åå
ã¢ãã©ã¯ã·ã§ã³B
ã¢ãã©ã¯ã·ã§ã³A
Bã®åŸAã«è¡ã
BâA
BâA
BâA
A,B,Cã«è¡ããã
äºæž¬åŸ
ã¡æéãç§»åæéã
ã§ããã ãçã蚪åé åºãæç€º
â äºæž¬åŸ
ã¡æéã®ç®åºæ³
[Kawamura 07]
⢠ããŒãããŒã¯ã®æœèšãå©çšããéã¯ãŠãŒã¶ã®ã¹ã±ãžã¥ãŒã«ãçžäºã«åœ±é¿
âè€éç³»ïŒè€æ°ã®èŠçŽ ãçžäºã«åœ±é¿ãå
šäœã®æ¯ãèããå€å
ãŠãŒã¶ã®ã¹ã±ãžã¥ãŒã«ãçžäºã«åœ±é¿ããç³»ã§ã®å
šäœã®å¹çå
蚪åé åºã®èª¿æŽãå¿
èŠ
æç€º
CâAâB
- 3.
ç®ç
â¢åŸæ¥ç ç©¶
âäºæž¬åŸ
ã¡æéã®æ£ç¢ºãªç®åºã«éç¹
â 蚪åé åºã®äœæã®ä»æ¹ã«ã€ããŠã¯æ¹è¯ã®äœå°ããã
â¢æ¬ç ç©¶
â蚪åé åºã®äœæã¢ã«ãŽãªãºã ãããŒãããŒã¯åé¡ã«é©çš
ããŒãããŒã¯åé¡ã«ãããŠäºæž¬åŸ
ã¡æéãå©çšãã
ãã¥ãŒãªã¹ãã£ãã¯ãªèšªåé åºäœæã¢ã«ãŽãªãºã ãéçºã
ãã®æå¹æ§ãæ€èšŒãã - 4.
蚪åé åº(ãã©ã³)
æç€º
ããŒãããŒã¯åé¡
⢠NïŒ å
šãŠãŒã¶æ°
⢠λïŒå°çç
â 1ã¹ãããã«å¹³åλ人å
¥ãå£ã«å°ç
Et Ex
R R
R
R R
A A
⢠æéçµéã«åŸã£ãŠãŠãŒã¶ãããŒãããŒã¯å
ã«å
¥å ŽããŠãã
⢠åã
ã®ãŠãŒã¶ã®ã¹ã±ãžã¥ãŒã«ãã©ã調æŽãããïŒ
⢠ãã«ããšãŒãžã§ã³ãã«ããå®çŸ©
[Kawamura 2003]
⢠MïŒèšªåäºå®ã®ã¢ãã©ã¯ã·ã§ã³æ°
â 蚪åããã¢ãã©ã¯ã·ã§ã³ãMå
ã©ã³ãã ã«äžãããã
⢠ ïŒãã©ã³ã  ã¹ãããããšã«æŽæ°
⢠SiïŒ ãµãŒãã¹æé
â ãµãŒãã¹ãåãå§ããŠãã
Siã¹ãããã§ãµãŒãã¹ãåãçµãã
⢠WiïŒçªå£æ°
â åæã«Wi人ã®ãŠãŒã¶ã«ãµãŒãã¹ã
æäŸã§ãã
ãµãŒãã¹æœèši
ãŠãŒã¶
A,B,Dã«è¡ããã
ãŠãŒã¶ ãµãŒãã¹æœèš
- 5.
ãã©ã³äœæ
â¢ããŒãããŒã¯åé¡ã®ç®ç
âãŠãŒã¶ã®å¹³åæ»åšæéã®æå°å
âæ»åšæéïŒãµãŒãã¹ãåããæéïŒåŸ
ã¡æéïŒç§»åæé
â¢ãã©ã³äœæ
âåã
ã®ãŠãŒã¶ã®æ»åšæéã®æå°åâå
šäœã®å¹çå âæ¹æ³ ïŒ ç§»åæéïŒäºæž¬åŸ
ã¡æéãçããã©ã³ãäœæ
â¢äºæž¬åŸ
ã¡æé
âåŸ
ã¡è¡åãçºçâæéã«ãã£ãŠç°ãªãã³ã¹ã
â¢æéäŸåã®ã³ã¹ãã®ç¹åŸŽ
âãã©ã³ã®éšåçãªæ¹è¯ãå°é£(éšåã³ã¹ããå®çŸ©ã§ããªã)
A
B
C
D
A
C
B
D
ã¢ãã©ã¯ã·ã§ã³BïŒCã®æèŠæéãæžã£ãŠã
D以éãžã®äºæž¬å°çæå»ãå€ãããã
ã¢ãã©ã¯ã·ã§ã³BïŒCã®ã¿ãèŠãŠè©äŸ¡ã¯ã§ããªã
âŠ
⊠- 6.
åŸæ¥ææ³
argminï» ()ïœ i
P
P f P
i
ïœ
â { , , } 1 2 n A ïœ a a ïa
â¡ n a ïa 1 ãå«ãé åãã©ã³ãã ã«måäœæ
m PïP 1
ãšãã
A ïŒè¡ãäºå®ã®ã¢ãã©ã¯ã·ã§ã³éå
P ïŒãã©ã³
f (P) ïŒãã©ã³Pã®å
šè¡çšã§ã®
ç§»åæéïŒäºæž¬åŸ
ã¡æé
A B D
400
500
300
Pm
P1
P2
ïŒ ïŒ ïŒ
D A B Exit
A D B Exit
A B D Exit
f(Pi)
å
šãã©ã³n!éãã«å¯Ÿãmåã®ãã©ã³ã®æ¯èŒã§ã¯äžååãªå¯èœæ§
- 7.
ææ¡ææ³
â
ï»ïœ i i
i
j ïœ argmin time(n, t,a ) ï st
{ , , } 1 2 n A ïœ a a ïa
P ïœïŠ
( , ) j push P a
time(t,n,a) :
â¡
â¢
çµäº
A ïŒè¡ãäºå®ã®ã¢ãã©ã¯ã·ã§ã³
P ïŒãã©ã³
æå» t ã«ãããŠæœèš n
ãåºçºãããšã
ã¢ãã©ã¯ã·ã§ã³ a ã®ãµãŒãã¹ã
çµãããŸã§ã«ãããæé
蚪åäºå®ã®ã¢ãã©ã¯ã·ã§ã³æ°ãå°ãããšãã¯åŸæ¥ææ³ã§ã粟床ã®è¯ãè§£
âãŠãŒã¶ã®èšªåäºå®ã®ã¢ãã©ã¯ã·ã§ã³æ°ã倧ããéã¯ä»¥äžã®ææ³
c t ïœ t c n ïœ n
( ) j t ïœ t ï«time a
j n ïœ a
j A ïœ Aï a
⣠if (A ïœïŠ ) elsâ¡eãž
i st ïŒaiã®ãµãŒãã¹æé
A B D A B D
D ããã©ãã«è¡ãããæ±ºãã
åŸ
ã¡æéïŒç§»åæéãæ¯èŒ
c t ïŒçŸåšæå»
c n ïŒçŸåšå°
- 8.
å®éšèšå®
ããŒãããŒã¯
R
R
R
R
R
R
A
A
A
A
A
A
A
A
Ex
Et
R
R
R
A
A
å
¥å£ or åºå£
ã¢ãã©ã¯ã·ã§ã³
éè·¯
ãµãŒãã¹æœèš
S(A) 280|290|300|310|320 (ã¢ãã©ã¯ã·ã§ã³ã®ãµãŒãã¹æé)
W(A) 15 (ã¢ãã©ã¯ã·ã§ã³ã®çªå£æ°)
S(R) 200 (éè·¯ã®ãµãŒãã¹æé)
WïŒRïŒ â (éè·¯ã®çªå£æ°)
ãŠãŒã¶
(N , λ) (1000ïŒ0.1)(1500ïŒ0.15)(2000ïŒ0.2) (å
šãŠãŒã¶æ°ïŒå°çç)
M 8 (蚪åã¢ãã©ã¯ã·ã§ã³æ°)
I 300 (ãã©ã³ã€ã³ã¿ãŒãã«)
ç°ãªãæ··éã®åºŠåãã§ãã©ã³ã®èª¿æŽå¹æãæ¯èŒãã
(ã¢ãã©ã¯ã·ã§ã³æ°10) - 9.
çµæ1(å¹³åæ»åšæé)
æ»åšæéã®å¹³å ç§»åæéåŸ
ã¡æé
0
5000
10000
15000
20000
25000
ãµãŒãã¹æé
ã©ã³ãã åŸæ¥ ææ¡ ã©ã³ãã åŸæ¥ ææ¡ ã©ã³ãã åŸæ¥ ææ¡
agent = 1000 agent = 1500 agent = 2000
(100%)
(-27%) (-32%)
(100%)
(-12%) (-14%)
(100%)
(-7%) (-6%)
⢠æ¯èŒããåè£ãã©ã³æ°ïŒ10
蚪åããã¢ãã©ã¯ã·ã§ã³æ° 4ïŒ10÷4!=0.42 5ïŒ10 ÷5! = 0.08
â¢ ææ¡ææ³ã¯åŸæ¥ææ³ãšæ¯ã¹åŸ
ã¡æéã¯å¢ããŠãã
â¢ ææ¡ææ³ã¯åŸæ¥ææ³ãšæ¯ã¹ç§»åæéã¯æžã£ãŠãã
⢠ãŠãŒã¶æ°ãæ¯èŒçå°ãããšãã¯ææ¡ææ³ãæããã
- 10.
çµæ2(åŸ
ã¡è¡åã®æ§å)
t
ã¢ãã©ã¯ã·ã§ã³
æ æ¡ æ æ³
t
ã¢ãã©ã¯ã·ã§ã³
åŸ æ¥ æ æ³
ã¢ãã©ã¯ã·ã§ã³
t
ã©ã³ãã
ç¹åŸŽïŒéå¹çãªç¶æ³ãå€ããããŠãã
ã¢ãã©ã¯ã·ã§ã³ã®ãµãŒãã¹æéã®å·®
ã¢ãã©ã¯ã·ã§ã³éã®ç§»åæéã®å·®
âåæã®åå
ç¹åŸŽïŒäžã€ã®ã¢ãã©ã¯ã·ã§ã³ã«éäž
åŠçå¹çã®æªãã¢ãã©ã¯ã·ã§ã³ã¯ åŸ
ã¡è¡åãæžãã®ãé
ã âå
ã«åããŠãŒã¶ãå€ã
ç¹åŸŽïŒå¹³åçã«ãŠãŒã¶ã忣ãã
äºæž¬åŸ
ã¡æéãçãã¢ãã©ã¯ã·ã§ã³ ã«ããåãã
æ¿ æ·¡ ïŒåŸ
ã¡è¡ å é· - 11.
t
ã¢ãã©ã¯ã·ã§ã³
èå¯
â¢ææ¡ææ³ã®é·æïŒçæ
çæ ïŒ çµäºè¿ãã«ãµãŒãã¹æéã®é·ãã¢ãã©ã¯ã·ã§ã³ã«ãŠãŒã¶ãæ®ã â éå¹çãªç¶æ³ ãŠãŒã¶ã®æ··é床åããå¢ãããšãã®åœ±é¿ã倧ãããªã
é·æ ïŒ ãŠãŒã¶ãåçã«åæ£ â å
šãŠã®ã¢ãã©ã¯ã·ã§ã³ããã«çšŒå
æ¿ æ·¡ ïŒåŸ
ã¡è¡ å é·
åæ²ïŒåŸ
ã¡è¡åã®æéæšç§» - 12.