What if you could get the simplicity, convenience, interoperability, and storage niceties of an old-fashioned CSV with the speed of a NoSQL database and the storage requirements of a gzipped file? Enter Parquet.
At The Weather Company, Parquet files are a quietly awesome and deeply integral part of our Spark-driven analytics workflow. Using Spark + Parquet, we’ve built a blazing fast, storage-efficient, query-efficient data lake and a suite of tools to accompany it.
We will give a technical overview of how Parquet works and how recent improvements from Tungsten enable SparkSQL to take advantage of this design to provide fast queries by overcoming two major bottlenecks of distributed analytics: communication costs (IO bound) and data decoding (CPU bound).