SlideShare a Scribd company logo
1 of 40
Download to read offline
Universidad Autónoma del Estado de México
Facultad de Ingeniería
UNIDAD DE APRENDIZAJE
QUÍMICA/ QUÍMICA GENERAL
CINÉTICA QUÍMICA
Rosa María Fuentes Rivas
OBJETIVO
INTRODUCCIÓN
1. Velocidad de Reacción Química
2. Factores que afectan la velocidad de reacción
2.1. Naturaleza de los reactantes
2.2. Concentración de los reactantes: expresión de la ley de velocidad
2.3. Concentración versus tiempo : Ecuación integrada de la velocidad,
vida media.
2.4.Temperatura : Ecuación de Arrhenius
2.5. Catalizadores
3. RESUMEN
4. SERIE DE EJERCICIOS
5. REFERENCIAS BIBLIOGRÁFICAS
CONTENIDO
OBJETIVO
Al término del tema el alumno adquiere y aplica
conocimientos de cinética química y velocidad de
reacción; así como, reconoce y entiende los factores que
la afectan.
INTRODUCCIÓN
LA CINÉTICA QUÍMICA
Es el estudio de la velocidad de una reacción
química, los factores que la afectan y los
mecanismos de reacción.
Figure 16-1 (a) Blue dye is
16-1 The Rate of a Reaction 649
(a)
1. VELOCIDAD DE REACCIÓN
ments were made, the rate-law expression for
rate ! 1.5 M"2#s"1 [A]2[B]
om one of the other sets of data.
order of the reaction, consistent
with converting the product of
concentrations on the right to
concentration/time on the left. For any
reaction that is third order overall, the
units of k are M"2 #time"1.
to Use the Rate of Reaction
ive the dependence of the rate of reaction on
g calculation describe the rate of formation of
balanced equation is one, so the rate of reac-
C. If the coefficient of the measured substance
lysis we should have divided each value of the
he initial rate of reaction. For instance, suppose
n the reaction
2 88n 2AB
"! (rate of formation of AB)
rate changes as we change the concentrations
1
%
2
When heated in air, steel wool glows
but does not burn rapidly, due to the
low O2 concentration in air (about
See the Saunders Interactive
General Chemistry CD-ROM,
Screen 6.3, Thermodynamics and
Kinetics, and Screen 20.2, Reaction
Spontaneity (Thermodynamics and
Kinetics).
648 CHAPTER 16: Chemical Kinetics
W
W
e are all familiar with processes in which some quantity changes with time
a car travels at 40 miles/hour, a faucet delivers water at 3 gallons/minute,
a factory produces 32,000 tires/day. Each of these ratios is called a rate. T
rate of a reaction describes how fast reactants are used up and products are form
Chemical kinetics is the study of rates of chemical reactions, the factors that affect re
tion rates, and the mechanisms (the series of steps) by which reactions occur.
Our experience tells us that different chemical reactions occur at very different rat
For instance, combustion reactions — such as the burning of methane, CH4, in natural g
and the combustion of isooctane, C8H18, in gasoline — proceed very rapidly, sometim
even explosively.
CH4(g) ! 2O2(g) 88n CO2(g) ! 2H2O(g)
2C8H18(g) ! 25O2(g) 88n 16CO2(g) ! 18H2O(g)
On the other hand, the rusting of iron occurs only very slowly.
In our study of thermodynamics, we learned to assess whether a particular reaction w
favorable. The question of whether substantial reaction would occur in a certain tim
period is addressed by kinetics. If a reaction is not thermodynamically favored, it will n
occur appreciably under the given conditions. Even though a reaction is thermodynam
cally favored, it might not occur at a measurable rate.
The reactions of strong acids with strong bases are thermodynamically favored a
occur at very rapid rates. Consider, for example, the reaction of hydrochloric acid so
tion with solid magnesium hydroxide. It is thermodynamically spontaneous at standa
state conditions, as indicated by the negative "G0
rxn value. It also occurs rapidly.
2HCl(aq) ! Mg(OH)2(s) 88n MgCl2(aq) ! 2H2O(!) "G0
rxn # $97 kJ/mol
The reaction of diamond with oxygen is also thermodynamically spontaneous.
C(diamond) ! O2(g) 88n CO2(g) "G0
rxn # $397 kJ/mol
However, we know from experience that diamonds exposed to air, even over long perio
do not react to form carbon dioxide. The reaction does not occur at an observable r
near room temperature.
The reaction of graphite with oxygen is also spontaneous, with a similar value of "G0
r
$394 kJ/mol. Once it is started, this reaction occurs rapidly. These observations of re
tion speeds are explained by kinetics, not thermodynamics.
THE RATE OF A REACTION
Rates of reactions are usually expressed in units of moles per liter per unit time. If
know the chemical equation for a reaction, its rate can be determined by following t
change in concentration of any product or reactant that can be detected quantitative
T
o describe the rate of a reaction, we must determine the concentration of a reacta
or product at various times as the reaction proceeds. Devising effective methods for t
is a continuing challenge for chemists who study chemical kinetics. If a reaction is sl
enough, we can take samples from the reaction mixture after successive time intervals a
then analyze them. For instance, if one reaction product is an acid, its concentration c
be determined by titration (Section 11-2) after each time interval. The reaction of eth
acetate with water in the presence of a small amount of strong acid produces acetic ac
The extent of the reaction at any time can be determined by titration of the acetic ac
16-1
The rusting of iron is a complicated
process. It can be represented in
simplified form as
4Fe(s) ! 3O2(g) 88n 2Fe2O3(s)
Recall that the units kJ/mol refer to
the numbers of moles of reactants and
products in the balanced equation.
This is one of the reactions that occurs
in a human digestive system when an
antacid containing relatively insoluble
magnesium hydroxide neutralizes
excess stomach acid.
A methane flame is a rapid reaction.
1. ¿VELOCIDAD DE UNA REACCIÓN QUÍMICA?
La velocidad de una reacción describe que tan rápido
se consumen los reactivos y se forman los productos
VELOCIDAD DE REACCIÓN: Cambio de la concentración
de reactivos o productos respecto al tiempo.
Concentración	de	reactivos	y	productos
Tiempo	(s)
ction
entire
0.656 0.328 5
0.035
0.586 0.293 6
0.028
0.530 0.265 7
0.023
0.484 0.242 8
rations
ersus
M H2
om
more
[I2]
[H2]
[HCl]
[ICl]
2.000 M
1.000 M
0
0 5 10 15
Time (s)
Concentrations
of
reactants
and
products
rate ! ! "! " ! "! " ! "! "! "
##
$t
##
$t
#
3
#
$t
#
2
##
$t
Consider as a specific chemical example the gas-phase reaction that occurs when we
mix 1.000 mole of hydrogen and 2.000 moles of iodine chloride at 230°C in a closed
1.000-liter container.
H2(g) % 2ICl(g) 88n I2(g) % 2HCl(g)
The coefficients tell us that one mole of H2 disappears for every two moles of ICl that
disappear and for every one mole of I2 and two moles of HCl that are formed. In other
terms, the rate of disappearance of moles of H2 is one-half the rate of disappearance of
moles of ICl, and so on. So we write the rate of reaction as
1. VELOCIDAD DE UNA REACCIÓN QUÍMICA
¿Cómo se describe la velocidad de una reacción?
A + B C + D
𝒗 = −
𝚫 𝑨
𝚫𝒕
= −
𝚫 𝑩
𝚫𝒕
𝒗 =
𝚫 𝑪
𝚫𝒕
=
𝚫 𝑫
𝚫𝒕
La velocidad puede
expresarse en términos de la
velocidad con la que
desaparecen los reactivos.
O bien a la velocidad con la
que aparecen los productos.
1. VELOCIDAD DE UNA REACCIÓN QUÍMICA
La expresión de la velocidad de una reacción a
partir de una reacción química.
aA + bB cC + Dd a,b,c,d
𝒗 = −
𝟏
𝒂
𝚫 𝑨
𝚫𝒕
= −
𝟏
𝒃
𝚫 𝑩
𝚫𝒕
𝒗 =
𝟏
𝒄
𝚫 𝑪
𝚫𝒕
=
𝟏
𝒅
𝚫 𝑫
𝚫𝒕
EJEMPLO: Exprese la velocidad de reacción en términos de la rapidez
de cambio de cada reactivo y producto de la reacción siguiente:
2NO (g) + Br2(g) ----→ 2NOBr(g)
𝒗 = −
𝟏
𝟐
𝚫 𝑵𝑶
𝚫𝒕
= −
𝚫 𝑩𝒓𝟐
𝚫𝒕
=
𝟏
𝟐
𝚫 𝑵𝑶𝑩𝒓
𝚫𝒕
EJEMPLO: CÁLCULO DE LA VELOCIDAD DE UNA REACCIÓN
La siguiente ecuación muestra la producción de NO y H2O por oxidación
del amoniaco NH3. A un cierto tiempo, NH3 reacciona a una velocidad de
1.10 M/s. A ese mismo tiempo, ¿Cual es la velocidad a la cual los otros
reactivos y cada producto están cambiando?
4𝑁𝐻!	 					+ 								5	𝑂!	 			→ 					4		𝑁𝑂				 + 			6	𝐻!𝑂
𝒗 = −
𝟏
𝟒
𝚫 !"!	
𝚫𝒕
= −
𝟏
𝟓
𝚫 !!	
𝚫𝒕
=
𝟏
𝟒
𝚫 𝑵𝑶
𝚫𝒕
=
𝟏
𝟔
𝚫 !!!
𝚫𝒕
1.10	𝑚𝑜𝑙	𝑁𝐻3
𝐿. 𝑠
5	𝑚𝑜𝑙	𝑂!	
4	𝑚𝑜𝑙𝑁𝐻!	
= −
1.37	𝑚𝑜𝑙𝑂!	
𝐿. 𝑠
1.10	𝑚𝑜𝑙	𝑁𝐻3
𝐿. 𝑠
4	𝑚𝑜𝑙	𝑁𝑂	
4	𝑚𝑜𝑙𝑁𝐻!	
=
1.10	𝑚𝑜𝑙	𝑁𝑂	
𝐿. 𝑠
EJEMPLO: VELOCIDAD DE UNA REACCIÓN
4𝑁𝐻!	 					+ 								5	𝑂!	 			→ 					4		𝑁𝑂				 + 			6	𝐻!𝑂
𝒗 = −
𝟏
𝟒
𝚫 !"!	
𝚫𝒕
= −
𝟏
𝟓
𝚫 !!	
𝚫𝒕
=
𝟏
𝟒
𝚫 𝑵𝑶
𝚫𝒕
=
𝟏
𝟔
𝚫 !!!
𝚫𝒕
1.10	𝑚𝑜𝑙	𝑁𝐻3
𝐿. 𝑠
6	𝑚𝑜𝑙	𝐻2𝑂	
4	𝑚𝑜𝑙𝑁𝐻!	
=
1.65	𝑚𝑜𝑙	𝐻2𝑂	
𝐿. 𝑠
v = −
1
4
Δ NH!	
Δt
= −
1
4
	 1.10
mol
L. s
= 0.275
mol
L. s
v =
𝟏
𝟔
𝚫 𝐻!𝑂
𝚫𝒕
=
1
6
	 1.65
mol
L. s
= 0.275
mol
L. s
2. FACTORES QUE AFECTAN LA VELOCIDAD
DE REACCIÓN
2. ¿FACTORES QUE INFLUYEN EN LA VELOCIDAD DE UNA
REACCIÓN QUÍMICA?
Naturaleza de los reactivos
Temperatura Presencia de Catalizadores
Concentración de los reactivos
or, in logarithmic form,
ln k " ln A # $
R
E
T
a
$
In this expression, A is a constant having the same units as the rate constant. It is equal
to the fraction of collisions with the proper orientations when all reactant concentrations
are one molar. R is the universal gas constant, expressed with the same energy units in its
numerator as are used for Ea. For instance, when Ea is known in J/mol, the value R "
8.314 J/mol%K is appropriate. Here the unit “mol” is interpreted as “mole of reaction,”
as described in Chapter 15. One important point is the following: The greater the value
of Ea, the smaller the value ofk and the slower the reaction rate (other factors being equal).
Ea
T1
T2
T2 ! T1
Fraction
of
molecules
with
a
given
kinetic
energy
Kinetic energy
Fraction
of
molecules
with
a
given
kinetic
energy
Kinetic energy
Ea1 Ea2
Energía	Cinética
Fracción	de	moléculas	
con	una	energía	cinética	dada.
Fosforo	blanco
Fosforo	rojo
! 0.148 M%s#1
This does not mean that the reaction
proceeds at this rate during the entire
interval.
0.656 0.328 5
0.035
0.586 0.293 6
0.028
0.530 0.265 7
0.023
0.484 0.242 8
Figure 16-2 Plot of concentrations
of all reactants and products versus
time in the reaction of 1.000 M H2
with 2.000 M ICl at 230°C, from
data in Table 16-1 (and a few more
points).
[I2]
[H2]
[HCl]
[ICl]
2.000 M
1.000 M
0
0 5 10 15
Time (s)
Concentrations
of
reactants
and
products
ntial energy
e effect of a
provides a
corresponding
thway, for the
ducts. A
pically occurs
with its own
ll energy
action, Ea#, is
he uncatalyzed
ue of $Erxn
states of the
ts, so it is the
CHAPTER 16: Chemical Kinetics
Progress of Progress of
Energy
Energy
Ea
forward Ea
reverse
∆Erxn ∆Erxn
Ea′
forward
Ea′
reverse
Ea′ < Ea
Derecha Inversa
2.1. NATURALEZA DE LOS REACTIVOS
El fosforo se encuentra en dos formas alotrópicas
El fosforo blanco reacciona
violentamente con el oxígeno
del aire.
Fosforo rojo es inerte.
Fosforo	blanco
Fosforo	rojo
2.1. NATURALEZA DE LOS REACTIVOS
La velocidad de reacción
depende del área superficial o
del grado de subdivisión.
El grado máximo de subdivisión
hace posible que todas las
moléculas o átomos y iones
reaccionen en cualquier
momento.
El gis pulverizado reacciona más rápido con HCl debido
a que hay una mayor área superficial.
2.2. CONCENTRACIÓN DE LOS REACTIVOS
La LEY DE VELOCIDAD describe
la manera en que van
cambiando las concentraciones
conforme pasa el tiempo de
reacción.
𝒗𝒆𝒍𝒐𝒄𝒊𝒅𝒂𝒅 = 𝒌	 𝑨 𝒙 𝑩 𝐲
Donde:
K= constante de velocidad a una temperatura.
x, y= orden de reacción respecto a A y B -”se determina experimentalmente”
Orden general de la reacción = x+y
NO ! N2O 88n NO2 ! N2
EJEMPLO EXPRESIÓN LEY DE VELOCIDAD
𝒗𝒆𝒍𝒐𝒄𝒊𝒅𝒂𝒅 = 𝒌	 𝑨 𝒙 𝑩 𝐲
Relación Velocidad = (Relación B)y
𝒗𝒆𝒍𝒐𝒄𝒊𝒅𝒂𝒅 = 𝑲	 𝑨 𝟐 𝑩 orden general = x+y = 3
Experimento
Inicial
[A]
Inicial
[B]
Velocidad	de	
Formación	[C]
1 1x10	-2	M 1x10	-2	M 1.5x10	-6	M.s-1
2 1x10	-2	M 2x10	-2	M 3.0x10	-6	M.s-1
3 2x10	-2	M 1x10	-2	M 6.0x10	-6	M.s-1
relación
Relación
velocidad
relación
Relación
velocidad
2.2. CONCENTRACIÓN DE LOS REACTIVOS
¿Qué cantidad de reactivo existe
después de un determinado tiempo?
CONCENTRACIÓN VERSUS TIEMPO
Ecuación integrada de la velocidad y el tiempo
de vida media.
2.2. CONCENTRACIÓN DE LOS REACTIVOS
ORDEN CERO
Expresión de la ley de
velocidad
V = k k= M. tiempo-1
Ecuación de velocidad
integrada
𝐴 = 𝐴 0 - akt
Tiempo de vida media
𝑡 1 2
⁄ =
! !
!"#
aA Productos orden cero en A
Tiempo
pendiente
2.2. CONCENTRACIÓN DE LOS REACTIVOS
aA Productos Características
Primer orden en A
PRIMER ORDEN
Expresión de la ley de velocidad
𝑣 = 𝑘 𝐴 					𝑘 = 𝑡𝑖𝑒𝑚𝑝𝑜	_1
Ecuación de velocidad integrada
𝑙𝑛
𝐴 0
[𝐴]
= akt		ó			𝑙𝑜𝑔
𝐴 0
[𝐴]
=
𝑎𝑘𝑡
2.303
Tiempo de vida media
𝑡1/2 =
𝑙𝑛2
𝑎𝑘
=
0.693
𝑎𝑘
me: The Integrated Rate Equation 673
t can be interpreted as m. The
r each experiment, and ln [A]0
or a first-order reaction would
pe of the line equal to !ak and
n products that follows first-
ght line would confirm that
is, rate " k[A]. The slope is
pe of the line is always
e units (time)!1. The
s for concentrations less than
Time
ln [A]0
slope = –ak
ln
[A]
First order
Tiempo
Pendiente
2.2. CONCENTRACIÓN DE LOS REACTIVOS
aA Productos Segundo orden en A
SEGUNDO ORDEN
Expresión de la ley de velocidad
𝑣 = 𝑘 𝐴 2				𝑘 = M−1. tiempo−1
Ecuación de velocidad integrada
1
[𝐴]
−
1
𝐴 0
= akt		
Tiempo de vida media
𝑡1/2 =
1
𝑎𝑘	 𝐴 0
however, if the reaction times used are
too short. In practice, all three lines
might seem to be straight; we should
then suspect that we need to observe
the reaction for a longer time.
he reaction followed zero-order
ne. But if the reaction followed
a straight line whose slope could
e second order in A and second
ht line, but a plot of 1/[A] versus
expected scatter due to experi-
correct order (rate law) for the
can graphical tests for rate-law
are subjects for more advanced
strated in the following example.
n products that follows a
ves a straight line would
d order overall, that is, rate "
ve numbers, the slope of the
egative, 1/[A] is always positive,
Time
l![A]0
slope = ak
l![A]
Second order
1
[#]
Tiempo
Pendiente
2.2. EJEMPLO CONCENTRACIÓN DE LOS REACTIVOS
Tiempo (min) [A] mol/L
0 2.000
2 1.107
4 0.612
6 0.338
8 0.187
10 0.103
A partir de los siguientes datos determine el orden de la reacción y escriba la
expresión de la ley de velocidad. A B + C
Ln [A] 1/[A]
0.693 0.5000
0.102 0.9033
-0.491 1.60
-1.085 2.95
-1.677 5.35
-2.273 9.71
2.2. EJEMPLO CONCENTRACIÓN DE LOS REACTIVOS
CONCENTRACIÓN VERSUS TIEMPO
Tiempo (min) [A] mol/L
0 2.000
2 1.107
4 0.612
6 0.338
8 0.187
10 0.103
A partir de los siguientes datos determine el orden de la reacción y escriba la
expresión de la ley de velocidad. A B + C
ORDEN CERO
us time, as shown in Figure 16-8d.
ar from the answer to part (b) that the plot of ln [A] versus time gives a straight
tells us that the reaction is first order in [A].
orm of a rate-law expression, the answer to part (d) gives rate " k[A].
Time (min)
2.5
[A]
0 2 4 6 8 10
(b) Example 16-10(a).
2.0
1.5
1.0
0.5
0
[A] ln [A] 1![A]
2.000
1.107
0.612
0.338
0.187
0.103
0.693
–0.491
–1.085
–1.677
–2.273
1.63
2.95
5.35
9.71
Example 16-10.
0.102
0.5000
0.9033
Tiempo	(min)
[A]	Mol/L
2.2. EJEMPLO CONCENTRACIÓN DE LOS REACTIVOS
CONCENTRACIÓN VERSUS TIEMPO
Tiempo (min)
0
2
4
6
8
10
A partir de los siguientes datos determine el orden de la reacción y escriba la
expresión de la ley de velocidad. A B + C
SEGUNDO ORDEN
1/[A]
0.5000
0.9033
1.60
2.95
5.35
9.71
Tiempo	(min)
1/[A]
Time (min)
0 2 4 6 8 10
(b) Example 16-10(a).
0
0.187
0.103
–1.677
–2.273
5.35
9.71
Example 16-10.
Time (min)
2 6 8 10 12
ple 16-10(b).
Q
P
1.5 8.5
Time (min)
12
1/
[A]
0 2 4 6 8 10
(d) Example 16-10(c).
0
10
8
6
4
2
2.2. EJEMPLO CONCENTRACIÓN DE LOS REACTIVOS
CONCENTRACIÓN VERSUS TIEMPO
Tiempo (min)
0
2
4
6
8
10
A partir de los siguientes datos determine el orden de la reacción y escriba la
expresión de la ley de velocidad. A B + C
PRIMER ORDEN
Ln [A]
0.693
0.102
-0.491
-1.085
-1.677
-2.273
𝒗𝒆𝒍𝒐𝒄𝒊𝒅𝒂𝒅 = 𝒌	 𝑨
ure 16-8 Data conversion and
ts for Example 16-10. (a) The
a are used to calculate the two
umns ln [A] and 1/[A]. (b) Test
zero-order kinetics: a plot of [A]
sus time. The nonlinearity of this
t shows that the reaction does not
ow zero-order kinetics. (c) Test
first-order kinetics: a plot of ln
versus time. The observation
t this plot gives a straight line
icates that the reaction follows
t-order kinetics. (d) Test for
ond-order kinetics: a plot of 1/[A]
sus time. If the reaction had
owed second-order kinetics, this
t would have resulted in a
aight line and the plot in part (c)
uld not.
0.338
0.187
0.103
–1.085
–1.677
–2.273
2.95
5.35
9.71
6.00
8.00
(a) Data for Example 16-10.
10.00
Time (min)
1
ln
[A]
0 2 6 8 10 12
(c) Example 16-10(b).
Q
P
1.5 8.5
0.5
0
–0.5
–1
–1.5
–2
–2.5
–3
0.2
–1.83
Tiempo	(min)
2.2. CONCENTRACIÓN DE LOS REACTIVOS
TEORIA DE LAS COLISIONES
Para que una reacción ocurra, las moléculas deben colisionar
Al aumentar la concentración de los reactivos se favorecen las
colisiones. Sin embargo no todas dan lugar a reacción.
Para que una colisión sea efectiva, las especies deben:
1. Poseer la energía mínima necesaria para romper y formar
enlaces nuevos
2. Tener la orientación adecuada en el momento de la colisión.
2.2. CONCENTRACIÓN DE LOS REACTIVOS
Reactantes Colisión Productos
Orientación
Efectiva	de	
Colisión
n
n
Pro
Reaction
occurs
Collision
Reactants
NO + N2O → NO2 + N2
Products
Reaction
occurs
Collision
Reactants
NO + N2O → NO2 + N2
2.2. CONCENTRACIÓN DE LOS REACTIVOS
Reactantes Colisión Reactantes
Orientación
Inefectiva	de
Colisión
e
on
on
P
Reaction
occurs
Collision
Reactants
NO + N2O → NO2 + N2
ive
ion
ion
Products
Collision
Reactants
Collision
Reactants Reactants
No reaction
2.3. TEMPERATURA
El antimonio reacciona con Bromo más fuertemente a 75 oC (Izquierda) que a 25 oC (Derecha)
Antimony powder reacts with bromine more rapidly at 75°C (left) than at 25°C (right).
16-8 Temperature: The Arrhenius Equation
ntimony powder reacts with bromine more rapidly at 75°C (left) than at 25°C (right).
16-8 Temperature: The Arrhenius Equation
2.3. TEMPERATURA
A mayor temperatura
(T2) habrá una mayor
fracción de moléculas
que tenga la energía
de activación necesaria
(Ea), para que la
reacción proceda, a
comparación de una
temperatura mas baja.
ARRHENIUS
Figure 16-13 (Left) The effect of temperature on the number of mo
Ea
T1
T2
T2 ! T1
Fraction
of
molecules
with
a
given
kinetic
energy
Kinetic energy
Fraction
of
molecules
with
a
given
kinetic
energy
Kineti
Energía	Cinética
Fracción	de	moléculas	
con	una	energía	cinética	dada.
2.3. TEMPERATURA
La ecuación de Arrhenius relaciona la velocidad de reacción
(mediante su k) con una temperatura (T) para una misma energía
de activación (Ea).
Si T
aumenta
Ea/RT
Disminuye
- Ea /RT
Aumenta
exp (-Ea/RT)
Aumenta
K
Aumenta
La
reacción
se
acelera
𝑘 = 𝐴	𝑒!!"/!"
ln𝑘 = 𝑙𝑛𝐴 −
!"
!"
2.3. TEMPERATURA
La ecuación de Arrhenius relaciona la velocidad de reacción
(mediante su k) con una temperatura (T) para una misma energía
de activación (Ea).
ln𝑘 = −
!!
!
	
!
!
+ ln A
ln
!!
!!
= −
!!
!
	
!
!!
−
!
!!
La ecuación de Arrhenius para dos
diferentes temperaturas.
Pendiente
2.3. EJEMPLO CON ECUACIÓN DE ARRHENIUS
La descomposición en fase gaseosa del yoduro de etilo para producir etileno y yoduro
de hidrógeno, se comporta como una reacción de primer orden.
A 600 K el valor de la constante k= 1.6x10-5s-1. Cuando la temperatura alcanza los
700 K , el valor de la k se incrementa a 6.36x10-3s-1 . ¿Cuál es la energía de activación
de la reacción?
ln
!!
!!
= −
!!
!
	
!
!!
−
!
!!
Ea=
! !"
!"
!"
!
!!
!
!
!!
=
!.!"#
!
!"#.!
(!.!")
!.!"#$%	!!	!	!!
= 2.09x105 J/mol
Despejando Ea y sustituyendo valores
EXAMPLE 16-12 Activation Energy
The gas-phase decomposition of ethyl iodide to give ethylene and hydrogen iodide is a first-
order reaction.
C2H5I 88n C2H4 # HI
At 600. K, the value of k is 1.60 ! 10"5 s"1. When the temperature is raised to 700. K, the
value of k increases to 6.36 ! 10"3 s"1. What is the activation energy for this reaction?
Plan
We know k at two different temperatures. We solve the two-temperature forms of the Arrhe-
nius equation for Ea and evaluate.
Solution
k1 $ 1.60 ! 10"5 s"1 at T1 $ 600. K k2 $ 6.36 ! 10"3 s"1 at T2 $ 700. K
R $ 8.314 J/mol%K Ea $ _?
_
C2H5I 88n C2H4 # HI
600. K, the value of k is 1.60 ! 10"5 s"1. When the temperature is raised to 700. K, th
ue of k increases to 6.36 ! 10"3 s"1. What is the activation energy for this reaction?
n
know k at two different temperatures. We solve the two-temperature forms of the Arrh
s equation for Ea and evaluate.
ution
k1 $ 1.60 ! 10"5 s"1 at T1 $ 600. K k2 $ 6.36 ! 10"3 s"1 at T2 $ 700. K
R $ 8.314 J/mol%K Ea $ _?
_
2.4. PRESENCIA DE CATALIZADOR
Los catalizadores abaten la
Ea permitiendo que la
reacción se lleve a cabo más
rápido.
No toma parte en la
reacción, por lo que no
aparece en la ecuación
balanceada.
gy
f a
a
nding
r the
curs
own
a#, is
lyzed
xn
the
the
CHAPTER 16: Chemical Kinetics
Progress of
uncatalyzed reaction
Progress of
catalyzed reaction
Energy
Energy
Ea
forward Ea
reverse
∆Erxn ∆Erxn
Ea′
forward
Ea′
reverse
Ea′ < Ea
olecules
with
etic
energy
Minimum kinetic energy
for catalyzed reaction
Derecha Inversa
Progreso	de	una	reacción	catalizada
Energía	→
Inversa
CHAPTER 16: Chemical Kinetics
Progress of
uncatalyzed reaction
Progress of
catalyzed reaction
Energy
Energy
Ea
forward Ea
reverse
∆Erxn ∆Erxn
Ea′
forward
Ea′
reverse
Ea′ < Ea
Progreso	de	una	reacción	no	catalizada
Energía	→
Inversa
Derecha
2.4. PRESENCIA DE CATALIZADOR
Un catalizador homogéneo existe en la misma fase que los
reactivos.
Section 11-8). For example, Ce4! oxidizes thallium(I) ions in solution
alyzed by the addition of a very small amount of a soluble salt
(II) ions, Mn2!. The Mn2! acts as a homogeneous catalyst.
Mn2!
2Ce4! ! Tl! 8888n 2Ce3! ! Tl3!
on is thought to proceed by the following sequence of elementary
Ce4! ! Mn2! 88n Ce3! ! Mn3! step 1
Ce4! ! Mn3! 88n Ce3! ! Mn4! step 2
Mn4! ! Tl! 88n Mn2! ! Tl3! step 3
2Ce4! ! Tl! 88n 2Ce3! ! Tl3! overall
e Mn2! catalyst reacts in step 1, but an equal amount is regenerate
available to react again. The two ions shown in blue, Mn3! and
rmediates. Mn3! ions are formed in step 1 and consumed in an equ
milarly, Mn4! ions are formed in step 2 and consumed in an equal
Homogeneous Catalysis
A homogeneous catalyst exists in the same phase as the reactants. Ceric ion, Ce4!, at
one time was an important laboratory oxidizing agent that was used in many redox
titrations (Section 11-8). For example, Ce4! oxidizes thallium(I) ions in solution; this reac-
tion is catalyzed by the addition of a very small amount of a soluble salt containing
manganese(II) ions, Mn2!. The Mn2! acts as a homogeneous catalyst.
Mn2!
2Ce4! ! Tl! 8888n 2Ce3! ! Tl3!
This reaction is thought to proceed by the following sequence of elementary steps.
Ce4! ! Mn2! 88n Ce3! ! Mn3! step 1
Ce4! ! Mn3! 88n Ce3! ! Mn4! step 2
Mn4! ! Tl! 88n Mn2! ! Tl3! step 3
2Ce4! ! Tl! 88n 2Ce3! ! Tl3! overall
Some of the Mn2! catalyst reacts in step 1, but an equal amount is regenerated in step 3
and is thus available to react again. The two ions shown in blue, Mn3! and Mn4!, are
reaction intermediates. Mn3! ions are formed in step 1 and consumed in an equal amount
in step 2; similarly, Mn4! ions are formed in step 2 and consumed in an equal amount in
step 3.
We can now summarize the species that can appear in a reaction mechanism.
1. Reactant: More is consumed than is formed.
2.4. PRESENCIA DE CATALIZADOR
Un catalizador heterogéneo esta presente en una fase distinta a
la de los reactivos.
Etapas de proceso:
1.- Adsorción
2.- Activación del reactivo
adsorbido
3.- Reacción
4.- Desorción
3. RESUMEN
Velocidad de reacción
𝒗 = −
𝟏
𝒂
𝚫 𝑨
𝚫𝒕
= −
𝟏
𝒃
𝚫 𝑩
𝚫𝒕
𝒗 =
𝟏
𝒄
𝚫 𝑪
𝚫𝒕
=
𝟏
𝒅
𝚫 𝑫
𝚫𝒕
Naturaleza de
los reactivos
Concentración
de los reactivos
Temperatura Catalizadores
Factores que influyen en la Velocidad de reacción
Expresión de la ley de Velocidad de reacción
𝒗𝒆𝒍𝒐𝒄𝒊𝒅𝒂𝒅 = 𝑲	 𝑨 𝒙 𝑩 𝐲
3. RESUMEN Ecuaciones integradas
Ecuación de Arrhenius
ln𝑘 = −
!!
!
	
!
!
+ ln A ln
!!
!!
= −
!!
!
	
!
!!
−
!
!!
ORDEN CERO
Expresión de la ley de
velocidad
V = k k= M. tiempo-1
Ecuación de velocidad
integrada
𝐴 = 𝐴 0 - akt
Tiempo de vida media
𝑡 1 2
⁄ =
! !
!"#
PRIMER ORDEN
Expresión de la ley de
velocidad
𝑣 = 𝑘 𝐴 					𝑘 = 𝑡𝑖𝑒𝑚𝑝𝑜	_1
Ecuación de velocidad
integrada
𝑙𝑛
𝐴 0
[𝐴]
= akt		
	𝑙𝑜𝑔
𝐴 0
[𝐴]
=
𝑎𝑘𝑡
2.303
Tiempo de vida media
𝑡1/2 =
𝑙𝑛2
𝑎𝑘
=
0.693
𝑎𝑘
SEGUNDO ORDEN
Expresión de la ley de
velocidad
𝑣 = 𝑘 𝐴 2				𝑘 = M−1. tiempo−1
Ecuación de velocidad
integrada
1
[𝐴]
−
1
𝐴 0
= akt		
Tiempo de vida media
𝑡1/2 =
1
𝑎𝑘	 𝐴 0
4. SERIE DE EJERCICIOS
1.- Exprese la velocidad de reacción en términos del cambio de cada reactivo y producto para cada una de las
siguientes reacciones.
2.- A un tiempo dado, N2 reacciona con H2 a una razón de 0.25 M/min para producir NH3. Al mismo tiempo, ¿Cuál
es la razón de cambio a la cual los reactivos y producto están cambiando?.
3.- Los datos para la siguiente reacción fueron obtenidos a 25 ºC, ¿Cuál es la expresión de la ley de velocidad la
reacción?
4.- Los siguientes datos fueron recolectados para la siguiente reacción a una temperatura en particular.
a) ¿Cuál es la expresión de la ley de velocidad para esta reacción?
b) Describe el orden respecto de cada uno de los reactivos y el orden general de la reacción.
*08. Express the rate of reaction in terms of the rate of change
of each reactant and each product in the following.
(a) 3ClO!(aq) 88n ClO3
!(aq) " 2Cl!(aq)
(b) 2SO2(g) " O2(g) 88n 2SO3(g)
(c) C2H4(g) " Br2(g) 88n C2H4Br2(g)
*09. At a given time, N2 is reacting with H2 at a rate of 0.25
M/min to produce NH3. At that same time, what is the
rate at which the other reactant is changing and the rate
at which the product is changing?
N2 " 3H2 88n 2NH3
*10. The following equation shows the production of NO and
H2O by oxidation of ammonia. At a given time, NH3 is
reacting at a rate of 1.10 M/min. At that same time, which
is the rate at which the other reactant is changing and the
rate at which each product is changing?
4NH3 " 5O2 88n 4NO " 6H2O
*11. Why do large crystals of sugar burn more slowly than finely
ground sugar?
*12. Some fireworks are bright because of the burning of mag-
nesium. Speculate on how fireworks might be constructed
using magnesium. How might the sizes of the pieces of
magnesium be important? What would you expect to occur
if pieces that were too large were used? Too small?
t
i
*15. T
t
*16. U
c
s
*17. R
t
E
*18. R
W
E
Exercises 699
of the rate of change
the following.
Cl!(aq)
(g)
H2 at a rate of 0.25
me time, what is the
hanging and the rate
H3
oduction of NO and
given time, NH3 is
hat same time, which
is changing and the
g?
" 6H2O
ore slowly than finely
the burning of mag-
might be constructed
zes of the pieces of
d you expect to occur
d? Too small?
tion of O2 is doubled. The initial rate in the second exper-
iment will be ______ times that of the first.
2NO " O2 88n 2NO2
*15. The rate-law expression for the following reaction is found
to be rate # k [N2O5]. What is the overall reaction order?
2N2O5(g) 88n 4NO2(g) " O2(g)
*16. Use times expressed in seconds to give the units of the rate
constant for reactions that are overall (a) first order; (b)
second order; (c) third order; (d) of order 1$
1
2
$.
*17. Rate data were obtained at 25°C for the following reac-
tion. What is the rate-law expression for this reaction?
A " 2B 88n C " 2D
[A] [B] Initial Rate of
Expt. [mol/L] [mol/L] Formation of C
1 0.10 0.10 3.0 % 10!4 M&min!1
2 0.30 0.30 9.0 % 10!4 M&min!1
3 0.30 0.10 3.0 % 10!4 M&min!1
4 0.40 0.20 6.0 % 10!4 M&min!1
*18. Rate data were obtained for the following reaction at 25°C.
What is the rate-law expression for the reaction?
2A " B " 2C 88n D " 2E
Initial Initial Initial Initial Rate of
Expt. [A] [B] [C] Formation of D
1 0.10 M 0.20 M 0.10 M 5.0 % 10!4 M&min!1
2 0.20 M 0.20 M 0.30 M 1.5 % 10!3 M&min!1
3 0.30 M 0.20 M 0.10 M 5.0 % 10!4 M&min!1
4 0.40 M 0.60 M 0.30 M 4.5 % 10!3 M&min!1
*19. (a) A certain reaction is zero order in reactant A and sec-
ond order in reactant B. If the concentrations of both
reactants are doubled, what happens to the reaction rate?
Vel. Inicial de
Formación de C
700 CHAPTER 16: Chemical Kinetics
Initial Rate
Expt. [A]0 (mol/L) [B]0 (mol/L) of Reaction
1 0.10 0.10 0.0090 M!s"1
2 0.20 0.10 0.0360 M!s"1
3 0.10 0.20 0.0180 M!s"1
4 0.10 0.30 0.0270 M!s"1
(a) What is the rate-law expression for this reaction?
(b) Describe the order of the reaction with respect to each
reactant and to the overall order.
*22. Rate data were collected for the following reaction at a par-
ticular temperature.
2ClO2(aq) # 2OH"(aq) 88n
ClO3
"(aq) # ClO2
"(aq) # H2O(!)
[ClO2]0 [OH"]0 Initial Rate
Expt. (mol/L) (mol/L) of Reaction
1 0.012 0.012 2.07 $ 10"4 M!s"1
2 0.024 0.012 8.28 $ 10"4 M!s"1
3 0.012 0.024 4.14 $ 10"4 M!s"1
4 0.024 0.024 1.66 $ 10"3 M!s"1
(a) What is the rate-law expression for this reaction?
(b) Describe the order of the reaction with respect to each
reactant and to the overall order.
*25. Given the following data for the reaction A # B n C, write
the rate-law expression.
Initial Initial Initial Rate of
Expt. [A] [B] Formation of C
1 0.25 0.15 8.00 $ 10"5 M/s
2 0.25 0.30 3.20 $ 10"4 M/s
3 0.50 0.60 5.12 $ 10"3 M/s
*26. Given the following data for the reaction A # B n C, write
the rate-law expression.
Initial Initial Initial Rate of
Expt. [A] [B] Formation of C
1 0.10 M 0.10 M 2.00 $ 10"4 M/s
2 0.20 M 0.10 M 8.00 $ 10"4 M/s
3 0.40 M 0.20 M 2.56 $ 10"2 M/s
*27. Consider a chemical reaction between compounds A and
B that is first order in A and first order in B. From the
information shown here, fill in the blanks.
Expt. Rate (M!s"1) [A] [B]
1 0.24 0.20 M 0.050 M
Vel. Inicial de
reacción
Exercises 699
*08. Express the rate of reaction in terms of the rate of change
of each reactant and each product in the following.
(a) 3ClO!(aq) 88n ClO3
!(aq) " 2Cl!(aq)
(b) 2SO2(g) " O2(g) 88n 2SO3(g)
(c) C2H4(g) " Br2(g) 88n C2H4Br2(g)
*09. At a given time, N2 is reacting with H2 at a rate of 0.25
M/min to produce NH3. At that same time, what is the
rate at which the other reactant is changing and the rate
at which the product is changing?
N2 " 3H2 88n 2NH3
*10. The following equation shows the production of NO and
H2O by oxidation of ammonia. At a given time, NH3 is
reacting at a rate of 1.10 M/min. At that same time, which
is the rate at which the other reactant is changing and the
rate at which each product is changing?
4NH3 " 5O2 88n 4NO " 6H2O
*11. Why do large crystals of sugar burn more slowly than finely
ground sugar?
*12. Some fireworks are bright because of the burning of mag-
nesium. Speculate on how fireworks might be constructed
using magnesium. How might the sizes of the pieces of
magnesium be important? What would you expect to occur
if pieces that were too large were used? Too small?
tion of O2 is doubled. The initial rate in the second exper-
iment will be ______ times that of the first.
2NO " O2 88n 2NO2
*15. The rate-law expression for the following reaction is found
to be rate # k [N2O5]. What is the overall reaction order?
2N2O5(g) 88n 4NO2(g) " O2(g)
*16. Use times expressed in seconds to give the units of the rate
constant for reactions that are overall (a) first order; (b)
second order; (c) third order; (d) of order 1$
1
2
$.
*17. Rate data were obtained at 25°C for the following reac-
tion. What is the rate-law expression for this reaction?
A " 2B 88n C " 2D
[A] [B] Initial Rate of
Expt. [mol/L] [mol/L] Formation of C
1 0.10 0.10 3.0 % 10!4 M&min!1
2 0.30 0.30 9.0 % 10!4 M&min!1
3 0.30 0.10 3.0 % 10!4 M&min!1
4 0.40 0.20 6.0 % 10!4 M&min!1
*18. Rate data were obtained for the following reaction at 25°C.
What is the rate-law expression for the reaction?
2A " B " 2C 88n D " 2E
Initial Initial Initial Initial Rate of
Expt. [A] [B] [C] Formation of D
1 0.10 M 0.20 M 0.10 M 5.0 % 10!4 M&min!1
2 0.20 M 0.20 M 0.30 M 1.5 % 10!3 M&min!1
!4 !1
4. SERIE DE EJERCICIOS
5.- La descomposición térmica del amoniaco a altas temperaturas fue estudiado en presencia de un gas inerte. Los
datos de un solo experimento a 2000K son:
a) Traza la gráfica de la expresión de concentración apropiada en función del tiempo para obtener el orden de la
reacción. b) Determina la constante de velocidad de la reacción a partir de la pendiente de la línea y utiliza los
datos que se dan y la ecuación integrada de velocidad para verificar tu respuesta.
6.- Los datos de la constante de velocidad en función de la temperatura de la reacción de intercambio son:
a) Calcule la Ea a partir del grafico del log K Vs 1/T
b) Use el gráfico para predecir el valor de K a 311 K.
c) ¿Cuál es el valor numérico del factor de frecuencia de colisión (A) en la ecuación de Arrhenius?
What is the rate constant for this first-order decomposi-
tion?
A 88n B # C
*43. The thermal decomposition of ammonia at high tempera-
tures was studied in the presence of inert gases. Data at
2000 K are given for a single experiment.
NH3 88n NH2 # H
t (hours) [NH3] (mol/L)
00 8.000 ! 10"7
25 6.750 ! 10"7
50 5.840 ! 10"7
75 5.150 ! 10"7
Plot the appropriate concentration expressions against
time to find the order of the reaction. Find the rate
constant of the reaction from the slope of the line. Use the
given data and the appropriate integrated rate equation to
check your answer.
*44. The following data were obtained from a study of the
decomposition of a sample of HI on the surface of a gold
wire. (a) Plot the data to find the order of the reaction, the
rate constant, and the rate equation. (b) Calculate the HI
concentration in mmol/L at 600. s.
t (seconds) [HI] (mmol/L)
000. 5.46
250. 4.10
500. 2.73
750. 1.37
*45. The decomposition of SO2Cl2 in the gas phase,
SO2Cl2 88n SO2 # Cl2
14.00 0.168
16.00 0.180
18.00 0.190
20.00 0.199
(a) Plot [Cl2] versus t. (b) Plot [SO2Cl2] versus t. (c)
mine the rate law for this reaction. (d) What is th
with units, for the specific rate constant at 320°C? (
long would it take for 95% of the original SO2Cl2 t
*46. At some temperature, the rate constant for the de
sition of HI on a gold surface is 0.080 M&s"1.
2HI(g) 88n H2(g) # I2(g)
(a) What is the order of the reaction? (b) How lon
take for the concentration of HI to drop from 1.5
0.30 M?
Activation Energy, Temperature, and Catalysts
*47. Draw typical reaction energy diagrams for one-ste
tions that release energy and that absorb
Distinguish between the net energy change, 'E, f
kind of reaction and the activation energy. Indicate
tial energies of products and reactants for both k
reactions.
*48. Use graphs to illustrate how the presence of a cata
affect the rate of a reaction.
*49. How do homogeneous catalysts and heterogeneou
lysts differ?
*50. (a) Why should one expect an increase in tempera
increase the initial rate of reaction? (b) Why sho
expect a reaction in the gaseous state to be faster t
same reaction in the solid state?
*51. What is the activation energy for a reaction if its ra
stant is found to triple when the temperature is rais
300 K to 310 K?
*52. What is the activation energy for a reaction if its ra
stant is found to triple when the temperature is rais
600 K to 610 K?
t (horas)
Exercises
*53. For a gas-phase reaction, Ea ! 103 kJ/mol, and the rate
constant is 0.0850 min"1 at 273 K. Find the rate constant
at 323 K.
*54. The rate constant of a reaction is tripled when the tem-
perature is increased from 298 K to 308 K. Find Ea.
*55. The rate constant for the decomposition of N2O
2N2O(g) 88n 2N2(g) # O2(g)
is 2.6 $ 10"11 s"1 at 300°C and 2.1 $ 10"10 s"1 at 330°C.
Calculate the activation energy for this reaction. Prepare
a reaction coordinate diagram like Figure 16-10 using
"164.1 kJ/mol as the %Erxn.
*56. For a particular reaction, %E0 ! 51.51 kJ/mol, k ! 8.0 $
10"7 s"1 at 0.0°C, and k ! 8.9 $ 10"4 s"1 at 50.0°C. Pre-
pare a reaction coordinate diagram like Figure 16-10 for
this reaction.
*57. You are given the rate constant as a function of tempera-
ture for the exchange reaction
Mn(CO)5(CH3CN)# # NC5H5 88n
Mn(CO)5(NC5H5)# # CH3CN
T (K) k (min"1)
298 0.0409
308 0.0818
318 0.157
(a) Calculate Ea from a plot of log k versus 1/T. (b) Use
the graph to predict the value of k at 311 K. (c) What is
the numerical value of the collision frequency factor, A, in
the Arrhenius equation?
*58. The rearrangement of cyclopropane to propene described
in Exercise 40 has been studied at various temperatures.
*59. Biological reactions nearly always occur
enzymes as catalysts. The enzyme catala
peroxides, reduces the Ea for the reactio
(uncatalyzed) to 28 kJ/mol (catalyzed). B
the reaction rate increase at normal b
37.0°C, for the same reactant (peroxid
Assume that the collision factor, A, rem
*60. The enzyme carbonic anhydrase catalyze
carbon dioxide.
CO2 # H2O 88n H2C
This reaction is involved in the transfer o
to the lungs via the bloodstream. One
hydrates 106 molecules of CO2 per se
kilograms of CO2 are hydrated in one
1.0 $ 10"6 M enzyme?
*61. The following gas-phase reaction fo
kinetics.
ClO2F 88n ClOF # O
The activation energy of this reaction is
value of k at 322°C is 6.76 $ 10"4 s"1
be the value of k for this reaction at 2
temperature would this reaction hav
3.00 $ 10"2 s"1?
*62. The following gas-phase reaction is firs
N2O5 88n NO2 # NO
The activation energy of this reaction
value of k at 0°C is 9.16 $ 10"3 s"1. (a
the value of k for this reaction at room te
(b) At what temperature would this react
of 3.00 $ 10"2 s"1?
5. REFERENCIAS BIBLIOGRÁFICAS
1.- Química. Raymond Chang. Ed. Mc Graw Hill. 11a edición.
México (2013).
2.- Química General. Kenneth W. Whitten. Ed. Cengage
Learning. 8 a edición. México (2008).
3.- Química. Jerome L. Rosenberg, Lawrence M. Epstein y
Peter J. Krieger. Ed. Mc Graw Hill. 9a edición. México (2009).
4.- Problemas de Química y Como Resolverlos. Paul Frey. Ed.
CECSA. México (2000).

More Related Content

What's hot

Cinetica quimica 002
Cinetica quimica 002Cinetica quimica 002
Cinetica quimica 002manuperu
 
Solucionario levenspiel-cap-2-y-3
Solucionario levenspiel-cap-2-y-3Solucionario levenspiel-cap-2-y-3
Solucionario levenspiel-cap-2-y-3David Gonzalez
 
Reacciones No Elementales
Reacciones No ElementalesReacciones No Elementales
Reacciones No ElementalesLuyirod
 
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...Gerard B. Hawkins
 
Reaccion quimica 3.equilibrio quimico - ejercicio 05 grado de disociacion d...
Reaccion quimica   3.equilibrio quimico - ejercicio 05 grado de disociacion d...Reaccion quimica   3.equilibrio quimico - ejercicio 05 grado de disociacion d...
Reaccion quimica 3.equilibrio quimico - ejercicio 05 grado de disociacion d...Triplenlace Química
 
Problemas resueltos-de-reactores-quimico
Problemas resueltos-de-reactores-quimicoProblemas resueltos-de-reactores-quimico
Problemas resueltos-de-reactores-quimicoJesús Rodrigues
 
Ensayo de corrosion
Ensayo de corrosionEnsayo de corrosion
Ensayo de corrosionDiego Logan
 
Balance de materia molinos
Balance de materia molinosBalance de materia molinos
Balance de materia molinosNelshon Laqui
 
Grupos Puntuales de Simetria
Grupos Puntuales de SimetriaGrupos Puntuales de Simetria
Grupos Puntuales de SimetriaAntonio Lazo
 
Obtención de datos cinéticos mediante el método integral y el método diferenc...
Obtención de datos cinéticos mediante el método integral y el método diferenc...Obtención de datos cinéticos mediante el método integral y el método diferenc...
Obtención de datos cinéticos mediante el método integral y el método diferenc...José Carlos López
 
1. introducción cinética química
1. introducción cinética química1. introducción cinética química
1. introducción cinética químicaDurvel de la Cruz
 
solucionario del cap. 2 de robert TREYBAL
solucionario del cap. 2 de robert TREYBAL solucionario del cap. 2 de robert TREYBAL
solucionario del cap. 2 de robert TREYBAL kevin miranda
 
Vidrios metalicos
Vidrios metalicosVidrios metalicos
Vidrios metalicosCecilia A.
 
1414 l práctica 9 síntesis de ba tio3 por método de sol-gel
1414 l práctica 9 síntesis de ba tio3 por método de sol-gel1414 l práctica 9 síntesis de ba tio3 por método de sol-gel
1414 l práctica 9 síntesis de ba tio3 por método de sol-gelJonathan Saviñon de los Santos
 
Evaluación de la velocidad de corrosión
Evaluación de la velocidad de corrosiónEvaluación de la velocidad de corrosión
Evaluación de la velocidad de corrosiónYohn Barrera
 

What's hot (20)

Cinetica quimica 002
Cinetica quimica 002Cinetica quimica 002
Cinetica quimica 002
 
Solucionario levenspiel-cap-2-y-3
Solucionario levenspiel-cap-2-y-3Solucionario levenspiel-cap-2-y-3
Solucionario levenspiel-cap-2-y-3
 
Reacciones No Elementales
Reacciones No ElementalesReacciones No Elementales
Reacciones No Elementales
 
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
 
Polarizacion
PolarizacionPolarizacion
Polarizacion
 
Solucionario levenspiel
Solucionario levenspielSolucionario levenspiel
Solucionario levenspiel
 
Reaccion quimica 3.equilibrio quimico - ejercicio 05 grado de disociacion d...
Reaccion quimica   3.equilibrio quimico - ejercicio 05 grado de disociacion d...Reaccion quimica   3.equilibrio quimico - ejercicio 05 grado de disociacion d...
Reaccion quimica 3.equilibrio quimico - ejercicio 05 grado de disociacion d...
 
Problemas resueltos-de-reactores-quimico
Problemas resueltos-de-reactores-quimicoProblemas resueltos-de-reactores-quimico
Problemas resueltos-de-reactores-quimico
 
Ensayo de corrosion
Ensayo de corrosionEnsayo de corrosion
Ensayo de corrosion
 
Balance de materia molinos
Balance de materia molinosBalance de materia molinos
Balance de materia molinos
 
Grupos Puntuales de Simetria
Grupos Puntuales de SimetriaGrupos Puntuales de Simetria
Grupos Puntuales de Simetria
 
Obtención de datos cinéticos mediante el método integral y el método diferenc...
Obtención de datos cinéticos mediante el método integral y el método diferenc...Obtención de datos cinéticos mediante el método integral y el método diferenc...
Obtención de datos cinéticos mediante el método integral y el método diferenc...
 
1. introducción cinética química
1. introducción cinética química1. introducción cinética química
1. introducción cinética química
 
solucionario del cap. 2 de robert TREYBAL
solucionario del cap. 2 de robert TREYBAL solucionario del cap. 2 de robert TREYBAL
solucionario del cap. 2 de robert TREYBAL
 
Etapas en una reacción catalítica.bueno
Etapas en una reacción catalítica.buenoEtapas en una reacción catalítica.bueno
Etapas en una reacción catalítica.bueno
 
Vidrios metalicos
Vidrios metalicosVidrios metalicos
Vidrios metalicos
 
1414 l práctica 9 síntesis de ba tio3 por método de sol-gel
1414 l práctica 9 síntesis de ba tio3 por método de sol-gel1414 l práctica 9 síntesis de ba tio3 por método de sol-gel
1414 l práctica 9 síntesis de ba tio3 por método de sol-gel
 
Evaluación de la velocidad de corrosión
Evaluación de la velocidad de corrosiónEvaluación de la velocidad de corrosión
Evaluación de la velocidad de corrosión
 
Teoria del campo ligando
Teoria del campo ligandoTeoria del campo ligando
Teoria del campo ligando
 
Estequiometria
EstequiometriaEstequiometria
Estequiometria
 

Similar to Cinetica quimica.pdf

Unit 4 chemical kinetics (Class XII)
Unit  4 chemical kinetics (Class XII)Unit  4 chemical kinetics (Class XII)
Unit 4 chemical kinetics (Class XII)Arunesh Gupta
 
SPM F5 Chapter 1 Rate of Reaction
SPM F5 Chapter 1 Rate of Reaction SPM F5 Chapter 1 Rate of Reaction
SPM F5 Chapter 1 Rate of Reaction Wong Hsiung
 
Chapter 1 Rate of Reactions
Chapter 1 Rate of Reactions Chapter 1 Rate of Reactions
Chapter 1 Rate of Reactions Wong Hsiung
 
C14 rates of reactions
C14 rates of reactionsC14 rates of reactions
C14 rates of reactionsChemrcwss
 
rate of rxns.pptx
rate of rxns.pptxrate of rxns.pptx
rate of rxns.pptxcarlmanaay
 
TOPIC 1 RATE OF REACTION.pptx
TOPIC 1 RATE OF REACTION.pptxTOPIC 1 RATE OF REACTION.pptx
TOPIC 1 RATE OF REACTION.pptxBainunDali
 
Diploma_I_Applied science(chemistry)U-IV Chemical kinetics
Diploma_I_Applied science(chemistry)U-IV Chemical kinetics Diploma_I_Applied science(chemistry)U-IV Chemical kinetics
Diploma_I_Applied science(chemistry)U-IV Chemical kinetics Rai University
 
Chemical kinetics ok1294986988
Chemical kinetics    ok1294986988Chemical kinetics    ok1294986988
Chemical kinetics ok1294986988Navin Joshi
 
C14 rates of reactions
C14 rates of reactionsC14 rates of reactions
C14 rates of reactionsdean dundas
 
B van Woezik_Runaway and thermally safe operation of a nitric acid oxidation ...
B van Woezik_Runaway and thermally safe operation of a nitric acid oxidation ...B van Woezik_Runaway and thermally safe operation of a nitric acid oxidation ...
B van Woezik_Runaway and thermally safe operation of a nitric acid oxidation ...Bob van Woezik
 
Chemical Kinetics Part 1 By S E Bhandarkar
Chemical Kinetics Part 1 By S E BhandarkarChemical Kinetics Part 1 By S E Bhandarkar
Chemical Kinetics Part 1 By S E Bhandarkarsubodhbhandarkar1
 
SHORT NOTE ON CATALYST .
SHORT NOTE ON CATALYST .SHORT NOTE ON CATALYST .
SHORT NOTE ON CATALYST .ShraddhaVerma27
 

Similar to Cinetica quimica.pdf (18)

Unit 4 chemical kinetics (Class XII)
Unit  4 chemical kinetics (Class XII)Unit  4 chemical kinetics (Class XII)
Unit 4 chemical kinetics (Class XII)
 
SPM F5 Chapter 1 Rate of Reaction
SPM F5 Chapter 1 Rate of Reaction SPM F5 Chapter 1 Rate of Reaction
SPM F5 Chapter 1 Rate of Reaction
 
Chapter 1 Rate of Reactions
Chapter 1 Rate of Reactions Chapter 1 Rate of Reactions
Chapter 1 Rate of Reactions
 
C14 rates of reactions
C14 rates of reactionsC14 rates of reactions
C14 rates of reactions
 
rate of rxns.pptx
rate of rxns.pptxrate of rxns.pptx
rate of rxns.pptx
 
TOPIC 1 RATE OF REACTION.pptx
TOPIC 1 RATE OF REACTION.pptxTOPIC 1 RATE OF REACTION.pptx
TOPIC 1 RATE OF REACTION.pptx
 
Diploma_I_Applied science(chemistry)U-IV Chemical kinetics
Diploma_I_Applied science(chemistry)U-IV Chemical kinetics Diploma_I_Applied science(chemistry)U-IV Chemical kinetics
Diploma_I_Applied science(chemistry)U-IV Chemical kinetics
 
cxc rates.pdf
cxc rates.pdfcxc rates.pdf
cxc rates.pdf
 
Chemical kinetics ok1294986988
Chemical kinetics    ok1294986988Chemical kinetics    ok1294986988
Chemical kinetics ok1294986988
 
C14 rates of reactions
C14 rates of reactionsC14 rates of reactions
C14 rates of reactions
 
C14 rates of reactions
C14 rates of reactionsC14 rates of reactions
C14 rates of reactions
 
4
44
4
 
B van Woezik_Runaway and thermally safe operation of a nitric acid oxidation ...
B van Woezik_Runaway and thermally safe operation of a nitric acid oxidation ...B van Woezik_Runaway and thermally safe operation of a nitric acid oxidation ...
B van Woezik_Runaway and thermally safe operation of a nitric acid oxidation ...
 
Chemical Kinetics Part 1 By S E Bhandarkar
Chemical Kinetics Part 1 By S E BhandarkarChemical Kinetics Part 1 By S E Bhandarkar
Chemical Kinetics Part 1 By S E Bhandarkar
 
Rates of Reactions
Rates of ReactionsRates of Reactions
Rates of Reactions
 
Catalysis
CatalysisCatalysis
Catalysis
 
SHORT NOTE ON CATALYST .
SHORT NOTE ON CATALYST .SHORT NOTE ON CATALYST .
SHORT NOTE ON CATALYST .
 
Intro to reaction enggineering
Intro to reaction enggineeringIntro to reaction enggineering
Intro to reaction enggineering
 

Recently uploaded

HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 

Recently uploaded (20)

HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 

Cinetica quimica.pdf

  • 1. Universidad Autónoma del Estado de México Facultad de Ingeniería UNIDAD DE APRENDIZAJE QUÍMICA/ QUÍMICA GENERAL CINÉTICA QUÍMICA Rosa María Fuentes Rivas
  • 2. OBJETIVO INTRODUCCIÓN 1. Velocidad de Reacción Química 2. Factores que afectan la velocidad de reacción 2.1. Naturaleza de los reactantes 2.2. Concentración de los reactantes: expresión de la ley de velocidad 2.3. Concentración versus tiempo : Ecuación integrada de la velocidad, vida media. 2.4.Temperatura : Ecuación de Arrhenius 2.5. Catalizadores 3. RESUMEN 4. SERIE DE EJERCICIOS 5. REFERENCIAS BIBLIOGRÁFICAS CONTENIDO
  • 3. OBJETIVO Al término del tema el alumno adquiere y aplica conocimientos de cinética química y velocidad de reacción; así como, reconoce y entiende los factores que la afectan.
  • 4. INTRODUCCIÓN LA CINÉTICA QUÍMICA Es el estudio de la velocidad de una reacción química, los factores que la afectan y los mecanismos de reacción. Figure 16-1 (a) Blue dye is 16-1 The Rate of a Reaction 649 (a)
  • 5. 1. VELOCIDAD DE REACCIÓN ments were made, the rate-law expression for rate ! 1.5 M"2#s"1 [A]2[B] om one of the other sets of data. order of the reaction, consistent with converting the product of concentrations on the right to concentration/time on the left. For any reaction that is third order overall, the units of k are M"2 #time"1. to Use the Rate of Reaction ive the dependence of the rate of reaction on g calculation describe the rate of formation of balanced equation is one, so the rate of reac- C. If the coefficient of the measured substance lysis we should have divided each value of the he initial rate of reaction. For instance, suppose n the reaction 2 88n 2AB "! (rate of formation of AB) rate changes as we change the concentrations 1 % 2 When heated in air, steel wool glows but does not burn rapidly, due to the low O2 concentration in air (about See the Saunders Interactive General Chemistry CD-ROM, Screen 6.3, Thermodynamics and Kinetics, and Screen 20.2, Reaction Spontaneity (Thermodynamics and Kinetics). 648 CHAPTER 16: Chemical Kinetics W W e are all familiar with processes in which some quantity changes with time a car travels at 40 miles/hour, a faucet delivers water at 3 gallons/minute, a factory produces 32,000 tires/day. Each of these ratios is called a rate. T rate of a reaction describes how fast reactants are used up and products are form Chemical kinetics is the study of rates of chemical reactions, the factors that affect re tion rates, and the mechanisms (the series of steps) by which reactions occur. Our experience tells us that different chemical reactions occur at very different rat For instance, combustion reactions — such as the burning of methane, CH4, in natural g and the combustion of isooctane, C8H18, in gasoline — proceed very rapidly, sometim even explosively. CH4(g) ! 2O2(g) 88n CO2(g) ! 2H2O(g) 2C8H18(g) ! 25O2(g) 88n 16CO2(g) ! 18H2O(g) On the other hand, the rusting of iron occurs only very slowly. In our study of thermodynamics, we learned to assess whether a particular reaction w favorable. The question of whether substantial reaction would occur in a certain tim period is addressed by kinetics. If a reaction is not thermodynamically favored, it will n occur appreciably under the given conditions. Even though a reaction is thermodynam cally favored, it might not occur at a measurable rate. The reactions of strong acids with strong bases are thermodynamically favored a occur at very rapid rates. Consider, for example, the reaction of hydrochloric acid so tion with solid magnesium hydroxide. It is thermodynamically spontaneous at standa state conditions, as indicated by the negative "G0 rxn value. It also occurs rapidly. 2HCl(aq) ! Mg(OH)2(s) 88n MgCl2(aq) ! 2H2O(!) "G0 rxn # $97 kJ/mol The reaction of diamond with oxygen is also thermodynamically spontaneous. C(diamond) ! O2(g) 88n CO2(g) "G0 rxn # $397 kJ/mol However, we know from experience that diamonds exposed to air, even over long perio do not react to form carbon dioxide. The reaction does not occur at an observable r near room temperature. The reaction of graphite with oxygen is also spontaneous, with a similar value of "G0 r $394 kJ/mol. Once it is started, this reaction occurs rapidly. These observations of re tion speeds are explained by kinetics, not thermodynamics. THE RATE OF A REACTION Rates of reactions are usually expressed in units of moles per liter per unit time. If know the chemical equation for a reaction, its rate can be determined by following t change in concentration of any product or reactant that can be detected quantitative T o describe the rate of a reaction, we must determine the concentration of a reacta or product at various times as the reaction proceeds. Devising effective methods for t is a continuing challenge for chemists who study chemical kinetics. If a reaction is sl enough, we can take samples from the reaction mixture after successive time intervals a then analyze them. For instance, if one reaction product is an acid, its concentration c be determined by titration (Section 11-2) after each time interval. The reaction of eth acetate with water in the presence of a small amount of strong acid produces acetic ac The extent of the reaction at any time can be determined by titration of the acetic ac 16-1 The rusting of iron is a complicated process. It can be represented in simplified form as 4Fe(s) ! 3O2(g) 88n 2Fe2O3(s) Recall that the units kJ/mol refer to the numbers of moles of reactants and products in the balanced equation. This is one of the reactions that occurs in a human digestive system when an antacid containing relatively insoluble magnesium hydroxide neutralizes excess stomach acid. A methane flame is a rapid reaction.
  • 6. 1. ¿VELOCIDAD DE UNA REACCIÓN QUÍMICA? La velocidad de una reacción describe que tan rápido se consumen los reactivos y se forman los productos VELOCIDAD DE REACCIÓN: Cambio de la concentración de reactivos o productos respecto al tiempo. Concentración de reactivos y productos Tiempo (s) ction entire 0.656 0.328 5 0.035 0.586 0.293 6 0.028 0.530 0.265 7 0.023 0.484 0.242 8 rations ersus M H2 om more [I2] [H2] [HCl] [ICl] 2.000 M 1.000 M 0 0 5 10 15 Time (s) Concentrations of reactants and products rate ! ! "! " ! "! " ! "! "! " ## $t ## $t # 3 # $t # 2 ## $t Consider as a specific chemical example the gas-phase reaction that occurs when we mix 1.000 mole of hydrogen and 2.000 moles of iodine chloride at 230°C in a closed 1.000-liter container. H2(g) % 2ICl(g) 88n I2(g) % 2HCl(g) The coefficients tell us that one mole of H2 disappears for every two moles of ICl that disappear and for every one mole of I2 and two moles of HCl that are formed. In other terms, the rate of disappearance of moles of H2 is one-half the rate of disappearance of moles of ICl, and so on. So we write the rate of reaction as
  • 7. 1. VELOCIDAD DE UNA REACCIÓN QUÍMICA ¿Cómo se describe la velocidad de una reacción? A + B C + D 𝒗 = − 𝚫 𝑨 𝚫𝒕 = − 𝚫 𝑩 𝚫𝒕 𝒗 = 𝚫 𝑪 𝚫𝒕 = 𝚫 𝑫 𝚫𝒕 La velocidad puede expresarse en términos de la velocidad con la que desaparecen los reactivos. O bien a la velocidad con la que aparecen los productos.
  • 8. 1. VELOCIDAD DE UNA REACCIÓN QUÍMICA La expresión de la velocidad de una reacción a partir de una reacción química. aA + bB cC + Dd a,b,c,d 𝒗 = − 𝟏 𝒂 𝚫 𝑨 𝚫𝒕 = − 𝟏 𝒃 𝚫 𝑩 𝚫𝒕 𝒗 = 𝟏 𝒄 𝚫 𝑪 𝚫𝒕 = 𝟏 𝒅 𝚫 𝑫 𝚫𝒕 EJEMPLO: Exprese la velocidad de reacción en términos de la rapidez de cambio de cada reactivo y producto de la reacción siguiente: 2NO (g) + Br2(g) ----→ 2NOBr(g) 𝒗 = − 𝟏 𝟐 𝚫 𝑵𝑶 𝚫𝒕 = − 𝚫 𝑩𝒓𝟐 𝚫𝒕 = 𝟏 𝟐 𝚫 𝑵𝑶𝑩𝒓 𝚫𝒕
  • 9. EJEMPLO: CÁLCULO DE LA VELOCIDAD DE UNA REACCIÓN La siguiente ecuación muestra la producción de NO y H2O por oxidación del amoniaco NH3. A un cierto tiempo, NH3 reacciona a una velocidad de 1.10 M/s. A ese mismo tiempo, ¿Cual es la velocidad a la cual los otros reactivos y cada producto están cambiando? 4𝑁𝐻! + 5 𝑂! → 4 𝑁𝑂 + 6 𝐻!𝑂 𝒗 = − 𝟏 𝟒 𝚫 !"! 𝚫𝒕 = − 𝟏 𝟓 𝚫 !! 𝚫𝒕 = 𝟏 𝟒 𝚫 𝑵𝑶 𝚫𝒕 = 𝟏 𝟔 𝚫 !!! 𝚫𝒕 1.10 𝑚𝑜𝑙 𝑁𝐻3 𝐿. 𝑠 5 𝑚𝑜𝑙 𝑂! 4 𝑚𝑜𝑙𝑁𝐻! = − 1.37 𝑚𝑜𝑙𝑂! 𝐿. 𝑠 1.10 𝑚𝑜𝑙 𝑁𝐻3 𝐿. 𝑠 4 𝑚𝑜𝑙 𝑁𝑂 4 𝑚𝑜𝑙𝑁𝐻! = 1.10 𝑚𝑜𝑙 𝑁𝑂 𝐿. 𝑠
  • 10. EJEMPLO: VELOCIDAD DE UNA REACCIÓN 4𝑁𝐻! + 5 𝑂! → 4 𝑁𝑂 + 6 𝐻!𝑂 𝒗 = − 𝟏 𝟒 𝚫 !"! 𝚫𝒕 = − 𝟏 𝟓 𝚫 !! 𝚫𝒕 = 𝟏 𝟒 𝚫 𝑵𝑶 𝚫𝒕 = 𝟏 𝟔 𝚫 !!! 𝚫𝒕 1.10 𝑚𝑜𝑙 𝑁𝐻3 𝐿. 𝑠 6 𝑚𝑜𝑙 𝐻2𝑂 4 𝑚𝑜𝑙𝑁𝐻! = 1.65 𝑚𝑜𝑙 𝐻2𝑂 𝐿. 𝑠 v = − 1 4 Δ NH! Δt = − 1 4 1.10 mol L. s = 0.275 mol L. s v = 𝟏 𝟔 𝚫 𝐻!𝑂 𝚫𝒕 = 1 6 1.65 mol L. s = 0.275 mol L. s
  • 11. 2. FACTORES QUE AFECTAN LA VELOCIDAD DE REACCIÓN
  • 12. 2. ¿FACTORES QUE INFLUYEN EN LA VELOCIDAD DE UNA REACCIÓN QUÍMICA? Naturaleza de los reactivos Temperatura Presencia de Catalizadores Concentración de los reactivos or, in logarithmic form, ln k " ln A # $ R E T a $ In this expression, A is a constant having the same units as the rate constant. It is equal to the fraction of collisions with the proper orientations when all reactant concentrations are one molar. R is the universal gas constant, expressed with the same energy units in its numerator as are used for Ea. For instance, when Ea is known in J/mol, the value R " 8.314 J/mol%K is appropriate. Here the unit “mol” is interpreted as “mole of reaction,” as described in Chapter 15. One important point is the following: The greater the value of Ea, the smaller the value ofk and the slower the reaction rate (other factors being equal). Ea T1 T2 T2 ! T1 Fraction of molecules with a given kinetic energy Kinetic energy Fraction of molecules with a given kinetic energy Kinetic energy Ea1 Ea2 Energía Cinética Fracción de moléculas con una energía cinética dada. Fosforo blanco Fosforo rojo ! 0.148 M%s#1 This does not mean that the reaction proceeds at this rate during the entire interval. 0.656 0.328 5 0.035 0.586 0.293 6 0.028 0.530 0.265 7 0.023 0.484 0.242 8 Figure 16-2 Plot of concentrations of all reactants and products versus time in the reaction of 1.000 M H2 with 2.000 M ICl at 230°C, from data in Table 16-1 (and a few more points). [I2] [H2] [HCl] [ICl] 2.000 M 1.000 M 0 0 5 10 15 Time (s) Concentrations of reactants and products ntial energy e effect of a provides a corresponding thway, for the ducts. A pically occurs with its own ll energy action, Ea#, is he uncatalyzed ue of $Erxn states of the ts, so it is the CHAPTER 16: Chemical Kinetics Progress of Progress of Energy Energy Ea forward Ea reverse ∆Erxn ∆Erxn Ea′ forward Ea′ reverse Ea′ < Ea Derecha Inversa
  • 13. 2.1. NATURALEZA DE LOS REACTIVOS El fosforo se encuentra en dos formas alotrópicas El fosforo blanco reacciona violentamente con el oxígeno del aire. Fosforo rojo es inerte. Fosforo blanco Fosforo rojo
  • 14. 2.1. NATURALEZA DE LOS REACTIVOS La velocidad de reacción depende del área superficial o del grado de subdivisión. El grado máximo de subdivisión hace posible que todas las moléculas o átomos y iones reaccionen en cualquier momento. El gis pulverizado reacciona más rápido con HCl debido a que hay una mayor área superficial.
  • 15. 2.2. CONCENTRACIÓN DE LOS REACTIVOS La LEY DE VELOCIDAD describe la manera en que van cambiando las concentraciones conforme pasa el tiempo de reacción. 𝒗𝒆𝒍𝒐𝒄𝒊𝒅𝒂𝒅 = 𝒌 𝑨 𝒙 𝑩 𝐲 Donde: K= constante de velocidad a una temperatura. x, y= orden de reacción respecto a A y B -”se determina experimentalmente” Orden general de la reacción = x+y NO ! N2O 88n NO2 ! N2
  • 16. EJEMPLO EXPRESIÓN LEY DE VELOCIDAD 𝒗𝒆𝒍𝒐𝒄𝒊𝒅𝒂𝒅 = 𝒌 𝑨 𝒙 𝑩 𝐲 Relación Velocidad = (Relación B)y 𝒗𝒆𝒍𝒐𝒄𝒊𝒅𝒂𝒅 = 𝑲 𝑨 𝟐 𝑩 orden general = x+y = 3 Experimento Inicial [A] Inicial [B] Velocidad de Formación [C] 1 1x10 -2 M 1x10 -2 M 1.5x10 -6 M.s-1 2 1x10 -2 M 2x10 -2 M 3.0x10 -6 M.s-1 3 2x10 -2 M 1x10 -2 M 6.0x10 -6 M.s-1 relación Relación velocidad relación Relación velocidad
  • 17. 2.2. CONCENTRACIÓN DE LOS REACTIVOS ¿Qué cantidad de reactivo existe después de un determinado tiempo? CONCENTRACIÓN VERSUS TIEMPO Ecuación integrada de la velocidad y el tiempo de vida media.
  • 18. 2.2. CONCENTRACIÓN DE LOS REACTIVOS ORDEN CERO Expresión de la ley de velocidad V = k k= M. tiempo-1 Ecuación de velocidad integrada 𝐴 = 𝐴 0 - akt Tiempo de vida media 𝑡 1 2 ⁄ = ! ! !"# aA Productos orden cero en A Tiempo pendiente
  • 19. 2.2. CONCENTRACIÓN DE LOS REACTIVOS aA Productos Características Primer orden en A PRIMER ORDEN Expresión de la ley de velocidad 𝑣 = 𝑘 𝐴 𝑘 = 𝑡𝑖𝑒𝑚𝑝𝑜 _1 Ecuación de velocidad integrada 𝑙𝑛 𝐴 0 [𝐴] = akt ó 𝑙𝑜𝑔 𝐴 0 [𝐴] = 𝑎𝑘𝑡 2.303 Tiempo de vida media 𝑡1/2 = 𝑙𝑛2 𝑎𝑘 = 0.693 𝑎𝑘 me: The Integrated Rate Equation 673 t can be interpreted as m. The r each experiment, and ln [A]0 or a first-order reaction would pe of the line equal to !ak and n products that follows first- ght line would confirm that is, rate " k[A]. The slope is pe of the line is always e units (time)!1. The s for concentrations less than Time ln [A]0 slope = –ak ln [A] First order Tiempo Pendiente
  • 20. 2.2. CONCENTRACIÓN DE LOS REACTIVOS aA Productos Segundo orden en A SEGUNDO ORDEN Expresión de la ley de velocidad 𝑣 = 𝑘 𝐴 2 𝑘 = M−1. tiempo−1 Ecuación de velocidad integrada 1 [𝐴] − 1 𝐴 0 = akt Tiempo de vida media 𝑡1/2 = 1 𝑎𝑘 𝐴 0 however, if the reaction times used are too short. In practice, all three lines might seem to be straight; we should then suspect that we need to observe the reaction for a longer time. he reaction followed zero-order ne. But if the reaction followed a straight line whose slope could e second order in A and second ht line, but a plot of 1/[A] versus expected scatter due to experi- correct order (rate law) for the can graphical tests for rate-law are subjects for more advanced strated in the following example. n products that follows a ves a straight line would d order overall, that is, rate " ve numbers, the slope of the egative, 1/[A] is always positive, Time l![A]0 slope = ak l![A] Second order 1 [#] Tiempo Pendiente
  • 21. 2.2. EJEMPLO CONCENTRACIÓN DE LOS REACTIVOS Tiempo (min) [A] mol/L 0 2.000 2 1.107 4 0.612 6 0.338 8 0.187 10 0.103 A partir de los siguientes datos determine el orden de la reacción y escriba la expresión de la ley de velocidad. A B + C Ln [A] 1/[A] 0.693 0.5000 0.102 0.9033 -0.491 1.60 -1.085 2.95 -1.677 5.35 -2.273 9.71
  • 22. 2.2. EJEMPLO CONCENTRACIÓN DE LOS REACTIVOS CONCENTRACIÓN VERSUS TIEMPO Tiempo (min) [A] mol/L 0 2.000 2 1.107 4 0.612 6 0.338 8 0.187 10 0.103 A partir de los siguientes datos determine el orden de la reacción y escriba la expresión de la ley de velocidad. A B + C ORDEN CERO us time, as shown in Figure 16-8d. ar from the answer to part (b) that the plot of ln [A] versus time gives a straight tells us that the reaction is first order in [A]. orm of a rate-law expression, the answer to part (d) gives rate " k[A]. Time (min) 2.5 [A] 0 2 4 6 8 10 (b) Example 16-10(a). 2.0 1.5 1.0 0.5 0 [A] ln [A] 1![A] 2.000 1.107 0.612 0.338 0.187 0.103 0.693 –0.491 –1.085 –1.677 –2.273 1.63 2.95 5.35 9.71 Example 16-10. 0.102 0.5000 0.9033 Tiempo (min) [A] Mol/L
  • 23. 2.2. EJEMPLO CONCENTRACIÓN DE LOS REACTIVOS CONCENTRACIÓN VERSUS TIEMPO Tiempo (min) 0 2 4 6 8 10 A partir de los siguientes datos determine el orden de la reacción y escriba la expresión de la ley de velocidad. A B + C SEGUNDO ORDEN 1/[A] 0.5000 0.9033 1.60 2.95 5.35 9.71 Tiempo (min) 1/[A] Time (min) 0 2 4 6 8 10 (b) Example 16-10(a). 0 0.187 0.103 –1.677 –2.273 5.35 9.71 Example 16-10. Time (min) 2 6 8 10 12 ple 16-10(b). Q P 1.5 8.5 Time (min) 12 1/ [A] 0 2 4 6 8 10 (d) Example 16-10(c). 0 10 8 6 4 2
  • 24. 2.2. EJEMPLO CONCENTRACIÓN DE LOS REACTIVOS CONCENTRACIÓN VERSUS TIEMPO Tiempo (min) 0 2 4 6 8 10 A partir de los siguientes datos determine el orden de la reacción y escriba la expresión de la ley de velocidad. A B + C PRIMER ORDEN Ln [A] 0.693 0.102 -0.491 -1.085 -1.677 -2.273 𝒗𝒆𝒍𝒐𝒄𝒊𝒅𝒂𝒅 = 𝒌 𝑨 ure 16-8 Data conversion and ts for Example 16-10. (a) The a are used to calculate the two umns ln [A] and 1/[A]. (b) Test zero-order kinetics: a plot of [A] sus time. The nonlinearity of this t shows that the reaction does not ow zero-order kinetics. (c) Test first-order kinetics: a plot of ln versus time. The observation t this plot gives a straight line icates that the reaction follows t-order kinetics. (d) Test for ond-order kinetics: a plot of 1/[A] sus time. If the reaction had owed second-order kinetics, this t would have resulted in a aight line and the plot in part (c) uld not. 0.338 0.187 0.103 –1.085 –1.677 –2.273 2.95 5.35 9.71 6.00 8.00 (a) Data for Example 16-10. 10.00 Time (min) 1 ln [A] 0 2 6 8 10 12 (c) Example 16-10(b). Q P 1.5 8.5 0.5 0 –0.5 –1 –1.5 –2 –2.5 –3 0.2 –1.83 Tiempo (min)
  • 25. 2.2. CONCENTRACIÓN DE LOS REACTIVOS TEORIA DE LAS COLISIONES Para que una reacción ocurra, las moléculas deben colisionar Al aumentar la concentración de los reactivos se favorecen las colisiones. Sin embargo no todas dan lugar a reacción. Para que una colisión sea efectiva, las especies deben: 1. Poseer la energía mínima necesaria para romper y formar enlaces nuevos 2. Tener la orientación adecuada en el momento de la colisión.
  • 26. 2.2. CONCENTRACIÓN DE LOS REACTIVOS Reactantes Colisión Productos Orientación Efectiva de Colisión n n Pro Reaction occurs Collision Reactants NO + N2O → NO2 + N2 Products Reaction occurs Collision Reactants NO + N2O → NO2 + N2
  • 27. 2.2. CONCENTRACIÓN DE LOS REACTIVOS Reactantes Colisión Reactantes Orientación Inefectiva de Colisión e on on P Reaction occurs Collision Reactants NO + N2O → NO2 + N2 ive ion ion Products Collision Reactants Collision Reactants Reactants No reaction
  • 28. 2.3. TEMPERATURA El antimonio reacciona con Bromo más fuertemente a 75 oC (Izquierda) que a 25 oC (Derecha) Antimony powder reacts with bromine more rapidly at 75°C (left) than at 25°C (right). 16-8 Temperature: The Arrhenius Equation ntimony powder reacts with bromine more rapidly at 75°C (left) than at 25°C (right). 16-8 Temperature: The Arrhenius Equation
  • 29. 2.3. TEMPERATURA A mayor temperatura (T2) habrá una mayor fracción de moléculas que tenga la energía de activación necesaria (Ea), para que la reacción proceda, a comparación de una temperatura mas baja. ARRHENIUS Figure 16-13 (Left) The effect of temperature on the number of mo Ea T1 T2 T2 ! T1 Fraction of molecules with a given kinetic energy Kinetic energy Fraction of molecules with a given kinetic energy Kineti Energía Cinética Fracción de moléculas con una energía cinética dada.
  • 30. 2.3. TEMPERATURA La ecuación de Arrhenius relaciona la velocidad de reacción (mediante su k) con una temperatura (T) para una misma energía de activación (Ea). Si T aumenta Ea/RT Disminuye - Ea /RT Aumenta exp (-Ea/RT) Aumenta K Aumenta La reacción se acelera 𝑘 = 𝐴 𝑒!!"/!" ln𝑘 = 𝑙𝑛𝐴 − !" !"
  • 31. 2.3. TEMPERATURA La ecuación de Arrhenius relaciona la velocidad de reacción (mediante su k) con una temperatura (T) para una misma energía de activación (Ea). ln𝑘 = − !! ! ! ! + ln A ln !! !! = − !! ! ! !! − ! !! La ecuación de Arrhenius para dos diferentes temperaturas. Pendiente
  • 32. 2.3. EJEMPLO CON ECUACIÓN DE ARRHENIUS La descomposición en fase gaseosa del yoduro de etilo para producir etileno y yoduro de hidrógeno, se comporta como una reacción de primer orden. A 600 K el valor de la constante k= 1.6x10-5s-1. Cuando la temperatura alcanza los 700 K , el valor de la k se incrementa a 6.36x10-3s-1 . ¿Cuál es la energía de activación de la reacción? ln !! !! = − !! ! ! !! − ! !! Ea= ! !" !" !" ! !! ! ! !! = !.!"# ! !"#.! (!.!") !.!"#$% !! ! !! = 2.09x105 J/mol Despejando Ea y sustituyendo valores EXAMPLE 16-12 Activation Energy The gas-phase decomposition of ethyl iodide to give ethylene and hydrogen iodide is a first- order reaction. C2H5I 88n C2H4 # HI At 600. K, the value of k is 1.60 ! 10"5 s"1. When the temperature is raised to 700. K, the value of k increases to 6.36 ! 10"3 s"1. What is the activation energy for this reaction? Plan We know k at two different temperatures. We solve the two-temperature forms of the Arrhe- nius equation for Ea and evaluate. Solution k1 $ 1.60 ! 10"5 s"1 at T1 $ 600. K k2 $ 6.36 ! 10"3 s"1 at T2 $ 700. K R $ 8.314 J/mol%K Ea $ _? _ C2H5I 88n C2H4 # HI 600. K, the value of k is 1.60 ! 10"5 s"1. When the temperature is raised to 700. K, th ue of k increases to 6.36 ! 10"3 s"1. What is the activation energy for this reaction? n know k at two different temperatures. We solve the two-temperature forms of the Arrh s equation for Ea and evaluate. ution k1 $ 1.60 ! 10"5 s"1 at T1 $ 600. K k2 $ 6.36 ! 10"3 s"1 at T2 $ 700. K R $ 8.314 J/mol%K Ea $ _? _
  • 33. 2.4. PRESENCIA DE CATALIZADOR Los catalizadores abaten la Ea permitiendo que la reacción se lleve a cabo más rápido. No toma parte en la reacción, por lo que no aparece en la ecuación balanceada. gy f a a nding r the curs own a#, is lyzed xn the the CHAPTER 16: Chemical Kinetics Progress of uncatalyzed reaction Progress of catalyzed reaction Energy Energy Ea forward Ea reverse ∆Erxn ∆Erxn Ea′ forward Ea′ reverse Ea′ < Ea olecules with etic energy Minimum kinetic energy for catalyzed reaction Derecha Inversa Progreso de una reacción catalizada Energía → Inversa CHAPTER 16: Chemical Kinetics Progress of uncatalyzed reaction Progress of catalyzed reaction Energy Energy Ea forward Ea reverse ∆Erxn ∆Erxn Ea′ forward Ea′ reverse Ea′ < Ea Progreso de una reacción no catalizada Energía → Inversa Derecha
  • 34. 2.4. PRESENCIA DE CATALIZADOR Un catalizador homogéneo existe en la misma fase que los reactivos. Section 11-8). For example, Ce4! oxidizes thallium(I) ions in solution alyzed by the addition of a very small amount of a soluble salt (II) ions, Mn2!. The Mn2! acts as a homogeneous catalyst. Mn2! 2Ce4! ! Tl! 8888n 2Ce3! ! Tl3! on is thought to proceed by the following sequence of elementary Ce4! ! Mn2! 88n Ce3! ! Mn3! step 1 Ce4! ! Mn3! 88n Ce3! ! Mn4! step 2 Mn4! ! Tl! 88n Mn2! ! Tl3! step 3 2Ce4! ! Tl! 88n 2Ce3! ! Tl3! overall e Mn2! catalyst reacts in step 1, but an equal amount is regenerate available to react again. The two ions shown in blue, Mn3! and rmediates. Mn3! ions are formed in step 1 and consumed in an equ milarly, Mn4! ions are formed in step 2 and consumed in an equal Homogeneous Catalysis A homogeneous catalyst exists in the same phase as the reactants. Ceric ion, Ce4!, at one time was an important laboratory oxidizing agent that was used in many redox titrations (Section 11-8). For example, Ce4! oxidizes thallium(I) ions in solution; this reac- tion is catalyzed by the addition of a very small amount of a soluble salt containing manganese(II) ions, Mn2!. The Mn2! acts as a homogeneous catalyst. Mn2! 2Ce4! ! Tl! 8888n 2Ce3! ! Tl3! This reaction is thought to proceed by the following sequence of elementary steps. Ce4! ! Mn2! 88n Ce3! ! Mn3! step 1 Ce4! ! Mn3! 88n Ce3! ! Mn4! step 2 Mn4! ! Tl! 88n Mn2! ! Tl3! step 3 2Ce4! ! Tl! 88n 2Ce3! ! Tl3! overall Some of the Mn2! catalyst reacts in step 1, but an equal amount is regenerated in step 3 and is thus available to react again. The two ions shown in blue, Mn3! and Mn4!, are reaction intermediates. Mn3! ions are formed in step 1 and consumed in an equal amount in step 2; similarly, Mn4! ions are formed in step 2 and consumed in an equal amount in step 3. We can now summarize the species that can appear in a reaction mechanism. 1. Reactant: More is consumed than is formed.
  • 35. 2.4. PRESENCIA DE CATALIZADOR Un catalizador heterogéneo esta presente en una fase distinta a la de los reactivos. Etapas de proceso: 1.- Adsorción 2.- Activación del reactivo adsorbido 3.- Reacción 4.- Desorción
  • 36. 3. RESUMEN Velocidad de reacción 𝒗 = − 𝟏 𝒂 𝚫 𝑨 𝚫𝒕 = − 𝟏 𝒃 𝚫 𝑩 𝚫𝒕 𝒗 = 𝟏 𝒄 𝚫 𝑪 𝚫𝒕 = 𝟏 𝒅 𝚫 𝑫 𝚫𝒕 Naturaleza de los reactivos Concentración de los reactivos Temperatura Catalizadores Factores que influyen en la Velocidad de reacción Expresión de la ley de Velocidad de reacción 𝒗𝒆𝒍𝒐𝒄𝒊𝒅𝒂𝒅 = 𝑲 𝑨 𝒙 𝑩 𝐲
  • 37. 3. RESUMEN Ecuaciones integradas Ecuación de Arrhenius ln𝑘 = − !! ! ! ! + ln A ln !! !! = − !! ! ! !! − ! !! ORDEN CERO Expresión de la ley de velocidad V = k k= M. tiempo-1 Ecuación de velocidad integrada 𝐴 = 𝐴 0 - akt Tiempo de vida media 𝑡 1 2 ⁄ = ! ! !"# PRIMER ORDEN Expresión de la ley de velocidad 𝑣 = 𝑘 𝐴 𝑘 = 𝑡𝑖𝑒𝑚𝑝𝑜 _1 Ecuación de velocidad integrada 𝑙𝑛 𝐴 0 [𝐴] = akt 𝑙𝑜𝑔 𝐴 0 [𝐴] = 𝑎𝑘𝑡 2.303 Tiempo de vida media 𝑡1/2 = 𝑙𝑛2 𝑎𝑘 = 0.693 𝑎𝑘 SEGUNDO ORDEN Expresión de la ley de velocidad 𝑣 = 𝑘 𝐴 2 𝑘 = M−1. tiempo−1 Ecuación de velocidad integrada 1 [𝐴] − 1 𝐴 0 = akt Tiempo de vida media 𝑡1/2 = 1 𝑎𝑘 𝐴 0
  • 38. 4. SERIE DE EJERCICIOS 1.- Exprese la velocidad de reacción en términos del cambio de cada reactivo y producto para cada una de las siguientes reacciones. 2.- A un tiempo dado, N2 reacciona con H2 a una razón de 0.25 M/min para producir NH3. Al mismo tiempo, ¿Cuál es la razón de cambio a la cual los reactivos y producto están cambiando?. 3.- Los datos para la siguiente reacción fueron obtenidos a 25 ºC, ¿Cuál es la expresión de la ley de velocidad la reacción? 4.- Los siguientes datos fueron recolectados para la siguiente reacción a una temperatura en particular. a) ¿Cuál es la expresión de la ley de velocidad para esta reacción? b) Describe el orden respecto de cada uno de los reactivos y el orden general de la reacción. *08. Express the rate of reaction in terms of the rate of change of each reactant and each product in the following. (a) 3ClO!(aq) 88n ClO3 !(aq) " 2Cl!(aq) (b) 2SO2(g) " O2(g) 88n 2SO3(g) (c) C2H4(g) " Br2(g) 88n C2H4Br2(g) *09. At a given time, N2 is reacting with H2 at a rate of 0.25 M/min to produce NH3. At that same time, what is the rate at which the other reactant is changing and the rate at which the product is changing? N2 " 3H2 88n 2NH3 *10. The following equation shows the production of NO and H2O by oxidation of ammonia. At a given time, NH3 is reacting at a rate of 1.10 M/min. At that same time, which is the rate at which the other reactant is changing and the rate at which each product is changing? 4NH3 " 5O2 88n 4NO " 6H2O *11. Why do large crystals of sugar burn more slowly than finely ground sugar? *12. Some fireworks are bright because of the burning of mag- nesium. Speculate on how fireworks might be constructed using magnesium. How might the sizes of the pieces of magnesium be important? What would you expect to occur if pieces that were too large were used? Too small? t i *15. T t *16. U c s *17. R t E *18. R W E Exercises 699 of the rate of change the following. Cl!(aq) (g) H2 at a rate of 0.25 me time, what is the hanging and the rate H3 oduction of NO and given time, NH3 is hat same time, which is changing and the g? " 6H2O ore slowly than finely the burning of mag- might be constructed zes of the pieces of d you expect to occur d? Too small? tion of O2 is doubled. The initial rate in the second exper- iment will be ______ times that of the first. 2NO " O2 88n 2NO2 *15. The rate-law expression for the following reaction is found to be rate # k [N2O5]. What is the overall reaction order? 2N2O5(g) 88n 4NO2(g) " O2(g) *16. Use times expressed in seconds to give the units of the rate constant for reactions that are overall (a) first order; (b) second order; (c) third order; (d) of order 1$ 1 2 $. *17. Rate data were obtained at 25°C for the following reac- tion. What is the rate-law expression for this reaction? A " 2B 88n C " 2D [A] [B] Initial Rate of Expt. [mol/L] [mol/L] Formation of C 1 0.10 0.10 3.0 % 10!4 M&min!1 2 0.30 0.30 9.0 % 10!4 M&min!1 3 0.30 0.10 3.0 % 10!4 M&min!1 4 0.40 0.20 6.0 % 10!4 M&min!1 *18. Rate data were obtained for the following reaction at 25°C. What is the rate-law expression for the reaction? 2A " B " 2C 88n D " 2E Initial Initial Initial Initial Rate of Expt. [A] [B] [C] Formation of D 1 0.10 M 0.20 M 0.10 M 5.0 % 10!4 M&min!1 2 0.20 M 0.20 M 0.30 M 1.5 % 10!3 M&min!1 3 0.30 M 0.20 M 0.10 M 5.0 % 10!4 M&min!1 4 0.40 M 0.60 M 0.30 M 4.5 % 10!3 M&min!1 *19. (a) A certain reaction is zero order in reactant A and sec- ond order in reactant B. If the concentrations of both reactants are doubled, what happens to the reaction rate? Vel. Inicial de Formación de C 700 CHAPTER 16: Chemical Kinetics Initial Rate Expt. [A]0 (mol/L) [B]0 (mol/L) of Reaction 1 0.10 0.10 0.0090 M!s"1 2 0.20 0.10 0.0360 M!s"1 3 0.10 0.20 0.0180 M!s"1 4 0.10 0.30 0.0270 M!s"1 (a) What is the rate-law expression for this reaction? (b) Describe the order of the reaction with respect to each reactant and to the overall order. *22. Rate data were collected for the following reaction at a par- ticular temperature. 2ClO2(aq) # 2OH"(aq) 88n ClO3 "(aq) # ClO2 "(aq) # H2O(!) [ClO2]0 [OH"]0 Initial Rate Expt. (mol/L) (mol/L) of Reaction 1 0.012 0.012 2.07 $ 10"4 M!s"1 2 0.024 0.012 8.28 $ 10"4 M!s"1 3 0.012 0.024 4.14 $ 10"4 M!s"1 4 0.024 0.024 1.66 $ 10"3 M!s"1 (a) What is the rate-law expression for this reaction? (b) Describe the order of the reaction with respect to each reactant and to the overall order. *25. Given the following data for the reaction A # B n C, write the rate-law expression. Initial Initial Initial Rate of Expt. [A] [B] Formation of C 1 0.25 0.15 8.00 $ 10"5 M/s 2 0.25 0.30 3.20 $ 10"4 M/s 3 0.50 0.60 5.12 $ 10"3 M/s *26. Given the following data for the reaction A # B n C, write the rate-law expression. Initial Initial Initial Rate of Expt. [A] [B] Formation of C 1 0.10 M 0.10 M 2.00 $ 10"4 M/s 2 0.20 M 0.10 M 8.00 $ 10"4 M/s 3 0.40 M 0.20 M 2.56 $ 10"2 M/s *27. Consider a chemical reaction between compounds A and B that is first order in A and first order in B. From the information shown here, fill in the blanks. Expt. Rate (M!s"1) [A] [B] 1 0.24 0.20 M 0.050 M Vel. Inicial de reacción Exercises 699 *08. Express the rate of reaction in terms of the rate of change of each reactant and each product in the following. (a) 3ClO!(aq) 88n ClO3 !(aq) " 2Cl!(aq) (b) 2SO2(g) " O2(g) 88n 2SO3(g) (c) C2H4(g) " Br2(g) 88n C2H4Br2(g) *09. At a given time, N2 is reacting with H2 at a rate of 0.25 M/min to produce NH3. At that same time, what is the rate at which the other reactant is changing and the rate at which the product is changing? N2 " 3H2 88n 2NH3 *10. The following equation shows the production of NO and H2O by oxidation of ammonia. At a given time, NH3 is reacting at a rate of 1.10 M/min. At that same time, which is the rate at which the other reactant is changing and the rate at which each product is changing? 4NH3 " 5O2 88n 4NO " 6H2O *11. Why do large crystals of sugar burn more slowly than finely ground sugar? *12. Some fireworks are bright because of the burning of mag- nesium. Speculate on how fireworks might be constructed using magnesium. How might the sizes of the pieces of magnesium be important? What would you expect to occur if pieces that were too large were used? Too small? tion of O2 is doubled. The initial rate in the second exper- iment will be ______ times that of the first. 2NO " O2 88n 2NO2 *15. The rate-law expression for the following reaction is found to be rate # k [N2O5]. What is the overall reaction order? 2N2O5(g) 88n 4NO2(g) " O2(g) *16. Use times expressed in seconds to give the units of the rate constant for reactions that are overall (a) first order; (b) second order; (c) third order; (d) of order 1$ 1 2 $. *17. Rate data were obtained at 25°C for the following reac- tion. What is the rate-law expression for this reaction? A " 2B 88n C " 2D [A] [B] Initial Rate of Expt. [mol/L] [mol/L] Formation of C 1 0.10 0.10 3.0 % 10!4 M&min!1 2 0.30 0.30 9.0 % 10!4 M&min!1 3 0.30 0.10 3.0 % 10!4 M&min!1 4 0.40 0.20 6.0 % 10!4 M&min!1 *18. Rate data were obtained for the following reaction at 25°C. What is the rate-law expression for the reaction? 2A " B " 2C 88n D " 2E Initial Initial Initial Initial Rate of Expt. [A] [B] [C] Formation of D 1 0.10 M 0.20 M 0.10 M 5.0 % 10!4 M&min!1 2 0.20 M 0.20 M 0.30 M 1.5 % 10!3 M&min!1 !4 !1
  • 39. 4. SERIE DE EJERCICIOS 5.- La descomposición térmica del amoniaco a altas temperaturas fue estudiado en presencia de un gas inerte. Los datos de un solo experimento a 2000K son: a) Traza la gráfica de la expresión de concentración apropiada en función del tiempo para obtener el orden de la reacción. b) Determina la constante de velocidad de la reacción a partir de la pendiente de la línea y utiliza los datos que se dan y la ecuación integrada de velocidad para verificar tu respuesta. 6.- Los datos de la constante de velocidad en función de la temperatura de la reacción de intercambio son: a) Calcule la Ea a partir del grafico del log K Vs 1/T b) Use el gráfico para predecir el valor de K a 311 K. c) ¿Cuál es el valor numérico del factor de frecuencia de colisión (A) en la ecuación de Arrhenius? What is the rate constant for this first-order decomposi- tion? A 88n B # C *43. The thermal decomposition of ammonia at high tempera- tures was studied in the presence of inert gases. Data at 2000 K are given for a single experiment. NH3 88n NH2 # H t (hours) [NH3] (mol/L) 00 8.000 ! 10"7 25 6.750 ! 10"7 50 5.840 ! 10"7 75 5.150 ! 10"7 Plot the appropriate concentration expressions against time to find the order of the reaction. Find the rate constant of the reaction from the slope of the line. Use the given data and the appropriate integrated rate equation to check your answer. *44. The following data were obtained from a study of the decomposition of a sample of HI on the surface of a gold wire. (a) Plot the data to find the order of the reaction, the rate constant, and the rate equation. (b) Calculate the HI concentration in mmol/L at 600. s. t (seconds) [HI] (mmol/L) 000. 5.46 250. 4.10 500. 2.73 750. 1.37 *45. The decomposition of SO2Cl2 in the gas phase, SO2Cl2 88n SO2 # Cl2 14.00 0.168 16.00 0.180 18.00 0.190 20.00 0.199 (a) Plot [Cl2] versus t. (b) Plot [SO2Cl2] versus t. (c) mine the rate law for this reaction. (d) What is th with units, for the specific rate constant at 320°C? ( long would it take for 95% of the original SO2Cl2 t *46. At some temperature, the rate constant for the de sition of HI on a gold surface is 0.080 M&s"1. 2HI(g) 88n H2(g) # I2(g) (a) What is the order of the reaction? (b) How lon take for the concentration of HI to drop from 1.5 0.30 M? Activation Energy, Temperature, and Catalysts *47. Draw typical reaction energy diagrams for one-ste tions that release energy and that absorb Distinguish between the net energy change, 'E, f kind of reaction and the activation energy. Indicate tial energies of products and reactants for both k reactions. *48. Use graphs to illustrate how the presence of a cata affect the rate of a reaction. *49. How do homogeneous catalysts and heterogeneou lysts differ? *50. (a) Why should one expect an increase in tempera increase the initial rate of reaction? (b) Why sho expect a reaction in the gaseous state to be faster t same reaction in the solid state? *51. What is the activation energy for a reaction if its ra stant is found to triple when the temperature is rais 300 K to 310 K? *52. What is the activation energy for a reaction if its ra stant is found to triple when the temperature is rais 600 K to 610 K? t (horas) Exercises *53. For a gas-phase reaction, Ea ! 103 kJ/mol, and the rate constant is 0.0850 min"1 at 273 K. Find the rate constant at 323 K. *54. The rate constant of a reaction is tripled when the tem- perature is increased from 298 K to 308 K. Find Ea. *55. The rate constant for the decomposition of N2O 2N2O(g) 88n 2N2(g) # O2(g) is 2.6 $ 10"11 s"1 at 300°C and 2.1 $ 10"10 s"1 at 330°C. Calculate the activation energy for this reaction. Prepare a reaction coordinate diagram like Figure 16-10 using "164.1 kJ/mol as the %Erxn. *56. For a particular reaction, %E0 ! 51.51 kJ/mol, k ! 8.0 $ 10"7 s"1 at 0.0°C, and k ! 8.9 $ 10"4 s"1 at 50.0°C. Pre- pare a reaction coordinate diagram like Figure 16-10 for this reaction. *57. You are given the rate constant as a function of tempera- ture for the exchange reaction Mn(CO)5(CH3CN)# # NC5H5 88n Mn(CO)5(NC5H5)# # CH3CN T (K) k (min"1) 298 0.0409 308 0.0818 318 0.157 (a) Calculate Ea from a plot of log k versus 1/T. (b) Use the graph to predict the value of k at 311 K. (c) What is the numerical value of the collision frequency factor, A, in the Arrhenius equation? *58. The rearrangement of cyclopropane to propene described in Exercise 40 has been studied at various temperatures. *59. Biological reactions nearly always occur enzymes as catalysts. The enzyme catala peroxides, reduces the Ea for the reactio (uncatalyzed) to 28 kJ/mol (catalyzed). B the reaction rate increase at normal b 37.0°C, for the same reactant (peroxid Assume that the collision factor, A, rem *60. The enzyme carbonic anhydrase catalyze carbon dioxide. CO2 # H2O 88n H2C This reaction is involved in the transfer o to the lungs via the bloodstream. One hydrates 106 molecules of CO2 per se kilograms of CO2 are hydrated in one 1.0 $ 10"6 M enzyme? *61. The following gas-phase reaction fo kinetics. ClO2F 88n ClOF # O The activation energy of this reaction is value of k at 322°C is 6.76 $ 10"4 s"1 be the value of k for this reaction at 2 temperature would this reaction hav 3.00 $ 10"2 s"1? *62. The following gas-phase reaction is firs N2O5 88n NO2 # NO The activation energy of this reaction value of k at 0°C is 9.16 $ 10"3 s"1. (a the value of k for this reaction at room te (b) At what temperature would this react of 3.00 $ 10"2 s"1?
  • 40. 5. REFERENCIAS BIBLIOGRÁFICAS 1.- Química. Raymond Chang. Ed. Mc Graw Hill. 11a edición. México (2013). 2.- Química General. Kenneth W. Whitten. Ed. Cengage Learning. 8 a edición. México (2008). 3.- Química. Jerome L. Rosenberg, Lawrence M. Epstein y Peter J. Krieger. Ed. Mc Graw Hill. 9a edición. México (2009). 4.- Problemas de Química y Como Resolverlos. Paul Frey. Ed. CECSA. México (2000).