SlideShare a Scribd company logo
1 of 41
Download to read offline
Power Electronics
AC-AC Converters
1
Dr. Firas Obeidat
E-mail: firasobeidat@gmail.com
fobeidat@philadelphia.edu.jo
2
Table of contents
1
โ€ข Introduction
2
โ€ข The Single Phase AC Voltage Controller
3
โ€ข The Single Phase AC Voltage Controller - Resistive
Load
4
โ€ข The Single Phase AC Voltage Controller - RL Load
5
โ€ข The Three Phase AC Voltage Controller โ€“ Y
Connected Resistive Load
6
โ€ข The Three Phase AC Voltage Controller โ€“ ฮ”
Connected Resistive Load
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
3
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
Introduction
An ac voltage controller is a converter that controls the
voltage, current, and average power delivered to an ac
load from an ac source.
The phase-controlled ac voltage controller has several
practical uses including light-dimmer circuits and speed
control of induction motors.
In a switching scheme called phase control, switching
takes place during every cycle of the source, in effect
removing some of the source waveform before it reaches
the load.
Integral-cycle control, the source is connected and
disconnected for several cycles at a time.
4
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Single Phase AC Voltage Controller
Basic Operation
For the single phase AC voltage controller
shown, electronic switches are shown as parallel
thyristors (SCRs). This SCR arrangement
makes it possible to have current in either
direction in the load. This SCR connection is
called antiparallel or inverse parallel because
the SCRs carry current in opposite directions. A
triac is equivalent to the antiparallel SCRs.
Other controlled switching devices can be used
instead of SCRs.
๏ƒ˜ Load current contains both positive and negative half-cycles. An analysis
identical to that done for the controlled half-wave rectifier can be done on a
half cycle for the voltage controller. Then, by symmetry, the result can be
extrapolated to describe the operation for the entire period.
๏ƒ˜ S1 conducts if a gate signal is applied during the positive half-cycle of the
source. S1 conducts until the current in it reaches zero.
๏ƒ˜ A gate signal is applied to S2 during the negative half-cycle of the source,
providing a path for negative load current.
vs
L
o
a
d
+ -vsw
S1
S2
+
-
+
-
io
vo
5
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Single Phase AC Voltage Controller
Basic Operation
Basic observations about this controller
The SCRs cannot conduct simultaneously.
The load voltage is the same as the source voltage when either SCR
is on. The load voltage is zero when both SCRs are OFF.
The switch voltage vsw is zero when either SCR is ON and is equal to
the source voltage when neither is ON.
The average current in the source and load is zero if the SCRs are
on for equal time intervals. The average current in each SCR is not
zero because of unidirectional SCR current.
The rms current in each SCR is 1/โˆš2 times the rms load current if
the SCRs are on for equal time intervals.
6
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
vs
+ -vsw
S1
S2
+
-
+
-
io
voR
The Single Phase AC Voltage Controller - Resistive Load
๐‘ฃ๐‘  ๐œ”๐‘ก = ๐‘‰๐‘š ๐‘ ๐‘–๐‘›๐œ”๐‘ก
๐‘ฃ๐‘  ๐œ”๐‘ก =
๐‘‰๐‘š ๐‘ ๐‘–๐‘›๐œ”๐‘ก ๐›ผ < ๐œ”๐‘ก < ๐œ‹ ๐‘Ž๐‘›๐‘‘ ๐œ‹ + ๐›ผ < ๐œ”๐‘ก < 2๐œ‹
0 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
Let the voltage source be
Output voltage is
The rms load voltage is
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  =
1
๐œ‹
(๐‘‰๐‘š ๐‘ ๐‘–๐‘›๐œ”๐‘ก)2 ๐‘‘๐œ”๐‘ก
๐œ‹
ฮฑ
=
๐‘‰๐‘š
2
1 โˆ’
๐›ผ
๐œ‹
+
๐‘ ๐‘–๐‘›2๐›ผ
2๐œ‹
7
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Single Phase AC Voltage Controller - Resistive Load
The power factor of the load is
The rms current in the load and the source is
๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  =
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘ 
๐‘…
=
๐‘‰๐‘š
๐‘… 2
1 โˆ’
๐›ผ
๐œ‹
+
๐‘ ๐‘–๐‘›2๐›ผ
2๐œ‹
๐‘๐‘“ =
๐‘ƒ
๐‘†
=
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘ 
2
๐‘…
๐‘‰๐‘ ,๐‘Ÿ๐‘š๐‘  ๐ผ๐‘ ,๐‘Ÿ๐‘š๐‘ 
=
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘ 
2
๐‘…
๐‘‰๐‘ ,๐‘Ÿ๐‘š๐‘ (๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  ๐‘…)
=
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘ 
๐‘‰๐‘ ,๐‘Ÿ๐‘š๐‘ 
=
๐‘‰๐‘š
2
1 โˆ’
๐›ผ
๐œ‹ +
๐‘ ๐‘–๐‘›2๐›ผ
2๐œ‹
๐‘‰๐‘š 2
๐‘๐‘“ = 1 โˆ’
๐›ผ
๐œ‹
+
๐‘ ๐‘–๐‘›2๐›ผ
2๐œ‹
The pf=1 for ฮฑ=0, which is the same as for an uncontrolled resistive load, and
the power factor for ฮฑ>0 is less than 1.
The average source current is zero because of half-wave symmetry.
๐ผ๐‘ ,๐ด๐‘ฃ๐‘” = ๐ผ ๐‘œ,๐ด๐‘ฃ๐‘” = 0
8
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Single Phase AC Voltage Controller - Resistive Load
The average SCR current is
๐ผ๐‘†๐ถ๐‘…,๐ด๐‘ฃ๐‘” =
1
2๐œ‹
๐‘‰๐‘š ๐‘ ๐‘–๐‘›๐œ”๐‘ก
๐‘…
๐‘‘๐œ”๐‘ก
๐œ‹
๐›ผ
=
๐‘‰๐‘š
2๐œ‹๐‘…
(1 + ๐‘๐‘œ๐‘ ๐›ผ)
๐ผ๐‘†๐ถ๐‘…,๐‘Ÿ๐‘š๐‘  =
1
2๐œ‹
(
๐‘‰๐‘š ๐‘ ๐‘–๐‘›๐œ”๐‘ก
๐‘…
)2 ๐‘‘๐œ”๐‘ก
๐œ‹
ฮฑ
=
๐‘‰๐‘š
2๐‘…
1 โˆ’
๐›ผ
๐œ‹
+
๐‘ ๐‘–๐‘›2๐›ผ
2๐œ‹
The rms SCR current is
๐ผ๐‘†๐ถ๐‘…,๐‘Ÿ๐‘š๐‘  =
๐‘‰๐‘š
2 2๐‘…
1 โˆ’
๐›ผ
๐œ‹
+
๐‘ ๐‘–๐‘›2๐›ผ
2๐œ‹
=
๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘ 
2
ฯ€ฮฑ 2ฯ€ 2ฯ€+ฮฑ 3ฯ€
ฯ‰t
iS1
vs/R
9
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
Example: The single-phase ac voltage controller has a 120-V rms 60-Hz source.
The load resistance is 15 ฮฉ. Determine (a) the delay angle required to deliver
500 W to the load, (b) the rms source current, (c) the rms and average currents
in the SCRs, (d) the power factor.
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  =
๐‘‰๐‘š
2
1 โˆ’
๐›ผ
๐œ‹
+
๐‘ ๐‘–๐‘›2๐›ผ
2๐œ‹
=
2 ร— 120
2
1 โˆ’
๐›ผ
๐œ‹
+
๐‘ ๐‘–๐‘›2๐›ผ
2๐œ‹
๐‘ƒ =
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘ 
2
๐‘…
โ†’ ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘ 
2
= ๐‘ƒ๐‘… = 500 ร— 15 = 7500
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘ 
2
= 1202
(1 โˆ’
๐›ผ
๐œ‹
+
๐‘ ๐‘–๐‘›2๐›ผ
2๐œ‹
)
โˆด 7500 = 14400(1 โˆ’
๐›ผ
๐œ‹
+
๐‘ ๐‘–๐‘›2๐›ผ
2๐œ‹
)
๐›ผ
๐œ‹
โˆ’
๐‘ ๐‘–๐‘›2๐›ผ
2๐œ‹
= 0.479
2๐›ผ โˆ’ ๐‘ ๐‘–๐‘›2๐›ผ = 3.01
๐›ผ = 1.54 rad = 88.1 ๐‘œ
(a)
The Single Phase AC Voltage Controller - Resistive Load
10
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Single Phase AC Voltage Controller - Resistive Load
(b)
๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  =
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘ 
๐‘…
=
86.6
15
= 5.77 A
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘ 
2
= 7500 โ†’ ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  = 86.6From (a)
๐ผ๐‘†๐ถ๐‘…,๐ด๐‘ฃ๐‘” =
๐‘‰๐‘š
2๐œ‹๐‘…
1 + ๐‘๐‘œ๐‘ ๐›ผ =
2 ร— 120
2๐œ‹15
1 + ๐‘๐‘œ๐‘ 88.1 = 1.86 A
๐ผ๐‘†๐ถ๐‘…,๐‘Ÿ๐‘š๐‘  =
๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘ 
2
=
5.77
2
= 4.08 A
(c)
๐‘๐‘“ =
๐‘ƒ
๐‘†
=
๐‘ƒ
๐‘‰๐‘ ,๐‘Ÿ๐‘š๐‘  ๐ผ๐‘ ,๐‘Ÿ๐‘š๐‘ 
= 1 โˆ’
๐›ผ
๐œ‹
+
๐‘ ๐‘–๐‘›2๐›ผ
2๐œ‹
=
500
120 ร— 5.77
= 0.722(d)
11
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Single Phase AC Voltage Controller - RL Load
vs
+ -vsw
S1
S2
+
-
+
-
io
vo
R
L
When a gate signal is applied to S1 at ๐œ”t=ฮฑ
in single phase AC voltage controller with
RL load, Kirchhoffโ€™s voltage law for the
circuit is expressed as.
๐‘‰๐‘š ๐‘ ๐‘–๐‘›๐œ”๐‘ก = ๐‘…๐‘– ๐‘œ ๐‘ก + ๐ฟ
๐‘‘๐‘– ๐‘œ ๐‘ก
๐‘‘๐‘ก
The solution for current in this equation
(as obtained in the controlled half wave
rectifier section) is
๐‘– ๐‘œ ๐œ”๐‘ก =
๐‘‰๐‘š
๐‘
sin ๐œ”๐‘ก โˆ’ ๐œƒ โˆ’ sin(๐›ผ โˆ’ ๐œƒ)๐‘’(๐›ผโˆ’๐œ”๐‘ก) ๐œ”๐œ
๐›ผ โ‰ค ๐œ”๐‘ก โ‰ค ๐›ฝ
0 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
where
๐‘ = ๐‘…2 + (๐œ”๐ฟ)2 ๐œƒ = ๐‘ก๐‘Ž๐‘›โˆ’1
(
๐œ”๐ฟ
๐‘…
)
The extinction angle ๐›ฝ is the angle at which the current returns to zero, when
๐œ”๐‘ก= ๐›ฝ,
๐‘– ๐‘œ ๐›ฝ =
๐‘‰๐‘š
๐‘
sin ๐›ฝ โˆ’ ๐œƒ โˆ’ sin(๐›ผ โˆ’ ๐œƒ)๐‘’(๐›ผโˆ’๐›ฝ) ๐œ”๐œ
(1)
(2)
12
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Single Phase AC Voltage Controller - RL Load
A gate signal is applied to S2 at ๐œ”t=ฯ€+ฮฑ,
and the load current is negative but has a
form identical to that of the positive half-
cycle.
The above equation must be solved
numerically for ๐›ฝ.
The angle (๐›ฝ-ฮฑ) is called the conduction
angle ๐›ถ.
๐›ถ =๐›ฝ-ฮฑ
In the interval between ฯ€ and ๐›ฝ when the
source voltage is negative and the load
current is still positive, S2 cannot be
turned on because it is not forward biased.
The gate signal to S2 must be delayed at
least until the current in S1 reaches zero,
at ๐œ”t= ๐›ฝ. The delay angle is therefore at
least ๐›ฝ- ฯ€.
ฮฑโ‰ฅ๐›ฝ- ฯ€
13
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Single Phase AC Voltage Controller - RL Load
When ฮฑ=ฮธ, equation (2) becomes
sin ๐›ฝ โˆ’ ๐œƒ = 0
which has a solution
๐›ฝ โˆ’ ๐œƒ = ฯ€
Therefore
๐›ถ = ๐œ‹ When ฮฑ=ฮธ
When ๐›ถ=๐œ‹, one SCR is always conducting, and the voltage across the load is
the same as the voltage of the source. The load voltage and current are
sinusoids for this case, and the circuit is analyzed using phasor analysis for AC
circuits. The power delivered to the load is continuously controllable between
the two extremes corresponding to full source voltage and zero.
The expression of rms load current is
๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  =
1
๐œ‹
๐‘– ๐‘œ
2
(๐œ”๐‘ก) ๐‘‘๐œ”๐‘ก
๐›ฝ
ฮฑ
=
1
๐œ‹
๐‘‰ ๐‘š
๐‘
sin ๐œ”๐‘ก โˆ’ ๐œƒ โˆ’
๐‘‰ ๐‘š
๐‘
sin(๐›ผ โˆ’ ๐œƒ)๐‘’(๐›ผโˆ’๐œ”๐‘ก) ๐œ”๐œ
2
๐‘‘๐œ”๐‘ก
๐›ฝ
ฮฑ
14
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Single Phase AC Voltage Controller - RL Load
The average output voltage can be found as
An other way to find the expression of rms load current
is
๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  =
1
๐‘…2 + (๐œ”๐ฟ)2
๐‘‰๐‘š
2
1
๐œ‹
(๐›ฝ โˆ’ ๐›ผ โˆ’
1
2
๐‘ ๐‘–๐‘›2๐›ฝ +
1
2
๐‘ ๐‘–๐‘›2๐›ผ)
Power absorbed by the load is determined from
๐‘ƒ = ๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘ 
2
๐‘…
The power factor of the load is
๐‘๐‘“ =
๐‘ƒ
๐‘†
=
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  ๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘ 
๐‘‰๐‘ ,๐‘Ÿ๐‘š๐‘  ๐ผ๐‘ ,๐‘Ÿ๐‘š๐‘ 
=
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘ 
๐‘‰๐‘ ,๐‘Ÿ๐‘š๐‘ 
=
1
๐œ‹
(๐›ฝ โˆ’ ๐›ผ โˆ’
1
2
๐‘ ๐‘–๐‘›2๐›ฝ +
1
2
๐‘ ๐‘–๐‘›2๐›ผ)
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  =
1
๐œ‹
(๐‘‰๐‘š ๐‘ ๐‘–๐‘›๐œ”๐‘ก)2 ๐‘‘๐œ”๐‘ก
๐›ฝ
ฮฑ
=
๐‘‰๐‘š
2
1
๐œ‹
(๐›ฝ โˆ’ ๐›ผ โˆ’
1
2
๐‘ ๐‘–๐‘›2๐›ฝ +
1
2
๐‘ ๐‘–๐‘›2๐›ผ)
15
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Single Phase AC Voltage Controller - RL Load
Each SCR carries one-half of the current waveform, making the average SCR
current
๐ผ๐‘†๐ถ๐‘…,๐ด๐‘ฃ๐‘” =
1
2๐œ‹
๐‘– ๐‘œ(๐œ”๐‘ก) ๐‘‘๐œ”๐‘ก
๐›ฝ
ฮฑ
=
1
2๐œ‹
๐‘‰๐‘š
๐‘
sin ๐œ”๐‘ก โˆ’ ๐œƒ โˆ’ sin(๐›ผ โˆ’ ๐œƒ)๐‘’(๐›ผโˆ’๐œ”๐‘ก) ๐œ”๐œ ๐‘‘๐œ”๐‘ก
๐›ฝ
ฮฑ
The rms current in each SCR is
๐ผ๐‘†๐ถ๐‘…,๐‘Ÿ๐‘š๐‘  =
๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘ 
2
The average load current is zero,
๐ผ ๐‘œ,๐ด๐‘ฃ๐‘” = 0
16
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
Example: For the single-phase voltage controller with RL load, the source is
120Vrms at 60 Hz, and the load is a series RL combination with R=20ฮฉ and
L=50mH. The delay angle ฮฑ is 90. Determine (a) an expression for load current
for the first half-period, (b) the rms load current, (c) the rms SCR current, (d)
the average SCR current, (e) the power delivered to the load, and (f) the power
factor.
(a)
The Single Phase AC Voltage Controller - RL Load
The extinction angle is determined from the numerical solution of i(ฮฒ)=0 in the
above equation.
17
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Single Phase AC Voltage Controller - RL Load
(b)
(c)
(d)
(e)
(f)
๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  =
1
27.5
ร— 120 ร—
1
๐œ‹
(3.83 โˆ’ 1.57 โˆ’
1
2
๐‘ ๐‘–๐‘›440 + 0) = 3.27 A
๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  =
1
๐‘…2 + (๐œ”๐ฟ)2
๐‘‰๐‘š
2
1
๐œ‹
(๐›ฝ โˆ’ ๐›ผ โˆ’
1
2
๐‘ ๐‘–๐‘›2๐›ฝ โˆ’
1
2
๐‘ ๐‘–๐‘›2๐›ผ)
Or
18
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
๏ƒ˜ The power delivered to the load in
three phase AC voltage controller
with Y-connected resistive load is
controlled by the delay angle ฮฑ on
each thyristor. The six thyristors
are turned on in the sequence 1-2-
3-4-5-6, at 60 intervals. Gate
signals are maintained
throughout the possible
conduction angle.
+ -
S4
S1
+ -
S6
S3
+ -
S2
S5
A B
C
ab
c
R
RR
n
N
๏ƒ˜ The instantaneous voltage across each phase of the load is determined by
which thyristors are conducting. At any instant, three thyristors , two
thyristors , or no thyristors are ON.
๏ƒ˜ The instantaneous load voltages are either a line-to-neutral voltage (three
thyristors ON), one-half of a line-to-line voltage (two thyristors ON), or
zero (none on).
๏ƒ˜ Which thyristors are conducting depends on the delay angle ฮฑ and on the
source voltages at a particular instant. The ranges of ฮฑ that produce
particular types of load voltages are 0< ฮฑ<60o, 60o< ฮฑ<90o and 90o< ฮฑ<150o.
19
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 0 โ‰ค ฮฑ<60o
๏ƒ˜ To study the output voltage Van, Vbn and Vcn, triggering angle ฮฑ must be
determined first.
๏ƒ˜ Suppose that the triggering angle ฮฑ equal to 30o.
๏ƒ˜ The output voltage Van will be studies when ฮฑ= 30o, and the same procedure
can be applied to get the output voltages Vbn and Vcn at any triggering angle
from 0 to 60o.
๐‘‰๐ด๐‘ = ๐‘‰๐‘šsin๐œ”t
๐‘‰๐ต๐‘ = ๐‘‰๐‘šsin(๐œ”t-2ฯ€/3)
๐‘‰๐ถ๐‘ = ๐‘‰๐‘šsin(๐œ”t-4ฯ€/3)
Let
๐‘‰๐ด๐ต = 3๐‘‰๐‘šsin(๐œ”t+ฯ€/6)
๐‘‰๐ต๐ถ = 3๐‘‰๐‘šsin(๐œ”t-ฯ€/2)
๐‘‰๐ถ๐ด = 3๐‘‰๐‘šsin(๐œ”t-7ฯ€/6)
VAN VBN VCN
30o
60o
90o
120o
150o
180o
210o
240o
270o
300o
330o
360o
20
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 0 โ‰ค ฮฑ<60o
1. Determine the triggering angle ฮฑ (for example ฮฑ= 30o).
2. Determine the conducting period for each thyristor.
โ€ข As seen from the input phase voltages VAN, VBN and VCN, every 30o there is
a change that affect on the conduction of each thyristor.
VAN VBN VCN
30o
60o
90o
120o
150o
180o
210o
240o
270o
300o
330o
360o
VAN=VCN
VCN=0 VBN=0
VAN=VBN
VAN=0 VCN=0
VBN=VCN
VBN=0 VAN=0
VAN=VBNVAN=VCNVBN=VCN
21
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 0 โ‰ค ฮฑ<60o
VAN VBN VCN
iG1
iG6
iG5
iG4
iG3
iG2
30o
60o
90o
120o
150o
180o
210o
240o
270o
300o
330o
360o
โ€ข Because ฮฑ=30o, S1 will be
triggered at 30o, S3 will be
triggered at 150o (120o+ฮฑ), S5
will be triggered at 270o
(240o+ฮฑ).
โ€ข S4 will be triggered after S1
by 180o, S6 will be triggered
after S3 by 180o S2 will be
triggered after S5 by 180o.
โ€ข The six SCRs are turned on
in the sequence 1-2-3-4-5-6,
at 60o intervals.
+ -
S4
S1
+ -
S6
S3
+ -
S2
S5
A B
C
ab
c
R
RR
n
N
22
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 0 โ‰ค ฮฑ<60o
3. Study the conduction period for each thyristor.
โ€ข Each thyristor will be studied at each angle that affect on the conduction of
each thyristor to determine if the thyristor will conduct or not.
โ€ข The conduction period will be studied for S1.
โ€ข At 30o, VAN=VCN, VAN and VCN are positive, while VBN is negative. So, the
current will flow from phase A and C to phase B. S1 will be on from 30o to
60o.
VAN VBN VCN
iG1
30o
60o
90o
120o
150o
180o
210o
240o
270o
300o
330o
360o
+ -
S4
S1
+ -
S6
S3
+ -
S2
S5
A B
C
a
b
c
R
RR
n
N
+
+
-
23
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 0 โ‰ค ฮฑ<60o
โ€ข At 60o, VCN=0, VAN is positive, while VBN is negative. So, the current will
flow from phase Ato phase B. S1 will be ON from 60o to 90o.
VAN VBN VCN
iG1
30o
60o
90o
120o
150o
180o
210o
240o
270o
300o
330o
360o
+ -
S4
S1
+ -
S6
S3
+ -
S2
S5
A B
C
a
b
c
R
RR
n
N
+
0
-
24
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 0 โ‰ค ฮฑ<60o
โ€ข At 90o, VBN=VCN, VAN is positive, while VBN and VCN are negative. So, the
current will flow from phase Ato phase B and phase C. S1 will be ON from
90o to 120o.
+ -
S4
+ -
S6
S3
+ -
S2
S5
A B
C
a
b
c
R
RR
n
N
+
-
-
VAN VBN VCN
iG1
30o
60o
90o
120o
150o
180o
210o
240o
270o
300o
330o
360o
25
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 0 โ‰ค ฮฑ<60o
โ€ข At 120o, VBN=0, VAN is positive, while VCN is negative. So, the current will
flow from phase Ato phase C. S1 will be ON from 120o to 150o.
+ -
S4
S1
+ -
S6
S3
+ -
S2
S5
A B
C
a
b
c
R
RR
n
N
+
0
-
VAN VBN VCN
iG1
30o
60o
90o
120o
150o
180o
210o
240o
270o
300o
330o
360o
26
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 0 โ‰ค ฮฑ<60o
โ€ข At 150o, VAN=VBN, VAN and VBN are positive, VCN is negative. So, the current
will flow from phase A and B to phase C. S1 will be ON from 150o to 180o.
+ -
S4
S1
+ -
S6
S3
+ -
S2
S5
A B
C
a
b
c
R
RR
n
N
+
+
-
VAN VBN VCN
iG1
30o
60o
90o
120o
150o
180o
210o
240o
270o
300o
330o
360o
27
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 0 โ‰ค ฮฑ<60o
โ€ข At 180o, VAN=0, VBN is positive, VCN is negative. So, the current will flow
from phase B to phase C and the current will not flow in phase A. S1 will be
OFF from 180o to 210o.
โ€ข At 210o, VAN= VCN, VBN is positive, VAN and VCN are negative. So, the
current will flow from phase B to phase A and C. S1 will be OFF from 210o
to 240o.
โ€ข At 240o, VCN= 0, VBN is positive, VAN is negative. So, the current will flow
from phase B to phase A. S1 will be OFF from 240o to 270o.
โ€ข At 270o, VBN=VCN, VBN and VCN are positive, VAN is negative. So, the current
will flow from phase B and C to phase A. S1 will be OFF from 270o to 300o.
โ€ข At 300o, VBN=0, VCN is positive, VAN is negative. So, the current will flow
from phase C to phase A. S1 will be OFF from 300o to 330o.
โ€ข At 330o, VAN=VBN, VCN is positive, VAN and VBN are negative. So, the current
will flow from phase C to phase A and B. S1 will be OFF from 330o to 360o.
28
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
โ€ข The same procedure can be
done for other thyristors to
determine the conduction
period for each thyristor.
4. Determine the thyristors
that will be conducted for
each period. For example,
when 0<ฯ‰t<30o, S5 and S6
will be conducted, when
30o<ฯ‰t<60o, S5, S6 and S1
will be conducted, ectโ€ฆ
VAN VBN VCN
iG1
iG6
iG5
iG4
iG3
iG2
6,1,2 2,3,41,2,36,1 2,31,2 3,4 3,4,5 4,5 4,5,65,6 5,6,1
30o
60o
90o
120o
150o
180o
210o
240o
270o
300o
330o
360o
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 0 โ‰ค ฮฑ<60o
29
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
5. Determine the output voltages (Van,
Vbn and Vcn) at each period.
โ€ข The output voltage Van can be
found by applying the thyristors
that will be conducted at each
period.
โ€ข when 0<ฯ‰t<30o, S5 and S6 will be
conducted which means that the
current will flow from phase C to
phase B, and there is no current
will flow in phase A. In this period
Van=0.
โ€ข when 30o<ฯ‰t<60o, S5, S6 and S1 will
be conducted which means that the
current will flow from phase A and
C to phase B. In this period
Van=VAN.
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 0 โ‰ค ฮฑ<60o
+ -
S4
S1
+ -
S6
S3
+ -
S2
S5
A B
C
a
b
c
R
RR
n
N
0
+
-
+ -
S4
S1
+ -
S6
S3
+ -
S2
S5
A B
C
a
b
c
R
RR
n
N
+
+
-
0<ฯ‰t<30o
30o<ฯ‰t<60o
30
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
โ€ข when 60o<ฯ‰t<90o, S6 and S1 will be
conducted which means that the
current will flow from phase A to
phase B, and there is no current will
flow in phase C. In this period
Van=VAB/2.
โ€ข After completing the output voltage
Van for the whole period, the
waveform of Van can be found from
the waveforms VAN, VAB/2, VAC/2 and
zero.
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 0 โ‰ค ฮฑ<60o
+ -
S4
S1
+ -
S6
S3
+ -
S2
S5
A B
C
a
b
c
R
RR
n
N
+
0
-
60o<ฯ‰t<90o
VAN VBN VCN
iG1
iG6
iG5
iG4
iG3
iG2
6,1,2 2,3,41,2,36,1 2,31,2 3,4 3,4,5 4,5 4,5,65,6 5,6,1
30o
60o
90o
120o
150o
180o
210o
240o
270o
300o
330o
360o
0 VAN VAB/2 VAN VAC/2 VAN 0 VAN VAB/2 VAN VAC/2 VANVan
31
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 0 โ‰ค ฮฑ<60o VAN VBN VCN
iG1
iG6
iG5
iG4
iG3
iG2
6,1,2 2,3,41,2,36,1 2,31,2 3,4 3,4,5 4,5 4,5,65,6 5,6,1
30o
60o
90o
120o
150o
180o
210o
240o
270o
300o
330o
360o
0 VAN VAB/2 VAN VAC/2 VAN 0 VAN VAB/2 VAN VAC/2 VANVan
VAB/2
VAN
VAC/2
Van
๏ƒ˜ The figure below shows the
final shape for the output
voltage Van. The rms voltage
for this waveform will be
less than the rms voltage for
the input voltages VAN, VBN
and VCN.
30o
60o
90o
120o
150o
180o
210o
240o
270o
300o
330o
Van
360o
32
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 0 โ‰ค ฮฑ<60o
๏ƒ˜ The other output waveforms (Vbn
and Vcn) can be found by the
same way, and the resulting
waveform of Vbn will be the same
as the waveform of Van shifted by
120o, and the waveform of Vbn
will be the same as the waveform
of Van shifted by 240o.
๏ƒ˜ At any instant, three thyristors
or two thyristors are ON. The
instantaneous load voltages are
either a line-to-neutral voltage
(three thyristors ON), one-half of
a line-to-line voltage (two
thyristors ON), or zero (none
ON)
๏ƒ˜ Because the load is resistive load,
the shape of the output current is
similar to the shape of the output
voltage.
33
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 60o โ‰ค ฮฑ<90o
๏ƒ˜ Only two thyristors conduct at any one time when the delay angle is
between 60o and 90o.
๏ƒ˜ For ฮฑ=75o
, prior to 75o, S5 and S6 are conducting, and Van=0. When S1 is
turned on at 75o, S6 continues to conduct, but S5 must turn off because VCN
is negative. Voltage Van is then VAB/2. When S2 is turned on at 135 , S6 is
forced off, and Van= VAC/2. The next thyristor to turn on is S3, which forces
S1 off, and Van=0. One thyristor is always forced off when thyristor is
turned on for ฮฑ in this range. Load voltages are one-half line-to-line
voltages or zero.
34
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
When 90o โ‰ค ฮฑ<150o
๏ƒ˜ Only two thyristors conduct
at any one time when the
delay angle is between 90o and
150o.
๏ƒ˜ For ฮฑ=120o
, prior to 120o, no
thyristors are on, and Van=0.
At ฮฑ=120o, S1 is turned on at
120o, S6 still has a gate signal
applied. Since VAB is positive,
both S1 and S6 are forward-
biased and begin to conduct,
and Van=VAB/2. Both S1 and S6
turn off when VAB becomes
negative. When a gate signal
is applied to S2, it turns on,
and S1 turns on again.
For ฮฑ>150o, there is no time interval when thyristor is forward-biased
while a gate signal is applied. Output voltage is zero for this condition.
35
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
The rms output voltage for a Yโ€“ connection loads are found to be:
๏ƒ˜ For 0oโ‰ค ฮฑ<60o
๐‘ฝ ๐’,๐’“๐’Ž๐’” = ๐Ÿ‘๐‘ฝ ๐’Ž
๐Ÿ
๐…
๐…
๐Ÿ”
โˆ’
๐œถ
๐Ÿ’
+
๐’”๐’Š๐’๐Ÿ๐œถ
๐Ÿ–
๐‘ฝ ๐’,๐’“๐’Ž๐’” =
๐Ÿ
๐Ÿ๐…
๐‘ฝ ๐’‚๐’
๐Ÿ
๐’…๐Ž๐’•
๐Ÿ๐…
๐ŸŽ
๐‘ฝ ๐’,๐’“๐’Ž๐’” =
๐Ÿ
๐…
๐‘ฝ ๐‘จ๐‘ต
๐Ÿ
๐’…๐Ž๐’•
๐… ๐Ÿ‘
๐œถ
+ (
๐‘ฝ ๐‘จ๐‘ฉ
๐Ÿ
) ๐Ÿ ๐’…๐Ž๐’•
๐… ๐Ÿ‘+๐œถ
๐… ๐Ÿ‘
+ ๐‘ฝ ๐‘จ๐‘ต
๐Ÿ
๐’…๐Ž๐’•
๐Ÿ๐… ๐Ÿ‘
๐… ๐Ÿ‘+๐œถ
+ (
๐‘ฝ ๐‘จ๐‘ช
๐Ÿ
) ๐Ÿ ๐’…๐Ž๐’•
๐Ÿ๐… ๐Ÿ‘+๐œถ
๐Ÿ๐… ๐Ÿ‘
+ ๐‘ฝ ๐‘จ๐‘ต
๐Ÿ
๐’…๐Ž๐’•
๐…
๐Ÿ๐… ๐Ÿ‘+๐œถ
๐‘ฝ ๐’,๐’“๐’Ž๐’” =
๐Ÿ
๐…
(๐‘ฝ ๐’Žsin๐œ”t ) ๐Ÿ ๐’…๐Ž๐’•
๐… ๐Ÿ‘
๐œถ
+ (
๐Ÿ‘๐‘ฝ ๐’Žsin(๐œ”t+ฯ€/6)
๐Ÿ
) ๐Ÿ ๐’…๐Ž๐’•
๐… ๐Ÿ‘+๐œถ
๐… ๐Ÿ‘
+ (๐‘ฝ ๐’Žsin๐œ”t ) ๐Ÿ ๐’…๐Ž๐’•
๐Ÿ๐… ๐Ÿ‘
๐… ๐Ÿ‘+๐œถ
+ (
๐Ÿ‘๐‘ฝ ๐’Žsin(๐œ”tโˆ’ฯ€/6)
๐Ÿ
) ๐Ÿ ๐’…๐Ž๐’•
๐Ÿ๐… ๐Ÿ‘+๐œถ
๐Ÿ๐… ๐Ÿ‘
+ (๐‘ฝ ๐’Žsin๐œ”t ) ๐Ÿ ๐’…๐Ž๐’•
๐…
๐Ÿ๐… ๐Ÿ‘+๐œถ
36
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
The rms output voltage for a Yโ€“ connection loads are found to be:
๏ƒ˜ For 60oโ‰ค ฮฑ<90o
๐‘ฝ ๐’,๐’“๐’Ž๐’” =
๐Ÿ
๐Ÿ๐…
๐‘ฝ ๐’‚๐’
๐Ÿ
๐’…๐Ž๐’•
๐Ÿ๐…
๐ŸŽ
๐‘ฝ ๐’,๐’“๐’Ž๐’” =
๐Ÿ
๐…
(
๐‘ฝ ๐‘จ๐‘ฉ
๐Ÿ
) ๐Ÿ ๐’…๐Ž๐’•
๐… ๐Ÿ‘+๐œถ
๐œถ
+ (
๐‘ฝ ๐‘จ๐‘ช
๐Ÿ
) ๐Ÿ ๐’…๐Ž๐’•
๐Ÿ๐… ๐Ÿ‘+๐œถ
๐Ÿ๐… ๐Ÿ‘
๐‘ฝ ๐’,๐’“๐’Ž๐’” =
๐Ÿ
๐…
(
๐Ÿ‘๐‘ฝ ๐’Žsin(๐œ”t+ฯ€/6)
๐Ÿ
) ๐Ÿ ๐’…๐Ž๐’•
๐… ๐Ÿ‘+๐œถ
๐œถ
+ (
๐Ÿ‘๐‘ฝ ๐’Žsin(๐œ”tโˆ’ฯ€/6)
๐Ÿ
) ๐Ÿ ๐’…๐Ž๐’•
๐Ÿ๐… ๐Ÿ‘+๐œถ
๐Ÿ๐… ๐Ÿ‘
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  = 3๐‘‰๐‘š
1
๐œ‹
๐œ‹
12
+
3๐‘ ๐‘–๐‘›2๐›ผ
16
+
3๐‘๐‘œ๐‘ 2๐›ผ
16
37
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
The rms output voltage for a Yโ€“ connection loads are found to be:
๏ƒ˜ For 90oโ‰ค ฮฑ<150o
๐‘ฝ ๐’,๐’“๐’Ž๐’” =
๐Ÿ
๐Ÿ๐…
๐‘ฝ ๐’‚๐’
๐Ÿ
๐’…๐Ž๐’•
๐Ÿ๐…
๐ŸŽ
๐‘ฝ ๐’,๐’“๐’Ž๐’” =
๐Ÿ
๐…
(
๐‘ฝ ๐‘จ๐‘ฉ
๐Ÿ
) ๐Ÿ ๐’…๐Ž๐’•
๐Ÿ“๐… ๐Ÿ”
๐œถ
+ (
๐‘ฝ ๐‘จ๐‘ช
๐Ÿ
) ๐Ÿ ๐’…๐Ž๐’•
๐Ÿ•๐… ๐Ÿ”
๐… ๐Ÿ‘+๐œถ
๐‘ฝ ๐’,๐’“๐’Ž๐’” =
๐Ÿ
๐…
(
๐Ÿ‘๐‘ฝ ๐’Žsin(๐œ”t+ฯ€/6)
๐Ÿ
) ๐Ÿ ๐’…๐Ž๐’•
๐Ÿ“๐… ๐Ÿ”
๐œถ
+ (
๐Ÿ‘๐‘ฝ ๐’Žsin(๐œ”tโˆ’ฯ€/6)
๐Ÿ
) ๐Ÿ ๐’…๐Ž๐’•
๐Ÿ•๐… ๐Ÿ”
๐… ๐Ÿ‘+๐œถ
๐‘ฝ ๐’,๐’“๐’Ž๐’” = ๐Ÿ‘๐‘ฝ ๐’Ž
๐Ÿ
๐…
๐Ÿ“๐…
๐Ÿ๐Ÿ’
โˆ’
๐œถ
๐Ÿ’
+
๐’”๐’Š๐’๐Ÿ๐œถ
๐Ÿ๐Ÿ”
โˆ’
๐Ÿ‘๐’„๐’๐’”๐Ÿ๐œถ
๐Ÿ๐Ÿ”
38
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load
Example: a three phase bidirectional AC voltage controller Y-connected
connected to resistive load (R=10ฮฉ). The supply voltage VL-L=208V, f=60Hz. If
ฮฑ=ฯ€/6, find the output voltage rms value and the input power factor.
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  = 3๐‘‰๐‘š
1
๐œ‹
๐œ‹
6
โˆ’
๐›ผ
4
+
๐‘ ๐‘–๐‘›2๐›ผ
8
= 208
1
๐œ‹
๐œ‹
6
โˆ’
ฯ€/6
4
+
๐‘ ๐‘–๐‘›2ฯ€/6
8
= 83๐‘‰
๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  =
๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘ 
๐‘…
=
83
10
= 8.3๐ด
๐‘ƒ๐‘œ,๐‘Ž๐‘ = 3๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘ 
2
๐‘… = 3 ร— 8.32
ร— 10 = 2066.7๐‘Š
๐‘† = 3๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  ๐‘‰๐‘–๐‘›๐‘๐‘ข๐‘ก,๐‘Ÿ๐‘š๐‘  = 3 ร— 8.3 ร— 84.9 = 2114.4๐‘‰๐ด
๐‘‰๐‘–๐‘›๐‘๐‘ข๐‘ก,๐‘Ÿ๐‘š๐‘  =
208
2 3
= 84.9๐‘‰
๐‘๐‘“ =
๐‘ƒ๐‘œ,๐‘Ž๐‘
๐‘†
=
2066.7
2114.4
= 0.977
39
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ ฮ” Connected Resistive Load
๏ƒ˜ The voltage across a load resistor is the corresponding line-to-line voltage
when a thyristor in the phase is on. The delay angle is referenced to the
zero crossing of the line-to-line voltage. thyristors are turned on in the
sequence 1-2-3-4-5-6.
The line current in each
phase is the sum of two of
the delta currents:
40
Dr. Firas Obeidat Faculty of Engineering Philadelphia University
The Three Phase AC Voltage Controller โ€“ ฮ” Connected Resistive Load
The relationship between rms line
and delta currents depends on the
conduction angle of the thyristors.
For small conduction angles (large ฮฑ),
the delta currents do not overlap, and
the rms line currents are
Current waveforms for ฮฑ=130o
For large conduction angles (small ฮฑ),
the delta currents overlap, and the
rms line current is larger than โˆš2Iฮ”.
In the limit when ฮณ (ฮฑ=0), the delta
currents and line currents are
sinusoids. The rms line current is
determined from ordinary three-
phase analysis.
Current waveforms for ฮฑ=90o
The range of rms line current is
therefore
depending on ฮฑ
41

More Related Content

What's hot

Generation shift factor and line outage factor
Generation shift factor and line outage factorGeneration shift factor and line outage factor
Generation shift factor and line outage factorViren Pandya
ย 
Ac voltage controller
Ac voltage controllerAc voltage controller
Ac voltage controllerJosin Hippolitus
ย 
Compensators
CompensatorsCompensators
Compensatorsjawaharramaya
ย 
DC DC Converter
DC DC ConverterDC DC Converter
DC DC ConverterMengstu Fentaw
ย 
Series & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs DevicesSeries & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs Deviceskhemraj298
ย 
Three phase semi converter
Three phase semi converterThree phase semi converter
Three phase semi converterArpit Raval
ย 
Unit-2 Three Phase controlled converter
Unit-2 Three Phase controlled converter Unit-2 Three Phase controlled converter
Unit-2 Three Phase controlled converter johny renoald
ย 
Power electronics Phase Controlled Rectifiers - SCR
Power electronics   Phase Controlled Rectifiers - SCRPower electronics   Phase Controlled Rectifiers - SCR
Power electronics Phase Controlled Rectifiers - SCRBurdwan University
ย 
Dc Choppers
Dc ChoppersDc Choppers
Dc Choppersstooty s
ย 
Inverters (DC-AC)
Inverters (DC-AC)Inverters (DC-AC)
Inverters (DC-AC)Taimur Ijaz
ย 
speed control of three phase induction motor
speed control of three phase induction motorspeed control of three phase induction motor
speed control of three phase induction motorAshvani Shukla
ย 
Firing angle control
Firing angle controlFiring angle control
Firing angle controljawaharramaya
ย 
1 phase semiconverter
1 phase semiconverter1 phase semiconverter
1 phase semiconverterRaviraj solanki
ย 
Structure of power system
Structure of power systemStructure of power system
Structure of power systemRevathi Subramaniam
ย 
distance relay
distance relaydistance relay
distance relaySURAJ PRASAD
ย 
Three phase inverter - 180 and 120 Degree Mode of Conduction
Three phase inverter - 180 and 120 Degree Mode of ConductionThree phase inverter - 180 and 120 Degree Mode of Conduction
Three phase inverter - 180 and 120 Degree Mode of ConductionMalarselvamV
ย 

What's hot (20)

Generation shift factor and line outage factor
Generation shift factor and line outage factorGeneration shift factor and line outage factor
Generation shift factor and line outage factor
ย 
Ac voltage controller
Ac voltage controllerAc voltage controller
Ac voltage controller
ย 
Compensators
CompensatorsCompensators
Compensators
ย 
DC DC Converter
DC DC ConverterDC DC Converter
DC DC Converter
ย 
Series & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs DevicesSeries & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs Devices
ย 
Per unit system
Per unit systemPer unit system
Per unit system
ย 
Reactive power compensation
Reactive power compensationReactive power compensation
Reactive power compensation
ย 
Three phase semi converter
Three phase semi converterThree phase semi converter
Three phase semi converter
ย 
Unit-2 Three Phase controlled converter
Unit-2 Three Phase controlled converter Unit-2 Three Phase controlled converter
Unit-2 Three Phase controlled converter
ย 
Power electronics Phase Controlled Rectifiers - SCR
Power electronics   Phase Controlled Rectifiers - SCRPower electronics   Phase Controlled Rectifiers - SCR
Power electronics Phase Controlled Rectifiers - SCR
ย 
Choppers
ChoppersChoppers
Choppers
ย 
Dc Choppers
Dc ChoppersDc Choppers
Dc Choppers
ย 
Inverters (DC-AC)
Inverters (DC-AC)Inverters (DC-AC)
Inverters (DC-AC)
ย 
speed control of three phase induction motor
speed control of three phase induction motorspeed control of three phase induction motor
speed control of three phase induction motor
ย 
Firing angle control
Firing angle controlFiring angle control
Firing angle control
ย 
1 phase semiconverter
1 phase semiconverter1 phase semiconverter
1 phase semiconverter
ย 
Structure of power system
Structure of power systemStructure of power system
Structure of power system
ย 
distance relay
distance relaydistance relay
distance relay
ย 
Gauss seidel method
Gauss seidel methodGauss seidel method
Gauss seidel method
ย 
Three phase inverter - 180 and 120 Degree Mode of Conduction
Three phase inverter - 180 and 120 Degree Mode of ConductionThree phase inverter - 180 and 120 Degree Mode of Conduction
Three phase inverter - 180 and 120 Degree Mode of Conduction
ย 

Similar to AC AC converters

Ch1 AC voltage controllers_Part 3 (1).pdf
Ch1 AC voltage controllers_Part 3 (1).pdfCh1 AC voltage controllers_Part 3 (1).pdf
Ch1 AC voltage controllers_Part 3 (1).pdfchauhangopal7354
ย 
Power electronics Uncontrolled Rectifiers - Diode Rectifiers
Power electronics   Uncontrolled Rectifiers - Diode RectifiersPower electronics   Uncontrolled Rectifiers - Diode Rectifiers
Power electronics Uncontrolled Rectifiers - Diode RectifiersBurdwan University
ย 
Three Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatThree Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatVIVEK AHLAWAT
ย 
Bridge rectifier
Bridge rectifierBridge rectifier
Bridge rectifierDenis Simiyu
ย 
Electrical Circuits
Electrical CircuitsElectrical Circuits
Electrical CircuitsKC College
ย 
Resonance.pdf
Resonance.pdfResonance.pdf
Resonance.pdfMTharunKumar3
ย 
DETERMINATION OF VOLTAGE REGULATION METHOD OF SYNCHRONOUS MACHINE
DETERMINATION OF VOLTAGE REGULATION METHOD OF SYNCHRONOUS MACHINEDETERMINATION OF VOLTAGE REGULATION METHOD OF SYNCHRONOUS MACHINE
DETERMINATION OF VOLTAGE REGULATION METHOD OF SYNCHRONOUS MACHINEvishalgohel12195
ย 
NETWORK ANALYSIS PART 3 For GATE IES PSU -2020 RRB/SSC AE JE TECHNICAL INT...
NETWORK ANALYSIS PART 3 For  GATE IES PSU  -2020 RRB/SSC  AE JE TECHNICAL INT...NETWORK ANALYSIS PART 3 For  GATE IES PSU  -2020 RRB/SSC  AE JE TECHNICAL INT...
NETWORK ANALYSIS PART 3 For GATE IES PSU -2020 RRB/SSC AE JE TECHNICAL INT...Prasant Kumar
ย 
Rectifiers (ac dc)
Rectifiers (ac dc) Rectifiers (ac dc)
Rectifiers (ac dc) Taimur Ijaz
ย 
PHY PUC 2 Notes-Alternating current
PHY PUC 2 Notes-Alternating currentPHY PUC 2 Notes-Alternating current
PHY PUC 2 Notes-Alternating currentstudy material
ย 
RLC Series Resonance
RLC Series ResonanceRLC Series Resonance
RLC Series ResonanceArijitDhali
ย 
rms value average value
rms value average valuerms value average value
rms value average value2461998
ย 
EMEC-II, unit 1
EMEC-II, unit 1EMEC-II, unit 1
EMEC-II, unit 1Mohammad Imran
ย 
Power Electronics - Phase Controlled Converters.pptx
Power Electronics - Phase Controlled Converters.pptxPower Electronics - Phase Controlled Converters.pptx
Power Electronics - Phase Controlled Converters.pptxPoornima D
ย 
Power in AC circuits.pdf
Power in AC circuits.pdfPower in AC circuits.pdf
Power in AC circuits.pdfMTharunKumar3
ย 
Ch-2 AC.pdf
Ch-2 AC.pdfCh-2 AC.pdf
Ch-2 AC.pdfAymenMuhaba1
ย 

Similar to AC AC converters (20)

Chapter 12old.pdf
Chapter 12old.pdfChapter 12old.pdf
Chapter 12old.pdf
ย 
Ch1 AC voltage controllers_Part 3 (1).pdf
Ch1 AC voltage controllers_Part 3 (1).pdfCh1 AC voltage controllers_Part 3 (1).pdf
Ch1 AC voltage controllers_Part 3 (1).pdf
ย 
Power electronics Uncontrolled Rectifiers - Diode Rectifiers
Power electronics   Uncontrolled Rectifiers - Diode RectifiersPower electronics   Uncontrolled Rectifiers - Diode Rectifiers
Power electronics Uncontrolled Rectifiers - Diode Rectifiers
ย 
Three Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatThree Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek Ahlawat
ย 
Bridge rectifier
Bridge rectifierBridge rectifier
Bridge rectifier
ย 
report of power electronics
report of power electronicsreport of power electronics
report of power electronics
ย 
Electrical Circuits
Electrical CircuitsElectrical Circuits
Electrical Circuits
ย 
Resonance.pdf
Resonance.pdfResonance.pdf
Resonance.pdf
ย 
DETERMINATION OF VOLTAGE REGULATION METHOD OF SYNCHRONOUS MACHINE
DETERMINATION OF VOLTAGE REGULATION METHOD OF SYNCHRONOUS MACHINEDETERMINATION OF VOLTAGE REGULATION METHOD OF SYNCHRONOUS MACHINE
DETERMINATION OF VOLTAGE REGULATION METHOD OF SYNCHRONOUS MACHINE
ย 
NETWORK ANALYSIS PART 3 For GATE IES PSU -2020 RRB/SSC AE JE TECHNICAL INT...
NETWORK ANALYSIS PART 3 For  GATE IES PSU  -2020 RRB/SSC  AE JE TECHNICAL INT...NETWORK ANALYSIS PART 3 For  GATE IES PSU  -2020 RRB/SSC  AE JE TECHNICAL INT...
NETWORK ANALYSIS PART 3 For GATE IES PSU -2020 RRB/SSC AE JE TECHNICAL INT...
ย 
Rectifiers (ac dc)
Rectifiers (ac dc) Rectifiers (ac dc)
Rectifiers (ac dc)
ย 
G1013238
G1013238G1013238
G1013238
ย 
PHY PUC 2 Notes-Alternating current
PHY PUC 2 Notes-Alternating currentPHY PUC 2 Notes-Alternating current
PHY PUC 2 Notes-Alternating current
ย 
RLC Series Resonance
RLC Series ResonanceRLC Series Resonance
RLC Series Resonance
ย 
rms value average value
rms value average valuerms value average value
rms value average value
ย 
EMEC-II, unit 1
EMEC-II, unit 1EMEC-II, unit 1
EMEC-II, unit 1
ย 
Power Electronics - Phase Controlled Converters.pptx
Power Electronics - Phase Controlled Converters.pptxPower Electronics - Phase Controlled Converters.pptx
Power Electronics - Phase Controlled Converters.pptx
ย 
Power in AC circuits.pdf
Power in AC circuits.pdfPower in AC circuits.pdf
Power in AC circuits.pdf
ย 
ac slides type 1.pdf
ac slides type 1.pdfac slides type 1.pdf
ac slides type 1.pdf
ย 
Ch-2 AC.pdf
Ch-2 AC.pdfCh-2 AC.pdf
Ch-2 AC.pdf
ย 

Recently uploaded

UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxkalpana413121
ย 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixNeometrix_Engineering_Pvt_Ltd
ย 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxhublikarsn
ย 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
ย 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
ย 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
ย 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
ย 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
ย 
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...manju garg
ย 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
ย 
Max. shear stress theory-Maximum Shear Stress Theory โ€‹ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory โ€‹  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory โ€‹  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory โ€‹ Maximum Distortional ...ronahami
ย 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
ย 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
ย 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
ย 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesRashidFaridChishti
ย 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
ย 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxNANDHAKUMARA10
ย 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
ย 
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...ssuserdfc773
ย 

Recently uploaded (20)

UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
ย 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
ย 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
ย 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
ย 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
ย 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
ย 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
ย 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
ย 
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
ย 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
ย 
Max. shear stress theory-Maximum Shear Stress Theory โ€‹ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory โ€‹  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory โ€‹  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory โ€‹ Maximum Distortional ...
ย 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
ย 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
ย 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
ย 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
ย 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
ย 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
ย 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
ย 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
ย 
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
ย 

AC AC converters

  • 1. Power Electronics AC-AC Converters 1 Dr. Firas Obeidat E-mail: firasobeidat@gmail.com fobeidat@philadelphia.edu.jo
  • 2. 2 Table of contents 1 โ€ข Introduction 2 โ€ข The Single Phase AC Voltage Controller 3 โ€ข The Single Phase AC Voltage Controller - Resistive Load 4 โ€ข The Single Phase AC Voltage Controller - RL Load 5 โ€ข The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load 6 โ€ข The Three Phase AC Voltage Controller โ€“ ฮ” Connected Resistive Load Dr. Firas Obeidat Faculty of Engineering Philadelphia University
  • 3. 3 Dr. Firas Obeidat Faculty of Engineering Philadelphia University Introduction An ac voltage controller is a converter that controls the voltage, current, and average power delivered to an ac load from an ac source. The phase-controlled ac voltage controller has several practical uses including light-dimmer circuits and speed control of induction motors. In a switching scheme called phase control, switching takes place during every cycle of the source, in effect removing some of the source waveform before it reaches the load. Integral-cycle control, the source is connected and disconnected for several cycles at a time.
  • 4. 4 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Single Phase AC Voltage Controller Basic Operation For the single phase AC voltage controller shown, electronic switches are shown as parallel thyristors (SCRs). This SCR arrangement makes it possible to have current in either direction in the load. This SCR connection is called antiparallel or inverse parallel because the SCRs carry current in opposite directions. A triac is equivalent to the antiparallel SCRs. Other controlled switching devices can be used instead of SCRs. ๏ƒ˜ Load current contains both positive and negative half-cycles. An analysis identical to that done for the controlled half-wave rectifier can be done on a half cycle for the voltage controller. Then, by symmetry, the result can be extrapolated to describe the operation for the entire period. ๏ƒ˜ S1 conducts if a gate signal is applied during the positive half-cycle of the source. S1 conducts until the current in it reaches zero. ๏ƒ˜ A gate signal is applied to S2 during the negative half-cycle of the source, providing a path for negative load current. vs L o a d + -vsw S1 S2 + - + - io vo
  • 5. 5 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Single Phase AC Voltage Controller Basic Operation Basic observations about this controller The SCRs cannot conduct simultaneously. The load voltage is the same as the source voltage when either SCR is on. The load voltage is zero when both SCRs are OFF. The switch voltage vsw is zero when either SCR is ON and is equal to the source voltage when neither is ON. The average current in the source and load is zero if the SCRs are on for equal time intervals. The average current in each SCR is not zero because of unidirectional SCR current. The rms current in each SCR is 1/โˆš2 times the rms load current if the SCRs are on for equal time intervals.
  • 6. 6 Dr. Firas Obeidat Faculty of Engineering Philadelphia University vs + -vsw S1 S2 + - + - io voR The Single Phase AC Voltage Controller - Resistive Load ๐‘ฃ๐‘  ๐œ”๐‘ก = ๐‘‰๐‘š ๐‘ ๐‘–๐‘›๐œ”๐‘ก ๐‘ฃ๐‘  ๐œ”๐‘ก = ๐‘‰๐‘š ๐‘ ๐‘–๐‘›๐œ”๐‘ก ๐›ผ < ๐œ”๐‘ก < ๐œ‹ ๐‘Ž๐‘›๐‘‘ ๐œ‹ + ๐›ผ < ๐œ”๐‘ก < 2๐œ‹ 0 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ Let the voltage source be Output voltage is The rms load voltage is ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  = 1 ๐œ‹ (๐‘‰๐‘š ๐‘ ๐‘–๐‘›๐œ”๐‘ก)2 ๐‘‘๐œ”๐‘ก ๐œ‹ ฮฑ = ๐‘‰๐‘š 2 1 โˆ’ ๐›ผ ๐œ‹ + ๐‘ ๐‘–๐‘›2๐›ผ 2๐œ‹
  • 7. 7 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Single Phase AC Voltage Controller - Resistive Load The power factor of the load is The rms current in the load and the source is ๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  = ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  ๐‘… = ๐‘‰๐‘š ๐‘… 2 1 โˆ’ ๐›ผ ๐œ‹ + ๐‘ ๐‘–๐‘›2๐›ผ 2๐œ‹ ๐‘๐‘“ = ๐‘ƒ ๐‘† = ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  2 ๐‘… ๐‘‰๐‘ ,๐‘Ÿ๐‘š๐‘  ๐ผ๐‘ ,๐‘Ÿ๐‘š๐‘  = ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  2 ๐‘… ๐‘‰๐‘ ,๐‘Ÿ๐‘š๐‘ (๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  ๐‘…) = ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  ๐‘‰๐‘ ,๐‘Ÿ๐‘š๐‘  = ๐‘‰๐‘š 2 1 โˆ’ ๐›ผ ๐œ‹ + ๐‘ ๐‘–๐‘›2๐›ผ 2๐œ‹ ๐‘‰๐‘š 2 ๐‘๐‘“ = 1 โˆ’ ๐›ผ ๐œ‹ + ๐‘ ๐‘–๐‘›2๐›ผ 2๐œ‹ The pf=1 for ฮฑ=0, which is the same as for an uncontrolled resistive load, and the power factor for ฮฑ>0 is less than 1. The average source current is zero because of half-wave symmetry. ๐ผ๐‘ ,๐ด๐‘ฃ๐‘” = ๐ผ ๐‘œ,๐ด๐‘ฃ๐‘” = 0
  • 8. 8 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Single Phase AC Voltage Controller - Resistive Load The average SCR current is ๐ผ๐‘†๐ถ๐‘…,๐ด๐‘ฃ๐‘” = 1 2๐œ‹ ๐‘‰๐‘š ๐‘ ๐‘–๐‘›๐œ”๐‘ก ๐‘… ๐‘‘๐œ”๐‘ก ๐œ‹ ๐›ผ = ๐‘‰๐‘š 2๐œ‹๐‘… (1 + ๐‘๐‘œ๐‘ ๐›ผ) ๐ผ๐‘†๐ถ๐‘…,๐‘Ÿ๐‘š๐‘  = 1 2๐œ‹ ( ๐‘‰๐‘š ๐‘ ๐‘–๐‘›๐œ”๐‘ก ๐‘… )2 ๐‘‘๐œ”๐‘ก ๐œ‹ ฮฑ = ๐‘‰๐‘š 2๐‘… 1 โˆ’ ๐›ผ ๐œ‹ + ๐‘ ๐‘–๐‘›2๐›ผ 2๐œ‹ The rms SCR current is ๐ผ๐‘†๐ถ๐‘…,๐‘Ÿ๐‘š๐‘  = ๐‘‰๐‘š 2 2๐‘… 1 โˆ’ ๐›ผ ๐œ‹ + ๐‘ ๐‘–๐‘›2๐›ผ 2๐œ‹ = ๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  2 ฯ€ฮฑ 2ฯ€ 2ฯ€+ฮฑ 3ฯ€ ฯ‰t iS1 vs/R
  • 9. 9 Dr. Firas Obeidat Faculty of Engineering Philadelphia University Example: The single-phase ac voltage controller has a 120-V rms 60-Hz source. The load resistance is 15 ฮฉ. Determine (a) the delay angle required to deliver 500 W to the load, (b) the rms source current, (c) the rms and average currents in the SCRs, (d) the power factor. ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  = ๐‘‰๐‘š 2 1 โˆ’ ๐›ผ ๐œ‹ + ๐‘ ๐‘–๐‘›2๐›ผ 2๐œ‹ = 2 ร— 120 2 1 โˆ’ ๐›ผ ๐œ‹ + ๐‘ ๐‘–๐‘›2๐›ผ 2๐œ‹ ๐‘ƒ = ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  2 ๐‘… โ†’ ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  2 = ๐‘ƒ๐‘… = 500 ร— 15 = 7500 ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  2 = 1202 (1 โˆ’ ๐›ผ ๐œ‹ + ๐‘ ๐‘–๐‘›2๐›ผ 2๐œ‹ ) โˆด 7500 = 14400(1 โˆ’ ๐›ผ ๐œ‹ + ๐‘ ๐‘–๐‘›2๐›ผ 2๐œ‹ ) ๐›ผ ๐œ‹ โˆ’ ๐‘ ๐‘–๐‘›2๐›ผ 2๐œ‹ = 0.479 2๐›ผ โˆ’ ๐‘ ๐‘–๐‘›2๐›ผ = 3.01 ๐›ผ = 1.54 rad = 88.1 ๐‘œ (a) The Single Phase AC Voltage Controller - Resistive Load
  • 10. 10 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Single Phase AC Voltage Controller - Resistive Load (b) ๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  = ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  ๐‘… = 86.6 15 = 5.77 A ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  2 = 7500 โ†’ ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  = 86.6From (a) ๐ผ๐‘†๐ถ๐‘…,๐ด๐‘ฃ๐‘” = ๐‘‰๐‘š 2๐œ‹๐‘… 1 + ๐‘๐‘œ๐‘ ๐›ผ = 2 ร— 120 2๐œ‹15 1 + ๐‘๐‘œ๐‘ 88.1 = 1.86 A ๐ผ๐‘†๐ถ๐‘…,๐‘Ÿ๐‘š๐‘  = ๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  2 = 5.77 2 = 4.08 A (c) ๐‘๐‘“ = ๐‘ƒ ๐‘† = ๐‘ƒ ๐‘‰๐‘ ,๐‘Ÿ๐‘š๐‘  ๐ผ๐‘ ,๐‘Ÿ๐‘š๐‘  = 1 โˆ’ ๐›ผ ๐œ‹ + ๐‘ ๐‘–๐‘›2๐›ผ 2๐œ‹ = 500 120 ร— 5.77 = 0.722(d)
  • 11. 11 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Single Phase AC Voltage Controller - RL Load vs + -vsw S1 S2 + - + - io vo R L When a gate signal is applied to S1 at ๐œ”t=ฮฑ in single phase AC voltage controller with RL load, Kirchhoffโ€™s voltage law for the circuit is expressed as. ๐‘‰๐‘š ๐‘ ๐‘–๐‘›๐œ”๐‘ก = ๐‘…๐‘– ๐‘œ ๐‘ก + ๐ฟ ๐‘‘๐‘– ๐‘œ ๐‘ก ๐‘‘๐‘ก The solution for current in this equation (as obtained in the controlled half wave rectifier section) is ๐‘– ๐‘œ ๐œ”๐‘ก = ๐‘‰๐‘š ๐‘ sin ๐œ”๐‘ก โˆ’ ๐œƒ โˆ’ sin(๐›ผ โˆ’ ๐œƒ)๐‘’(๐›ผโˆ’๐œ”๐‘ก) ๐œ”๐œ ๐›ผ โ‰ค ๐œ”๐‘ก โ‰ค ๐›ฝ 0 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ where ๐‘ = ๐‘…2 + (๐œ”๐ฟ)2 ๐œƒ = ๐‘ก๐‘Ž๐‘›โˆ’1 ( ๐œ”๐ฟ ๐‘… ) The extinction angle ๐›ฝ is the angle at which the current returns to zero, when ๐œ”๐‘ก= ๐›ฝ, ๐‘– ๐‘œ ๐›ฝ = ๐‘‰๐‘š ๐‘ sin ๐›ฝ โˆ’ ๐œƒ โˆ’ sin(๐›ผ โˆ’ ๐œƒ)๐‘’(๐›ผโˆ’๐›ฝ) ๐œ”๐œ (1) (2)
  • 12. 12 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Single Phase AC Voltage Controller - RL Load A gate signal is applied to S2 at ๐œ”t=ฯ€+ฮฑ, and the load current is negative but has a form identical to that of the positive half- cycle. The above equation must be solved numerically for ๐›ฝ. The angle (๐›ฝ-ฮฑ) is called the conduction angle ๐›ถ. ๐›ถ =๐›ฝ-ฮฑ In the interval between ฯ€ and ๐›ฝ when the source voltage is negative and the load current is still positive, S2 cannot be turned on because it is not forward biased. The gate signal to S2 must be delayed at least until the current in S1 reaches zero, at ๐œ”t= ๐›ฝ. The delay angle is therefore at least ๐›ฝ- ฯ€. ฮฑโ‰ฅ๐›ฝ- ฯ€
  • 13. 13 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Single Phase AC Voltage Controller - RL Load When ฮฑ=ฮธ, equation (2) becomes sin ๐›ฝ โˆ’ ๐œƒ = 0 which has a solution ๐›ฝ โˆ’ ๐œƒ = ฯ€ Therefore ๐›ถ = ๐œ‹ When ฮฑ=ฮธ When ๐›ถ=๐œ‹, one SCR is always conducting, and the voltage across the load is the same as the voltage of the source. The load voltage and current are sinusoids for this case, and the circuit is analyzed using phasor analysis for AC circuits. The power delivered to the load is continuously controllable between the two extremes corresponding to full source voltage and zero. The expression of rms load current is ๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  = 1 ๐œ‹ ๐‘– ๐‘œ 2 (๐œ”๐‘ก) ๐‘‘๐œ”๐‘ก ๐›ฝ ฮฑ = 1 ๐œ‹ ๐‘‰ ๐‘š ๐‘ sin ๐œ”๐‘ก โˆ’ ๐œƒ โˆ’ ๐‘‰ ๐‘š ๐‘ sin(๐›ผ โˆ’ ๐œƒ)๐‘’(๐›ผโˆ’๐œ”๐‘ก) ๐œ”๐œ 2 ๐‘‘๐œ”๐‘ก ๐›ฝ ฮฑ
  • 14. 14 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Single Phase AC Voltage Controller - RL Load The average output voltage can be found as An other way to find the expression of rms load current is ๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  = 1 ๐‘…2 + (๐œ”๐ฟ)2 ๐‘‰๐‘š 2 1 ๐œ‹ (๐›ฝ โˆ’ ๐›ผ โˆ’ 1 2 ๐‘ ๐‘–๐‘›2๐›ฝ + 1 2 ๐‘ ๐‘–๐‘›2๐›ผ) Power absorbed by the load is determined from ๐‘ƒ = ๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  2 ๐‘… The power factor of the load is ๐‘๐‘“ = ๐‘ƒ ๐‘† = ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  ๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  ๐‘‰๐‘ ,๐‘Ÿ๐‘š๐‘  ๐ผ๐‘ ,๐‘Ÿ๐‘š๐‘  = ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  ๐‘‰๐‘ ,๐‘Ÿ๐‘š๐‘  = 1 ๐œ‹ (๐›ฝ โˆ’ ๐›ผ โˆ’ 1 2 ๐‘ ๐‘–๐‘›2๐›ฝ + 1 2 ๐‘ ๐‘–๐‘›2๐›ผ) ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  = 1 ๐œ‹ (๐‘‰๐‘š ๐‘ ๐‘–๐‘›๐œ”๐‘ก)2 ๐‘‘๐œ”๐‘ก ๐›ฝ ฮฑ = ๐‘‰๐‘š 2 1 ๐œ‹ (๐›ฝ โˆ’ ๐›ผ โˆ’ 1 2 ๐‘ ๐‘–๐‘›2๐›ฝ + 1 2 ๐‘ ๐‘–๐‘›2๐›ผ)
  • 15. 15 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Single Phase AC Voltage Controller - RL Load Each SCR carries one-half of the current waveform, making the average SCR current ๐ผ๐‘†๐ถ๐‘…,๐ด๐‘ฃ๐‘” = 1 2๐œ‹ ๐‘– ๐‘œ(๐œ”๐‘ก) ๐‘‘๐œ”๐‘ก ๐›ฝ ฮฑ = 1 2๐œ‹ ๐‘‰๐‘š ๐‘ sin ๐œ”๐‘ก โˆ’ ๐œƒ โˆ’ sin(๐›ผ โˆ’ ๐œƒ)๐‘’(๐›ผโˆ’๐œ”๐‘ก) ๐œ”๐œ ๐‘‘๐œ”๐‘ก ๐›ฝ ฮฑ The rms current in each SCR is ๐ผ๐‘†๐ถ๐‘…,๐‘Ÿ๐‘š๐‘  = ๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  2 The average load current is zero, ๐ผ ๐‘œ,๐ด๐‘ฃ๐‘” = 0
  • 16. 16 Dr. Firas Obeidat Faculty of Engineering Philadelphia University Example: For the single-phase voltage controller with RL load, the source is 120Vrms at 60 Hz, and the load is a series RL combination with R=20ฮฉ and L=50mH. The delay angle ฮฑ is 90. Determine (a) an expression for load current for the first half-period, (b) the rms load current, (c) the rms SCR current, (d) the average SCR current, (e) the power delivered to the load, and (f) the power factor. (a) The Single Phase AC Voltage Controller - RL Load The extinction angle is determined from the numerical solution of i(ฮฒ)=0 in the above equation.
  • 17. 17 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Single Phase AC Voltage Controller - RL Load (b) (c) (d) (e) (f) ๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  = 1 27.5 ร— 120 ร— 1 ๐œ‹ (3.83 โˆ’ 1.57 โˆ’ 1 2 ๐‘ ๐‘–๐‘›440 + 0) = 3.27 A ๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  = 1 ๐‘…2 + (๐œ”๐ฟ)2 ๐‘‰๐‘š 2 1 ๐œ‹ (๐›ฝ โˆ’ ๐›ผ โˆ’ 1 2 ๐‘ ๐‘–๐‘›2๐›ฝ โˆ’ 1 2 ๐‘ ๐‘–๐‘›2๐›ผ) Or
  • 18. 18 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load ๏ƒ˜ The power delivered to the load in three phase AC voltage controller with Y-connected resistive load is controlled by the delay angle ฮฑ on each thyristor. The six thyristors are turned on in the sequence 1-2- 3-4-5-6, at 60 intervals. Gate signals are maintained throughout the possible conduction angle. + - S4 S1 + - S6 S3 + - S2 S5 A B C ab c R RR n N ๏ƒ˜ The instantaneous voltage across each phase of the load is determined by which thyristors are conducting. At any instant, three thyristors , two thyristors , or no thyristors are ON. ๏ƒ˜ The instantaneous load voltages are either a line-to-neutral voltage (three thyristors ON), one-half of a line-to-line voltage (two thyristors ON), or zero (none on). ๏ƒ˜ Which thyristors are conducting depends on the delay angle ฮฑ and on the source voltages at a particular instant. The ranges of ฮฑ that produce particular types of load voltages are 0< ฮฑ<60o, 60o< ฮฑ<90o and 90o< ฮฑ<150o.
  • 19. 19 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 0 โ‰ค ฮฑ<60o ๏ƒ˜ To study the output voltage Van, Vbn and Vcn, triggering angle ฮฑ must be determined first. ๏ƒ˜ Suppose that the triggering angle ฮฑ equal to 30o. ๏ƒ˜ The output voltage Van will be studies when ฮฑ= 30o, and the same procedure can be applied to get the output voltages Vbn and Vcn at any triggering angle from 0 to 60o. ๐‘‰๐ด๐‘ = ๐‘‰๐‘šsin๐œ”t ๐‘‰๐ต๐‘ = ๐‘‰๐‘šsin(๐œ”t-2ฯ€/3) ๐‘‰๐ถ๐‘ = ๐‘‰๐‘šsin(๐œ”t-4ฯ€/3) Let ๐‘‰๐ด๐ต = 3๐‘‰๐‘šsin(๐œ”t+ฯ€/6) ๐‘‰๐ต๐ถ = 3๐‘‰๐‘šsin(๐œ”t-ฯ€/2) ๐‘‰๐ถ๐ด = 3๐‘‰๐‘šsin(๐œ”t-7ฯ€/6) VAN VBN VCN 30o 60o 90o 120o 150o 180o 210o 240o 270o 300o 330o 360o
  • 20. 20 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 0 โ‰ค ฮฑ<60o 1. Determine the triggering angle ฮฑ (for example ฮฑ= 30o). 2. Determine the conducting period for each thyristor. โ€ข As seen from the input phase voltages VAN, VBN and VCN, every 30o there is a change that affect on the conduction of each thyristor. VAN VBN VCN 30o 60o 90o 120o 150o 180o 210o 240o 270o 300o 330o 360o VAN=VCN VCN=0 VBN=0 VAN=VBN VAN=0 VCN=0 VBN=VCN VBN=0 VAN=0 VAN=VBNVAN=VCNVBN=VCN
  • 21. 21 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 0 โ‰ค ฮฑ<60o VAN VBN VCN iG1 iG6 iG5 iG4 iG3 iG2 30o 60o 90o 120o 150o 180o 210o 240o 270o 300o 330o 360o โ€ข Because ฮฑ=30o, S1 will be triggered at 30o, S3 will be triggered at 150o (120o+ฮฑ), S5 will be triggered at 270o (240o+ฮฑ). โ€ข S4 will be triggered after S1 by 180o, S6 will be triggered after S3 by 180o S2 will be triggered after S5 by 180o. โ€ข The six SCRs are turned on in the sequence 1-2-3-4-5-6, at 60o intervals. + - S4 S1 + - S6 S3 + - S2 S5 A B C ab c R RR n N
  • 22. 22 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 0 โ‰ค ฮฑ<60o 3. Study the conduction period for each thyristor. โ€ข Each thyristor will be studied at each angle that affect on the conduction of each thyristor to determine if the thyristor will conduct or not. โ€ข The conduction period will be studied for S1. โ€ข At 30o, VAN=VCN, VAN and VCN are positive, while VBN is negative. So, the current will flow from phase A and C to phase B. S1 will be on from 30o to 60o. VAN VBN VCN iG1 30o 60o 90o 120o 150o 180o 210o 240o 270o 300o 330o 360o + - S4 S1 + - S6 S3 + - S2 S5 A B C a b c R RR n N + + -
  • 23. 23 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 0 โ‰ค ฮฑ<60o โ€ข At 60o, VCN=0, VAN is positive, while VBN is negative. So, the current will flow from phase Ato phase B. S1 will be ON from 60o to 90o. VAN VBN VCN iG1 30o 60o 90o 120o 150o 180o 210o 240o 270o 300o 330o 360o + - S4 S1 + - S6 S3 + - S2 S5 A B C a b c R RR n N + 0 -
  • 24. 24 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 0 โ‰ค ฮฑ<60o โ€ข At 90o, VBN=VCN, VAN is positive, while VBN and VCN are negative. So, the current will flow from phase Ato phase B and phase C. S1 will be ON from 90o to 120o. + - S4 + - S6 S3 + - S2 S5 A B C a b c R RR n N + - - VAN VBN VCN iG1 30o 60o 90o 120o 150o 180o 210o 240o 270o 300o 330o 360o
  • 25. 25 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 0 โ‰ค ฮฑ<60o โ€ข At 120o, VBN=0, VAN is positive, while VCN is negative. So, the current will flow from phase Ato phase C. S1 will be ON from 120o to 150o. + - S4 S1 + - S6 S3 + - S2 S5 A B C a b c R RR n N + 0 - VAN VBN VCN iG1 30o 60o 90o 120o 150o 180o 210o 240o 270o 300o 330o 360o
  • 26. 26 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 0 โ‰ค ฮฑ<60o โ€ข At 150o, VAN=VBN, VAN and VBN are positive, VCN is negative. So, the current will flow from phase A and B to phase C. S1 will be ON from 150o to 180o. + - S4 S1 + - S6 S3 + - S2 S5 A B C a b c R RR n N + + - VAN VBN VCN iG1 30o 60o 90o 120o 150o 180o 210o 240o 270o 300o 330o 360o
  • 27. 27 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 0 โ‰ค ฮฑ<60o โ€ข At 180o, VAN=0, VBN is positive, VCN is negative. So, the current will flow from phase B to phase C and the current will not flow in phase A. S1 will be OFF from 180o to 210o. โ€ข At 210o, VAN= VCN, VBN is positive, VAN and VCN are negative. So, the current will flow from phase B to phase A and C. S1 will be OFF from 210o to 240o. โ€ข At 240o, VCN= 0, VBN is positive, VAN is negative. So, the current will flow from phase B to phase A. S1 will be OFF from 240o to 270o. โ€ข At 270o, VBN=VCN, VBN and VCN are positive, VAN is negative. So, the current will flow from phase B and C to phase A. S1 will be OFF from 270o to 300o. โ€ข At 300o, VBN=0, VCN is positive, VAN is negative. So, the current will flow from phase C to phase A. S1 will be OFF from 300o to 330o. โ€ข At 330o, VAN=VBN, VCN is positive, VAN and VBN are negative. So, the current will flow from phase C to phase A and B. S1 will be OFF from 330o to 360o.
  • 28. 28 Dr. Firas Obeidat Faculty of Engineering Philadelphia University โ€ข The same procedure can be done for other thyristors to determine the conduction period for each thyristor. 4. Determine the thyristors that will be conducted for each period. For example, when 0<ฯ‰t<30o, S5 and S6 will be conducted, when 30o<ฯ‰t<60o, S5, S6 and S1 will be conducted, ectโ€ฆ VAN VBN VCN iG1 iG6 iG5 iG4 iG3 iG2 6,1,2 2,3,41,2,36,1 2,31,2 3,4 3,4,5 4,5 4,5,65,6 5,6,1 30o 60o 90o 120o 150o 180o 210o 240o 270o 300o 330o 360o The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 0 โ‰ค ฮฑ<60o
  • 29. 29 Dr. Firas Obeidat Faculty of Engineering Philadelphia University 5. Determine the output voltages (Van, Vbn and Vcn) at each period. โ€ข The output voltage Van can be found by applying the thyristors that will be conducted at each period. โ€ข when 0<ฯ‰t<30o, S5 and S6 will be conducted which means that the current will flow from phase C to phase B, and there is no current will flow in phase A. In this period Van=0. โ€ข when 30o<ฯ‰t<60o, S5, S6 and S1 will be conducted which means that the current will flow from phase A and C to phase B. In this period Van=VAN. The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 0 โ‰ค ฮฑ<60o + - S4 S1 + - S6 S3 + - S2 S5 A B C a b c R RR n N 0 + - + - S4 S1 + - S6 S3 + - S2 S5 A B C a b c R RR n N + + - 0<ฯ‰t<30o 30o<ฯ‰t<60o
  • 30. 30 Dr. Firas Obeidat Faculty of Engineering Philadelphia University โ€ข when 60o<ฯ‰t<90o, S6 and S1 will be conducted which means that the current will flow from phase A to phase B, and there is no current will flow in phase C. In this period Van=VAB/2. โ€ข After completing the output voltage Van for the whole period, the waveform of Van can be found from the waveforms VAN, VAB/2, VAC/2 and zero. The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 0 โ‰ค ฮฑ<60o + - S4 S1 + - S6 S3 + - S2 S5 A B C a b c R RR n N + 0 - 60o<ฯ‰t<90o VAN VBN VCN iG1 iG6 iG5 iG4 iG3 iG2 6,1,2 2,3,41,2,36,1 2,31,2 3,4 3,4,5 4,5 4,5,65,6 5,6,1 30o 60o 90o 120o 150o 180o 210o 240o 270o 300o 330o 360o 0 VAN VAB/2 VAN VAC/2 VAN 0 VAN VAB/2 VAN VAC/2 VANVan
  • 31. 31 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 0 โ‰ค ฮฑ<60o VAN VBN VCN iG1 iG6 iG5 iG4 iG3 iG2 6,1,2 2,3,41,2,36,1 2,31,2 3,4 3,4,5 4,5 4,5,65,6 5,6,1 30o 60o 90o 120o 150o 180o 210o 240o 270o 300o 330o 360o 0 VAN VAB/2 VAN VAC/2 VAN 0 VAN VAB/2 VAN VAC/2 VANVan VAB/2 VAN VAC/2 Van ๏ƒ˜ The figure below shows the final shape for the output voltage Van. The rms voltage for this waveform will be less than the rms voltage for the input voltages VAN, VBN and VCN. 30o 60o 90o 120o 150o 180o 210o 240o 270o 300o 330o Van 360o
  • 32. 32 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 0 โ‰ค ฮฑ<60o ๏ƒ˜ The other output waveforms (Vbn and Vcn) can be found by the same way, and the resulting waveform of Vbn will be the same as the waveform of Van shifted by 120o, and the waveform of Vbn will be the same as the waveform of Van shifted by 240o. ๏ƒ˜ At any instant, three thyristors or two thyristors are ON. The instantaneous load voltages are either a line-to-neutral voltage (three thyristors ON), one-half of a line-to-line voltage (two thyristors ON), or zero (none ON) ๏ƒ˜ Because the load is resistive load, the shape of the output current is similar to the shape of the output voltage.
  • 33. 33 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 60o โ‰ค ฮฑ<90o ๏ƒ˜ Only two thyristors conduct at any one time when the delay angle is between 60o and 90o. ๏ƒ˜ For ฮฑ=75o , prior to 75o, S5 and S6 are conducting, and Van=0. When S1 is turned on at 75o, S6 continues to conduct, but S5 must turn off because VCN is negative. Voltage Van is then VAB/2. When S2 is turned on at 135 , S6 is forced off, and Van= VAC/2. The next thyristor to turn on is S3, which forces S1 off, and Van=0. One thyristor is always forced off when thyristor is turned on for ฮฑ in this range. Load voltages are one-half line-to-line voltages or zero.
  • 34. 34 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load When 90o โ‰ค ฮฑ<150o ๏ƒ˜ Only two thyristors conduct at any one time when the delay angle is between 90o and 150o. ๏ƒ˜ For ฮฑ=120o , prior to 120o, no thyristors are on, and Van=0. At ฮฑ=120o, S1 is turned on at 120o, S6 still has a gate signal applied. Since VAB is positive, both S1 and S6 are forward- biased and begin to conduct, and Van=VAB/2. Both S1 and S6 turn off when VAB becomes negative. When a gate signal is applied to S2, it turns on, and S1 turns on again. For ฮฑ>150o, there is no time interval when thyristor is forward-biased while a gate signal is applied. Output voltage is zero for this condition.
  • 35. 35 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load The rms output voltage for a Yโ€“ connection loads are found to be: ๏ƒ˜ For 0oโ‰ค ฮฑ<60o ๐‘ฝ ๐’,๐’“๐’Ž๐’” = ๐Ÿ‘๐‘ฝ ๐’Ž ๐Ÿ ๐… ๐… ๐Ÿ” โˆ’ ๐œถ ๐Ÿ’ + ๐’”๐’Š๐’๐Ÿ๐œถ ๐Ÿ– ๐‘ฝ ๐’,๐’“๐’Ž๐’” = ๐Ÿ ๐Ÿ๐… ๐‘ฝ ๐’‚๐’ ๐Ÿ ๐’…๐Ž๐’• ๐Ÿ๐… ๐ŸŽ ๐‘ฝ ๐’,๐’“๐’Ž๐’” = ๐Ÿ ๐… ๐‘ฝ ๐‘จ๐‘ต ๐Ÿ ๐’…๐Ž๐’• ๐… ๐Ÿ‘ ๐œถ + ( ๐‘ฝ ๐‘จ๐‘ฉ ๐Ÿ ) ๐Ÿ ๐’…๐Ž๐’• ๐… ๐Ÿ‘+๐œถ ๐… ๐Ÿ‘ + ๐‘ฝ ๐‘จ๐‘ต ๐Ÿ ๐’…๐Ž๐’• ๐Ÿ๐… ๐Ÿ‘ ๐… ๐Ÿ‘+๐œถ + ( ๐‘ฝ ๐‘จ๐‘ช ๐Ÿ ) ๐Ÿ ๐’…๐Ž๐’• ๐Ÿ๐… ๐Ÿ‘+๐œถ ๐Ÿ๐… ๐Ÿ‘ + ๐‘ฝ ๐‘จ๐‘ต ๐Ÿ ๐’…๐Ž๐’• ๐… ๐Ÿ๐… ๐Ÿ‘+๐œถ ๐‘ฝ ๐’,๐’“๐’Ž๐’” = ๐Ÿ ๐… (๐‘ฝ ๐’Žsin๐œ”t ) ๐Ÿ ๐’…๐Ž๐’• ๐… ๐Ÿ‘ ๐œถ + ( ๐Ÿ‘๐‘ฝ ๐’Žsin(๐œ”t+ฯ€/6) ๐Ÿ ) ๐Ÿ ๐’…๐Ž๐’• ๐… ๐Ÿ‘+๐œถ ๐… ๐Ÿ‘ + (๐‘ฝ ๐’Žsin๐œ”t ) ๐Ÿ ๐’…๐Ž๐’• ๐Ÿ๐… ๐Ÿ‘ ๐… ๐Ÿ‘+๐œถ + ( ๐Ÿ‘๐‘ฝ ๐’Žsin(๐œ”tโˆ’ฯ€/6) ๐Ÿ ) ๐Ÿ ๐’…๐Ž๐’• ๐Ÿ๐… ๐Ÿ‘+๐œถ ๐Ÿ๐… ๐Ÿ‘ + (๐‘ฝ ๐’Žsin๐œ”t ) ๐Ÿ ๐’…๐Ž๐’• ๐… ๐Ÿ๐… ๐Ÿ‘+๐œถ
  • 36. 36 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load The rms output voltage for a Yโ€“ connection loads are found to be: ๏ƒ˜ For 60oโ‰ค ฮฑ<90o ๐‘ฝ ๐’,๐’“๐’Ž๐’” = ๐Ÿ ๐Ÿ๐… ๐‘ฝ ๐’‚๐’ ๐Ÿ ๐’…๐Ž๐’• ๐Ÿ๐… ๐ŸŽ ๐‘ฝ ๐’,๐’“๐’Ž๐’” = ๐Ÿ ๐… ( ๐‘ฝ ๐‘จ๐‘ฉ ๐Ÿ ) ๐Ÿ ๐’…๐Ž๐’• ๐… ๐Ÿ‘+๐œถ ๐œถ + ( ๐‘ฝ ๐‘จ๐‘ช ๐Ÿ ) ๐Ÿ ๐’…๐Ž๐’• ๐Ÿ๐… ๐Ÿ‘+๐œถ ๐Ÿ๐… ๐Ÿ‘ ๐‘ฝ ๐’,๐’“๐’Ž๐’” = ๐Ÿ ๐… ( ๐Ÿ‘๐‘ฝ ๐’Žsin(๐œ”t+ฯ€/6) ๐Ÿ ) ๐Ÿ ๐’…๐Ž๐’• ๐… ๐Ÿ‘+๐œถ ๐œถ + ( ๐Ÿ‘๐‘ฝ ๐’Žsin(๐œ”tโˆ’ฯ€/6) ๐Ÿ ) ๐Ÿ ๐’…๐Ž๐’• ๐Ÿ๐… ๐Ÿ‘+๐œถ ๐Ÿ๐… ๐Ÿ‘ ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  = 3๐‘‰๐‘š 1 ๐œ‹ ๐œ‹ 12 + 3๐‘ ๐‘–๐‘›2๐›ผ 16 + 3๐‘๐‘œ๐‘ 2๐›ผ 16
  • 37. 37 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load The rms output voltage for a Yโ€“ connection loads are found to be: ๏ƒ˜ For 90oโ‰ค ฮฑ<150o ๐‘ฝ ๐’,๐’“๐’Ž๐’” = ๐Ÿ ๐Ÿ๐… ๐‘ฝ ๐’‚๐’ ๐Ÿ ๐’…๐Ž๐’• ๐Ÿ๐… ๐ŸŽ ๐‘ฝ ๐’,๐’“๐’Ž๐’” = ๐Ÿ ๐… ( ๐‘ฝ ๐‘จ๐‘ฉ ๐Ÿ ) ๐Ÿ ๐’…๐Ž๐’• ๐Ÿ“๐… ๐Ÿ” ๐œถ + ( ๐‘ฝ ๐‘จ๐‘ช ๐Ÿ ) ๐Ÿ ๐’…๐Ž๐’• ๐Ÿ•๐… ๐Ÿ” ๐… ๐Ÿ‘+๐œถ ๐‘ฝ ๐’,๐’“๐’Ž๐’” = ๐Ÿ ๐… ( ๐Ÿ‘๐‘ฝ ๐’Žsin(๐œ”t+ฯ€/6) ๐Ÿ ) ๐Ÿ ๐’…๐Ž๐’• ๐Ÿ“๐… ๐Ÿ” ๐œถ + ( ๐Ÿ‘๐‘ฝ ๐’Žsin(๐œ”tโˆ’ฯ€/6) ๐Ÿ ) ๐Ÿ ๐’…๐Ž๐’• ๐Ÿ•๐… ๐Ÿ” ๐… ๐Ÿ‘+๐œถ ๐‘ฝ ๐’,๐’“๐’Ž๐’” = ๐Ÿ‘๐‘ฝ ๐’Ž ๐Ÿ ๐… ๐Ÿ“๐… ๐Ÿ๐Ÿ’ โˆ’ ๐œถ ๐Ÿ’ + ๐’”๐’Š๐’๐Ÿ๐œถ ๐Ÿ๐Ÿ” โˆ’ ๐Ÿ‘๐’„๐’๐’”๐Ÿ๐œถ ๐Ÿ๐Ÿ”
  • 38. 38 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ Y Connected Resistive Load Example: a three phase bidirectional AC voltage controller Y-connected connected to resistive load (R=10ฮฉ). The supply voltage VL-L=208V, f=60Hz. If ฮฑ=ฯ€/6, find the output voltage rms value and the input power factor. ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  = 3๐‘‰๐‘š 1 ๐œ‹ ๐œ‹ 6 โˆ’ ๐›ผ 4 + ๐‘ ๐‘–๐‘›2๐›ผ 8 = 208 1 ๐œ‹ ๐œ‹ 6 โˆ’ ฯ€/6 4 + ๐‘ ๐‘–๐‘›2ฯ€/6 8 = 83๐‘‰ ๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  = ๐‘‰๐‘œ,๐‘Ÿ๐‘š๐‘  ๐‘… = 83 10 = 8.3๐ด ๐‘ƒ๐‘œ,๐‘Ž๐‘ = 3๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  2 ๐‘… = 3 ร— 8.32 ร— 10 = 2066.7๐‘Š ๐‘† = 3๐ผ ๐‘œ,๐‘Ÿ๐‘š๐‘  ๐‘‰๐‘–๐‘›๐‘๐‘ข๐‘ก,๐‘Ÿ๐‘š๐‘  = 3 ร— 8.3 ร— 84.9 = 2114.4๐‘‰๐ด ๐‘‰๐‘–๐‘›๐‘๐‘ข๐‘ก,๐‘Ÿ๐‘š๐‘  = 208 2 3 = 84.9๐‘‰ ๐‘๐‘“ = ๐‘ƒ๐‘œ,๐‘Ž๐‘ ๐‘† = 2066.7 2114.4 = 0.977
  • 39. 39 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ ฮ” Connected Resistive Load ๏ƒ˜ The voltage across a load resistor is the corresponding line-to-line voltage when a thyristor in the phase is on. The delay angle is referenced to the zero crossing of the line-to-line voltage. thyristors are turned on in the sequence 1-2-3-4-5-6. The line current in each phase is the sum of two of the delta currents:
  • 40. 40 Dr. Firas Obeidat Faculty of Engineering Philadelphia University The Three Phase AC Voltage Controller โ€“ ฮ” Connected Resistive Load The relationship between rms line and delta currents depends on the conduction angle of the thyristors. For small conduction angles (large ฮฑ), the delta currents do not overlap, and the rms line currents are Current waveforms for ฮฑ=130o For large conduction angles (small ฮฑ), the delta currents overlap, and the rms line current is larger than โˆš2Iฮ”. In the limit when ฮณ (ฮฑ=0), the delta currents and line currents are sinusoids. The rms line current is determined from ordinary three- phase analysis. Current waveforms for ฮฑ=90o The range of rms line current is therefore depending on ฮฑ
  • 41. 41