Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Tactile Internet with Human-in-the-Loop

201 views

Published on

-

Published in: Technology
  • Be the first to comment

  • Be the first to like this

Tactile Internet with Human-in-the-Loop

  1. 1. Tactile Internet with Human-in-the-Loop
  2. 2. Slide 3 5G (r)evolution 1G 2G 3G 4G wireless world
  3. 3. Slide 4 5G (r)evolution 1G 2G 3G 4G wireless world
  4. 4. Slide 5 5G (r)evolution 1G 2G 3G 4G 5G wireless world wired world 5G 1G 2G 3G 4G 5G 5G
  5. 5. Slide 6 5G (r)evolution 1G 2G 3G 4G 5G wireless world wired world 5G
  6. 6. Slide 7 5G (r)evolution 1G 2G 3G 4G 5G wireless world wired world 5G 10y 1d
  7. 7. Slide 8 5G (r)evolution 1G 2G 3G 4G 5G wireless world wired world 5G 10y 1d HARDWARE SOFTWARE 1G 2G 3G 4G 5G
  8. 8. Slide 9 5G (r)evolution 1G 2G 3G 4G wireless world wired world 1d 1d SOFTWARE 1G 2G 3G 4G 5G HARD WARE
  9. 9. Slide 10 5G atom definition 5G U C U C U C U C U C
  10. 10. Slide 11 5G atom definition 5G U C U C U C U C U C
  11. 11. Slide 12 The Dream is not new!
  12. 12. Slide 13 Connected Driving
  13. 13. Slide 14 Digitial Transfer batteries communication people
  14. 14. Slide 15 5G atom definition Latency Through- put Security Massive Resilience Hetero- geneity Energy requirements 5G U C U C U C U C U C
  15. 15. Slide 16 5G atom definition Latency requirements 5G U C U C U C U C U C
  16. 16. Slide 17 5G atom definition Latency requirements 5G U C U C U C U C U C
  17. 17. Slide 18 5G atom definition Latency Through- put requirements 5G U C U C U C U C U C
  18. 18. Slide 19 5G atom definition Latency Through- put Resilience requirements 5G U C U C U C U C U C
  19. 19. Slide 20 5G atom definition Latency Through- put Security Massive Resilience Hetero- geneity Network Slicing Multi-Path Mobile Edge Cloud Air Interface Energy Content Delivery Networks concepts requirements Mesh 5G U C U C U C U C U C
  20. 20. Slide 21
  21. 21. Slide 22
  22. 22. Slide 23
  23. 23. Slide 24 5G atom definition Latency Through- put Security Massive Resilience Hetero- geneity Network Slicing Multi-Path Mobile Edge Cloud Air Interface SDN ICN NFV SDR Energy Content Delivery Networks concepts technologies requirements Mesh 5G U C U C U C U C U C
  24. 24. Slide 25 Reducing Latency in Virtual Machines
  25. 25. Slide 26 5G atom definition Latency Through- put Security Massive Resilience Hetero- geneity Network Coding Network Slicing Multi-Path Mobile Edge Cloud Air Interface Com- pressed Sensing Machine learning SDN ICN NFV SDR Energy Content Delivery Networks concepts technologies novelty requirements Mesh Block Chaining 5G U C U C U C U C U C
  26. 26. Source Coding and Network Coding
  27. 27. Slide 28
  28. 28. Slide 29 Compressed Sensing and Network Coding Characteristics • Linear superposition • Random (sampling) • Source aware • Sparsity • Under-determined • Optimisation problem • Linear superposition • Random (coefficients) • Source agnostic • Over-determined (full rank) • Linear system of equations Compressed Sensing Network Coding
  29. 29. Slide 30 Combine NC and CS • Objective: Combine CS and NC (analog and digital) in theory and implementation to improve delay ↓, resilience ↑ and complexity ↓. • Agnostic combination CS/NC: Only individual gain per camera (spatial correlation not exploited), reconstruction/decoding at the sink resulting in high complexity • Proposed joint CS/NC design (analog and digital): Holistic in-network processing based on compressed compute and forward (CCF) with distributed partial decoding and clever protocol design (active sensing). SRC SRC SRC SRC SRC SRC SRC SRC R R R R R R R R R R R R R R Sink
  30. 30. Slide 31 Motivation – Pure Network Coding in GF2 (2009) 𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4 𝛼𝛼2,1 𝛼𝛼2,2 𝛼𝛼2,3 𝛼𝛼2,4 𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4 𝛼𝛼2,1 𝛼𝛼2,2 𝛼𝛼2,3 𝛼𝛼2,4 𝛼𝛼3,1 𝛼𝛼3,2 𝛼𝛼3,3 𝛼𝛼3,4 𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4 𝛼𝛼2,1 𝛼𝛼2,2 𝛼𝛼2,3 𝛼𝛼2,4 𝛼𝛼3,1 𝛼𝛼3,2 𝛼𝛼3,3 𝛼𝛼3,4 𝛼𝛼4,1 𝛼𝛼4,2 𝛼𝛼4,3 𝛼𝛼4,4 Sparsity in the field size! MV Pedersen, J Heide, FHP Fitzek, T Larsen; PictureViewer-a mobile application using network coding; European Wireless Conference, 2009; EW 2009; pages 151-156.
  31. 31. Slide 32 Performance Evaluation CH1 CH2 CH3 CH4 Sink 100% Distributed sensing demo prototype for BOSCH (XDK sensors, SDN testbeds) with over 1k sensors
  32. 32. Slide 33 Performance Evaluation CH1 CH2 CH3 CH4 Sink 75% Distributed sensing demo prototype for BOSCH (XDK sensors, SDN testbeds) with over 1k sensors
  33. 33. Slide 34 Performance Evaluation CH1 CH2 CH3 CH4 Sink 30% Distributed sensing demo prototype for BOSCH (XDK sensors, SDN testbeds) with over 1k sensors
  34. 34. Slide 35 Performance Evaluation CH1 CH2 CH3 CH4 Sink 25% Distributed sensing demo prototype for BOSCH (XDK sensors, SDN testbeds) with over 1k sensors
  35. 35. Slide 36 Performance Evaluation CH1 CH2 CH3 CH4 Sink 10% Distributed sensing demo prototype for BOSCH (XDK sensors, SDN testbeds) with over 1k sensors
  36. 36. CeTI Centre for Tactile Internet with Human-in-the-Loop
  37. 37. CeTI short introduction TU Dresden October 2018 Folie 38 Research motivation Where do we stand? Aim of current Internet: Democratise access to information for everybody independently of location or time.
  38. 38. CeTI short introduction TU Dresden October 2018 Folie 39 Research motivation Where do we want to go? Aim of Tactile Internet with Human-in-the-Loop: Democratise access to skills and expertise to promote equity for people of different genders, ages, cultural backgrounds, or physical limitations.
  39. 39. CeTI short introduction TU Dresden October 2018 Folie 40 Research motivation Where do we want to go? How will our work environment change due to robots?
  40. 40. CeTI short introduction TU Dresden October 2018 Folie 41 Research motivation Where do we want to go? How will we learn in the future?
  41. 41. CeTI short introduction TU Dresden October 2018 Folie 42 Research motivation Where do we want to go? How will robots help the old and the oldest- old?
  42. 42. CeTI short introduction TU Dresden October 2018 Folie 43 Research motivation State of the art Convey skills to other humans or machines in real and virtual worlds
  43. 43. CeTI short introduction TU Dresden October 2018 Folie 44 Research motivation State of the art Unilateral remote control (live)
  44. 44. CeTI short introduction TU Dresden October 2018 Folie 45 Research motivation State of the art
  45. 45. CeTI short introduction TU Dresden October 2018 Folie 46 Research motivation State of the art
  46. 46. CeTI short introduction TU Dresden October 2018 Folie 47 Wandelbots
  47. 47. CeTI short introduction TU Dresden October 2018 Folie 48 Research motivation CeTI vision / Beyond state of the art / Human-to-machine S K I L L S M U L T I M O D A L F E E D B A C K
  48. 48. CeTI short introduction TU Dresden October 2018 Folie 49 Research motivation CeTI vision / Beyond state of the art / Human-to-machine S K I L L S M U L T I M O D A L F E E D B A C K
  49. 49. CeTI short introduction TU Dresden October 2018 Folie 50 Research motivation CeTI vision / Beyond state of the art / Human-to-machine
  50. 50. CeTI short introduction TU Dresden October 2018 Folie 51 Research motivation CeTI vision / Beyond state of the art / Human-to-machine Mobile Edge Cloud Mobile Edge Cloud Machine learning Machine learning Network Slicing SDN ICNNFV Air Interface Air Interface Latency Through- put Security Massive Resilience Hetero- geneity Energy
  51. 51. CeTI short introduction TU Dresden October 2018 Folie 52 Research motivation CeTI vision / Beyond state of the art / Machine-to-human S K I L L S M U L T I M O D A L F E E D B A C K
  52. 52. CeTI short introduction TU Dresden October 2018 Folie 53 Research motivation CeTI vision / Beyond state of the art / Machine-to-human S K I L L S M U L T I M O D A L F E E D B A C K
  53. 53. CeTI short introduction TU Dresden October 2018 Folie 54 Research motivation CeTI vision / Beyond state of the art / Machine-to-human
  54. 54. CeTI short introduction TU Dresden October 2018 Folie 55 Research motivation CeTI vision / Beyond state of the art / Human–machine augmentation
  55. 55. CeTI short introduction TU Dresden October 2018 Folie 56 Research motivation CeTI multifaceted impact Research Society https://www.facebook.com/telexistence/videos/27511996973 0409/ https://www.facebook.com/telexistence/videos/27511996973 0409/
  56. 56. CeTI short introduction TU Dresden October 2018 Folie 57 CeTI latency challenge
  57. 57. CeTI short introduction TU Dresden October 2018 Folie 58 CeTI latency challenge Video communication – Glass-to-Glass delay (local network connection) Camera circuitry Display refresh Display: pixel response Camera: frame rate 0–33 ms 5 ms 0.9 ms <<1 ms <<1 ms <<1 ms 0.3 ms 0–16 ms 5 ms 1 ms Encoding Local network Encoder buffer 3 ms Minimum of 63 ms G2G delay 6 ms60 Hz: 16 ms5 ms30 Hz: 33 ms Decoding Decoder buffer CAMERA ENCODER NETWORK DECODER DISPLAY Display process- ing
  58. 58. CeTI short introduction TU Dresden October 2018 Folie 59 CeTI latency challenge Video communication – Glass-to-Glass delay (with 100ms network communication delay) Camera circuitry CAMERA Display process- ing Display: pixel response ENCODER NETWORK DECODER DISPLAY Camera: frame rate 0–33 ms 5 ms 0.9 ms <<1 ms <<1 ms 0.3 ms 0–16 ms 5 ms 1 ms Encoding Encoder buffer Decoder buffer Decoding 102 ms 6 ms60 Hz: 16 ms5 ms30 Hz: 33 ms 162 ms G2G delay 100 ms Display refresh
  59. 59. CeTI short introduction TU Dresden October 2018 Folie 60 CeTI challenges and research agenda Goal-directed human multisensory perception and action Y. Yang and A. M. Zador, Differences in sensitivity to neural timing among cortical areas, Journal of Neuroscience, 32(43):15142-15147, October 2012. Challenge − Different neural time delays for multisensory perception Tactile Auditory Visual
  60. 60. CeTI short introduction TU Dresden October 2018 Folie 61 CeTI challenges and research agenda Goal-directed human multisensory perception and action Challenge − Different neural time delays for multisensory perception − Individual differences in processing speed, robustness, and neural noise S.-C. Li, U. Lindenberger, B. Hommel, G. Aschersleben, W. Prinz, and P. B. Baltes, Transformations in the couplings among intellectual abilities and constituent cognitive processes across the lifespan, Psychological Science, 15(3):155-163, March 2004. S.-C. Li and A. Rieckmann, Neuromodulation and aging: Implications of aging neuronal gain control on cognition, Current Opinion in Neurobiology, 29:148-158, December 2014.
  61. 61. CeTI short introduction TU Dresden October 2018 Folie 62 CeTI challenges and research agenda Goal-directed human multisensory perception and action G. Papenberg, D. Hämmerer, V. Müller, U. Lindenberger, and S.-C. Li, Low theta inter-trial phase coherence during performance monitoring is related to higher reaction variability: A lifespan study, NeuroImage, 83:912-920, December 2013. S.-C. Li and A. Rieckmann, Neuromodulation and aging: Implications of aging neuronal gain control on cognition, Current Opinion in Neurobiology, 29:148-158, December 2014. Challenge − Different neural time delays for multisensory perception − Individual differences in processing speed, robustness, and neural noise Children Adolescents Youngeradults Olderadults High synch. Low synch.
  62. 62. CeTI short introduction TU Dresden October 2018 Folie 63 CeTI challenges and research agenda Goal-directed human multisensory perception and action Objective: Human perception and action Challenge − Different neural time delays for multisensory perception − Individual differences in processing speed, robustness, and neural noise CeTI research agenda − Neurocognitive mechanisms of goal-directed multisensory processing − Modelling and predicting goal-directed perception and action Expertise − Computational/lifespan cognitive neuroscience − Human‒technology interactions − Medical data science and robotic-assisted surgery Promise − Provide age-/expertise-sensitive psychophysical parameters for designing sensors/actuators/learning interfaces − Predictive models of human goal-directed perception and action
  63. 63. CeTI short introduction TU Dresden October 2018 Folie 64 CeTI challenges and research agenda Human‒machine co-augmentation: Sensors, actuators, and electronics Challenge − Too big − Too much energy − Too slow − Stiff CeTI research agenda − Advanced sensors and actuators, e.g. integrated into eGlove and eJacket − Display with 10x reduced latency − Adaptive body computing chip with record DC-power of only 1 mW per 300 MHz processor − Ultra-compact bendable/stretchable wireless transceiver at millimetre- waves with DC-power < 1 mW for on-body communication
  64. 64. CeTI short introduction TU Dresden October 2018 Folie 65 Research methodology How are we doing it?
  65. 65. CeTI short introduction TU Dresden October 2018 Folie 66 Iterative research programme: Theory that matters! How are we doing it?
  66. 66. CeTI short introduction TU Dresden October 2018 Folie 67 Support of early career researchers CeTI initiatives to recruit
  67. 67. CeTI short introduction TU Dresden October 2018 Folie 68 Support of early career researchers CeTI initiatives to recruit
  68. 68. CeTI short introduction TU Dresden October 2018 Folie 69 www.ceti.one ceti.tu-dresden.de

×