참석자 규모
참석자 규모 
2600 2600 
1900 
1800 
1200 
1000 
2009 2010 2011 2012 2013 2014
세션수
세션수 
2009 
2010 
2011 
2012 
2013 
56 
41 
30 
21 
16 
2014 56
외부 참여 연사
외부 참여 연사 
80% 
71% 71% 
36% 
2009 2010 2011 2012 2013 2014
기술⒪컨텐츠⒪생산
기술⒪컨텐츠⒪생산 
기술공유
기술⒪컨텐츠⒪생산 
기술공유 
개발도구⒪지원
후원
개발자⒪컨퍼런스 
Ⓘ 
커뮤니티 
ⒽⒺ 
기술학술대회 
ⓀⒺ 
소모임스터디 
ⒾⓂⓀ 
후원
개발자⒪컨퍼런스 
Ⓘ 
커뮤니티 
ⒽⒺ 
기술학술대회 
ⓀⒺ 
소모임스터디 
ⒾⓂⓀ 
후원 
기술세미나 
오픈세미나 
ⒻⒺ 
대학생세미나 
Ⓕ 
지방개최 
Ⓘ
http://naver.github.io/
http://naver.github.io/
Ⓘ ⓐ⓿⓶⓶Ⓑ⓾⓳⓷⓯⒪개발자⒪지원 
ⒽⒽ 커미터 
ⓂⒼⒾ ⒼⒺⒻⒽ년⒪ⒻⒻ월⒪이후⒪커밋수 
ⒼⓀⒺ만 누적⒪⓮⓹━⓸⓶⓹⓫⓮
Ⓗ ⓗ⓫⓴⓹⓼⒪⓿⓺⓮⓫⓾⓯⓽ 
ⒼⒽ Ⓧ⓹⓸⓾⓼⓳⓬⓿⓾⓹⓼⓽ 
ⓂⒺⒺ 네이버⒪내부⒪프로젝트
⓹⓺⓯⓸⒪⓽⓹⓿⓼⓭⓯⒪⒪ 
⓮⓳⓽⓾⓼⓳⓬⓿⓾⓯⓮⒪⓾⓼⓫⓭⓳⓸⓱⒪⒰⒪⓾⓼⓹⓿⓬⓶⓯⓽⓲⓹⓹⓾⓳⓸⓱⒪⓽┃⓽⓾⓯⓷⒪⒪ 
ⒼⒺⒻⒾ년⒪ⒻⒼ월⒪⓹⓺⓯⓸⒪계획
대규모⒪분산⒪시스템의⒪트랜잭션⒪흐름⒪추적
대규모⒪분산⒪시스템의⒪트랜잭션⒪흐름⒪추적 
전체⒪서비스⒪서버Ⓓ인프라⒪구조와⒪상태⒪분석
ⓞ⓹⓷⓭⓫⓾⒪ 
Ⓥ⓺⓫⓭⓲⓯⒪ⓒⓞⓞⓚ⒪Ⓧ⓶⓳⓯⓸⓾⒪─ⒾⒸ│⒪ 
ⓔⓎⓕ⒪ⓒ⓾⓾⓺Ⓧ⓹⓸⓸⓯⓭⓾⓹⓼⒪ 
ⓗ┃ⓝⓛⓖⒶ⒪ⓍⓟⓌⓜⓓⓎⒶ⒪ⓙⓜⓋⓍⓖⓏⒶ⒪ⓗⓝⓝⓛⓖⒶ⒪ⓎⓌⓍⓚⒶ⒪⓳Ⓦ⓫⓾⓳⓽Ⓐ⒪⓷┃Ⓦ⓫⓾⓳⓽⒪ 
Ⓥ⓼⓭⓿⓽Ⓐ⒪ⓗ⓯⓷⓭⓫⓭⓲⓯⓮Ⓐ⒪ⓜ⓯⓮⓳⓽⒪ 
Ⓧ⓫⓽⓽⓫⓸⓮⓼⓫Ⓐ⒪ⓒⓌ⓫⓽⓯
기술⒪컨텐츠⒪생산⒪ 
기술공유⒪ 
개발도구⒪지원
기술⒪컨텐츠⒪생산⒪ 
기술공유⒪ 
개발도구⒪지원 
스타트업지원
스타트업지원
스타트업지원 
기술력있는⒪⓯⓫⓼⓶┃⒪⓽⓾⓫⓱⓯⒪스타트업
스타트업지원 
기술력있는⒪⓯⓫⓼⓶┃⒪⓽⓾⓫⓱⓯⒪스타트업 
공간⒪및⒪인프라⒪지원
스타트업지원 
기술력있는⒪⓯⓫⓼⓶┃⒪⓽⓾⓫⓱⓯⒪스타트업 
공간⒪및⒪인프라⒪지원 
네이버⒪개발자Ⓐ⒪디자이너⒪기술지원⒪및⒪협업
스타트업지원 
기술력있는⒪⓯⓫⓼⓶┃⒪⓽⓾⓫⓱⓯⒪스타트업 
공간⒪및⒪인프라⒪지원 
네이버⒪개발자Ⓐ⒪디자이너⒪기술지원⒪및⒪협업 
필요한⒪플랫폼⒪협력⒪개발⒪Ⓓ⒪ⓙ⓺⓯⓸Ⓥⓚⓓ⒪제휴
스타트업지원 
기술력있는⒪⓯⓫⓼⓶┃⒪⓽⓾⓫⓱⓯⒪스타트업 
공간⒪및⒪인프라⒪지원 
네이버⒪개발자Ⓐ⒪디자이너⒪기술지원⒪및⒪협업 
필요한⒪플랫폼⒪협력⒪개발⒪Ⓓ⒪ⓙ⓺⓯⓸Ⓥⓚⓓ⒪제휴 
중장기⒪지원
스타트업지원 
기술력있는⒪⓯⓫⓼⓶┃⒪⓽⓾⓫⓱⓯⒪스타트업 
공간⒪및⒪인프라⒪지원 
네이버⒪개발자Ⓐ⒪디자이너⒪기술지원⒪및⒪협업 
필요한⒪플랫폼⒪협력⒪개발⒪Ⓓ⒪ⓙ⓺⓯⓸Ⓥⓚⓓ⒪제휴 
중장기⒪지원 
금액⒪제한없이⒪꾸준한⒪지원Ⓓ투자
http://everystevejobsvideo.com/wp-content/uploads/2013/02/Apple-Xserve.jpg http://memcached.org/
http://everystevejobsvideo.com/wp-content/uploads/2013/02/Apple-Xserve.jpg http://memcached.org/
http://everystevejobsvideo.com/wp-content/uploads/2013/02/Apple-Xserve.jpg http://memcached.org/
http://everystevejobsvideo.com/wp-content/uploads/2013/02/Apple-Xserve.jpg http://memcached.org/
99% disk full
99% disk full 
/var/spool/mqueue/
99% disk full 
/var/spool/mqueue/ 
% rm -rf /var/spool/mqueue/
http://blogs.independent.co.uk/wp-content/uploads/2013/01/twitter-fail-whale.jpg
% rm -rf /var/spool/mqueue/^C
1 [|||||||||||||||||||||||||||||||||100.0%] 
2 [|| 1.2%] 
3 [|| 2.0%] 
4 [|| 1.5%]
100% kernel CPU usage on core 0
100% kernel CPU usage on core 0 
...
100% kernel CPU usage on core 0 
... 
/proc/interrupts
ⓍⓙⓜⓏ⒪Ⓕ ⓍⓙⓜⓏ⒪Ⓖ ⓍⓙⓜⓏ⒪Ⓗ 
⓮⓳⓽⓵⒪ 
⓭⓹⓸⓾⓼⓹⓶⓶⓯⓼ 
ⓘⓓⓍ 
ⓓⓘⓞⓏⓜⓜⓟⓚⓞ⒪ 
ⓒⓋⓘⓎⓖⓏⓜ 
ⓍⓙⓜⓏ⒪Ⓔ
ⓍⓙⓜⓏ⒪Ⓕ ⓍⓙⓜⓏ⒪Ⓖ ⓍⓙⓜⓏ⒪Ⓗ 
⓮⓳⓽⓵⒪ 
⓭⓹⓸⓾⓼⓹⓶⓶⓯⓼ 
ⓘⓓⓍ 
ⓓⓘⓞⓏⓜⓜⓟⓚⓞ⒪ 
ⓒⓋⓘⓎⓖⓏⓜ 
ⓍⓙⓜⓏ⒪Ⓔ
ⓍⓙⓜⓏ⒪Ⓔ ⓍⓙⓜⓏ⒪Ⓕ ⓍⓙⓜⓏ⒪Ⓖ ⓍⓙⓜⓏ⒪Ⓗ 
ⒼⒸⒼ⒪ⓑ⓲┄
ⓍⓙⓜⓏ⒪Ⓔ ⓍⓙⓜⓏ⒪Ⓕ ⓍⓙⓜⓏ⒪Ⓖ ⓍⓙⓜⓏ⒪Ⓗ 
ⒼⒸⒼ⒪ⓑ⓲┄ 
━⓲┃ ⓴⓿⓽⓾ ⒼⒸⒼ ⓑ⓲┄Ⓣ
ⓍⓙⓜⓏ⒪Ⓔ ⓍⓙⓜⓏ⒪Ⓕ ⓍⓙⓜⓏ⒪Ⓖ ⓍⓙⓜⓏ⒪Ⓗ 
ⒼⒸⒼ⒪ⓑ⓲┄ 
━⓲┃ ⓴⓿⓽⓾ ⒼⒸⒼ ⓑ⓲┄Ⓣ 
━⓲┃ ⓸⓹⓾ ⓿⓽⓯ ⓫⓶⓶ ⓾⓲⓯ ⓭⓹⓼⓯⓽Ⓣ
ⒼⒺⒺⒾ 
⓲⓾⓾⓺ⓄⒹⒹ━━━Ⓒ⓱⓫⓷⓯⓺⓭Ⓒ⓭⓹⓷Ⓓ⓳⓷⓫⓱⓯⓽Ⓓ⓶⓫⓬⓽Ⓓ⓼⓯─Ⓑ⓺ⒾⒽⓀⒷ⓬⓹│ⓖⓑⒸ⓴⓺⓱
ⒼⒺⒺⒾ 
⓲⓾⓾⓺ⓄⒹⒹ━━━Ⓒ⓱⓫⓷⓯⓺⓭Ⓒ⓭⓹⓷Ⓓ⓳⓷⓫⓱⓯⓽Ⓓ⓶⓫⓬⓽Ⓓ⓼⓯─Ⓑ⓺ⒾⒽⓀⒷ⓬⓹│ⓖⓑⒸ⓴⓺⓱
“We’re on track, by 2010, for 30 GHz 
devices, 10nm or less” 
ⓚ⓫⓾⒪ⓑ⓯⓶⓽⓳⓸⓱⓯⓼⒪⒲Ⓧⓞⓙ⒪⓹⓰⒪ⓓ⓸⓾⓯⓶⒳⒪⓳⓸⒪ⒼⒺⒺⒼ
ⓓⓏⓏⓏ⒪ⒼⒺⒻⒻ⒪⒪Ⓧ⓹⓷⓺⓿⓾⓯⓼Ⓐ⒪Ⓧ⓹⓷⓺⓿⓾⓳⓸⓱⒪ⓚ⓯⓼⓰⓹⓼⓷⓫⓸⓭⓯Ⓞ⒪ⓑ⓫⓷⓯⒪ⓙ─⓯⓼⒪⓹⓼⒪ⓘ⓯│⓾⒪ⓖ⓯─⓯⓶Ⓣ
⓷⓹⓼⓯⒪⓾⓼⓫⓸⓽⓳⓽⓾⓹⓼⓽
─⓹⓶⓾⓫⓱⓯Ⓓ⓯⓸⓯⓼⓱┃⒪⒲⓺⓹━⓯⓼⒳
⓲⓯⓫⓾
“전력을 줄이기 위해 CPU 속도를 줄여야 한 
다. 결과적으로 하나의 칩에 코어갯수가 늘어 
나야만 한다. 엑사스케일 아키텍쳐는 수십억 
이상의 높은 동시성 (concurrency) 을 가진다” 
ⓟⓝ⒪ⓎⓙⓏ⒪Ⓩ│⓫⓽⓭⓫⓶⓯⒪Ⓧ⓲⓫⓶⓶⓯⓸⓱⓯
ⓗ⓿⓶⓾⓳Ⓑ⓭⓹⓼⓯⒪Ⓓ⒪ⓗ⓫⓸┃Ⓑ⓭⓹⓼⓯ 
https://class.stanford.edu/c4x/Engineering/CS316/asset/processor.jpg
코어⒪갯수 
ⒻⒺⒺⒺⒺ 
ⒻⒺⒺⒺ 
ⒻⒺⒺ 
ⒻⒺ 
Ⓖ 
Ⓘ 
Ⓜ 
ⒽⒼ 
ⒻⓃⒼ 
ⒼⓂⓂⒺ
코어⒪갯수 
ⒻⒺⒺⒺⒺ 
ⒻⒺⒺⒺ 
ⒻⒺⒺ 
ⒻⒺ 
Ⓖ 
Ⓘ 
Ⓜ 
ⒽⒼ 
ⒻⓃⒼ 
ⒼⓂⓂⒺ 
⓷⓫⓸┃Ⓑ⓭⓹⓼⓯⒪ 
⓽⓺⓯⓭⓳⓫⓶⒪⓺⓿⓼⓺⓹⓽⓯⒪ 
Ⓧ⓹⓺⓼⓹⓭⓯⓽⓽⓹⓼⓽ 
⓷⓿⓶⓾⓳Ⓑ⓭⓹⓼⓯⒪ 
⓱⓯⓸⓯⓼⓫⓶⒪⓺⓿⓼⓺⓹⓽⓯⒪ 
Ⓧⓚⓟ
“The Free Lunch Is Over. 
A Fundamental Turn Toward Concurrency in Software” 
Ⓦ┃⒪ⓒ⓯⓼⓬⒪ⓝ⓿⓾⓾⓯⓼⒪⒲ⒼⒺⒺⒿⒶ⒪ⓎⓎ⒪ⓔ⓹⓿⓼⓸⓫⓶⒳
ⓚ⓼⓹⓱⓼⓫⓷⓽⒪━⓳⓶⓶⒪⓸⓹⓾⒪⓫⓿⓾⓹⓷⓫⓾⓳⓭⓫⓶⓶┃⒪ 
⓼⓿⓸⒪⓰⓫⓽⓾⓯⓼⒪━⓳⓾⓲⒪⓸⓯━⒪Ⓓ⒪⓬⓯⓾⓾⓯⓼⒪Ⓧⓚⓟ⓽
Ⓘ⒪│⒪ⒼⒸⒿⓑ⓲┄⒪ⓇⓇ⒪ⒻⒺⓑ⓲┄⒪Ⓣ
http://s3v.computerhistory.org/102695713-03-03.jpg 
ⓑ⓯⓸⓯⒪Ⓥ⓷⓮⓫⓲⓶
Ⓥ⓷⓮⓫⓲⓶㰙⓽⒪⓶⓫━
Ⓥ⓷⓮⓫⓲⓶㰙⓽⒪⓶⓫━ 
ⓝ⓯⓼⓳⓫⓶⒪⓰⓫⓭⓾⓹⓼Ⓐ
Ⓥ⓷⓮⓫⓲⓶㰙⓽⒪⓶⓫━ 
ⓝ⓯⓼⓳⓫⓶⒪⓰⓫⓭⓾⓹⓼Ⓐ
Ⓥ⓷⓮⓫⓲⓶㰙⓽⒪⓶⓫━ 
ⓝ⓯⓼⓳⓫⓶⒪⓰⓫⓭⓾⓹⓼Ⓐ
ⓝ⓯⓼⓳⓫⓶⒪⓰⓫⓭⓾⓹⓼가⒪ⒿⒺ⒯Ⓐ⒪두배⒪빠르게⒪만들수⒪있을까Ⓣ
ⓝ⓯⓼⓳⓫⓶⒪⓰⓫⓭⓾⓹⓼가⒪ⒿⒺ⒯Ⓐ⒪두배⒪빠르게⒪만들수⒪있을까Ⓣ 
0 20 40 60 80 100 120 
2.0 
1.5 
1.0 
0.5 
0.0 
n, number of processors 
Speedup 
speedup = 
n 
1 + 0.5 Hn - 1L
Ⓘ⒪│⒪ⒼⒸⒿⓑ⓲┄⒪⒫Ⓡ⒪ⒻⒺⓑ⓲┄
그러나Ⓐ⒪ 
또⒪다른⒪고민㰗⒪ 
⓭⓹⓼⓯⒪갯수⒪한계Ⓣ
ⓎⓋⓜⓕ⒪ⓝⓓⓖⓓⓍⓙⓘ
제한된 전력때문에 칩의 모든 트랜지스터를 
활용하지 못하게 된다. 새로운 혁신 없이는 
“dark silicon”시대를 맞이할수 밖에 없다. 
Ⓥⓜⓗ⒪Ⓧⓞⓙ⒪ⓗ⓳⓵⓯⒪ⓗ⓿⓶⓶⓯⓼Ⓐ⒪ⒼⒺⒻⒺ
Ⓘ⒪⓭⓹⓼⓯⓽⒪ 
ⓀⒿ⓸⓷ 
Ⓜ⒪⓭⓹⓼⓯⓽⒪ 
ⒾⒿ⓸⓷ 
ⒻⓀ⒪⓭⓹⓼⓯⓽⒪ 
ⒽⒼ⓸⓷
Ⓘ⒪⓭⓹⓼⓯⓽⒪ 
ⓀⒿ⓸⓷ 
ⓜ⓯⓫⓶⓳⓾┃ 
Ⓜ⒪⓭⓹⓼⓯⓽⒪ 
ⒾⒿ⓸⓷ 
⓮⓫⓼⓵⒪⓽⓳⓶⓳⓭⓹⓸ 
ⒻⓀ⒪⓭⓹⓼⓯⓽⒪ 
ⒽⒼ⓸⓷ 
⓼⓿⓸⓸⓳⓸⓱⒪⓫⓾⒪⓰⓿⓶⓶⒪⓰⓼⓯⓻⓿⓯⓸⓭┃
ⓚ⓹⓽⓽⓳⓬⓶⓯⒪ⓝ⓹⓶⓿⓾⓳⓹⓸⓽⒪⓰⓹⓼⒪⓸⓹━
ⓚ⓹⓽⓽⓳⓬⓶⓯⒪ⓝ⓹⓶⓿⓾⓳⓹⓸⓽⒪⓰⓹⓼⒪⓸⓹━ 
ⓜ⓯Ⓑ⓳⓸⓾⓼⓹⓮⓿⓭⓾⓳⓹⓸⒪⓹⓰⒪⓭⓹⓺⓼⓹⓭⓯⓽⓽⓹⓼⓽Ⓓ⓫⓭⓭⓯⓶⓯⓼⓫⓾⓹⓼⓽
ⓚ⓹⓽⓽⓳⓬⓶⓯⒪ⓝ⓹⓶⓿⓾⓳⓹⓸⓽⒪⓰⓹⓼⒪⓸⓹━ 
ⓜ⓯Ⓑ⓳⓸⓾⓼⓹⓮⓿⓭⓾⓳⓹⓸⒪⓹⓰⒪⓭⓹⓺⓼⓹⓭⓯⓽⓽⓹⓼⓽Ⓓ⓫⓭⓭⓯⓶⓯⓼⓫⓾⓹⓼⓽ 
ⓑⓚⓟⒶ⒪ⓐⓚⓑⓋ
ⓗ⓳⓭⓼⓹⓽⓹⓰⓾⒪Ⓦ⓳⓸⓱⒪⒲검색⒳⒪ 
ⓚ⓫⓱⓯⒪ⓜ⓫⓸⓵⓳⓸⓱⒪⓽⓯⓼─⓳⓭⓯⒪⓿⓽⓳⓸⓱⒪ⓐⓚⓑⓋ 
⓲⓾⓾⓺ⓄⒹⒹ━━━Ⓒ⓯⓸⓾⓯⓼⓺⓼⓳⓽⓯⓾⓯⓭⓲Ⓒ⓭⓹⓷Ⓓ━⓺Ⓑ⓭⓹⓸⓾⓯⓸⓾Ⓓ⓿⓺⓶⓹⓫⓮⓽ⒹⒼⒺⒻⒾⒹⒺⓃⒹ⓷⓳⓭⓼⓹⓽⓹⓰⓾Ⓑ⓰⓺⓱⓫Ⓑ⓼⓫⓫⓽Ⓑ⓺⓯⓼⓰⓹⓼⓷⓫⓸⓭⓯Ⓒ⓴⓺⓱
⓲⓾⓾⓺ⓄⒹⒹ━━━Ⓒ⓯⓸⓾⓯⓼⓺⓼⓳⓽⓯⓾⓯⓭⓲Ⓒ⓭⓹⓷Ⓓ━⓺Ⓑ⓭⓹⓸⓾⓯⓸⓾Ⓓ⓿⓺⓶⓹⓫⓮⓽ⒹⒼⒺⒻⒾⒹⒺⓃⒹ⓷⓳⓭⓼⓹⓽⓹⓰⓾Ⓑ⓰⓺⓱⓫Ⓑ⓼⓫⓫⓽Ⓑ⓺⓯⓼⓰⓹⓼⓷⓫⓸⓭⓯Ⓒ⓴⓺⓱
━⓲┃⒪ⓝⓡ⒪⓯⓸⓱⓳⓸⓯⓯⓼⓽⒪⓸⓯⓯⓮⒪⓾⓹⒪⓶⓯⓫⓼⓸⒪⓲⓫⓼⓮━⓫⓼⓯Ⓣ
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 9, 219-226 (1979) 
Unrolling Loops in FORTRAN* 
J. J. DONGARRA AND A. R. HINDS 
Argonne National Laboratory, Argonne, Illinois 60439, U.S.A. 
SUhlMARY 
The technique of ‘unrolling’ to improve the performance of short program loops without 
resorting to assembly language coding is discussed. A comparison of the benefits of loop 
‘unrolling‘ on a variety of computers using an assortment of FORTRAN compilers is 
presented. 
KEY WORDS Unrolled loops FORTRAN Loop efficiency Loop doubling 
INTRODUCTION 
It is frequently observed that the bulk of the central processor time for a program is 
localized in 3 per cent of the source code.6 Often the critical code from the timing perspective 
consists of one (or a few) short inner loops typified, for instance, by the scalar product of 
two vectors. A simple technique for the optimization of such loops, with consequent 
improvement in overall execution time, should then be most welcome. ‘Loop unrolling’ (a 
generalization of ‘loop d~ubling’),a~pp lied selectively to time-consuming loops, is just 
such a technique. 
TECHNIQUE 
When a loop is unrolled, its contents are replicated one or more times, with appropriate 
adjustments to array indices and the loop increment. For instance, the DAXPYg sequence,
for (i=0; i < 500000; i++) 
y[i] = y[i] + a*x[i];
for (i=0; i < 500000; i++) 
// Loop unrolled 
m = n - mod(n,4); 
for (i=0; i<m; i+=4) { 
y[i] = y[i] + a*x[i]; 
y[i+1] = y[i+1] + a*x[i+1]; 
y[i+2] = y[i+2] + a*x[i+2]; 
y[i+3] = y[i+3] + a*x[i+3]; 
} 
y[i] = y[i] + a*x[i];
ⒻⒸ⒪⓳⓸⓭⓼⓯⓷⓯⓸⓾Ⓐ⒪⓾⓯⓽⓾Ⓐ⒪⓬⓼⓫⓸⓭⓲⒪⓹─⓯⓼⓲⓯⓫⓮⒪ 
LBB0_1: 
cmpl $500, -4024(%rbp) ## TEST 
jge LBB0_4 
movslq -4024(%rbp), %rax 
movl -4016(%rbp,%rax,4), %ecx 
movslq -4024(%rbp), %rax 
movl %ecx, -2016(%rbp,%rax,4) 
movl -4024(%rbp), %eax 
addl $1, %eax ## INCREMENT 
movl %eax, -4024(%rbp) 
jmp LBB0_1 ## BRANCH
ⒼⒸ⒪Ⓧⓚⓟ⒪⓳⓸⓽⓾⓼⓿⓭⓾⓳⓹⓸⒪⓺⓳⓺⓯⓶⓳⓸⓳⓸⓱⒪사용⒪⒲⓭⓹⓸⓭⓿⓼⓼⓯⓸⓭┃⒳⒪ 
⓺⓳⓺⓯⓶⓳⓸⓯ Ⓕ Ⓖ Ⓗ Ⓘ Ⓙ Ⓚ Ⓛ Ⓜ 
Ⓕ ⓓⓐ ⓓⓎ Ⓩⓢ ⓗⓏⓗ ⓡⓌ 
Ⓖ ⓓⓐ ⓓⓎ Ⓩⓢ ⓗⓏⓗ ⓡⓌ 
Ⓗ ⓓⓐ ⓓⓎ Ⓩⓢ ⓗⓏⓗ ⓡⓌ 
Ⓘ ⓓⓐ ⓓⓎ Ⓩⓢ ⓗⓏⓗ ⓡⓌ
ⒼⒸ⒪Ⓧⓚⓟ⒪⓳⓸⓽⓾⓼⓿⓭⓾⓳⓹⓸⒪⓺⓳⓺⓯⓶⓳⓸⓳⓸⓱⒪사용⒪⒲⓭⓹⓸⓭⓿⓼⓼⓯⓸⓭┃⒳⒪ 
⓺⓳⓺⓯⓶⓳⓸⓯ Ⓕ Ⓖ Ⓗ Ⓘ Ⓙ Ⓚ Ⓛ Ⓜ 
Ⓕ y[ⓓⓐ i] ⓓⓎ = y[i] Ⓩⓢ + ⓗⓏⓗ a*x[i]; 
ⓡⓌ 
Ⓖ y[ⓓⓐ i+1] = ⓓⓎ y[i+1] Ⓩⓢ + a*ⓗⓏⓗ x[i+1]; 
ⓡⓌ 
Ⓗ y[ⓓⓐ i+2] = ⓓⓎ y[i+2] Ⓩⓢ + a*ⓗⓏⓗ x[i+2]; 
ⓡⓌ 
Ⓘ y[ⓓⓐ i+3] = ⓓⓎ y[i+3] Ⓩⓢ + a*ⓗⓏⓗ x[i+3]; 
ⓡⓌ
ⒽⒸ⒪Ⓥⓖⓟ⒪특성⒪사용⒪⒲⓭⓹⓸⓭⓿⓼⓼⓯⓸⓭┃⒳⒪ 
독립적인⒪⓷⓿⓶⓾⓳⓺⓶⓳⓭⓫⓾⓳⓹⓸과⒪⓫⓮⓮⓳⓾⓳⓹⓸⒪⓿⓸⓳⓾⒪⓳⓸⒪Ⓥⓖⓟ⒪ 
⓭⓹⓸⓭⓿⓼⓼⓯⓸⓾⒪⓹⓺⓯⓼⓫⓾⓳⓹⓸⒪ 
y[i] = y[i] + a*x[i]; 
y[i+1] = y[i+1] + a*x[i+1]; 
y[i+2] = y[i+2] + a*x[i+2]; 
y[i+3] = y[i+3] + a*x[i+3];
성능고도화의⒪기본⒪ 
ⓟ⓸⓮⓯⓼⓽⓾⓫⓸⓮⒪Ⓓ⒪ⓟ⓾⓳⓶⓳⓽⓯⒪ⓖ⓫┃⓯⓼⓽⒪Ⓦ⓯⓶⓹━
http://www.it-hummingbird.co.uk/wp-content/uploads/2012/07/flickr-5112344521-hd1.jpg

Deview 2014 키노트