SlideShare a Scribd company logo
1 of 190
Download to read offline
UNCLASSIFIED 
.„259123 
tUpnadmeiti 
if ti» 
ARMED SCRVHES TEtHMfAL lft)RJlATH)X AGLNH 
mjXGIDV HALL SIATHW 
AIIUNCKK 13. VIRGINIA 
UNCLASSIFIED
DISCLAIMER NOTICE 
THIS DOCUMENT IS THE BEST 
QUALITY AVAILABLE. 
COPY FURNISHED CONTAINED 
A SIGNIFICANT NUMBER OF 
PAGES WHICH DO NOT 
REPRODUCE LEGIBLY.
NOTICE: When government or other dravings, speci-fications 
or other data are used for any purpose 
other than in connection with a definitely related 
government procurensent operation, the ü. S. 
Govermrent thereby incurs no responsibility, nor any 
obligation whatsoever; and the fact that the Govern-ment 
nay have formulated, furnished, or in any way 
supplied the said drawings, specifications, or other 
data is not to be regarded by implication or other-wise 
as in any manner licensing the holder or any 
other person or corporation, or conveying any rights 
or permission to manufacture, use or seil any 
patented invention that may in any way be related 
thereto.
a 
CO 
O 
LU 
M IIUIIIIII 
mil 
in d IHUHIIh <l 
I* 
mil 
MEMORANDUM REPORT NO. 1330 
MARCH 1961 
DOPLOC OBSERVATIONS OF 
REFLECTION CROSS SECTIONS OF SATELLITES 
y 3 G c 
NOX 
ARPA Satellite Fence Series 
Harold T. Lootens 
Report No. 22 in the Series 
A S T • A 
if 
. 
TAPDR Ä 
Department of the Army Project No. 503-06-011 
Ordnance Management Structure Code No. 5210.11.143 
BALLISTIC RESEARCH LABORATORIES 
(ftzosBcawaawBeßNaswftiJmjifc^^ 
f------•■■■ • ' ■■■■■■■■' :' ■'■■■'? '■'-'' ■■ ' :-• - ' - ■■■■-:■>■■:■-^- •■^-;-^^-.-:-v.^-?..-.'v.-i- v:.^C-ABERDEEN 
PROVING GROUND, MARYLAND
BALLISTIC RESEARCH LABORATORIES 
MEMORANDUM REPORT NO. 1330 
MARCH 1961 
DOPLOC OBSERVATIONS OF REFLECTION CROSS 
SECTIONS OF SATELLITES 
ARPA Satellite Fence Series 
Report No. 22 in the Series 
Harold T. Lootens 
Ballistic Measurements Laboratory 
Department of the Army Project No. 503-06-011 
Ordnance Management Structure Code No. 5210.ll.llf3 
ABERDEEN PROVING GROUND, MARYLAND
BALLISTIC RESEARCH LABORATORIES 
MEMORANDUM REPORT NO. IJJO 
HTLootend/bt 
Aberdeen Proving Ground, Maryland 
March 1961 
DOPLOC OBSERVATIONS OF REFLECTION CROSS 
SECTIONS OF SATELLITES 
ABSTRACT 
This report presents reflection cross sections observed for eight 
satellites during the period 1 January 1959 to 1 July i960, using the 
DOPLOC "dark satellite" detection system developed by the Ballistic 
Research Laboratories. Several related areas are discussed; i.e., 
satellite "signature", spin and tumble, scintillation and ionized 
trails. A brief description of the DOPLOC receiving system and 
antenna configuration is included. The method used for calculation 
of cross sections is given in Appendix I.
TABI£ OF CONTENTS 
Page 
I. INTRODUCTION 
II. DOPIJX SYSl-EJ«! DESCRIPTION 
A. Equipment 
3. Antenna Dlraenoions ond Orientation 11 
III. FIELD DATA 
Ik 
A. Sutolllte Records .. 
B. Unidentified Flying Objects jj. 
C. Doppier Recordlng 22 
D. Signal Strength 25 
E. Multiple Antenna Records oj, 
F. Meteor's «. 
0. Satellite Trails 2O5K 
H. Predictions oc 25 
IV. REFLECTION CROSS SECTIONS AND POWER RATIOS 2? 
V. CROSS SECTION SIGNATURE OBSERVATIONS 55 
VI. CROSS SECTION MODULATION DUE TO AITITUDE CHANGE 59 
VII. SCINTILLATION k2 
VIII. REFERENCES ^ .,- 
Appendix I - Calculation of Power Ratio and Croas Section 1+7 
Appendix II - Bibliography of Reports in the BRL-DOPLOC 53 
Series
LIST OF FIGURES 
i. Baale Interim DOPLOC System 
A Block Dlu^rain of R. F. Section IJI DOHJOS Station Posalve 
Tracking at XüÖ m/a 
!>. Block Diagram of DOPIXX) Tijnlng Syataa 
•'.. Block Dlu^ru;:! of D^ppJer Diitu Recording Syateti for a 
SLutJle Chiinj»«! 
5. Block Diagram of AuUmillc !/>ck-On Syßtea 
ö. ARPA-BRL DOPLOC Satellite Fence 
7. Typical DOPIOC Data Output 
8. Typical Slndle Pa;,;; Doppler Orbit Solution 
9. Hlj'li Gain Antenna« at ARPA-BRL DOPLOC Tranamltter Site 
Located at Fort Sill, Oklahoma 
1> . Initial Antenna Orientation 
11. Antenna Orientation Foliowlnti Deacclvatlon of White Sands 
Station 
12. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. C8M 
13. ARPA-BHL DOPLOC Doppler Record of 58 D-lta, Rev. TO1»? 
1'». ARPA-BRL DOPIXX; Doppler Record of 58 Delta, Rev. 7558 
15- ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 8^86 
16. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 86l»5 
17. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 8085 
18. ARPA-BRL DOPLOC Doppler Record of cß Delta, Rev. 8719 
19. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 872* 
20. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 8795 
21. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9009 
22. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9172 
25- ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9255 
21». ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9286 
25. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9^66 
26. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9'i72 
27. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9505 
28. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9581
29. ARPA-BRL DOPLOC Dipplor Record of 58 Delta, Rev. 9612 
?0. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9716 
31. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9722 
32. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9826 
33. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9832 
51». ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 98'»2 
35- ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 98118 
36. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9905 
37. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9927 
50. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9937 
39. ARPA-3RL DOPLOC Doppler Record of 58 Delta, Rev. 99'»3 
li0. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9959 
'«1. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9975 
^2. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9991 
'»3. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 10001 
•'i1». ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 10007 
!«5. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 10023 
US. ARPA-BRL DOPLOC Doppler Record of 59 Epsilon, Rev. 53 
^7. ARPA-BRL DOPLOC Doppler Record of 59 Epsilon, Rev. 60 
•»8. ARPA-3RL DOPLOC Doppler Record of 59 Epsilon, Rev. 121 
'♦9. ARPA-BRL DOPLOC Doppler Record of 59 Epsilon, Rev. 31'i 
50. ARPA-3RL DOPLOC Doppler Record of 59 Epsilon, Rev. klk 
51. ARPA-BRL DOPLOC Doppler Record of 59 Epsilon, Rev. U38 
52. ARPA-BRL DOPLOC Doppler Record of 59 Epsilon, Rev. 532 
55. ARPA-BRL DOPLOC Doppler Record of 59 Zeta, Rev. Ik 
51*. ARPA-BRL DOPLOC Doppler Record of 59 Zeta, Rev. 150 
55- ARPA-BRL DOPLOC Doppler Record of 59 Zeta, Rev. 2itl 
56. ARPA-BRL DOPLOC Doppler Record of 59 Zeta, Rev. 556 
57. ARPA-BRL DOPLOC Doppler Record of 59 Zeta, Rev. 855 
58. ARPA-BRL DOPLOC Doppler Record of 59 Zeta, Rev. 871 
59. ARPA-BRL DOPLOC Doppler Record of 59 Zeta, Rev. 887 
60. ARPA-BRL DOPLOC Doppler Record of 59 Kappa, Rev. 183 
61. ARPA-BRL DOPLOC Doppler Record of 59 Lambda, Rev. 96
62. ARPA-im DOPLOC Doppler Record of 59 Larabda, Rev. l'iß 
65. ARPA-BRL DOPIJCX: Doppler Record of 59 I^uabdu, Rev. 278 
6'!. ARPA-BRL !>0PLCC Doppler Record of 59 La-abda, Rov. 685 
65. ARPA>BRL ÜOPLOC Doppler Record of 59 I^arabdu, Rev. 1205 
66. ARPA-BRL DOPIJCC Doppler Record of 59 Lüuabda, Rev. 1516 
67. ARPA-URL DOPLOC Doppler Record of 6'» Ga-aisa 1, Rev. 5l8 
CQ. ARPA-BRL DDPLCC Doppler Record of 60 Gassaa 1, Rev. '»öj 
69. AIU'A-BHL DOPI^OC Doppler Record of 60 Ga'«na 1, Rev. '»18 
70. AJ^PA-HiL DOPLOC Doppler Record of 60 Gar.-rA 1, Rev. 836 
71. ARPA-3RL DOPI-OC' Doppler Record of 6ü Gatana 1, Rev. 960 
72. ARPA-BRL DOPLOC Doppler Record of 6<; Gamma 2, Rev. 10l»2 
75. ARPA-ffilL DOP!>0C Doppler Record of 60 Delta, Rev. JO 
7".. ARPA-3RL DOPLa* Doppler Hccord of 60 Delia, Rev. 6l 
75- ARPA-HRL DOPIä: Doppler Record of Co Delta, Rev. 117 
76. ARPA-BRL DOPLOC Doppler Record of 60 Delta, Rev. 12^» 
77. ARPA-BRL DOPIJCC Doppler Record of 6c Delta, Rev. ll»0 
76. ARPA-BRL DOPLOC Doppler Record of 6 Delta, Rev. 156 
79. ARPA-HRL DOPLOC Doppier Record of 6C Delta, Rev. 165 
8G. ARPA-3RL DOPLOC Doppler Record of 60 Delta, Rev. 172 
81. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 1, Rev. p5 
82. ARPA-BRL DOPLX Doppler Record of 6c Epullon 1, Rev. 99 
85. ARPA-3RL DOPLOC Doppler Record of 60 Epsilon 1, Rev. 150 
8^. ARPA-3RL DOPLOC Doppler Record of 6c Epsilon 1, Rev. 165 
85. ARPA-3RL DOPLOC Doppler Record of 60 Epsilon 1, Rev. 386 
86. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 1, Rev. 522 
87. ARPA-.m DOPLOC Doppler Record of 60 Epsilon 2, Rev. 106 
88. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 2, Rev. 157 
89. ARPA-BRL DOPLOC Doppler Record of 6G Epsilon 2, Rev. ll*7 
90. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 2, Rev. 153 
91. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 2, Rev. I9I+ 
92. ARPA-BRL DOPLX" Doppler Record of 60 Epsilon 2, Rev. 303 
93. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 2, Rev. 309 
9^. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 2, Rev, 356 
8
95« ARPA-BRL DOPIOC Doppler Record of 6o Epsilon 2, Rev. 61? 
96. ARPA-BRL DOPLCX; Doppler Record of 60 Epoilon 3, Rev. 28o 
97. AIU'A-BRL DOPIiX; Doppler Record of 60 Epsilon h, Rev. 280 
S>3. ARPA-3RL DOPLOC Doppler Record of 60 Epsilon 5, Rev. 569 
99. ARPA-BRL DOPLOC Doppler Record of 6ü Epsilon 6, Rev. 265 
100. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 6, Rev. JOl 
101. ARPA-BRL DOPLOC Doppler Record of Unidentified Object 
102. AiPA-3RL DOPLOC Doppler Record of Unidentified Object 
105. ARPA-3RL DOPLOC Doppler Record uf unidentified Object 
lOit. ARPA-3RL DOPLOC Doppler Record of Unidentified Object 
105. AHPA-3RL DOPLOC Doppler Record of Unidentified Object 
lOo. ARPA-3RL DOPLOC Doppler Record of Unidentified Object 
107. ARPA-BRL DOPLOC Doppler Record of Unidentified Object 
108. ARPA-BRL DOPLOC Doppler Record of Unidentified Object 
1C9. ARPA-3RL DOPLOC Doppler Record of Unidentified Object 
110. ARPA-BRL DOPLOC Doppler Record of Unidentified Object 
111. ARPA-3RL DOPLOC Doppler Record of Unidentified Object 
112. ARPA-BRL DOPLOC Doppler Record of Unidentified Object 
115. ARPA-3RL DOPLOC Doppler Record of Unidentified Object 
ll1». ARPA-BRL DOPLOC Doppler Record of Unidentified Object 
115. DOPLOC Power Ration, Center Antenna 
Ho. DOPLOC Power Ratios, North Antenna 
117. DOPLOC Power Ratios, South Antenna 
118. DOPLOC Power Ratios, Center, Nortn and South Antennas 
119. Doppler Record of Active Track of 58 Delta, Rev. 9958 
120. Doppler Record of Active Track of 60 Epsilon 1, Rev. 26 
121. Doppler Record of Active Track of 59 Epsilon, Rev. 7 
122. Doppler Record of Active Track of 58 Delta, Rev. 10007 
125. DOPLOC Frequency and Rate of Change of Frequency as a 
Function of Position in the YZ-Plane 
12h. Center Antenna Geometry 
125. Altitude and Ground Range Geometry in South Antenna 
126. Satellite Inclination with Respect to Base Line
127. Ground Range In North and South Antcnnaa 
128. North and South Antenna Geoesetry 
129. Power Factor vo Angular Pooltlon for an 8 x 76 Degree Antenna 
10
I. ItfTRODUCTION 
During the period 1 January 1959 to 1 July i960, the Balllßtlc 
Research Laboratories, under funding from the Advanced Research Projects 
Agency (ARPA Order 8-58), operated a three-station, reflection Doppler 
satellite tracking systoin, extending across the south-central United 
States frcra Tennessee to Hew Mexico. This system, known as DOPLOC 
(DOpplor Phase IXCk), provided a moons of detecting and tracking radlo-sllent, 
or "dark" aatellltes. 
A transmitting station was located at Fort Sill, Oklahoma and 
receiving statlono were located at White Sands Missile Range, Hew Mexico 
end nt Forrest City, Arkansas. The stations were Initially manned on a 
twenty-four hour, seven-day-per-week basis, as part of the nation-wide 
satellite surveillance not. Following permission from ARPA to discontinue 
routine twenty-four hour operation, the White Sands station was deactivated 
and a basic eight-hour work day was adopted at the Fort Sill and Forrest 
City stations on or about 1 October 1959. The actual hours of operation 
were chosen to adapt the work schedule to the times of most frequent 
satellite passes. 
The flexible schedule by which the field stations operated has 
provided considerable data from known satellites, Unidentified Flying 
Objects (UFO*s) and meteors. Many satellites and UFO's have been 
successfully detected and tracked by the DOPLOC technique and their time 
of crossing, altitude, east-vest positiun arid effective reflection cross 
section determined from single pass data from a single receiving station. 
Crossing time and position data was forwarded to Space Track Control 
Center for inclusion in their orbital prediction program. 
11
II. DOPLOC SYSTEM DESCRIFTIOM 
A. Equipment 
The DOPLOC ayatm conelated of Q 50-kw contlnuoua wave, ICÖ Mc/ß 
transmitter locoted at Fort Sill, Oklahoma, which fed one of three 
narrow-beoa, high-gain antennas. These high-gain antennas emitted 
narrow, fan-shaped beams, one directed 20 degrees above the northern 
horizon, one directed vertically and one directed 20 degrees above the 
southern horizon (see Figure 1). 
The signal reflected from a satellite passing through the trans-mitter 
beam was received at one or both of the receiving stations. Each 
receiving station had three high-gain antennas oriented to "see" the 
space volume illuminated by the transmitter. The reflected Doppler 
signal was fed through a receiver to a bani: of fixed audio frequency 
filters known as the Automatic Lock-On (ALO) and, subsequently, to a 
narrow band, phase-locked tracking filter. The appearance of a Doppler 
signal in one of the fixed filters activated a control circuit which 
pulled the tracking filter frequency over to the signal frequency and 
caused a phase lock between the two. The tracklüg filter then tracked 
the Doppler signal frequency continuously as the satellite passed through 
the antenna beam. Block diagrams of the DOPLOC receiving system and ALO 
are shown In Figures 2, 3, I* and 5. 
A satellite which crossed the base line Joining the transmitter and 
receiver traversed each of the three overlapping, fan-shaped antenna beams 
(see Figure 6). This resulted In three separate Doppler records, one for 
each of the three antennas, separated in time by 50 - 60 seconds. The 
length of the records varied, averaging about 7 seconds In the center 
antenna and 15 - 25 seconds in the north and south antennas. The digital 
Doppler data as a function of time were printed on paper tape and also 
converted to binary form and punched into standard five-hole teletype 
tape for transmission via commercial teletype to the BRL computer center, 
where they were fed to the ORDVAC computer to obtain satellite orbital 
12
parainetera. Figure ^ shows typical D0P1,0C data output and Figure 8 
shows a typical orbital solution calculated using this type of data. 
In addition to recording the digital data, recordings on paper charts 
were inade of the Doppler analog frequency and signal strengt)» with 
respect to time. Reproductions of these records are presented In this 
report. 
B. Antenna Diinenslons and Orientation 
The special high-gain antennas wore 6o feet long and 10 feet wide 
with beam dljnensions of 8 x 76 degrees and a gain of 16 db over 
Isotropie. Tliree of these antennas were Installed at each of the receiving 
stations and at the transmitting station. The antenna installation at 
the transmitting stution is shown in Figure 9. 
When the D0PL0C satellite detection system assumed twenty-four hour 
operational status in January 1959, the transmitter at Fort Sill served 
as the illuminator for both receiving stations. At that time, the high-gain 
antennas were oriented in azimuth and elevation as shown in Figure 
10. In the fall of 1959, the receiving station at White Sands was de-activated 
and it was decided to tilt the antennas at Fort Sill and Forrest 
City to produce more favorable coverage. The reorientation of the 
antennas to the configuration shown In Figure 11 was made In November 1959. 
A complete and detailed description of the DOPLOC satellite detection 
and tracking system may be found In BRL Report No. 1123, "The DOPLOC 
Instrumentation System for Satellite Tracking" (February 1961). 
15
III. FIELD DATA 
A. Satellite Reeorda 
During the ld-oonth operation of the DOPLOC system, 111 refactions 
were received, resulting from observations of 89 Individual satellite 
passes. More than half of these reflections were received by the center 
antenna alone, while the rest were observed by the north or south 
antennas or various combinations of the three antennas. 
Reproductions of OOPLOC Doppler reflection data are presented as 
follows: 
Sputnik III (56 Delta), Figures 12 to U5J Discoverer V (59 Epsilon), 
Figures U6 to 52; Discoverer VI (59 Zeta), Figures 55 to 59* Discoverer 
VII (59 Kappa), Figure 60; Discoverer VIII (59 Lambda), Figures 61 to 66; 
Transit IB rocket (60 Gamma 1), Figures 67 to 71; Transit IB (60 Gamma 2), 
Figure 72; Discoverer XI (60 Delta), Figures 73 to 80; Sputnik IV (60 
Epsilon 1), Figures 6l to 66; Sputnik IV rocket (60 Epsilon 2), Figures 
67 to 95; Sputnik IV fragments (60 Epsilon 5, h, 3 and 6), Figures 96 
to 100. A summary of these reflections arranged by satellite and antenna 
is given in Table 1, and a detailed explanation of each pass may be found 
in Table 2. 
B. Unidentified Flying Objects 
A number of reflections were received and recorded which could not 
be correlated with the predicted position of any known satellite. These 
were termed Unidentified Flying Objects and reproductions of Ik of these 
reflections are shown In Figures 101 to ll^, with a detailed listing in 
Table 3. 
11*
S vo 
CO Os 
H go 
>. 
H H 
a. 
IA o 
HiI 
H 
ja .c. 
o o 
s: o 
3 C o o 
W Ü 
61 
•p -p +> c ^ c 
< o Ü 
L 
g •W 
M 
OP 
•P 
•H 
'S § 
CO 
^t-. t«-HVOUH00VOOHHHOJ 
H t I I I I I VO I I | | | | 
i • I I I I I H I I I | | 
■^ I I I H I I i | I I i I 
HIIIHIIIIHIII 
WCVJHl l l IHCVJCVJl l l 
CO H CVJ I 
ONlAVOH-^lArH IfA^HHHW 
H CJ rr j- UN VO 
c] 
rH 
OP 
p. r 
p 
a a a 
poo 
Go 
H 
co ta en to v) u 
^ H d d d 
§ 
d 
coqc£oONOoooooooo 
lAlAlAtAlTvVOVOVOVOVOvOVOVOVO 
HHH 
aICO 
0) 
oo 
u 
■p 
üO 
P P p 
§ s § 
or a 
G C fl 
M 
0) 
>oow 
a) ai 
u 
>oÜ 
09 
•H 
P 
0) 
Uv>O 
o 
Ü o 
ta m 
•H 
P 
•H 
P 
9 S 
p p 
•H vH 
W 10 
§ ä 
e; F; FH ^ is 
Ö 
H & ft Pi Pi ft 
P CO W M to OT 
<& 
VO 
H 
K 
O 
H 
IEH 
vo 
H 
(Q 
p 
p 
15
a 
v 
•• 
-. 
J2 
M 
aI 
Li 
S 
aaü 
-j 
c ... 
JU0 
J -.. .. o. 
w t. 
.. g o is qH St! a" 
"HA 
3-- 
& 
o 
Cl I 
a. 
5 
i-J 
a 8 
>: 
I 
fi 
O O «. «• O O O O «. O O O -; tfv O O O O O O C^ ^ O O <N ^ 
u r. s s « ? ^ ä s S ?. ?.« ^ ^. §. | R ^ & © 3 2 ^ t * 
<r, o »'■ i- (- 
... i>i rt ..-■ bi 
«O "'> o. r- o> i>- c. >o -» " • 
^1 W Pi 
iri >i) 
? M w u: ^ w ui :« M » w in us w :.: w w M w M M 
s s ? s .- | ?. § ? s s § » » s ?- '■ S £ ' f s a g R | 
o o >a "O |g®&^3«^5^S&SS^aR;3§i§S§§ 
i ^ ;!: i i J. « i i A * i i «*• « « i « w « w « « to ;= B 
IT» «"> -^ '1 ^ 
Q VO vO t- H Q J 
, u^ ir. tfS 
NO O U". Jt 
rt O H >H 
■3- 
a, 
J-r'.' 
rH O »-, _■» rt u' »a a o vo « 
fOlAK^CUOlrtJ^f^» 
rt-ÄcÖcit^rtt-W-S-^I^ÜrtSdÜ 
CuOOrtOOrjOJ^PjOHrtOHrt 
RR^^SS-SSSSSSSSSSSSSSSSSSSS 
p. +> 
a 
ü o si p S .d .9 3 
OT W O (5 
(l rt a 
^ 1=5 Hj ^ "-s 
00 rt "A Jt 00 
X) /I 
0) c 
fi. c. 
.1' ^) I I i i 
JA 
H 
[^0>HCiJtcoqt-r- ^ ^t J- IfN lA lA 
cy cy w cvj cvi w 
' > cj w ^o OJ ^ t^ fy w a? ^ 
asOxONONON^ONONCTNCTNONaNONONONONON 
OJ 0J 
H 
(1) 
R 
CO CO 
16
O o 
. ■ .. 
•-i o o 
rf -• -o 
K •■* « 
•i .- ,) -t r, o 
^*. '1 S 
T) — ti 
(1 K rl 
0 -« S 
♦J aoo 
3S 
". 
■O 
CJ •^> a; a• 
;j rl S !• 
V IT' 
s 
5" -2 
« 3 
I 
s 
f) ■■; »: :• .u• •- .■ 
5 S 
s>. St 
.■? 1 
I »1 i! >! s s 
-r. r. 
r. i: 
s s 
I■I gp 
5 .'i 
.:-:■-:.: 
i* t» •* •* I. I. t. 3 
(i a a 6 
« :-. .-. ö 
t. i. 
o o 
i i 
oooooooo o o o o o iT' r> o *« «fk & o © *"• 
to <d (vj >>j tu in >o «o >. o <■< o> »o a ^. |~ j « Q» n^i r- i~ «. JK «o gt <& ^ 
if« I- ^ a> H ■^ * ai a} -t 'ä -t '$ e. " ö ö <}. <o eo <o «o «,'• «a ta tv -i ^ 
ft, •% Ci a!) ^i p^ <) r« ru •. cv 0 ^ J- c- a <^ «i «O O •-< ri »HI «5 Oj 0> ov Ov 
« Hi »H «4 rl 
oj •£ r- t^ r- <r> o h- e> a» p •j» : p- Jt f G> 
bi ui !•; ui (.i i.; bi iii u: b: b: :•: bi .-:«;.:;« U) W. Ui Ui Ui Ui Ui 
Ä s •-. o >0 O <0 ^. ■» «.-. O. ^O O rt f^ »- C; 
c. ^j o aj t- .- :- t^ o u. <■<•-< '',- 
r-i ^ fV; fj ^ ?j ri -t •* 
a *> ;- - t.) (/I '. i . ;: ••. a u CO £g 1 1 1 i i i i i ■ (0 
i ■• 
(A '.. •. i' .*. *'. :' •-. ', S£ 
iH -« H s - 
■ ' .. - IT ci *o t^- o ri 
r- ö « «5 S o ö o o' fvj fy o .3 .7 3 co M ?ä Kg ?. h- ^ o: *> ^ r- 
•'> >H rt H Cj »H iH #-l r^ OJ H »-< rH f-l 
•..'-■.;-•.-.;•.;-. u) (/) to » ts » a: 
I I I I I I I I I I I I I 
:t ;'. vi :z v> vt as x s m n eft en 
_; U -( 1- ON ^ O OJ •, ■: ~' ■ c- <n ^ O & Q ir> 'O 0 H « 
It <H l/ CJ U. - i »". O "^ tH O IT. <-l rH -» 1A O 
-3 VO CO Cv 
i^ <H rO O 
1/ 
iT. 
0> IO M o; -t rH "^ I- O <% CJ. O ^t iT. Ox -3 O Ox CXJ H IC H O C J I- OJ OJ 
•C- ^ -5 -I -^ <2 Q -"' ^ Q PJ K'' 3 '•, "^ o oi 6 w -? O j tS if- 3 ^t J »Ti 
'O »O »O >0 O xO ^O ^ i; /. L'. IT. J -•» L"- r- »O »S h-i rt <H N vO iT-. <M «% K^. ?A 
rH 1-1 O 01 W CM 
s 
v' Q Q Q <?> ON ON (J, ON q ON ON 0 (?> ON ON Ox q> 
NO vo Ni N5 a^ UN ITN LS J, UTN ITN ?> iA ir IT» ir IA iA 
»j5 VÖ VO vö 'O vO VÖ 
)• U U i. %, (< >. ;. :. >. 
.q A A A A A c) o< o< i* :• (;, m ;■ P< P, »;., 
>. 
j w 
0 O H H rH H r-l 
Cj K> fo IO. s^ rrN m 
iTv r— h- t^ I— KN tr, a» ITN 
o aj i' if, i(-, _-f _■}• [T, [^ 
Ch OA ON 0 a CT ON ON ON 
ON ON ON 0 ON ON ON ON 0 
t<~i lt rO ^t 
a 
H 
(U 
O 
cocococococococococoaDaDcoco 
mirNiAiAirvifNiAirNirxiAiniTNiAiri 
;* to y ;;., r., ;J. P, toconPiP^^ 
"-. ^f -■; -I L' . 
01 
(•J & -=» lA 
f.'N ON & O 
AJ 
KN 
H 
L-N 
rH 
(TN O 
o o 
a. o 
1- I'. 
8 lA s M H 
CO 
ir, 
-3 
CJ 
1A 
-4- 
H 
O 
IT, 
r-l 
C-J 
IT, 
ir- 
IT. 
IT, 
CO £ ^ 
^ ^ ^ $ ^5 5 ü $ ^ $ $ Ü 5 H H H H H H H H H H H H H 
0) U) 01 01 (li 01 m 01 m 01 01 111 P P P P (J W P P P n n P P 
p. p. p, fi. n, n, n. ö" 0 ö ä1 ö ö Ö 
ON ON ON ON ON ON ON 
1A ITN 1A lA 1A lA 1A 
]3 ^3 ^ ^ i! ^ ^ 
o u u 
N IS) N 
o; ai oj ai 
M N N N 
ON ON ON ON ON ON ON 
1A 1A lA 1A 1A lA 1A 
17
.: 
..-: 
0 
r- 
O M 
|3 
15ra.1öo 
-I c 
— t 
■3 
It 
3 
■a I 
•P 
D 
55 
I 
5 I 11911 a s s s JJ 
^ 5 a 
^ 5 s fj 
«o ;o•: wS r'"t' 
•.: 
Q 
V. 
o o IT» tf% v o o o o o 
:::::::::: 
3 ^ 5 J? »^ 3 ?. g: ^ ?. - ?. ^ t- SA »a cCv rt ^ «O w q ^ a w ^ % 
f' -I ^^ O -T O -J I.'. M «J •o e- a. t> ■w 
3 
•a K'. i. s 
.-.:«:< ut .-. 
?: S-^ 3 ^ & 8 Ü C( 7; *^ C; -« .1 f; f. ^, •■ 
c. 
:•! b: iii u 
f|j o Q 'O 
■■•■■■....:•:... 
: ? <? S' S 8 s a § ?: 
-H PJ «-■ rt ev; -r. ^ c; v. ;-. 
CO CO CO <(OC CO o t~ 
•H "^i ir ^ »- 
S p £ Ü ö- tv; <; rn -» r J rj ^ PJ 3 3 3 3 3 * § § § 33 3 
i nn:nn ^nn s iiiiiiiimi 
: 
0 
T t^ 
o o o m rn CJ ^ <%: 
CM fw f.j 
i~ >- ^ . 
^ r-i O t< 
I IR S 'I - ^ - 3 S1 5 8 8 & 8 JÜ 
O O 
21 S ^ ^«RR3SS{?8&^ 
IJJ 00 r. CO .7v Ö rH K-, c^ {^ CO ^ " -^ ~ 
CO (J 
HO, H HHHHHöinrt 
CVI 
f- CO co 
Pi pi fü 
H i-H rH 
5 5l III in um 1 HIHHini I f- O O O CO CO (^ 
•jD co co co 1r. ir ^ vo o 5 t- {- co & a H 
H cvi eg vo vo oj in 
% IIIHI n 1 iiWlili 
'ik SJ ,9J S^ S1 Q> 9» OS o^ in minm. inmininiA 
n w ^^HHHCVJCvjfJOJCVjOJPJ 
CO m CO »O o CM H O H tn vj, 3 
K -* jrt CO o-. O 
H H H H H H H 
1^ tn fo m m m m m m rA m 
0) 
p p 
ssssssssssss 
18
15 ja 
•a 
p 
0 5 
f-l o o 
?. •' n 
w a o 
•« r, o 
ft « 
?3 
O -• 5.» 
gu 
E 
•e 
CM 3 O 
*> !■ !•: •rl #-! 
K4 iJfl 
o ^ w 00 ',. ;- ,'. • - 
n o i 1 1 1 i i 
ä ü <: ■--. v. 
ü 1 
>J 
d fT. 
O ir. o. 
H 
h0 > ö z I 
t= 
1s 
ti 
1 ll 
1 s g n s i 
5 5 
1s 
d «« d 
H Ü :; 
l Ü 1 
5 5 5 
i! 0 
South 
South 
.9 .9 
3 
1 
<d> r<f>j j.j• 
1 °l 
1 | [j g S 8 
.'^ a 5 
s:> ti o 
81 ^ o 
ooooooooo 
tfx a. ^ iTv sf> O O cp 
o o o r > q o O tf1« J- -j* J. o o o 
•r»!r»s(>pitf>sAOQCO <n Ci {- Hl Ov «f 'OHI.IcjCO^rtO^CJh- »O 
Hl rl rl ^1 fHI ri r< ri rl •< rt ,| . • . . . . ,,....,.,..,,.,,.-,,, ^ 
Ox IA Q -3 Oj t- -J 'S O -p . . O 0} -4) !- .1 CO £1 «o VO oj «H -a ^ ä -» 
ä >-( -3 H i-i fc; -i >o -T c-i « ^« -5 r- K HI r- co ^i ^i rj to ^ c>j eo f-r- 
4 »-f r'l 
H O. i" -J «O J ON O O p -t G 
Ci -t f, H <-« 
co rt ^t t- t~ <ir- a Ö 
............. u: u: u> i<: b: u: ... :t ... tii bl b) Id ;....;..:.; 
WWW « K W H ;i 
III I I I I I 
a a. a n (A as SB W 
SB '-. 10 »* 
^ 
!.r. ;-. ■.-. IQ M « 
•.!-. ;-. ;-. t". jg A A ;-. ;- M 
0 o 
^a3O0>HW«"NK^-3 K H KS J» o 
•H H H Ö rH «H IT. 1A iT. «^i CJ ^> 01 Ö 
t~- f- t- vö 'O ^O >0 vß vO CD 00 -O vd m 
iHHHOOOrHHr-l OOHHO 
« 
rH H O O <§ 
»ö VO Vö VO VO vS vO vö >0 
•. !• Ii I. I. Ii Ii Ii I. 
<nÄ<P<iP<ip<,<P?iP?ift<p, 
iniTNiTtVOvOvO^OvOVO 
CJ cy oj CJ oj CJ cvj oj cj 
vo vo vß ir» in in CM cj w 
iTiifNmvovovo S-S-t*- 
HHHHHrHHHH 
lO ro |A rn fr» tr» tr ir> if 
s—' ^^ ^s ^^ s«x ^„^ s^ ^_^ ^_y 
HHHHHHHHH 
1U OJ 0) OJ Q) OJ lU 01 OJ OPPPppppO 
>,>.|-.>> q q >. ^ >. ^ ^ >> 
00 H ^t tA 0 CO 
H CJ CM OJ H 
H ir J3 ^t ^t t~ »^ rfS f) 
CV) 01 01 CJ CVJ CM 81 
C O U" >D CM »ß t^ f- t^- m -3- rA 0> vß f- 
H H >A ro m vD 
in ö ir ^o ä5 CM o in -* ii- 
H rt m in H i-l iH 
CMCMOICMCMCMCMOIOIOJ 
:•; 
b 5 S "' g^ & !?: ? £■ £ S Ä ^ S ° S f- ?. S ü ?; 8 & ?. p: 51 
^ ^ ^ rt !■>•-«- Oj »^ Oj rj f. j r^ rt j ir >f 
IHHHH^M rtfjrjfjCif. CifMOiOj0;<-ICV10JCJ0; Oi 
i-. 
A 
Hu^io.ogjvocN incg^r(j,Hrt .3vor-r--30cor-o^ 0 
mir.rHOOinoj o.^. -ainJj» oiJfinmHOininiAH w 
m in o oi in oi .i' in ö cö >H 
m m oi CM U'N --t L" oi ^f H ^r 
t^ >o p- t- vo vö tn m CM oi ^ 
H H oi o 
'ä 'Ja io y6 i6 D vö'IövövO'So'ö'Iö^vovÖ vo 
Ol 
sOl 
0 a a 0 n n a r! (1 (1 S (1 ri n n c a 
0 o o O o o 0 O O O n o o o n n 
H H H a H H H H H d H H H H H d H 
■H ■H •H •H •H ■H ■H •H •H •H •H •H •H •rl 
0) 11) 0) M 1/1 M 10 IQ in w in in in 
OOOOOOOOO OOOQOO oooooooooo o 
vovovovO,X)VOVO'0D vovOvOkQ^OvO '.DVOVOVOVOV£IVD>5,30 VO 
ig
-•- 
■• R 
§ 
^ ■ 
r. 
:■: 
I 
as 
•' c: 
- o 
a 
— b 
ir. ri 
1« 
^ -1 
a .- 
a 
w 
P 
K 3 
3 
■P 
I 
o o o o 
•^ ^ 5» fi 
i'. 
? 
r. 
o o 
CD w 
w W u) s: 
-" 
O rH 
05 S ö S 
•^ ^J ^ 1=3 
r>i O r- IC-. 
CM 
»1o' oH 
•A OJ tA 
IA VO Vü 
1 s 8 S 
3 a d a n w to to 
ä äf ü fi 
s s Q o 
r-l CJ IO -d- 
:. 
I 
— 
• ' 
I. o 
■% 
jr. 
i. 
os 
>. 
o 
f> 
■-i 
II •> 
3 • 
5 i 
o3 +•>! to c 
OJ 
3 
v> 
c3ü 
to 
t. 
v 
cou 
'U 
o 
?-. 
f I O 
K 
X> 
0) 
O & O- D" b1 
o 
CVJ IA -3- iTv vo 
20
•> 
| 
8 
I 
§ 
0 
§ 
OJ 
« 
en u 
O CO 
H P «I 
to p 
• CO 
Ü 2 
EH 
EH Ü 
lOv 
OJ 
C 
O 
P. 
10 
ITV 
(J 
lf 
CM 
In 
OiTkOOOiAOOOOOlfvOO 
vOHO^r^rJHOON 
vOt-iAVOCOvOVOh-r- 
I I 
H H 
I 
{•^ ON t^ 0 -tf 
r- ir vo ir t^ 
i 
o o o 
H r «Tk 
iTvOJt^VOOI^VOHlAH 
H^rcO-s CJ Or-Ooovo 
OOOOOOOOOlTkOOiAiA 
r-<j irviA_-r us tr D <X) tcvm^r tcvcvj 
t3 
•J s: 
ua 
U M U M ^ Tt] u 
(JO o 
-•r 
roi H 
IA O irv 
OJ vo 
O 
-3- 
■a 
a) 
o>o 
U M M U ^ 
Us t) 
HH t-d 
Q 
IA CVi 00 O 00 
CVJ »O (I 
H -? NS 
OCOl^vOOIAOtAO 
cr{— po>oo Q ox^ O>O>Q 
H -a- ON H OJ H 
CJ rj H 00 O fO P OJ 
fO O O CVJ ^ O H I H OJ 
J- tA fA 
O ^t fO 
fA j- tA in H 
O H -4 fO -J 
f- iA v2> OJ vo 
H H H O H 
ON NO 
00 tA VO 
IA ^t 
OJ 00 
OJ H OJ OJ 
OJ 
H 
O 
ONONONONONONONOOOO 
lAlAlAlAlAlALAVDVDVDVO 
3(Utt)ooaiä)3a)(U(i) 
•olcocooopp'-o^f^Pn 
t— -3- OJ H IAHNO-* H OJCO 
HHOJ HHHHrHHH 
t^ O VO 
IA OJ O 
O H ON 
O O O 
O O O 
VO VO VO 
3 3 3 
S S 2 
H H ON 
OJ 
a 
§uo 
4-> 
co 
I 
u 
<-■)c 
o 
•H 
-P 
CJ 
0) 
0) 
Ö 
*■>1 
I 
CO 
o 
d 
ü 
>o 
o 
■pwo 
3 
0) 
to 
•n 
CO 
g3n 
IA 
I. 
iÜ 
(0 
3 15- 
O 
>ou 
i) 
U 
O 
■p 
Üg 
0(0 
d 
d »I 
s «j 
p 
a Pto. 
o 
o 
Ol 
pG 
Ü -d 
•H 
>> 
H 
0) 
P 
HS 
21
C. Peppier Recording 
The typical forra in which DOPLOC data we recorded for eatellite 
detection is shown in Figure 60, a record of Discoverer VII (59 Kappa). 
An explanation of this record and the ALO device by which it was obtained 
follows. The upper portion of the chart is an analog record of tracking 
filter output frequency. The short, evealy spaced marks indicate the 
successive frequencies at which the tracking filter is set while the 
system is in the search mode. The tracking filter is stepped in 1 kc/s 
intervals to maintain a frequency midway in the 1 kc/o spectrum to which 
the comb filters are set. This minimizes the time required to pull the 
tracking filter frequency to a nlgnal frequency detected in one of the 
fixed filters. The comb filter bank consists of ten filters, each with 
a 20 c/s bandwidth, spaced 100 c/« apart. The filter bank "looks" at a 
1 kc/s frequency bund for 0.1 :;ccond; then It Is switched up 1 kc/s by a 
heterodyne method and this procc:i.> continues, until either the desired 
frequency band haa been covered or u signal is detected. Figure 60 shows 
the tracking filter output when a 12 kc/s ccan is used. The ALO can also 
be adjusted to acan a h kc/s range (see Figure 19) or a 2 kc/s range 
(sec Figure 2h), or it may be manually positioned to a desired frequency 
value. Manual operation is useful when attempting to lock the filter on 
a signal being played buck from magnetic tape, where the initial Doppler 
frequency is known within a few cycles per second. Figures 13 and 22 
are exumples of manual filter positioning. 
The initiation of phase-locked tracking is accomplished quickly when 
a signal frequency is detected in one of the fixed filters. The control 
circuit pulls the tracking filter frequency over to the received Doppler 
signal frequency in about 10 milliseconds and within 80 to 90 milliseconds 
all transients have subsided and phase-locked tracking begins. Figure 60 
shows this transition from step scanning to continuous tracking at 1714:58 
Z time. Concurrently, the digital counter and printer is started and the 
tijne period of 1000 cycles of the Doppler is printed at one second intervals 
on paper tape. Simultaneously, the period count is converted to binary forra 
22
mid punched into five-hole teletype tape. The Doppler period count for 
Revolution lö) of 59 Kappa, which correopondß to the Doppler frequency 
analog record, is shown at the top left of Figure 60. The right five 
digits constitute the count, while the left six digits represent Universal 
Time in hours, minutes o«d seconds. The Doppler frequency in cycles per 
second is 10 times the reciprocal of the count. A Doppler frequency 
record readable to 0.1 c/s is obtained in this manner. If desired, the 
Doppler frequency may also be printed dii'ectly in digital form (see 
Figure 7). 
D. Signal Strength 
The lower part of the chart in Figure 60 is a record of the AGO 
voltage from the tracking filter. While in the search mode, the AGC is 
shorted, giving the clean, otroight line at 2 mm deflection. When a 
signal is defected, the AGC voltage first decreases due to an initial 
threshold voltage of opposite polarity existing on the AGC line, which 
causes a deflection toward zero on the chart. Then, as the signal 
amplitude increases, the AGC voltage increases as shown by the scale 
calibration. The chart is calibrated in power input level (in dbw) to 
the receiver input terminals and also In relative signal In terms of the 
signal-to-noise ratio at the receiver output, i.e., in db below 1:1 S/N 
at the receiver output. With a 10 z/a bandwidth, the tracking filter can 
track signals that are 26 db down in the noise from the 16 kc/s bandwidth 
receiver. 
The signal strength record of 59 Kappa in Figure 60 shows a maximum 
signal of -161 dbw which is 2 db down in the noise at the receiver output. 
The rather narrow, peaked signal response curve with the slight dip on the 
leading portion is "signature" information indicating considerable attitude 
change during the six second passage time through the antenna beam. The 
peak cross section for this pass of 59 Kappa was calculated to be 226 
square feet from this record. The rather detailed treatment of this one 
pass of 59 Kappa has been given to illustrate the detailed nature, quantity, 
and quality of the data that are provided by the DOPLOC satellite tracking 
system from a single pass recorded by a s.lngle receiving station. 
25
E. Multiple Antenna Recordu 
The previous discussion of experimental results has been largely 
devoted to data received by the vertically directed center antenna. 
Figure 63 shows a similar Doppler record of a satellite signal received 
by the north antenna and later by the center antenna. The Doppler 
frequency has a low value and is nearly constant during transit through 
the north antenna beam which Is directed 20 degrees above the horizon. 
During this Interval the Doppler corresponds to the flat portion of the 
"S" curve. The region between the satellite signal in the north and the 
center antenna is of Interest In this record since it represents a period 
of unusually high spuriouo signal activity. The short, steep slope lines 
are typical of meteor head echoes,"and are easily distinguished from the 
satellite record either by their steep slope or their very short duration 
AGO record (one second or less). Two of the slopes are of opposite sign 
to those of the satellite record due to the extremely high velocity of 
the meteor, which places the Doppler frequency on the opposite side of 
the heterodyne frequency. 
Optimum performance of the DOPLOC system is shown in Figure 80, 
which is a record of a satellite passing through the three antenna beams 
successively. This record depicts the step-scan frequency search, the 
lock-on, and the continuous track sequence as the satellite passed through 
the north antenna beam, the center beam and the south beam. It can be 
seen that the k kc/s scan range is switched up as soon as the satellite 
signal has ended in each antenna. This operation is performed manually 
by the operator who is visually monitoring the ALO output. This record 
is of particular interest since it is the last revolution of i960 Delta 
over the Northern Hemisphere. During the latter part of this revolution, 
this satellite re-entered the earth's atmosphere over the Southern 
Hemisphere. 
F. Meteor's 
In addition to the satellite Doppler frequency record in Figure 60, 
other short lines of about one second duration are evident In the upper 
portion of the chart • These are spurious responses due to strong noise 
2k
pulsea or meteor head echoea. It is clgnlflcont to note that a spurious 
frequency signal occurred Juat a few tenth.: of a second prior to the 
« 
satellite Doppler signal reception, yet the ALO was able to respond with 
full sensitivity to the desired signal. Spurious signals from meteors ore 
identified by their short time duration and ateep slopes. Signal reflec-tions 
from meteor trails, which are large ionized columns moving at very 
low velocities, are recorded as nearly constant frequency, called "flats", 
which are close to or equal to the bias frequency. 
G. Satelltto Trails 
There is some indication that the passage of a satellite through 
12 5 
the lonaphere produces a cloud of Ionized particles in ita wake, ' ' ' 
causing a constant frequency reflection similar to the "flat" reflections 
produced by meteor trails. The existence of such an ionized cloud is 
further supported by data as shown in Figures 16 and 18, where a "flat" is 
seen immediately following the Doppler reflection from 58 Delta. Other 
constant frequency reflections appearing after a satellite pass may be seen 
in Figures 26, 27, 30, 66, 89, 92 and 100. 
Figure 15 shows an interesting example of a satellite pass occurring 
simultaneously with a "flat". Revolution 6586 of 58 Delta was detected three 
seconds after the constant frequency reflection was observed. This example 
demonstrates the ability of the DOPLOC system to detect and track a 
satellite in the presence of a large, Interfering signal. 
H. Predictions 
Satellite predictions computed and distributed by Space Track Control 
Center were used to determine base line crossing times for known satellites. 
Two chart speeds were used for the analog recordings; 2.5 mm/second during 
specifically selected search periods when a satellite was predicted to 
cross the DOPLOC base line and 1 ram/second at all other times during 
routine surveillance. 
Not every satellite known to have passed between the transmitter and 
receiver was detected, apparently because of Insufficient reflected signal 
25
due to satellite attitude at the tljnc it traversed the antenna beam. 
For the some rcaoon, «any paases were detected by one or two antennas 
but not by all three antennae. These one or two-antenna reflections 
prove extremely usefuli however, when exaalned In conjunction with the 
three-antenna data, in analysts and coasparison of cross sectional areas, 
"signature", sat .lite attitude changes (spin and tumble) and 
scintillation. 
26
IV. RKFLECTION CROSS SßCTIONS AW) POWER RATIOS 
As previoucly stated, the Doppler frequency vs tljne data are 
digitally recorded at the receiving station as the satellite passes 
through the antenna beam. From these data, we may calculate the 
Doppler slope (rate of change of Doppler frequency) and, subsequently, 
the altitude and east-west position of the satellite as it crossed the 
base line Joining the transmitter and receiver. Using these values 
and the method described in Appendix I, we calculate the power ratio* 
(ratio of calculated received power to measured received power) and the 
apparent cross section observed for each satellite pass through each 
antenna beam. Table h presents these values. 
Before calculating the cross section and power ratio for a specific 
satellite it is necessary to estimate the dimensions of the satellite and 
calculate the power that would be radiated from an object of this size, 
assuming It were located at a point in space corresponding to the 
satellite position (altitude and east-west location). Subsequently, 
when the true measured power is determined using the actual received 
signal amplitude reflected from the satellite, the ratio of calculated 
power to measured power gives the power ratio. Since all the reflected 
power readings from one satellite are compared to the calculated value 
for that satellite alone, we are permitted to examine the individual power 
ratios as a composite group, regardless of the satellite from which they 
were determined. In other words, a power ratio of 1 Indicates that the 
measured power equals the calculated power, regardless of the physical 
size of the satellite involved. Figures 115, 116, and 117 present the 
power ratios measured in the center, north and south antennas, respectively, 
and Figure 118 shows all the ratios, regardless of antenna. 
* ä power raiiio vaxue of 1 Indicates that the measured power equals the 
calculated power; a value of 10 indicates the measured power equals l/lO 
of the calculated power. 
27
a u o 19 
C -H 
o a 
tj to «r. 
5 
jr. 
gp o -j « !«, 
m a +» 
o t« • 
U (0 (0 
1 I I I I I I 
1 I I I I 
IAVO VO 
I • I 1 ' • i i I N% I H^ I K^l 
H H rt 
<^ H (Vj O 0 
w w '^^ 
* I I IA 1 ' ' ••••• ^ ....") ..^ <*« 'O OJ (VJ^J 
I I I 
a 
? P 
O (3 
l. o 
»rJ. oC +>• 
V " -H &, ü W +J 
O O • 
o to w 
.^.^.^OO^H^WIAOHOX (Vi COW t- co^ 
H W CU rH 
I 
gooimo<^HCJHiAocvjOHoaxo ., f. -^ O irv • • 
I O J-co 
r-o 
■ XI > 
a K 
0) 
■p 
•H 
0) 
■pa e; 
w 
cd 
P 
H 
4) 
R 
co 
28
d 
8 
o 
en 
u o IA o H 
S »* i i 1 • 1 1 1 • • i i i i 1 • 1 1 • i i 
o a US 2j (■- 
Oi OS 
1 '.j -* Si. o ir O 
i i • 1 o • 1 1 1 1 i i 
op« 
u o & 
5 
1*11 ■ i i 
o w w « 
d 
.: 
01 
;. o 
Cl -• 
3 +> o a 
r-, .:. 
*•Ct• u•s 
evi o r- 
• • i i i I i i I i I i I i 
o 
3 
o 
c • 
O -P 
O ^ tu 
(A .-■ 
U (/} CA 
O•CO• -»• 
O r-4 1^ 
-3- f^^T Wv 
-•O• 
.3 I I i I I I I I I I I I I I 
OÜ 
c 
H 
ua 
-p 
c 
4) 
C 
ti o 
O -H 
O eJ 
c • 
o i> 
V) •H I: a .> 
o u • 
u o CJ* o w w 
I I I H 
III • • I 
0 O *scO . i 
VOCO t- W fl 
* * I ••pi 
vooo j- O S 
W t-vo^fVO 
• i i • • • • 
CVJ H H 
O Cf-r^CVJ CVJ 
OJ C t- ONH H 
KS 4> CJ I/MAIA 
H K H 
f-l 
tA 
o 
81 
> 
OMAH H t^-rO 
lAt— ONO Q CVJ 
ONONON O O O 
ONOONO O O 
ro O H J- ^J-00 CJ 
lAVO CI H H KS t^ 
rH KS^t J* US 
^r o 
H IA-* IAIA CO 
HVO IAH r- 
J- IA IASCO 
CVJ IA00COCO 
H 
(U 
-p d 
•H ■p 
H 0) H 3§ a» 
P 
■P S a) 00 
CO us 
§ 
mft 
W 
ON 
IA 
•p 
0) 
N 
IA 
sK 
29
s0 
Öl 
li OI 
i> ■Hl 
o el 
a. ft: 
o ♦» 
o ü • 
O W M 
I I 
g 
• •it 
I I I I 
l l l i I 
H•vO•c•O•W•t-•W•O•h- 
^O »^H OVCVJVO Oi^r 
• •••••». 
o gepr«-1^0.5 o 
CVJ Cvt^-HOjOJvOvO 
Hl Hl Hl 
3 
^ . - ■ 
ö J 
O H tl. 
O ü • 
i. n er 
o a to 
• 1 3 • 
as 
1 1 
1 1 1 1 
^0^1 H O H HOO 
• • I 
VO »«^ H ri HI H CO 
h•- «^• 1^• eg• r-• cJ• Co• 
.5 CVI ^Q^S^H'S»1^ 
r J 
^ o d 
c • 
o *> 
U H t», 
Ö Ü • 
u o a1 
o to to 
-5 ^J vO - : 
vO H -s "% 0> 
CJ ITNOO l-ON - 
cvj o c p^r cvj 
H H O H 
»A oj o r- J: H CJ 
i^iiAOO cvj fÄ o o 
l/!A,~ o H ^ o 
^ IAVOCO t^ cj IA 1 
CVO ^T rj 0 (A fTv 
■ • 
CVJ OJ Cvi C K 
H• O•we• ir• O• 
I IA O O H o 
«A CM H f- H 
OJ 
VOCQ OD tA ITvVO 
CMAr—COCO H 
H CVJVO CJ IA 
CO lACO^O O CJ 
H O H (Avo ^3- 
fN ^r -=• CO C oH 
onr-^rovoiACJ 
^VO H CJ ^T IAV£) r- 
H H H H H H 
0 
■p 3 
,0 
H 3§ 
OJ ■p a 
a] ON 
to IA 
CJ 
a a p v> R H 
w O 
Ü O 
0 O 
^D -O 
50
r.) 
a 
u o 
? +» 
o d 
P. ps 
c • 
o ^ ri •-t 
W 'H b« • • 
a T> 1- I vO • o o • OV m 
t. 4" o- CVJ w 
(jtntA 
4» -HI 
:« >■> 
i-. K 
d O o -• 
? *■> o a 
O 4J 
o • 
M 
0) 
a) 3 
o 
3 a cq n vi b. a P 1 CO o o • rH 
«H 5 o"1 
o o w 
r-i OVO 
tA ON O ITvVO CJ 
lAOMTWOCQ CVJ 
H H SS IA 
c 
0) o 
■p 
•H d >-j 0) 
v 9 W 
+r>t B o 
CO VO 
a« -! 
CVJ J 
i i i i i 
.. 
3' I .3 I !- III! 
i • i • • i • : 
•H CVJ <-l 
VO (•J IT» 
I -1 
C•v-5• 
»Arrv 
-H CVJ 
i • • i • 
lArA CM 
CVJ U 
t^O H •TkO 
1 • • • • • 
1 1 1 IA HVO 1 lf^T 
CJ H 
O CVJ ru 
1 I ^T VO I VO 
vo C— t-tA^r IA 
O tA^t tACTNQ 
H H H H H rAl 
WO t-i 
IAH 
vrAvo 
I 
o 
VO 
o 
G 
CO 
OJ 
tA 
IA 
(A 
<J 
a 
CO 
CM 
vo 
IA 
I I 
I I 
I I 
o^• ^:• H• 
»A r-l »A 
CVJ 
»A O CVJ 
CVJ t^J-CO 
CVJ H 
CU 
lAH 
g g 8 § 
d d d d w w 10 w 
Ö § Ö ^ 
o o o o 
vo vo vo vo 
I. o 
a 
•a 
o 
a 
G 
Ü 
> 
^ 
ü 
^ 
o 
8 . 
i. T) 
•rl 
«9 ^1 nt 
et .» 
a o 
« 
• d 
< C 
O 
-: i. 
o ^J 
h -rl 
43 ■P to 
o c 
c oH 
d to 
5^1 •»HJd, 
d u 
5H 
U d 
O U) 
VO Q 
CVJ tA 1 •d 
OJ ft § 
-0 
4) 1 ■P o 
VO 
a 
Ü 
p, 
& 
p 
51
It la noted that '»5$ of the ratios itx Fleure 118 occur between 1 and 5, 
and that slightly more than ÖC$ are between 1 and 15. This means that 
almost half of the reflections possess a power value which la 1/5 of the 
calculated value or larger, while 8 out of 10 reflections are I/15 the 
calculated value or larger. 
An Interesting situation exists In connection with the cross sections 
measured for 60 Delta (see Table h). Of the eight pusses received, six 
passes were three-untenna reflections, offering on excellent opportunity 
for comparison of cross sections us measured by the different antennas. 
It is also noted that, of the six three-antenna passes, five passes 
exhibited the largest cross section in the north untenna, and four passes 
were almost equal to the calculated value, as Indicated by the power ratio 
approaching unity (Revolutions 12'», li»ü, 156, and 165). »0 clear cut ex-planation 
can be presented for this preponderance of large cross sections 
In the north antenna. All the antennas wore Identiical ir.«configuration, 
dimensions and operating specifications, and ail were oriented with ref-erence 
to a first-order geodetic survey. Subsequent to installation, a 
signal generator was mounted ir. un airplane and a series of flights were 
made over the antenna field at each station. In this manner, the radiation 
patterns and antenna alignments were measured and determined to be optimum. 
Thus, it would appear that each of the antennae should "see" a satellite 
in the same way, and any variance in apparent size from one antenna to 
another would be purely random, dependent solely on such variables as 
satellite altitude, east-west location, and attitude. The observed cross 
sections for 60 Delta do not appear random, however. 
Further examination of the data, specifically Table 5 which presents 
average values for all cross sections and power ratios, indicates that in 
three of the four instances where a comparison can be made between the 
three antennas for one satellite (58 Delta, 60 Delta, 60 Epsilon 1 and 
60 Epsilon 2), the largest average cross section is that measured by the 
north antenna. Since i^ appears that the north antennas consistently 
produced larger power and cross section values, we might conclude that 
the north antennas were perfectly aligned, or possessed greater gain than 
either the center or south antennas. 
52
a 
I 
:3 
■i. 
f. o 
• ■• 
r- U 
■. 
B 
:- 
I 
a 
u n m 
i. 0 
5 I 
8J 
o u • 
i, i f h > ti u 
>• o 
s 
•r" 3^ 
... 
«: • 
o •' 
ao ^u • 
u X tr 
o w o 
:• ►> o e 
i, x 
r. • 
o .» 
n -i :■. n . • 
o o • 
i. . cr 
D ÜJ W 
■•) :: .-: 
0 .J 
•H :J •' o 
d m r. 
'J 
n ?. 
B »■> 
i-) i. 
0 <.-< s 
0^ 
t. 
HI u ^ >J 
a 3 o 
2 u 
H 0) 
H a 
to 
vOHHO^oococjfyoooo 
GOOOOOOr-rH»AOOOO 
0) P 
• ••••••■••• 
tr•v co• <a >o o• o•* J•» •o •tfv •ov•o•r- *rv >o 
cm va 4) «^eöiOSI *N2 t *l !f^ ä P 
rl• O•i •**•_*• ! 
04 9 «- 
CVl vo 
if» 
p. 
w 
1A 
8 
•'N• iH•I f1-• 
(O "< "^ 
, « , , -0 « « , , , , 
N •'N t- « ^ ^ » 
»O *N C> 
t~ O «O ill . • • i i i i 
J e- HI 
■ ■;. : 
(TV CO »O 
III! 
O C 'I 
Ä d ^ -r 
H (M 
f. 
<r o» CO 
«% OJ »^ "^ 
rA vo 0> JS 0 CO 
m 
N 
IA 
(g #-4 .H H H 
P. a 
IA IA 
(1) P 
O 
s .& s 
o 
O O 
U3 
f- if> vO 
ßOH 
•H 
W 
P, 
W 
O 
K^^riA.HlAiArHVOiriAH 
CVJ 
ao 
d 
0] 
& 
O 
U3 
P< 
W 
O 
53
A;; iioutx no we nukv Uilü toni^ttlvo uucunplloi», however, wa ore 
faced with controdlclory tiiita a« obacrved for Cü Kpailon i. Table S 
ohowa six ptt^c;: of IhU üalelllte, Uu-ce meaeurcd by the center anteiuja, 
two by the eoulh uud one by the north. Kxcludlng the north antenna pace 
for the icoacnt, the five rcaalAlne fkua«'cji ctCibluta have an average cross 
section of 2j6.ß squai'c fv^-t and on uvuroge power ratio of 1.8. These 
values represent the largest average cross section utid best average power 
ratio of any satellite observed, yet the one pass of this satellite received 
by the north anunna Sias a crosa section that Is tmaller than this average 
by a factor of 12. The fact that we observed this one saail cross section 
In the north antenna la not significant, since a single observation cannot 
be considered dtatlstlcaiiy oeanlngful. However, it Is significant that the 
average cross sections for tne five passeu received by the center and south 
antennas are large, nearly -quäl to the calculated value. Why these two 
antennas operated so excellently .n •.:.!« an« satellite lu a aatter of con-jecture. 
Referring again to Tab,..- I, wc r.-••• tnat the couth antenna produced 
average cross scctiona tnat ■.•ere larger In 5 out of V .'nstar.ces than those 
observed by the center antenna for the aatx- uatelllte. Here agaljn, it 
cost be pointed out that 2 of the 5 are based or. only one pass each (59 
Epsilon and 59 Zeta), and r.j valid conclusions can be drawn from sucn a 
s-Tiall amount of daia. 
51*
V. CROSS SBCTIOK "SIGMATURE" OBSERVATIOIIS 
When the signal Btrength reflected fro« a number of paoees of one 
catelllto lc recorded In analog foj-n, the sitapc of the oboervcd croco 
occtlon envelopea Ray appear very ouch alike, provided tliot the satellite 
attitude renains reasonably constant fi-oa pass to pass and that propagation 
conditions are similar. Under Ideal conditions, a particular satellite 
nay consistently produce a unique "signature", thus perelttlng Identifi-cation 
on this basis alone. Others may produce a wide variety of shapes, 
which appear to possess nothing In coamon. A satellite with dimensions 
omall compared with the wavelength will generate an approximately semi-circular 
or semi-elliptical signal strength pattern that Is Independent of 
physical configuration. Signal strength changes due-to scintillation and 
attitude change (spin and tumble) are usually present with large satellites 
which produce a very complex received signal envelope configuration and 
make "signature" Identification difficult. 
In general, the DOPLOC records obtained by the center antenna are 
charocterized by a short duration, syjcmetrlcal envelope that rises and 
decays smoothly and possesses a rounded peak, with little or no oscillation 
visible at any time. The average duration and signal strength of the 6? 
center antenna measurements are 7.5 seconds and -l69.lt dbw. The north 
and south antennas produced two general shapes; either a semi-circular 
configuration with a smoothly changing signal level or a semi-rectangular 
envelope with an abrupt rise and decay and a reasonably constant signal 
level. Considerable variations, some quite large in amplitude, are 
usually visible in both types. Signals from the north and south antennas 
were longer than those from the center antenna, since the beams were 
directed 20 degrees above the horizon as opposed to the vertical center 
beam. For the 22 observations in the north antenna the averages are 
21*.8 seconds and -170.4 dbw, while in the south antenna the averages 
are 15.7 seconds and -175-6 dbw. The overall averages for the kk 
reflections are 20.5 seconds and -172.0 dbw. A discussion of several 
specific "signatures" follows. 
35
3Q Pelta - A« outstandliig example of "cignature" Is evident lo 
Figure:: 37 and 'JO, whore a sharp null la prominent on each record 
approxlmtely 10 seconds after the appearance of the Doppler signal. 
In both cases the reflection Is In the north antenna and the length 
of record peralts easy observation of this characteristic null. A 
severe sl#ml dropout is evident In Figure 25 and, to a lesser extent, 
in Figure 22. This any be on Indication of "aignature". Slallarly, a 
ssall dip is seen in each of the south antenna portluns of Figures 31, 
35, 36 and ^6, approximately 3 seconds prior to signal loss. 
59 Epsilon - There is no clear Haication of "signature", despite 
the prevalence of periodic change in signal level, especially in Figures 
^6, 50 and 52. This c»tunge In signal anplltude is probably caused by 
satellite attitude change rather than by satellite configuration. 
%> Zeta - A Bhorp spike is easily vleiblo on the leading edge of 
each of the envelopes in Figures 53, 55, 50 and 59- The latter two 
records show a periodic change in signal strength, whereas none of the 
other 59 Zeta records possessed this characteristic. The variations in 
Figures 58 and 59 are due to attitude change, which apparently coissenced 
(or at least increased In frequency) late in the orbital lifetime of 59 
Zeta. Even as late as Revolution 855 (Figure 57), there is no indication 
of this periodic nodulation. It is very evident, however, in Revolutions 
871 and 877, the last two DOPLOC observations of this satellite before its 
re-entry into the earth's aunosphere (estimated by Space Track Control 
Center to have occurred between Revolutions 96h and 966). 
59 Kappa - Only one pass was received for this satellite and it 
shows no significant features. 
59 Lambda - The very abrupt signal loss in the middle of Revolution 96 
of 59 Lambda (Figure 6l) nay be "signature" information, though two factors 
are present which make this assumption appear somewhat doubtful. First, 
there is no evidence of this unique signal dropout on any of the other 
records of 59 Lambda. Secondly, and of greater linportance, is the extremely 
rapid signal decay. It is unlikely that any motion or physical configuration 
of the satellite could produce such a steep decay curve. The aLnost instan-taneous 
decay strongly suggests that equipment failure or propagation phenom-ena, 
rather than satellite movement or shape, caused this sudden loss of signal. 
36
60 Conoa 1 - Anotlicr excellent example of "olgnature" in found 
in Figures 69, 70, and 71, vhere the Y-ohaped peak ia easily seen. 
Fieiu*e 67 also chows traces of this shape, but the high altitude of 
this pass ('»'»0 ailes) severely attenuated the received signal and 
prevented this characteristic frota being oore prominent. This pass 
was the highest pass recorded by the DOPLOC system during its operation. 
A further Identifying feature in these data for 60 Qaosa 1 appears to be 
the signal losses shown in Figures 68, 69, and 70 which occurred in the 
middle of the passes where the signal is normally at a maximum. On two 
of these passes, the tracking filter lost lock completely, but the ALO was 
able to lock-on again when the signal level increased. 
60 Gaaaa 2 - Only one pass was recorded for this satellite and It 
displays no uignificaot envelope shape. 
60 Delta - Here we see a severe null in both Figure 78 (center) and 
Figure 79 (north). Once again, the tracking filter lost lock during the 
former pass but the ALO regained the signal automatically when it became 
stronger. A hint of a similar null may be visible in both Figure 73 (south) 
and Fi-ure 78 (south). It is worthwhile to point out that Revolution 6l 
(Figure 7k) was received by the north and south antennas but not by the 
center antenna. Perhaps the satellite was oriented In its maximum null-producing 
attitude during the middle portion of this pass and, consequently, 
this orientation reduced the reflected signal to a level lower than the 
ALO threshold level and no lock was obtained. Repeated rerunning of the 
magnetic tape of this pass in on attempt to lock the ALO on the Doppler 
signal was without success. It appears that the center antenna portion of 
Revolution 156 (Figure 78) may have been approaching this complete signal 
fadeout condition also. 
60 Epsilon 1 - There does not appear to be any clear indication of 
"signature" in these data. The record of revolution 150 (Figure 83) 
exhibits a nine second signal loss in the middle of the pass. The absence 
of signal dropout in the other records of 60 Epsilon 1 makes it difficult 
to correlate these data with "signature" information. It may be noted 
that data shown in Figure Qk was recorded at 1 mm/second which served to 
57
condense the envelope. The 2.5 eta/second chart tspeed would have 
enlarged the envelope and produced a trace ulfiiilar to Figure 86. 
^0 Kpullon 2 - The distinguishing feature here secas to be the 
oscillations observed In the center antenna portions of Figures 68, 92 
93 and 95. Reflections frora the majority of other satellites observed 
In the center antenna an? scoolh. Again it Is noted tliat the chart 
speed In Figures 92 and 95 Is 1 cs/second, vhllc In Figures 66, 69 and 
95 It Is 2.5 Bä/second. Had the fonser passes been recorded at 2.5 Em/second, 
the resulting envelope would be very similar to Figure 95« 
a0 :-:p;:ll0ii 5. k. 5 and ^ - It Is not possible to evaluate 
Individually these data in terms of "signature", since only one or two 
pasoej of each ssatellite arc avullabic and none jooms to possess any 
distinguishing features. Intercomporison is not valid either, even 
though they are ail fra^ents from t>0 Epüllon 1 (Sputnik IV), because 
the physical configuration of the fragments is probably not the same ~" 
and, therefore, any üimiiarity in envelope shape would be purely random. 
58
VI. CROSS SECTIOH MODULATIOII DUK TO ATTITÜDE CltAIKJE 
Evidence of IXTUNJIC ul^nul nodulaiion« such a» alght W caused by 
öpin or tuablc-, la vlulble In the oaJorLty or »i^nal strength records. 
This cross section nodulutlan Is visible both In the records of ground-originated 
reflected signals and In ihc records of signals which originate 
froa a satelllte-bornc irao^altter. For this discussion, we shall tern 
the foraer aethod of satellite detection and observation ,,J;asslve,, track-ing, 
and the latter tsethod "active" tracking. Measurement and analysis 
of signal strength sodulatlun observed with the two methods of tracking 
are difficult for several reasons. Propagation variances alone «ay in-troduce 
periodic changes in observed signal strength which can be »istaken 
for modulation cauued by satellite attitude change. The relatively short 
duration of the passive records recorded by the center antenna cake it 
iopossiblc to deteralne a aadulatlon periodicity In this antenna of core 
than a second or two. The passive records recorded by the north and 
south antennas, though fewer in nicabcr, are of greater value in modulation 
analysis since they are considerably longer in duration and penait measure-ment 
of several cycles of a modulation possessing a period in the order of 
1 cycle per 5 seconds or longer. Also, when active tracking records are 
exa-alned, especially those taken on Sputnik III and IV which transmitted on 
a nominal frequency of 20 Mc/s, the Faraday effect must be considered. 
This effect varies inversely with the reciprocal of the frequency squared. 
Thus, it is definitely a prime factor in producing periodic signal modula-tion 
at 20 Mc/s, considerably less a factor at 108 Mc/s (the DOPLCC reflec-tion 
frequency), and virtually non-existent at still higher frequencies 
such as the transmitting beacons in the Discoverer satellites. Fluctua-tions 
in received signal, while not necessarily periodic, may also be caused 
by changes in the amplitude of the transmitted signal or the gain of the 
receiver. Within these limitations, an attempt has been made to analyze the 
D0PL0C records for evidences of cross section modulation caused by satellite 
attitude change. 
Examination of passive and active records for 58 Delta (Sputnik III) 
and 60 Epsilon 1 (Sputnik IV) show signal strength nulls occurring in a 
2;1 ratio, i.e., two nulls are observed on the passive records for every 
59
nuil on the active recordo. Flcurto 29 (north), JJ (uouth) and 59 
(north) are records of pasalve reflection» fro« 56 Delta and show an 
ovcroG« of 1 null per ,J üeconda, while Flgm-e H9, on active record 
for 5B Delta, display 1 null pt»r 6 oecondü. Slallarly, Figuren 
OS (north), 85 (couth), and 85, p««ölvo obaervatlono of 60 Epsilon 1, 
«ase satellite (Figure 120) amua i null per J seconds. It Is evident 
froa these data tl^t the physical configuration of the sateUlte 
produces a four-lobed pattern when reflecting the ground-originated 
DOPLOC slcnal, whereas the transslttlng antennas on the satellite 
radiale a tvo-lobed pattern for active tracking. As the satellite 
tumbles and spins, these radiation putu-rns produce the 2:1 ratio seen 
la the signal strength null frequency. 
Evidence of »lailar periodic nullc is seen in the records of 59 
Epsilon (Discoverer V). Here, however, the passive to active ratio Is 
8:1. Fleures UB (south), 50 and $2 (couth) are passive reflection 
records of 59 Epsilon and display an average of i nuil per ^ seconds. 
Each of two active records for 59 Epsiicn, one of which Is shown Ix, 
Figure 121, show i null per 2k seconds. Apparently, the cylindrical 
shape of the Discoverer satellite creates a multl-lobed reflection 
pattern, while the transmitting antenna radiates the tvo-lobed pattern. 
The validity of this assumption regarding the reflection pattern is 
enhanced by the fact that the length of the cylinder (I9.2 feet) is 
approxL-nately twice the wavelength of the DOPLOC frequency (9.1 feet). 
Where the length of the reflecting object is large compared to the 
wavelength, as in this case, the result Is a multl-lobed radiation 
pattern. 
It is worthwhile to note that a total of nine active records 
taken on 59 Zeta and 60 Delta (Discoverer VI and XI) show an average 
of 1 null per 2k seconds, with individual values ranging from 11 to 
40 seconds. The agreement with the null rate observed for 59 Epsilon 
is striking. 
Table 6 summarizes the data discussed above and lists null rates 
for several other satellites as well. 
ho
4» 
T1 O 
o ♦; I« •• •• | •H H H 
y 
^8 . «I 
uo 
O *J 
. ä 
1. > o ;. 
,Q O 
« o 
VO KN ^a ja Ji 
CVJ 01 (l 
o 
c 
oj r- w 
ra 
a> *: 
i: K 
-4 • U ru 03 
CH C M • • • 
o Ü lA H H »^ 01 H • a 4/ 
ta > « 
> 4J 
<< t> 
>Ü m 
■Hn 
IQ 
<3 
Pk 
o 
3 
•H 
• 
Cj fA (A ■O tf (M OJ 
Ö E ^) V 
m 3 & R o 
aj 
ao oa oa 
0) H H 
■P -rl -ri 
w H d 
h •H aJ P 
i) H W W 0) 10 P H 
4J U) aj Pt p( (H ^ 
(U 0) 
•H ^ o w w eg o 
H a CO o o 
uS VO vO 
o ov o 
0) -p Ü ir IA VO 
■p 3 !fl 
a3 P( •H 
CO M p 
lü
vii. scnrriLLATiOH 
A nuaber of the DOPLOC rccorde of reflected olgnal otrength chow 
trftcea of eclntiliatlon and Table 7 preoents a suscaai-y of the oost 
proalneat ejtirapleo, grouped occordhig to pass tlao. The eotlmted 
peok-to-peok ajüitlllatlon In db is given for each pass, as well as 
the antenna In which the reflection was received. A notation Is also 
Bade concerning the season of the year In which the pass was recorded. 
Certain qualitative features In the data are rather pronounced and 
deserve oddltlonal coanent. 
The existence of a diurnal cycle Is apparent, with the scintillation 
oaplltude being greater at night than during the day. The average peak-to- 
peak signal fade for 9 observations made at night Is 2.h db, while 
for 20 dnytLce observations the average value Is only 1.1« db. Also, 
the diurnal effect Is auch core pronounced In susaner than In winter, 
evidenced by the fact that 8 of the 9 night passes occurred In the 
months between March and October. A series of one-way radar transmission 
tests conducted by the Bell Telephone Laboratories, at wavelengths rang-ing 
from 30^cm to 1? m, revealed corresponding diurnal and seasonal 
variations. Similarly, tests carried out by Ross A. Hull, with the aid 
of other radio amateurs, the U. S. Weather Bureau and Harvard University 
In the 5 to 8 m wavelength region, yielded comparable results. 5' 6 
The data in Table 7 show that scintillation occurs more frequently 
in the north and south antenna reflections than in the center antenna. 
Considering the total number of reflections received by each antenna, 
we find scintillation appearing in kft of the north antenna passes (10 of 
22), klf of the south antenna passes (9 of 22) and only I556 of the center 
antenna passes (10 of 67). The indication here is that the reflecting 
and diffracting properties of the terrain and the irregularities of the 
atmosphere near the earth's surface combine to produce interference 
waves which, in turn, cause variation In signal strength. These 
phenomena would heavily Influence reflections in the north and south 
antennas, since they are beamed only 20 degrees above the horizon. The 
k2
TÄIU-K 7 
A-iimiXAm« V4 »re- TIK5: 
PcftS-ld-IVftH . 
S»teUtt« Rcvatullon * SctALLUAtlOO hiss TUuc 
Bane Ruatoer Aft'-cftRfi !a 4b U. T. C. S. T. 
60 Bpslioo 2 30) - .'. 0355 2155 
60 Deli« :■-: - 2.0 tjteB oa?a 
& Epatl^JC 2 :., n ).o uiAS 0CA2 
•kJ Dr't« 9937 :; 2.0 tiO.1 (M2 
58 tvlia 5-9)7 :■■ :■." <&* 0CA2 
fß IfcllA fv."- ' .-. '>V C052 
50 Dell« ;. i. ■7'-'- •woo 
&ü ••:... 2 i-; « 2.5 crf2i 0121 
58 Itollfc .-... :.■ >. 0&.9 C2b9 
Smpufl 
s 
s 
s 
8 
I 
:J 
U 
s 
60 Ej-dlloa 2 Jty • 2.0 1)26 Wx, s 
53 Dclu» 87% : '.. 1)56 0758 w 
cO Epsilon £ 501 : • •: IbCO cöoo s 
iö Dcl:n 87> • .. ...> <A9> w 
W LDaMa . :•-• « ..^ ■ ',■• C^CA V 
^ Dell« 8719 : .. 1530 W V 
58 Bell« 9959 n 1.0 15UJ 0^8 s 
^8 Dell« ««' n :. 160) 100) s 
V6 Dell« e6bj c 1.0 161*7 10i7 H  
5? r.eui .'- s .. 1650 -'■'>- w  
ÖJ Kpnlloi. 2 :•/. .; :. 173) 11)) s * 
60 Dell« 61 :: 1.5 1605 120) s ä 
5Ö Dclt« >&*8 s 1.5 1812 1212 s 
58 Dell« }6J2 - 2.0 1815 ia) s 
60 DclUi JO :; 2.0 iBJiO 121*0 s 
58 Delta 9722 ;: 1.5 2C1.5 llti.5 s 
5Ö Delta ejac : 1.0 21)6 1536 w 
6C Epoilon 2 617 c 2.0 2218 1618 s 
58 Delt« 9612 li 1.0 2219 1619 s 
59 Lonbda 685 3 2.0 0016 1816 w 
S - south, C - center, II - north 
W - Winter (November - February) 
*S - summer (March - October) 
'O
greater leugth of the observationa by the north and south ontemma 
Bay aliso contribute to the more frequent obaervations of signal fade 
In thejti antennas. 
Fro« an examination of a number of active tracking records made 
at Aberdeen Proving Ground, Maryland, there appears to be more 
gclntlllatlon present In these active records than In the passive 
reflection records. Figure 122 ohovs a Doppler record of 58 Delta 
obtained at Aberdeen by tracking the 20 Kc/s satelllte-borne transmitter. 
Peak-to-peak signal variations for this record are approximately 6 db, 
roughly twice as large aa any variations noted In the passive records! 
This satellite was probably experiencing severe buffeting when this 
recording was made, since re-entry occurred only JO revolutions later. 
These drastic oscillations may have increased the scintillation amplitude 
to some extent, since records taken earlier in the lifetime of 58 Delta 
chow signal fade in the order of 5-i. db. Then too, the very slight 
Doppler frequency shift during this Fa3s indicates that the satellite 
was at a great distance from the station and that the inclination of 
the line of sight to the horizontal was small. Thus, as mentioned 
previously with respect to scintillation in the north and south antennas, 
interference waves may have contributed to the increased amplitude of 
the signal variations. 
HAROLD T. LOOTENS 
kk
REFEREIKES 
1. J. D. Ki-uuß, "Eviüenco yf Sutclllte-Inducc-ü Ionisation Effccto 
Between Heaslöphercs"^ Proe. BE, '«Ö, 1913-191^, (i960). 
2. J. D. KTAUS, R. C. ':ii;r.,'.y, D. J. Schecr and y. R. Crone, 
"observations of Ionisation Induced by Artlflcal Earth Satellltea'', 
Mature, 1Ö5, 520-521, (i960). 
5. Roberts and Kirchner, QST, r>. jft, (1959). 
'». J. C. SchellIng, C. R. Bwi'owö, ond S. 3. Ferrell, "Ultra-Bhort-wave 
Propogatlon", Proc. IRE, 21, Ii27, (1933); C. R. Burrows, A. 
Declno, and L. E. Hunt, "liritra-short-wave Propagation over Land!*, 
Ibid, 33, 1507, (1935); and "Stability of Two-seter Waves", Ibid, 
26, 516, (1938); C. R. Burrows, A. B. Cs-awford, and V. W. Kusford, 
"Ultra-short-wave Tranaalsslon over a 59-slle Optical Path", Ibid 
28, 3Ö0, (i9'iO). 
5. R. A. Bull, QST, 19, 3, (1935)> ond 21, 16, (1937). 
6. A. W. Friend, Proc. IRE, 33, 3^8, (li^). 
ii5
Arraron i 
CALCUUTIOJf OF PCWKR RATIO ;jkD CHÜSS SECTIOH 
Center Antenna - As prcvloucly stated, tho Dopjilor frequency vs 
tlKO inta arc digitally recorded at th«- receiving station aa tho 
satellite pasties through tncl: of the tlu'ce antenim beasa. Frea tJje 
dUTltttl Doppler daUt wo calculate the Dopplcr slope (j-ate of cJ'^jjge 
of Dappler frequency)« Knuvlng the Doppler frt-quvney and slope and 
assualng clrcultu* aotlou, U 1^- possible to obtain the altitude and 
east-vest location of the atollltc a;; it crosses the base line Join-ing 
the trar.scltter uad receiver, with the aid of a chart of the type 
prer-er.tcd in Figure 12>. Constant coatoui' ILnta have been coaputcd 
and druvn Tor the Dopplcr frequency und the tlae derivative of the 
frequency (the elope) In the vertlcul plane conUiinlns both the 
transieittcr and receiver. Th« -• oor.toura vary vlth ::ut<;llitö or-bital 
inclination, so thai tevorai cliarta u.v: reqv;ired for orbits of 
various inclinations. '£tazh cJiart i.» valid, however, only for data 
received in the center bens:. Giver, u Doj.plcr frequency of 300 cps and 
a slope of 90 crs at, x.':.> :;.l.i. ,.i:.t oV the record, ue locate the cui'ves 
representing these vnluej 01. the chart and, ut tiieir intersection, 
read an altitude of l/{ nile.i and a sub-satellite point on the base 
line located jJ5u ftiies east of Fort ;-:iii. Having determined these 
distances, a sketch sinilar to Ficare 12'« is prepared to assist in 
cow.pleting the power and CIJ:;:; ..vction calculations. 
liortli rtnd .cJ-.>uth Ant'-.'-.-.'-i- - The ^c-unietry and calculations necessary 
to locate the point, of int •■:•.>. otii:: of a satellite in the north or south 
antenna, and Its correspof.aln,: ground ranjjc froiii Fort Siil, vary some-what 
from the method described for the center antenna. In these antennas, 
the Intersection point and its corresponding distance east or west of 
Fort Sill are function:; of satellite altitude, and the inclination of 
the orbital plane and bur,..- line with respect to the equator. For purposes 
hi
of thlo vUccusaion, uc oluUl confine ouraclvc» to the ::outh antenmi. 
Calcukitlono in tho nox-th nntennti are ;;ißilar. Figxu-o 125 (jlvos a 
cmrhlc m-caentatlon of the cectjetry involved. 
The uoutl: oatenna is elevated 20 degreoo above the horizon and 
oriented In aslcuth ua oh^vn in Figure 11. The altitude of the satellite 
Intersection point In the center antenna Is taken aa the height of the 
jwtnt of intersection in the south antenna pattern. The curvature of the 
earth la Ignored here slaee It la negligible over UR- relatively short 
distance Involved. Referring to Figure 125, we calculate X, the perpen-dicular 
distance fro« tne base llr.e to the point or Intersection of the 
satellite In the south antenna, using the trlgonoaictrlc function 
:•: 
air. 20° 
Subsequently, the perpendicular distance '{, fror, the 20 degree 
plane of the south antenna zo the 90 degree plane of the center antenna 
is deterr.Lied by 
Y--± 
•v,an <r0 
The next step Is to calculate ^ the angle at which the satellite 
crosces the base line. If we let i ^qual the orbital inclination at 
the equator and l' the orbital Inclination at any North Latitude 0, then 
cos 1'/ = COS i 
COS 0 
Solving for 1' gives the angle at which the satellite crosses the 
particular North Latitude 0. The Forrest City - Fort Sill base line is 
a segment of a great circle which is not parallel to the equator; hence 
as shown in Figure 126, the satellite crosses the base line at an angle 
different from i', the difference being equal to the inclination of the 
base line to the equator. The base line is inclined 3 degrees to the 
equator so, for a north-south pass 3 degrees must be added to i', while 
for a south-north pass j, degrees is subtracted from i' to obtain Q . 
ii8
Finally, knowing 3 and Y, the distance d noved along the base 
line In Figure l.'~y can be determined by the trlgonooetrlc relation 
tan «. • ^ * 
I a 
This value d oust be added to or subtracted free r (the ground 
range from Fort 3111 as deteralned Tor satellite intersection In the 
center antenna), depending on the pass direction and the antenna In-volved. 
As shown In Figure i:f[, Vor a north-south pass, ground range 
In the north antenna Is equal to r - d, while for the saae pass in the 
south antenna the ground range Is r ■«■ d. 
Having thus determined the distance from the base line to the 
satellite Intersection point in the 20 degree plane and the corresponding 
ground range from Fort Sill, a sketch is prepared as shown in Figure 128 
to aid in coopleting the calculutions. 
Power 6nd Crotis Section Caleulations 
Having determined satellite altitude (or the perpendicular distance 
from the base line to the point of intersection In the 20 degree plane), 
as well as the ground range east or west of Fort Sill, and knowing that 
the distance between the transmitter and receiver Is ^35 miles, the distances 
R and R2 and the angles a and ß con be computed using standard trigonometric 
functions (refer to Figures 121» and 128). The azimuth angles of the trans-mitting 
and receiving antennas are known (see Figure 11); hence the angles 7 
and 6 can be determined and, from the curve presented In Figure 129, the 
factors F-, and F , which are decimal representations for the angles 7 and 5, 
are obtained. It Is now possible to proceed with the computation of the cal-culated 
power Pn, the measured power received P, , the power ratio PD/Pw, 
and the apparent cross section of the reflecting object 5~^ . 
The calculated power In watts that would be radiated from an object 
of known dimensions at a given distance from the transmitter and receiver 
is determined first. For example, a length of 20 feet and a radius of 
2.5 feet is assumed for the Discoverer satellite. The maximum reflection 
h9
croats section that an object huvlnn theüo dlaenalons would preaent ia 
calculuted by nuln^ the foraulu 
where X. at 106 ^te/s la 9.1 feet. Solving for ZU» « volue of 690 oquare 
feet la obtained for the Discoverer aatelllte. Adalttedly, thla proceso 
la an approxlcatlon, since accm-ale deteralnatlon of£21« dependent upon 
r and / being huge coapared to X. Slallur eatksatea of phyalcol dlaenalona 
were aade for Sputnik IH and IV and for Tranalt I, and the reeultlng valuea 
of C^re used In the calculations pertaining to thoae sateUltea. 
Using the basic ruiar equation, 
. ''T'V(ilt 
rFTF 
ri) ' ' 5 Bg5— (I) 
R (''«)^(R.r (R^r 
the value of21 and the following DOPLOC syHtea conatonta are Ineerted: 
P = power transalttod - 1»0 Jew 
G„ » G = antenna gain In power » kO 
X « 9.1 feet 
Thus, equation (1) becomes 
. 1-66 x to8 FTPR 
« 5 ö (2) 
(RJ- {R^f 
where R^ und R are expressed in feet or 
-„ • ^ V0'6 rT F 
B (5, 
(R^ (R2)2 
where R and R are expressed in miles. 
Next, equation (5) is solved for PR to detennine the power in watts 
that would be radiated from an object of this size if it were located at 
the point in space occupied by the satellite. 
To detennine the measured received power in watts, the peak of the 
received signal recorded in db below unity S/N at receiver output is con-verted 
to a voltage ratio X. 
Tlldenour^ L., "Radar System Engineering", M3T Radiation Laboratory 
Series No, 1, p. 66. (l^T). 
50
X = log" (max db) 
If E1 Is the received algnal for a 1:1 s/jl ratio at the receiver out-put 
(which for the DOPLOC oystcm U 0.0? mlcrovoltß) and E2 Is the meaoured 
received algnal voltage, the «eaaured power in watto io 
PH . <■=/ 
R 
where R, the antenna reslütance, is equal to 50 ohma. The power ratio, 
PR^PM cxPreoßeo the relation between calculated and measured power. 
To calculate the cross section corresponding to the peak signal 
received, equation (1) Is used to solve for JT-After 
substituting PM for PH, equation (1) may be rearranged to give 
5.'»9 x 10"9 F7. PR 
Solving for 23 gives the apparent cross section of the reflecting object 
In square feet. 
51
APPEHDK n 
BRL-DOPLOC REPORTS 
No. 1 
BRI. Meao Report Ho. 1055 - October I95Ö 
"Doppler Signals and Antenna Orientation for a Doppler Syetea" 
by L. P. Bolglano, Jr. 
COfiTIDEJITIAL 
Ho. 2 
BRL Hcxo Report No . 1185 - January 1959 
Flr.st ScÄl-Aanual Technical Smmoary Report 
Purijd 1 July 1958 - 31 Docesjber I958 
by L. G. dcDey, V. W. Richard, A. H. Hodge, R. B. Patton, C L. Adans 
(EML 39-60) CO.'fFIDrffriAL 
Ho. 3 
BRI, Tech Hote Ho. 1265 - June I959 
"Orbital Data Handling and Preotntatlon" 
by R. E. A. Putrma 
UNCLASSIFIED 
Ho. h 
BRL Tech Hote Ho. 1266 - July I959 
"An Approach to the Doppler Dark Satellite Detection Problem" 
by L. G. deBey 
COHFIDEHTIAL 
Ho. 5 
BRL Meao Report Ho. 1220 - July 1959 
Second Serai-Annual Technical Suraraary Report 
Period 1 January - 30 June I959 
by L. G. deBey, V. W. Richard and R. B. Patton 
(BML 208-59) COHFIDEHTIAL 
Ho. 6 
BRL Tech Hote Ho. I278 - September I959 
"Synchronization of Tracking Antennas" 
by R. E. A. Putnam 
UNCIASSIFEED 
Ho. 7 
BRL Memo Report Ho. 1237 - September I959 
"A Method of Solution for the Determination of Satellite Orbital Parameters 
from DOPLOC Measurements" 
by R. B. Patton, Jr. 
■ UHCIASSIFIED
nuliUDOPlJDC RhitiiCf^ (continued) 
No. S 
mi Neno Report No. 1093 - Morch I960 
"The Dyiuuaic Cliorftctcrlotlcs of PJuuse-Lock Reeelvero" 
by Dr. Keats Pullen 
tniCLASiJIPIED 
Ko. 9 
"Station Geccsetry Studies for the DOPLOC Syotea" 
3t!inford Research Institute 
l^iCL/^ÜIFIED 
Uo. 10 
Final Rvport, Part B, Stanford Rußearch Institute - July I960 
"DOPLOC Syatca Studies" 
by H. £. Schurfcan, H. Rothaan, H. Guthart, T. Horlta 
UTiCLASSIFIED 
No. 11 
Phllco Corporation - U May i960 
"Poly^tatlon Doppler Syatea" 
No. 12 
UNCLASSIFIED 
Space Science Laboratory, General electric Co. - October i960 
"Orbit Determination of a Non-Tranamlttlng Satellite Ualng'Doppler 
Tracking Data" 
by Dr. Paul 3. Richards 
UNCLASSIFIED 
No. 13 
Final Technical Report - University of Delaware - June 15, i960 
"Quantua Mechanical Analysis of Radio Frequency Radiation" 
by L. P. Bolgiano, Jr. and W. M. Gottschalk 
UNCLASSIFIED 
Ho. Ik 
Final Report F/157, Columbia University - February 11, i960 
"Nummary of the Preliminary Study of the Applicability of the Ordir 
System Techniques to the Tracking of Passive Satellites" 
UNCLASSIFIED 
^
BKUDCPLOC REPORTS (continued) 
No. 15 
HRL Report lio, 1110 - June i960 
"Precision Frequeney Kcasureaent of Jtolay Doppler Signal»1 
by W. A. Ikan 
UIJCIJU^IFISD 
Uo. l6 
Third Technical iJuraitiry Report - Period July 1959 through June 30, i960 
2RL y.va.0 Report lio. 126? 
by A. L. 0. deBey 
UltCl^SSIFIKD 
Jio. I? 
Columbia University Tech. Report Uo. T-l/157 - Auguat 1, 1959 
"The Theory of Phase Synchronlxutlon of Osclllutorü vlth Application 
to the DOPLOC Tracking Filter" 
by ?:. Krelndler 
UHCLASSIFIL'D 
Uo. 16 
BRL Tech I.'ote Uo. 15^5 - Auguat i960 
"DOPLCC Receiver for Use with Circulating Mczory Filter" 
by K. Patterson 
UNCLASSIFIED 
No. 19 
BRL Tech Note Uo. I'&k - October i960 
"Puremetrlc Pre-Amplifier Reaulta" 
by K. Patterson 
UNCLASSIFIED 
No. 20 
BRL Tech Note No. 1567 - December i960 
"Data Generation and Handling for Scanning DOPLCC Syatem" 
by Ralph E. A. Putnam 
UNCLASSIFIED 
No. 21 
BRL Report No. 1123 - January I96I 
"The DOPLOC Instrumentation System for Satellite Tracking" 
by C. L. Adams 
UNCLASSIFIED 
55
jgUDOPLOC g^OMS (continued) 
Ho. ^2 
BRL Kec» Repoi-t Ho. IjJ^) - «arch 1961 
"DOPLOC Obaervatlono of Reflection Croaa Section of Sutellltea" 
by H. T. Lootena "i^a 
UNCLASSIFIED 
In Prcpftratlon 
"DOPLOC Cosb Filter" by R. Vltek 
"DOPLOC Orbit Determination Methoda" by R. Putton, Jr. 
"Final Suwory Report on the BRL-DOPLOC Project" by Dr. A. H. Hodge 
56
5 
y 
> 
03 
Q. 
0 
0 
5 i 
E 
u 
hz 
0 
(/) 
< 
CD 
AONanoaa.-i 
57
oIM 
I? 
8o a4 oi 
is 
Hi 
it 
u - 3 ■ -> 
o 
a « u 
uo un va 
o 
M 
iff* 
iss 
»ig 
8 = ? 
mo 
s5 
Sis 
u. Ul 
< 
uo 
•H 
1. 
ill 
58
I! 
.11! 
il 
li 
It 
1 R V III 
l! 
Ij- t I! 
■Ill 
•i-i 
f " 
I 
L 
i.i 
I't 
■ •n l.i 
'il 0i 
!.l 
ii 
r 
Hi! -^li 
: 
is -I i« 
HI 
li IS 
©e 
II 
II 
a 
i 
CO 
fH 
!! 
59
i5 
m 
oz 
5K§ 
i 
hi 
ao. 
oo 
3 
I 
•H
61
IM 
• 
8 
I 
c» •; •• «r c »f"«'»rt O c N irt — ci •• c c c f. e - ■•* 
ci — n <• e. oocvf• — or.cc»» K.f. r < c«. 
cjf.f. -------cocrr.ooc re 
OOOOOCOOOOOOCoroorcrC»«' 
_„ ...................... rrc 
«MO«0O,rwOa)<0CMOc:o»rfjOeO«rcv;O 
KiOfjNwc^cv;-- - - - O' r oc^ooiotf» 
«^ CSJ IN. M t* f« <M W f- W tJ f« f •«. *W f- f•— — "-"" •" 
tfi tf> tfi in «r»« «t tft IAmm«n IA «A «n «n IA mm m w) m 
i 
i 
r- L". r?«• r C r. r c ■ v f c* c • • •' — • • r r r r « 
tf*.-? ro» i I t'f.r i c ' c « ' r—• < i 
i (ft ' : . * • « f • '" l*. i • f i' r- • « «'i • ' 
■*« -». • «*' •*" * 
. < < < <• r ' .. . f • i : • < 
1 t I I ! ! I » • ' 
' t ( I I f ( t (. ' (II" r f 
i.) in o in i") o oo i." i.> i.i i.i o i.*i'-" i'' '• -l-" l" '•" '• '• 
IzI 
o 
o 
S S 
-I 
>• 
63
Vjf 
s • 
•z 
< 
IÜ 
0 
O > 
CM O 
Z 
QC o (0 
l&J u H 1HP 
UJ c 
5 
w 
< 
bi 
H 
SÜ 
iU 
P 
ÜJ 
iz 
s£o 
z 
> OD z 
UJ O 
K z 3 
UJ 
Q. 
< 3 
Z O o (/) Z z >. < 
V) 2 
z < 
z 
tr. 1 i oz 
(T (0 
Q UJ 
to d § 
Z z CD 
H o < 
.-^^ -' 
Q. ÜJ 
§ t;w 
O j o 
^ UJ S 
<^ 
_l 
QC 
CD 
62
ft 
• 
4% 
9 
8 
-i • ■*•' 
a 
s 5l 
s 1^ 
K 
a 21 
2 .11 
? UIH 
K> Sj 
Hd 
c- •: •• c «r »r «'«•■« o o N ••*- c •• c c o c c - ■•• 
c* — o r c oif» IT.cc" — o r.c «r »i Kc. r ( c«. 
c.r.c ooccoooc rc 
ooooocooo<■>oocoroorc«r«»«• 
„„__„«„»_- -.. ror 
{VJcvj«v. CSJfw cs; wNf«CVJrjf«c.c,r» cf;-" — — -— ■ 
r. rf» tf» if« rf» *> «o o rf> «o «r» rf> ir o «o«.'»«ft m «o m o o jd 
3P 5 
<* 5 
r IT. r«•: * c r. f c • s-«.- c* c •••'-••«" f f r ' 
• l- . : Ki » if O f) f ' C ' < l f r • — • ( I 
, <: c c ' :.' » f r • '■ f. i »• .' r- • « i"« • • 
• t' * - • • * 
. < ( c c *• .. • • t : • < 
• (»■••• ' . ■ • i t i i ' ■• i 
i.) uo in o i."» o om i.". i.> i." i."> i-"' >'' ^ ••' '• - '•'• '•' '■ • '• 
—« 
zf 
8 
8t 
I- S i 
-I 
>• 
63
i 
si« 
iv i o 
Q.uii< 
Sä 058 
18 
Uli 
CD 
0) 
JH 
6k
'A 
■JL—' ,H ^rm 
ANTI 
w 
z H^^ 
: <o S(0 z 
< 
X 1- 
65
ffNiii 
SANOS 
1 if ^ i (' NORTH 
11 1 I ANTENNAS 
1 1 .  s sv i /s^ 
J'/ 1 / /  i w ' i/ ^^ M «v' ronT^^'SILL N^ 
ii 
■ i  / i  
v-/^/ 
i A / l 
v /  i / Nv / ' 
h^Y i' AA.I 
SOUTH » ^»«i 
ANTENNAS  
 /i>V ! v y 7 1 iV V i 
FORREST 
CITY 
NORTH AND SOUTH ANTENNAS (TOP VIEW) (EDGE VIEW) 
WHITE SANOS FORT SILL FORREST C|TV 
CENTER ANTENNAS (SIDE VIEW) (EDGE VIEW) 
FIG. 10 - INITIAL ANTENNA ORIENTATION 
66
/ 
/ 1 P^ 
1 ' /I ^ 1 1 7 NORTN V 
 1 > 
yf t ANTCNNAS 
H / 11 // 
 i 
[l^y^ ^N 
rotuYS^ ^w^ Nii 
SILL /^v ^k 
/!V  .X i 
/ ' ^ >^ 11 
/ ' ^ xx / i 
/ ' ^ /it/ N / ; 
/ L^l SOUTH NJ / K^6 1 
v , v 1 w7 
ANTENNAS / ^H 
FORREST 
CITY 
20o 
NORTH AND SOUTH ANTENNAS (IOP vitWi (EDGE VIEW) 
FORREST 
CITY 
CENTER ANTENNAS (SIDE VIEW) (EDGE VIEW) 
FIG. II - ANTENNA ORIENTATION FOLLOWING 
DEACTIVATION OF WHITE SANDS STATION 
67
A3N3n03Ud «31ddOÜ 
CM f* •1 4t 
H19N3Ü1S 1VN9IS 
MBO 
CD r« ^ *? *? 
li • i ' 
IddinO U3AI333U 
I« N/S 11 Moiae oo 
:? ^ « ° 
II I > 
) 
4 
a. 
'■ 
0» 
tf) ■ 
a M w - 
= 5 
OZo 
o 
UJ 
10 
♦ 
2 
»- 
w 
»fl 
N 1- tf» 
a 
UJ Ö 
(ft 
: 
•- 
c. UJ 9C 
«J J o 
1" i 2 
8 »o Z 
UJ »- 
3C ^ 3 
t J> a « O 
»- •*» ■ iA 
-1 T >» UI • 
Ui '■a J ♦» 
o » — i z 
«« U 
■» ^ 
CO < Ü o w 
s> u) Ö s. »- 
z 
< 
Z a 
u o o •J 
o -1 UI UJ ^ 1/) X O a 
o (t c. D 3 UJ 
or 
O 
< -* 
^ u o UJ _ UJ >- 
O 
^ 3 •J <J 
au»- 
_i a (/) a 
UJ o 
cr 
o 
ao 
-1 
o u. Ci 
o 
_) 
a 
o 
zo 
-I 
^4 
U 
i- «n 
o (Ä v> i/i 
Q. CD <s < 
_i UJ -J UJ 0. 
tr 5 UI i 
CD 0) UI ►- 
1 m o _l D 
<J UI O 
a o »- S V) 
cr z o 
l < < Ö 
lO 
I 
UJ 
(0 (M 
o«. r in 2 «• M UJ _i 
oo 
u> 
O 
i Z 
> <■ r>- z 
UJ 
tr o 
o 
o u 
1- z< <i UJ UJ 
_J 
UJ 
Q 
a: Q CE 
UJ 
1- < t- z 
OO UI _) UJ 
IT) S < o 
r 
ta 
68
Hl9N3diS 1VN9IS 
M80 
00 N 
in 
in 
ADN3n03dJ M3"ldd0a 
S31DADOni)« 
II I II 
indino «3Ai303ti 
iv N/S ii MOI3Q na 
«CO (NJ 
«M - — «0 O 
II I I 
.-»««■.3-1....■. l^n.,B—»—Ii ,pi »j,^»!,, 
< 
z< < 
J 
U. 
N »- 
O I- s = 
an a: co 
UJ tc 
o . 
O o> 
9 K 
u> vt 
(A 
O UJ 
U -I Si 
a 
3O 
J~ 
Iz 
t- ec 
o 
to 
•O — 
- z 
bi 
O 
cj « 
CM 
< 
z 
z 
UJ 
u 
»o 
u 
z 
< 
0C < 
2 0 
Ct 0D 
O (C 
W _| 
2 < 
z 
UJ o 
69
Hi9N38lS nvNOis 
lO N 
OO N 
M80 
in 
ADN3n03äJ M31ddOO 
II II 
indino aJAi3D3a 
IV N/S I I MOT38 80 
<VJ V 0) 
•j eo 
«M - 
I I 
<J 
I 
!-J 
-." :*: : 
i 
: : : 
rr r 
•ft" rr-pi '••: 
...^j........i....j,...r...r. .• .. 
•f—t -i • t •f : r f 
... g 
• ! -Oo 
; i .u 
T" 
■ 
< 
z 
ct 
u. < 
o 
c - 
O ü 
o.» 
Ill »- 
a: </) 
u 
oc a: 
UJ oc 
o - 
o oo 
m 
o to 
o ^ 
_i 
a- > 
O UJ 
o oc 
OD J 
2° tt: » 
M 
b. 
M M 
-»- « 
-. w < 
S W 0- 
»I 
O w »- 
UJ u, 3 
y - w) _ 
ö 2 i u) 
UJ x r1 
. . o 
M «» Z 
m U_J, . 
(VJ -2 
Z u> 
a: ^ <r 
« tl i' 
< »- « 
U -J W 
5 < O 
TO
sanoAOoiiM NI 
.ON3n03MJ U31ddOQ 
Hl9N3diS 1VN9IS 
MBQ 
CO K N IP 
0» 
II I II 
snoAoaDiw zoo 
«0130 $1381330 NI 
Hi9N3UlS IVNOIS 
CJ - 
I I 
fJi 
I 
«0 
i 
s 
4 
i 
! 
„•■•■;■ i • r 
i I i; 
:r-!H;H 
V) 
< 
0) 
z 
u. 
< 
o 
o 
< 
IM 
»O 
o 
Ü 
> 
• • 
UJ U o 
«r UJ 
H H 
o: (/) o 
UJ UJ n 
_J a: UJ 
Q. a: Q; 
Q. o n 
O u. 
n 
u> N 
o 
00 
3 
IO 
00 
IO 
(j 
Q. (D 
O > IO 
O UJ 
(t N 
,.J 
(t <r O 
UJ 
«1 ^ 
o: 
UJ 3 
^ o (/) 
0. < 
(C on UJ 
< in 5 
V) 
I- 
< 
UJ 
to 
UJ 
-J 
öS 
(O 
(A 
> I 
w z 
UJ . =i< 
2 Z 
Z 
(M UJ 
N I- "" z 
< 
UJ 
- z 
-I UJ 
< Ü 
IA 
71
S31DA301IX Nl 
ADN3n038d H3nddOO 
«n to <y> 
i • : s 
• • 
• 
..... 1 • • 
PASS 
• : : 
. 
• 
• 
N 
: 
• 
• 
•* 
i 
.... 
■. 
4 
*> 
J 
... 
- 
• 
* 
0 
i 
■ 
■ .... 
: 
.. • 
if 
, , r 
.f. 
■" f 
■ -» 
- ■• 
.... 
.:.! 
.... 
... 
... 
<m > -- 
,'A 
■*: 
H i; 
■ •* 
-Of 
■ > 
■■"■■ 
''' 
';.'. 
siiOAoaoiw zoo 
MOisa snsaiDSO NI 
Hl9N3dJ1S -IVN9IS 
« CD 
<M — 
I I T i o 
8 
1• 
1 .. 
!;i 
1 
i. 
I•li 
I ; 
1 
■ 
.. . 
ili' 
| 
w 
azo 
Ii 
L 
. .. 
•• 
o 
z 
«0 
..!. I 
N 
O 
3 
- 
0) 
w<l z u. < o * 
o >- 
<-> h- Ui - 
g-Is 
Ü io o * -I u> 
a. oo 
o , 
0 >u 
-J x 
oc 
CD < 
1 -i 
ac oo 
< m 
(A 
* I- 
- < 
o ^ 
Ul (ft 
H UJ 
y -J 
a. io 
N eft 
M d 
U) to 
o 
UJ UJ a: o 
(ft H 
u< nH 
z < 
<ft 
(ft 
x 
»- 
D 
O 
(ft 
IX 
so 
O u, 
<zz 
UJ 
H 
Z 
< 
QC 
UJ 
h- z 
Ul o 
72
Hi9N3dlS IVNOIS 
M8Q 
S313AD01IX Nl 
A0N3nO3MJ uaiddOO 
«n <o o 
• 
- if I- : 
. 
....... 
... 1 
i- • i : ' 
: i 
;... 
. .. • 
;__ 
i • 
.....■ ... ■ 
.... . .... ...j.. 
...J. .. 
.... f" ■ .... .A. 
.... . ■ ...J;. •i 
• i i ■ : 
...S.... 
...j; 
...: 
■ 
.... •1 
....... ....._ 
1; .•• ; 
■■■'■ ...j 
" i 
Ij j 1 
.... 
. :> 
■ t •: !'JI 
.... •: j 
(0 N 
ii 7 
SX10A0U3IM ZOO 
M0138 $1381330 Nl 
»UONJöiS IVNOIS 
(/> 
< 
(A 
Z 
u. < 
o N 
o < in 
a >. <o o H O 
Ui ü o 
ÜC ti 
H h 
IT (0 u 
UI 
-1 a. 
a. 
oo 
a 
ct 
o 
b. 
p 
o 
UJ a. 
a 
o 00 
<0 
N 
O 
a-i ro 00 • • 
o in o > o Ui o 
-i (t 
tc o 
CD < UJ 
1< 
a. 
b 
UJ 
Q 
a: 
(0 
< 
a: 00 UJ 
< m 2 
_ (/) 
(0 V) 
H a 
U. z 
< 
O< 
UJ z 
i-i 
a: i 
UJ z 
> »- o 3 
* O 
to (0 
UJ ^ 
-1 
< 
2 zz 
10 UJ ? Z< 
Ui o a: 
UJ 
i- 
H z 
-1 UJ 
< Ü 
«j 
75
A3Nan03UJ U31ddOO 
SlIOAOUDin zoo 
Memo snaeioaa NI 
H19N3U1S 1VN0IS 
«n to oo o» 
T CO 
CM - 
(VJ 
in 
■ • 
■ 
. . j. : '.. . .. 
| :! : :: 
M Iü4.Li.'n 
;.::t|::j:::i 
ri;t;i:::j:::ii 
• ' |: ■ ;: ;::; jÜ' ;•;■ ;• 
s 
I I 
2 
§1 u 
I 
i o 
U3 
2 
O 
O 
Z NI 
. 
sz 
O < 
tr • o >- 
ü H 
a: </) 
Ui UJ 
u 
o 
-I a. 
oo 
a: 
m 
oo 
> 
UJ a: 
< 
00 
-J 
-i 
ü> 
N H W 
CO U- <3 
<NJ L. g 
« w 
o uj I-ü 
w 55 
UJ 2 x 
' , o 
N (/) Z 
UI 
o < 
UJ UJ a: o a: 
3 2 UJ 
(/> i- i_ 
< P z 
UJ Lj UJ Z < u 
00 
H 
74
S31DA001IX Nl 
A3Nan03HJ HllddOQ 
in u) CO <T> 
o 
i 
snoAOtom zoo 
M0138 81381330 Nl 
Hl9N3UiS 1VN0IS 
<M - ™ 
i o 
5..|:: !,::tfe" 
.«III - 
i : ! 
•r rt> 
:..kJ..! 
...ji.J.::|4....Li..J...j..;J.. 
n.iji... 
■ Ul. z 
... „Ii... 
T-kri" 
V) 
< 
o ^ 
o% 
oc - 
o >- 
£2 
N 
d en 
2 
10 kJ 
2 u! 
o »- t UJ 0) 3 
H < O 
O U M 
5 
o: = 
a, oo 
o > 
UJ 
• a: 
CD 
u « 
a: 
a. 
i2oi •a-: 
- o 
w j - o - < 
♦ s 5 
* (0 tu 
- oo H 
to 
ÜJ Ui ^ 
K 9 a: 
I -* ^ 3 
^ liJ S L^ o?- "o ?<2 tH 
o: QD uj 
< 
UJ 
^ t h-io 
_l 
2 
< 
UJ 
o 
75
S31DA3CniX Nl 
SnOAOUDIW zoo 
MOT30 5*1301330 Nl 
MiONlüiS IVNOIS 
N 
00 N 
m u) N CD J» ■ i * c 
;; J :-t i ??K . .,:-■: iPiiiniimfiiii" .;5| 
"J .11 !....„. .}-£... . ••& ^^ ^ . ;i .% i 
*• 
II - ■> >■■■ ■1 ■■e" Snl -. ■ V'-'A---'i...A- .... ■ •i 
• ■ 
'"" .... • 
•• 
Ii Ijij .... || ""■ 
r nr --(■■ ll .... 
• : 
■-:{■ ■ " •^ . ... ■«- . .... .A- .. .... -., ■ ••■ .••■ .... ■ ■■■• .... "■■■ 
■ 
• .... 
"i 
- i i , 
.... ; 
! :i 1 , .. • • 
« 
"• •» • ■■% • 
:• 
' • 
* 
1 
i ■ .... ■c. .... 
F' 
■ ■•■ 
i ": 
U.""" 
li - : .J,. 
i u, =! 
.... 
i i .5.. 
• 
• 
« 
3 i -■[- . til — • •„ f-•^ 
...i 
s 
,!«•• 
g- Jf* .. . .I m.... 
</> ■ ■ * ».. CO to: 
^ 
.... .... ....r."!!. «M •—» V , 
...pwr 
 * •' .... -' 
r;.:: 
s 
:: it : . 
. ..i '...J ".1... > ... t;: 
.... •^^ .... •« 
■ 
..j. J.... 
»• : • ■ 
4 <rt I 
........  ^ .... o 
j's ' ■■' j i' : . ! l.r^ 
'ri'c ■■;■■?■■ < : .. , . 
%« 
ä • 
— ' T • """ •:t S" .. .... Ul •-.-. .... 
.1 1: • ;: • ^ 
•S- • . L. £ 1 J. 
'" " 
1 
i .••• .... •••• • 
. i." 
I :: 5 1 ! 
: 
If:: 
■ i ■ 
" i ji ••?' :| :;;; ?r- • .;.. 
»•;i 
..;; ••M •• V"* .... ..j: .... s;; , ,1 .::. ::.: .... ...; .... .:;. ..;; .... *"! / 
'i: '.*' ■ L;| ; s . ,: ..;■ ...f • >•• . — •« rt 1: I hi; ;;t; £••• •■■> ■... .... ——- -—— • .... *•«. .,.. •■•• , !•; ; .in • till i j!{| ':;; : 
••:: ::P :: ••• ::r: tp •r: ::H nit—.ii lifi .... 
!••' :•;: :i:: .... 
(»* : illl i III] T- [■;• ;;;; R t Ml. . .. .... !:.. .... 
':! ig II ili I [iii 
.••» 
: v ;;:: i 1 ft iH "" iili .... 
■ iii; ..j. .. • tin .4.1 . ;::: .... ittl " ; }1iti 11 ili l!. | i hj [Jlj ii!; t|] :;::; ill üii j)| II [Iii illl i v.f. mi ittl ili: i Hi un ;;i: ;"; iiti tin i!i! üii 
(ft 
< 
(A in 
u. 2 ^ u. 
O ff 
o ^ IO o: ^ io 
UJ o o 
a: {2 y 
w ^ 0 
S-I- Ko aU 
£ iL a. 
§ - - •ON 
o 0* — 
o ^ o 
a. • 
oO Q>J n12l 
a<. O" W< t~ 
a: oo ui 
< m 2 
(A 
H (A 
(O < 
< s Ui 
<n Xi- 
Ui 3 
-j o 
2 
IX 
m CO t- 
*■' K • 
Oz 
Ui 
-1 m 
2 <z 
(0 z 
Ui 
z 
Ui < o 
Ui 
»- z 
-1 Ui 
< o 
8 
T-l 
76
S313A0Ü1IM Nl 
ON3nOJUJ H3">ddOQ 
rf) Vi> <T> 
snoAOdDiw zoo 
M013Q $1381330 Nl 
H10N3U1S IVNOIS 
O « 00 
io w — 
i i i i I 
t 
uK 
J 
-1 
Ua 
.... 
■ 1 
•- 
1*« 
.... 
• • 
•1 
.... 
... 
3"" 
s... 
; 
• 
< 
.... 
... 
• 
■ 
•-! 
■••- 
■ 
■ • 
• ■«. 
■ •*. 
.... 
• 
.... 
.... 
.... 
:- 
ill 
-I - - 
.... 
..; .... 
"t 
..;• 
.... 
"T 
■•i- 
- 
' # 
...... 
(.L>.|....i .......... -.JJ-J^. ..... 
}] r-r 
% ■■] • 
V 
&P 
.1.... i 
...... j.mg I„M 
...... 1 
bisi 
..... 
H::.j.::-|^ 
■ 
i....N.._: 
1..J: 
I 
2 
dn 
CVJ 
L 
:r 
5z 
u. < J 
O * V) 
o < I-: 
K . ik .. o >: N 
MILES WEST 
-SOUTH PASS 
21 
gs 0> o 
o 
PLER 
RREST 
o 
U 
(»)- 
0. o o 
u 
c: 
DOPLOC 
EV. 9009 
u. 
IM' 
w 
5 
134 MILES 
NTENNA , NC 
P 
_| ^ Q UJ 
. . < 
%< D 
H (/> P UJ P K H < |- z 
^ w UJ -1 UJ 
J?0 s < o 
(C oo 
< to 
77
sanoADOiix Ni 
.ON3nt>3Mj UBIddOQ 
SilüAOäDlw ZOO 
MOIBB si38i33Q NI 
M10N3W1S 1VN0IS 
j 
V) 
(0 
< 
CO 
o <* 
O » IM in 
(t O CM Ul 
UJ 
-J a 
u 
a a 
o 
o e 
o 
o 
CSJ 
_l 0> a. 
o > 
o UJ 
a: 
_J 
nr < 
CD ü i UJ 
< o 
0. 
cc GO 
< m 
O «A H 
U UJ K 
I- J O a i « 
UJ O X ? 0 ^ ^ ^2 • «o 
N M V) 
UJ , 
2O s- z< 
— m UJ 
U UJ 
(E O K 
3 P UJ 
W) H J_ 
< P Z 
UJ _| UJ 
5 «J o 
to 
78
SSHOADOIIM Nl 
ADN3n03aJ «aiddOO 
snoAOdoiw zoo 
M013a 81381030 Nl 
Hi9N3dlS IVNOIS 
CO 
<z 
< 
o a 
a: >- 
o H 
Ö V 
K i- 
«, w 
(C üJ 
UJ a 
10 
in 
OJ 3 o> 
a 
o > 
o UJ a: 
_i 
QC < 
CD Ü 
1 UJ 
< o 
a. 
a: 00 
< m 
.J 
to 
5w) «»- !g2 
UP. UWJ 5H 
so s- M9 
q * i 
a £f ^ • . o 
N y» Z . 
«?;<&- 
K) * Z 
«^ -. z 
Om wao uj H 
S u < 
SI 
5) t UJ 
C H 
UJ 
S 
UJ o 
79
S31DOCniM Nl 
ADN3n03di «3TddOO 
4, u> 05 
53 0. 
UJ 
- 
uJ 
-i 
Ui 
I I 
,..... 
• • 
o 
■ • • 
: 
• ■ • ■ 
;; 
i ! 
> 
:1 
. J 
. 
snoAOuoin /00 
MOlSa 91381330 Nl 
Hi9N3HlS 1VN9IS 
9 00 
<M - 
I 1 1 I 
i ! 1 r S 
ill 
■ I 
N 
L : 
r : ! • 
1 
1 
I I 
Mill M • 
........ 
...... 
1 
. j.... 
•r— 
M 
< 
0) 
u. z 
< 
-1 
0 
0 
0: 
< M 
c N b. «/> 
Ü a >- in (A 0 V) 
s 
UJ a: 
0 
0u 
1- 3 
-1 
un 
UI 
-J 
O 
in 
a. (E UJ 2 ! a. 
0 
0 £ ac X 
IM » O 
u 0) 
00 m III 
2 U> 
0 rvj !t _J 
n o> 00 z m S 
0 
0 >' 
UJ 
O 10 z 
UI 
K 
Z 
-J «J a: 0 
UJ UI 
0 < 0 
=) UJ 
1 -i 
UJ 
< 
UJ b z 
UJ 
< 0 S < 0 a. 
a: 00 
< in 
80
ON3n038J allddOÜ 
S31DAD01IM 
(0 
HiON'JUlS HVNOIS 
Mao 
CD 
T 
K - to Ok 
N N <£ in 
T 7 T T 
mdino «3AI3D3« 
IV N/S hi MOiae 80 
or 
u. <^ 
O ac 
O < 
O 
>- 
O 
bl o 
(t 
H a </> 
UJ UJ 
a-I. oac 
0o. oÜL o » 
o «0 
o u> 
_l * a. a> 
oo >w 
_i a: 
(C 
a? < 
»- 
1 -i 
bl 
a<. O 
a: 00 
< m 
d 
IM «•- 
2 w) tf> <5n<22 
tj UJ 
UJ o> 
tE CD 
Q. CM 
N tO 
UJ 
00 -J 
-? i CM 
•n in 
in h- 
— (V 
oUi UJ 
e'n$H 
< H 
UJ j 
3 < 
Z 
H 
KOZ 
J » 
=> 
o 
10 
C. 
< 
z 
z 
UJ 
h- z 
< 
(E 
UJ 
z 
UJ a 
81
HiON3ülS 1VN9IS 
M9Q 
OB r» t 
ADN3n03yi a31dd00 
SSHDAOOllX 
II I II 
indino a3Ai3'jJö 
IV N/S 1:1 MOT3Ü 80 
« • 
- W «0 o 
n (o N> CD en i i 
1 1 1 
1 
, _i L -, - _ ,i i, II ■ ' 
"•"T- .... 
• 
•a a ■■■<< ■ ; 
..*. ...... .... ■■■ •* ■•■■ 
i ■ 
: :*: 
..... 91t ••■■ 
.... :::..::. 1 i« 
■• i 
/> 
* ...i....L.... 
LJ... Jj.-1 •i1 ! 
.... 
s 
,.■.. , 
■ 
i 
: 4J.... 
j.;..... ......f.;...;....,........., • • • • • '"f- •■•••-•i 
TEL 
• ■ • • ■•-• 
i 
.... 
< ;- -ji ..:....:^..i.—i ■•t ,.:.... w I ::p^;ii[:i:::::|: : |................. ..:.... 
 / 1 S : „.... 
.i 
J •■ 
.:..:. LJ 
it 'i. ••i 
i• 
-•"■It-•-•"■•"• •t-ft-i | 
I.1 .;... ... .i.....:. 
1 ! ...JJ„J..J A 
L' •j i m 
■■■■■&■ 8 
••: 
kl.... 
% 
 i 
i i ;; .: 
i ! ... tA. 
•••• 
1 i r mim 
|| 
...L....:.:. 
. .... .... Iii • •■■ 
■ ■ ■ i , :::::;; :.. : V 
a iii: 
3! iiii 
M ;i:: li 
li iüi .... 1'"■ iü?li in {g 
ifj im IM ;:i: ; 
ill 1 
IM j 
": ;HT i :: ::■ 
■Uli iii: iii: 
[iii 
(Hl 
11 
liji jjjj III 
111 :::; i li üi 
ill iii; | :i || 
in nti i fj ft 
i iii: iiii iüi ii iii: 
jiiiii 
iiiiii 
Im 
iiii 
iiii 
iiii 
Iiii 
iilf li; 
iiii iili 
iiii ijü | 
ptl ii 1 
j ;;*. 
ii iiii 
iiiiii 
i ijti [in 
i ;;;: Iii iiii 
i iili iiii iiii 
ill! ::;: ilii li; ;;;! i ;i ü 1 iiii iiii iiii ii I'll ;;;; iiii iiii i!i' II! 1 :; ;:i: U u 
< 
z 
< 
(/> 
O C u o 
lil 
a I-V) 
flC u 
UJ oc 
-i a: a. p 
0 . 
O N 
O 0> 
-j 
K < 
1 uj so 
K (D 
< IO 
N y, 
(D »- < 
M V) Q. 
bJ 
o > .1 
p vt 
UJ UJ 
h _J 
bi 
a. 
o 
to 
iX 
• «/) 
N U 
_ -J 
2f o 
o 2 
in t 
< H 
W J 
Z < 
4 
Z 
Z 
tu 
C 
UJ 
»- 
z 
UJ o 
tu 
82
Mao 
ADN3n03dJ U31ddOQ 
S313A301IX 
K OB A 
—183 
—177 
— 171 
—165 
— 159 
indino d3Al3D3M 
XV N/S i:i M0138 80 
M - — tO O 
il II 
(0 
< 
(ft z< 
u. ^ o ac 
o < V) 
er * 
>- 
^K (rt o: 
UJ U 
ou 
0043 
AST F 
H PAS 
»- O u K 
(r (ft bi 3 
UJ 
-j 
UJ KOTO 
U UJ M 
as 
2 
Q — 1 
£8i ! 
o IO o O uj - -■ 3 
0. 
in IO _| < 
o> 2^1 o > 
o O o w oc UJ 
— z Q < 
-1 UJ tu 
mig 
UJ o 
MEASUR 
ALTITUO 
CENTER 
QC 00 
< IO 
83
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2
Doploc observations of reflection cross sections of satellites 2

More Related Content

Viewers also liked

gps gsm based vehicle tracking system seminar
gps gsm based vehicle tracking system seminargps gsm based vehicle tracking system seminar
gps gsm based vehicle tracking system seminar
hiharshal277
 
Project report for railway security monotorin system
Project report for railway security monotorin systemProject report for railway security monotorin system
Project report for railway security monotorin system
ASWATHY VG
 

Viewers also liked (10)

Real Time Vehicle Tracking System
Real Time Vehicle Tracking SystemReal Time Vehicle Tracking System
Real Time Vehicle Tracking System
 
gps gsm based vehicle tracking system seminar
gps gsm based vehicle tracking system seminargps gsm based vehicle tracking system seminar
gps gsm based vehicle tracking system seminar
 
Project Report
Project ReportProject Report
Project Report
 
Fully automatic anti collision train signalling project
Fully automatic anti collision train signalling projectFully automatic anti collision train signalling project
Fully automatic anti collision train signalling project
 
Vehical tracking system
Vehical tracking systemVehical tracking system
Vehical tracking system
 
Methods of connecting internet
Methods of connecting internetMethods of connecting internet
Methods of connecting internet
 
Location Tracking of Android Device Based on SMS.
Location Tracking of Android Device Based on SMS.Location Tracking of Android Device Based on SMS.
Location Tracking of Android Device Based on SMS.
 
Vehicle tracking Using GPS,GSM & ARM7
Vehicle tracking Using GPS,GSM & ARM7Vehicle tracking Using GPS,GSM & ARM7
Vehicle tracking Using GPS,GSM & ARM7
 
Vehicle tracking system using gps and gsm techniques
Vehicle tracking system using gps and gsm techniquesVehicle tracking system using gps and gsm techniques
Vehicle tracking system using gps and gsm techniques
 
Project report for railway security monotorin system
Project report for railway security monotorin systemProject report for railway security monotorin system
Project report for railway security monotorin system
 

Similar to Doploc observations of reflection cross sections of satellites 2

Satellite induced ionization observed with the doploc system
Satellite induced ionization observed with the doploc systemSatellite induced ionization observed with the doploc system
Satellite induced ionization observed with the doploc system
Clifford Stone
 
The doploc dark satellite tracking system
The doploc dark satellite tracking systemThe doploc dark satellite tracking system
The doploc dark satellite tracking system
Clifford Stone
 
Arpa satellite fence series
Arpa satellite fence seriesArpa satellite fence series
Arpa satellite fence series
Clifford Stone
 
A comb filter for use in tracking satellites
A comb filter for use in tracking satellitesA comb filter for use in tracking satellites
A comb filter for use in tracking satellites
Clifford Stone
 
Determination of orbital elements and refraction
Determination of orbital elements and refractionDetermination of orbital elements and refraction
Determination of orbital elements and refraction
Clifford Stone
 
Progress_report_May_3rd_2016_PDF
Progress_report_May_3rd_2016_PDFProgress_report_May_3rd_2016_PDF
Progress_report_May_3rd_2016_PDF
Jui-Jen Wang
 
TU4.L10 - ASSESSMENT OF ASCAT HIGH WIND RETRIEVALS WITHIN EXTRATROPICAL CYCLO...
TU4.L10 - ASSESSMENT OF ASCAT HIGH WIND RETRIEVALS WITHIN EXTRATROPICAL CYCLO...TU4.L10 - ASSESSMENT OF ASCAT HIGH WIND RETRIEVALS WITHIN EXTRATROPICAL CYCLO...
TU4.L10 - ASSESSMENT OF ASCAT HIGH WIND RETRIEVALS WITHIN EXTRATROPICAL CYCLO...
grssieee
 
TGS EUR- North Viking Graben 3D
TGS EUR- North Viking Graben 3DTGS EUR- North Viking Graben 3D
TGS EUR- North Viking Graben 3D
TGS
 
Grand vs swift
Grand vs swiftGrand vs swift
Grand vs swift
Sanu Kp
 
Bowman ducklow grc_pms_2017
Bowman ducklow grc_pms_2017Bowman ducklow grc_pms_2017
Bowman ducklow grc_pms_2017
Jeff Bowman
 

Similar to Doploc observations of reflection cross sections of satellites 2 (20)

Satellite induced ionization observed with the doploc system
Satellite induced ionization observed with the doploc systemSatellite induced ionization observed with the doploc system
Satellite induced ionization observed with the doploc system
 
The doploc dark satellite tracking system
The doploc dark satellite tracking systemThe doploc dark satellite tracking system
The doploc dark satellite tracking system
 
Arpa satellite fence series
Arpa satellite fence seriesArpa satellite fence series
Arpa satellite fence series
 
Web excerpts-md-navcrs-v5-aug14
Web excerpts-md-navcrs-v5-aug14Web excerpts-md-navcrs-v5-aug14
Web excerpts-md-navcrs-v5-aug14
 
42 h08nw0011 (copy)
42 h08nw0011 (copy)42 h08nw0011 (copy)
42 h08nw0011 (copy)
 
A comb filter for use in tracking satellites
A comb filter for use in tracking satellitesA comb filter for use in tracking satellites
A comb filter for use in tracking satellites
 
Determination of orbital elements and refraction
Determination of orbital elements and refractionDetermination of orbital elements and refraction
Determination of orbital elements and refraction
 
1997-McCarthy
1997-McCarthy1997-McCarthy
1997-McCarthy
 
Progress_report_May_3rd_2016_PDF
Progress_report_May_3rd_2016_PDFProgress_report_May_3rd_2016_PDF
Progress_report_May_3rd_2016_PDF
 
Centennial Talk Hydrates
Centennial Talk HydratesCentennial Talk Hydrates
Centennial Talk Hydrates
 
Pioner anomali +
Pioner anomali +Pioner anomali +
Pioner anomali +
 
Presentation of the Sabre Engine
Presentation of the Sabre Engine Presentation of the Sabre Engine
Presentation of the Sabre Engine
 
The solar resource abbasgholi
The solar resource abbasgholiThe solar resource abbasgholi
The solar resource abbasgholi
 
TU4.L10 - ASSESSMENT OF ASCAT HIGH WIND RETRIEVALS WITHIN EXTRATROPICAL CYCLO...
TU4.L10 - ASSESSMENT OF ASCAT HIGH WIND RETRIEVALS WITHIN EXTRATROPICAL CYCLO...TU4.L10 - ASSESSMENT OF ASCAT HIGH WIND RETRIEVALS WITHIN EXTRATROPICAL CYCLO...
TU4.L10 - ASSESSMENT OF ASCAT HIGH WIND RETRIEVALS WITHIN EXTRATROPICAL CYCLO...
 
Hioki battery tester_bt3561_a_3562a_3563a
Hioki battery tester_bt3561_a_3562a_3563aHioki battery tester_bt3561_a_3562a_3563a
Hioki battery tester_bt3561_a_3562a_3563a
 
TGS EUR- North Viking Graben 3D
TGS EUR- North Viking Graben 3DTGS EUR- North Viking Graben 3D
TGS EUR- North Viking Graben 3D
 
Grand vs swift
Grand vs swiftGrand vs swift
Grand vs swift
 
Bowman ducklow grc_pms_2017
Bowman ducklow grc_pms_2017Bowman ducklow grc_pms_2017
Bowman ducklow grc_pms_2017
 
Devices for advanced physics research
Devices for advanced physics researchDevices for advanced physics research
Devices for advanced physics research
 
Devices for advanced physics research
Devices for advanced physics research	Devices for advanced physics research
Devices for advanced physics research
 

More from Clifford Stone (20)

Zubrin nov99
Zubrin nov99Zubrin nov99
Zubrin nov99
 
Xray telescopeconcept
Xray telescopeconceptXray telescopeconcept
Xray telescopeconcept
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
 
Wpafb blue bookdocuments
Wpafb blue bookdocumentsWpafb blue bookdocuments
Wpafb blue bookdocuments
 
What gov knows_about_ufos
What gov knows_about_ufosWhat gov knows_about_ufos
What gov knows_about_ufos
 
Welcome oct02
Welcome oct02Welcome oct02
Welcome oct02
 
Weather jun02
Weather jun02Weather jun02
Weather jun02
 
Wassersug richard[1]
Wassersug richard[1]Wassersug richard[1]
Wassersug richard[1]
 
Washington, d.c., jul 26 27, 1952
Washington, d.c., jul 26 27, 1952Washington, d.c., jul 26 27, 1952
Washington, d.c., jul 26 27, 1952
 
Wash dc jul 19 to 20 1952
Wash dc jul 19 to 20 1952Wash dc jul 19 to 20 1952
Wash dc jul 19 to 20 1952
 
Vol4ch03
Vol4ch03Vol4ch03
Vol4ch03
 
Vol4ch02
Vol4ch02Vol4ch02
Vol4ch02
 
Vol4ch01
Vol4ch01Vol4ch01
Vol4ch01
 
Vol3ch16
Vol3ch16Vol3ch16
Vol3ch16
 
Vol3ch14
Vol3ch14Vol3ch14
Vol3ch14
 
Vol3ch13
Vol3ch13Vol3ch13
Vol3ch13
 
Vol3ch12
Vol3ch12Vol3ch12
Vol3ch12
 
Vol3ch11
Vol3ch11Vol3ch11
Vol3ch11
 
Vol3ch10
Vol3ch10Vol3ch10
Vol3ch10
 
Vol3ch09
Vol3ch09Vol3ch09
Vol3ch09
 

Doploc observations of reflection cross sections of satellites 2

  • 1. UNCLASSIFIED .„259123 tUpnadmeiti if ti» ARMED SCRVHES TEtHMfAL lft)RJlATH)X AGLNH mjXGIDV HALL SIATHW AIIUNCKK 13. VIRGINIA UNCLASSIFIED
  • 2. DISCLAIMER NOTICE THIS DOCUMENT IS THE BEST QUALITY AVAILABLE. COPY FURNISHED CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
  • 3. NOTICE: When government or other dravings, speci-fications or other data are used for any purpose other than in connection with a definitely related government procurensent operation, the ü. S. Govermrent thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Govern-ment nay have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or other-wise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or seil any patented invention that may in any way be related thereto.
  • 4. a CO O LU M IIUIIIIII mil in d IHUHIIh <l I* mil MEMORANDUM REPORT NO. 1330 MARCH 1961 DOPLOC OBSERVATIONS OF REFLECTION CROSS SECTIONS OF SATELLITES y 3 G c NOX ARPA Satellite Fence Series Harold T. Lootens Report No. 22 in the Series A S T • A if . TAPDR Ä Department of the Army Project No. 503-06-011 Ordnance Management Structure Code No. 5210.11.143 BALLISTIC RESEARCH LABORATORIES (ftzosBcawaawBeßNaswftiJmjifc^^ f------•■■■ • ' ■■■■■■■■' :' ■'■■■'? '■'-'' ■■ ' :-• - ' - ■■■■-:■>■■:■-^- •■^-;-^^-.-:-v.^-?..-.'v.-i- v:.^C-ABERDEEN PROVING GROUND, MARYLAND
  • 5. BALLISTIC RESEARCH LABORATORIES MEMORANDUM REPORT NO. 1330 MARCH 1961 DOPLOC OBSERVATIONS OF REFLECTION CROSS SECTIONS OF SATELLITES ARPA Satellite Fence Series Report No. 22 in the Series Harold T. Lootens Ballistic Measurements Laboratory Department of the Army Project No. 503-06-011 Ordnance Management Structure Code No. 5210.ll.llf3 ABERDEEN PROVING GROUND, MARYLAND
  • 6. BALLISTIC RESEARCH LABORATORIES MEMORANDUM REPORT NO. IJJO HTLootend/bt Aberdeen Proving Ground, Maryland March 1961 DOPLOC OBSERVATIONS OF REFLECTION CROSS SECTIONS OF SATELLITES ABSTRACT This report presents reflection cross sections observed for eight satellites during the period 1 January 1959 to 1 July i960, using the DOPLOC "dark satellite" detection system developed by the Ballistic Research Laboratories. Several related areas are discussed; i.e., satellite "signature", spin and tumble, scintillation and ionized trails. A brief description of the DOPLOC receiving system and antenna configuration is included. The method used for calculation of cross sections is given in Appendix I.
  • 7. TABI£ OF CONTENTS Page I. INTRODUCTION II. DOPIJX SYSl-EJ«! DESCRIPTION A. Equipment 3. Antenna Dlraenoions ond Orientation 11 III. FIELD DATA Ik A. Sutolllte Records .. B. Unidentified Flying Objects jj. C. Doppier Recordlng 22 D. Signal Strength 25 E. Multiple Antenna Records oj, F. Meteor's «. 0. Satellite Trails 2O5K H. Predictions oc 25 IV. REFLECTION CROSS SECTIONS AND POWER RATIOS 2? V. CROSS SECTION SIGNATURE OBSERVATIONS 55 VI. CROSS SECTION MODULATION DUE TO AITITUDE CHANGE 59 VII. SCINTILLATION k2 VIII. REFERENCES ^ .,- Appendix I - Calculation of Power Ratio and Croas Section 1+7 Appendix II - Bibliography of Reports in the BRL-DOPLOC 53 Series
  • 8. LIST OF FIGURES i. Baale Interim DOPLOC System A Block Dlu^rain of R. F. Section IJI DOHJOS Station Posalve Tracking at XüÖ m/a !>. Block Diagram of DOPIXX) Tijnlng Syataa •'.. Block Dlu^ru;:! of D^ppJer Diitu Recording Syateti for a SLutJle Chiinj»«! 5. Block Diagram of AuUmillc !/>ck-On Syßtea ö. ARPA-BRL DOPLOC Satellite Fence 7. Typical DOPIOC Data Output 8. Typical Slndle Pa;,;; Doppler Orbit Solution 9. Hlj'li Gain Antenna« at ARPA-BRL DOPLOC Tranamltter Site Located at Fort Sill, Oklahoma 1> . Initial Antenna Orientation 11. Antenna Orientation Foliowlnti Deacclvatlon of White Sands Station 12. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. C8M 13. ARPA-BHL DOPLOC Doppler Record of 58 D-lta, Rev. TO1»? 1'». ARPA-BRL DOPIXX; Doppler Record of 58 Delta, Rev. 7558 15- ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 8^86 16. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 86l»5 17. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 8085 18. ARPA-BRL DOPLOC Doppler Record of cß Delta, Rev. 8719 19. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 872* 20. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 8795 21. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9009 22. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9172 25- ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9255 21». ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9286 25. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9^66 26. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9'i72 27. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9505 28. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9581
  • 9. 29. ARPA-BRL DOPLOC Dipplor Record of 58 Delta, Rev. 9612 ?0. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9716 31. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9722 32. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9826 33. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9832 51». ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 98'»2 35- ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 98118 36. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9905 37. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9927 50. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9937 39. ARPA-3RL DOPLOC Doppler Record of 58 Delta, Rev. 99'»3 li0. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9959 '«1. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9975 ^2. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 9991 '»3. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 10001 •'i1». ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 10007 !«5. ARPA-BRL DOPLOC Doppler Record of 58 Delta, Rev. 10023 US. ARPA-BRL DOPLOC Doppler Record of 59 Epsilon, Rev. 53 ^7. ARPA-BRL DOPLOC Doppler Record of 59 Epsilon, Rev. 60 •»8. ARPA-3RL DOPLOC Doppler Record of 59 Epsilon, Rev. 121 '♦9. ARPA-BRL DOPLOC Doppler Record of 59 Epsilon, Rev. 31'i 50. ARPA-3RL DOPLOC Doppler Record of 59 Epsilon, Rev. klk 51. ARPA-BRL DOPLOC Doppler Record of 59 Epsilon, Rev. U38 52. ARPA-BRL DOPLOC Doppler Record of 59 Epsilon, Rev. 532 55. ARPA-BRL DOPLOC Doppler Record of 59 Zeta, Rev. Ik 51*. ARPA-BRL DOPLOC Doppler Record of 59 Zeta, Rev. 150 55- ARPA-BRL DOPLOC Doppler Record of 59 Zeta, Rev. 2itl 56. ARPA-BRL DOPLOC Doppler Record of 59 Zeta, Rev. 556 57. ARPA-BRL DOPLOC Doppler Record of 59 Zeta, Rev. 855 58. ARPA-BRL DOPLOC Doppler Record of 59 Zeta, Rev. 871 59. ARPA-BRL DOPLOC Doppler Record of 59 Zeta, Rev. 887 60. ARPA-BRL DOPLOC Doppler Record of 59 Kappa, Rev. 183 61. ARPA-BRL DOPLOC Doppler Record of 59 Lambda, Rev. 96
  • 10. 62. ARPA-im DOPLOC Doppler Record of 59 Larabda, Rev. l'iß 65. ARPA-BRL DOPIJCX: Doppler Record of 59 I^uabdu, Rev. 278 6'!. ARPA-BRL !>0PLCC Doppler Record of 59 La-abda, Rov. 685 65. ARPA>BRL ÜOPLOC Doppler Record of 59 I^arabdu, Rev. 1205 66. ARPA-BRL DOPIJCC Doppler Record of 59 Lüuabda, Rev. 1516 67. ARPA-URL DOPLOC Doppler Record of 6'» Ga-aisa 1, Rev. 5l8 CQ. ARPA-BRL DDPLCC Doppler Record of 60 Gassaa 1, Rev. '»öj 69. AIU'A-BHL DOPI^OC Doppler Record of 60 Ga'«na 1, Rev. '»18 70. AJ^PA-HiL DOPLOC Doppler Record of 60 Gar.-rA 1, Rev. 836 71. ARPA-3RL DOPI-OC' Doppler Record of 6ü Gatana 1, Rev. 960 72. ARPA-BRL DOPLOC Doppler Record of 6<; Gamma 2, Rev. 10l»2 75. ARPA-ffilL DOP!>0C Doppler Record of 60 Delta, Rev. JO 7".. ARPA-3RL DOPLa* Doppler Hccord of 60 Delia, Rev. 6l 75- ARPA-HRL DOPIä: Doppler Record of Co Delta, Rev. 117 76. ARPA-BRL DOPLOC Doppler Record of 60 Delta, Rev. 12^» 77. ARPA-BRL DOPIJCC Doppler Record of 6c Delta, Rev. ll»0 76. ARPA-BRL DOPLOC Doppler Record of 6 Delta, Rev. 156 79. ARPA-HRL DOPLOC Doppier Record of 6C Delta, Rev. 165 8G. ARPA-3RL DOPLOC Doppler Record of 60 Delta, Rev. 172 81. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 1, Rev. p5 82. ARPA-BRL DOPLX Doppler Record of 6c Epullon 1, Rev. 99 85. ARPA-3RL DOPLOC Doppler Record of 60 Epsilon 1, Rev. 150 8^. ARPA-3RL DOPLOC Doppler Record of 6c Epsilon 1, Rev. 165 85. ARPA-3RL DOPLOC Doppler Record of 60 Epsilon 1, Rev. 386 86. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 1, Rev. 522 87. ARPA-.m DOPLOC Doppler Record of 60 Epsilon 2, Rev. 106 88. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 2, Rev. 157 89. ARPA-BRL DOPLOC Doppler Record of 6G Epsilon 2, Rev. ll*7 90. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 2, Rev. 153 91. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 2, Rev. I9I+ 92. ARPA-BRL DOPLX" Doppler Record of 60 Epsilon 2, Rev. 303 93. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 2, Rev. 309 9^. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 2, Rev, 356 8
  • 11. 95« ARPA-BRL DOPIOC Doppler Record of 6o Epsilon 2, Rev. 61? 96. ARPA-BRL DOPLCX; Doppler Record of 60 Epoilon 3, Rev. 28o 97. AIU'A-BRL DOPIiX; Doppler Record of 60 Epsilon h, Rev. 280 S>3. ARPA-3RL DOPLOC Doppler Record of 60 Epsilon 5, Rev. 569 99. ARPA-BRL DOPLOC Doppler Record of 6ü Epsilon 6, Rev. 265 100. ARPA-BRL DOPLOC Doppler Record of 60 Epsilon 6, Rev. JOl 101. ARPA-BRL DOPLOC Doppler Record of Unidentified Object 102. AiPA-3RL DOPLOC Doppler Record of Unidentified Object 105. ARPA-3RL DOPLOC Doppler Record uf unidentified Object lOit. ARPA-3RL DOPLOC Doppler Record of Unidentified Object 105. AHPA-3RL DOPLOC Doppler Record of Unidentified Object lOo. ARPA-3RL DOPLOC Doppler Record of Unidentified Object 107. ARPA-BRL DOPLOC Doppler Record of Unidentified Object 108. ARPA-BRL DOPLOC Doppler Record of Unidentified Object 1C9. ARPA-3RL DOPLOC Doppler Record of Unidentified Object 110. ARPA-BRL DOPLOC Doppler Record of Unidentified Object 111. ARPA-3RL DOPLOC Doppler Record of Unidentified Object 112. ARPA-BRL DOPLOC Doppler Record of Unidentified Object 115. ARPA-3RL DOPLOC Doppler Record of Unidentified Object ll1». ARPA-BRL DOPLOC Doppler Record of Unidentified Object 115. DOPLOC Power Ration, Center Antenna Ho. DOPLOC Power Ratios, North Antenna 117. DOPLOC Power Ratios, South Antenna 118. DOPLOC Power Ratios, Center, Nortn and South Antennas 119. Doppler Record of Active Track of 58 Delta, Rev. 9958 120. Doppler Record of Active Track of 60 Epsilon 1, Rev. 26 121. Doppler Record of Active Track of 59 Epsilon, Rev. 7 122. Doppler Record of Active Track of 58 Delta, Rev. 10007 125. DOPLOC Frequency and Rate of Change of Frequency as a Function of Position in the YZ-Plane 12h. Center Antenna Geometry 125. Altitude and Ground Range Geometry in South Antenna 126. Satellite Inclination with Respect to Base Line
  • 12. 127. Ground Range In North and South Antcnnaa 128. North and South Antenna Geoesetry 129. Power Factor vo Angular Pooltlon for an 8 x 76 Degree Antenna 10
  • 13. I. ItfTRODUCTION During the period 1 January 1959 to 1 July i960, the Balllßtlc Research Laboratories, under funding from the Advanced Research Projects Agency (ARPA Order 8-58), operated a three-station, reflection Doppler satellite tracking systoin, extending across the south-central United States frcra Tennessee to Hew Mexico. This system, known as DOPLOC (DOpplor Phase IXCk), provided a moons of detecting and tracking radlo-sllent, or "dark" aatellltes. A transmitting station was located at Fort Sill, Oklahoma and receiving statlono were located at White Sands Missile Range, Hew Mexico end nt Forrest City, Arkansas. The stations were Initially manned on a twenty-four hour, seven-day-per-week basis, as part of the nation-wide satellite surveillance not. Following permission from ARPA to discontinue routine twenty-four hour operation, the White Sands station was deactivated and a basic eight-hour work day was adopted at the Fort Sill and Forrest City stations on or about 1 October 1959. The actual hours of operation were chosen to adapt the work schedule to the times of most frequent satellite passes. The flexible schedule by which the field stations operated has provided considerable data from known satellites, Unidentified Flying Objects (UFO*s) and meteors. Many satellites and UFO's have been successfully detected and tracked by the DOPLOC technique and their time of crossing, altitude, east-vest positiun arid effective reflection cross section determined from single pass data from a single receiving station. Crossing time and position data was forwarded to Space Track Control Center for inclusion in their orbital prediction program. 11
  • 14. II. DOPLOC SYSTEM DESCRIFTIOM A. Equipment The DOPLOC ayatm conelated of Q 50-kw contlnuoua wave, ICÖ Mc/ß transmitter locoted at Fort Sill, Oklahoma, which fed one of three narrow-beoa, high-gain antennas. These high-gain antennas emitted narrow, fan-shaped beams, one directed 20 degrees above the northern horizon, one directed vertically and one directed 20 degrees above the southern horizon (see Figure 1). The signal reflected from a satellite passing through the trans-mitter beam was received at one or both of the receiving stations. Each receiving station had three high-gain antennas oriented to "see" the space volume illuminated by the transmitter. The reflected Doppler signal was fed through a receiver to a bani: of fixed audio frequency filters known as the Automatic Lock-On (ALO) and, subsequently, to a narrow band, phase-locked tracking filter. The appearance of a Doppler signal in one of the fixed filters activated a control circuit which pulled the tracking filter frequency over to the signal frequency and caused a phase lock between the two. The tracklüg filter then tracked the Doppler signal frequency continuously as the satellite passed through the antenna beam. Block diagrams of the DOPLOC receiving system and ALO are shown In Figures 2, 3, I* and 5. A satellite which crossed the base line Joining the transmitter and receiver traversed each of the three overlapping, fan-shaped antenna beams (see Figure 6). This resulted In three separate Doppler records, one for each of the three antennas, separated in time by 50 - 60 seconds. The length of the records varied, averaging about 7 seconds In the center antenna and 15 - 25 seconds in the north and south antennas. The digital Doppler data as a function of time were printed on paper tape and also converted to binary form and punched into standard five-hole teletype tape for transmission via commercial teletype to the BRL computer center, where they were fed to the ORDVAC computer to obtain satellite orbital 12
  • 15. parainetera. Figure ^ shows typical D0P1,0C data output and Figure 8 shows a typical orbital solution calculated using this type of data. In addition to recording the digital data, recordings on paper charts were inade of the Doppler analog frequency and signal strengt)» with respect to time. Reproductions of these records are presented In this report. B. Antenna Diinenslons and Orientation The special high-gain antennas wore 6o feet long and 10 feet wide with beam dljnensions of 8 x 76 degrees and a gain of 16 db over Isotropie. Tliree of these antennas were Installed at each of the receiving stations and at the transmitting station. The antenna installation at the transmitting stution is shown in Figure 9. When the D0PL0C satellite detection system assumed twenty-four hour operational status in January 1959, the transmitter at Fort Sill served as the illuminator for both receiving stations. At that time, the high-gain antennas were oriented in azimuth and elevation as shown in Figure 10. In the fall of 1959, the receiving station at White Sands was de-activated and it was decided to tilt the antennas at Fort Sill and Forrest City to produce more favorable coverage. The reorientation of the antennas to the configuration shown In Figure 11 was made In November 1959. A complete and detailed description of the DOPLOC satellite detection and tracking system may be found In BRL Report No. 1123, "The DOPLOC Instrumentation System for Satellite Tracking" (February 1961). 15
  • 16. III. FIELD DATA A. Satellite Reeorda During the ld-oonth operation of the DOPLOC system, 111 refactions were received, resulting from observations of 89 Individual satellite passes. More than half of these reflections were received by the center antenna alone, while the rest were observed by the north or south antennas or various combinations of the three antennas. Reproductions of OOPLOC Doppler reflection data are presented as follows: Sputnik III (56 Delta), Figures 12 to U5J Discoverer V (59 Epsilon), Figures U6 to 52; Discoverer VI (59 Zeta), Figures 55 to 59* Discoverer VII (59 Kappa), Figure 60; Discoverer VIII (59 Lambda), Figures 61 to 66; Transit IB rocket (60 Gamma 1), Figures 67 to 71; Transit IB (60 Gamma 2), Figure 72; Discoverer XI (60 Delta), Figures 73 to 80; Sputnik IV (60 Epsilon 1), Figures 6l to 66; Sputnik IV rocket (60 Epsilon 2), Figures 67 to 95; Sputnik IV fragments (60 Epsilon 5, h, 3 and 6), Figures 96 to 100. A summary of these reflections arranged by satellite and antenna is given in Table 1, and a detailed explanation of each pass may be found in Table 2. B. Unidentified Flying Objects A number of reflections were received and recorded which could not be correlated with the predicted position of any known satellite. These were termed Unidentified Flying Objects and reproductions of Ik of these reflections are shown In Figures 101 to ll^, with a detailed listing in Table 3. 11*
  • 17. S vo CO Os H go >. H H a. IA o HiI H ja .c. o o s: o 3 C o o W Ü 61 •p -p +> c ^ c < o Ü L g •W M OP •P •H 'S § CO ^t-. t«-HVOUH00VOOHHHOJ H t I I I I I VO I I | | | | i • I I I I I H I I I | | ■^ I I I H I I i | I I i I HIIIHIIIIHIII WCVJHl l l IHCVJCVJl l l CO H CVJ I ONlAVOH-^lArH IfA^HHHW H CJ rr j- UN VO c] rH OP p. r p a a a poo Go H co ta en to v) u ^ H d d d § d coqc£oONOoooooooo lAlAlAtAlTvVOVOVOVOVOvOVOVOVO HHH aICO 0) oo u ■p üO P P p § s § or a G C fl M 0) >oow a) ai u >oÜ 09 •H P 0) Uv>O o Ü o ta m •H P •H P 9 S p p •H vH W 10 § ä e; F; FH ^ is Ö H & ft Pi Pi ft P CO W M to OT <& VO H K O H IEH vo H (Q p p 15
  • 18. a v •• -. J2 M aI Li S aaü -j c ... JU0 J -.. .. o. w t. .. g o is qH St! a" "HA 3-- & o Cl I a. 5 i-J a 8 >: I fi O O «. «• O O O O «. O O O -; tfv O O O O O O C^ ^ O O <N ^ u r. s s « ? ^ ä s S ?. ?.« ^ ^. §. | R ^ & © 3 2 ^ t * <r, o »'■ i- (- ... i>i rt ..-■ bi «O "'> o. r- o> i>- c. >o -» " • ^1 W Pi iri >i) ? M w u: ^ w ui :« M » w in us w :.: w w M w M M s s ? s .- | ?. § ? s s § » » s ?- '■ S £ ' f s a g R | o o >a "O |g®&^3«^5^S&SS^aR;3§i§S§§ i ^ ;!: i i J. « i i A * i i «*• « « i « w « w « « to ;= B IT» «"> -^ '1 ^ Q VO vO t- H Q J , u^ ir. tfS NO O U". Jt rt O H >H ■3- a, J-r'.' rH O »-, _■» rt u' »a a o vo « fOlAK^CUOlrtJ^f^» rt-ÄcÖcit^rtt-W-S-^I^ÜrtSdÜ CuOOrtOOrjOJ^PjOHrtOHrt RR^^SS-SSSSSSSSSSSSSSSSSSSS p. +> a ü o si p S .d .9 3 OT W O (5 (l rt a ^ 1=5 Hj ^ "-s 00 rt "A Jt 00 X) /I 0) c fi. c. .1' ^) I I i i JA H [^0>HCiJtcoqt-r- ^ ^t J- IfN lA lA cy cy w cvj cvi w ' > cj w ^o OJ ^ t^ fy w a? ^ asOxONONON^ONONCTNCTNONaNONONONONON OJ 0J H (1) R CO CO 16
  • 19. O o . ■ .. •-i o o rf -• -o K •■* « •i .- ,) -t r, o ^*. '1 S T) — ti (1 K rl 0 -« S ♦J aoo 3S ". ■O CJ •^> a; a• ;j rl S !• V IT' s 5" -2 « 3 I s f) ■■; »: :• .u• •- .■ 5 S s>. St .■? 1 I »1 i! >! s s -r. r. r. i: s s I■I gp 5 .'i .:-:■-:.: i* t» •* •* I. I. t. 3 (i a a 6 « :-. .-. ö t. i. o o i i oooooooo o o o o o iT' r> o *« «fk & o © *"• to <d (vj >>j tu in >o «o >. o <■< o> »o a ^. |~ j « Q» n^i r- i~ «. JK «o gt <& ^ if« I- ^ a> H ■^ * ai a} -t 'ä -t '$ e. " ö ö <}. <o eo <o «o «,'• «a ta tv -i ^ ft, •% Ci a!) ^i p^ <) r« ru •. cv 0 ^ J- c- a <^ «i «O O •-< ri »HI «5 Oj 0> ov Ov « Hi »H «4 rl oj •£ r- t^ r- <r> o h- e> a» p •j» : p- Jt f G> bi ui !•; ui (.i i.; bi iii u: b: b: :•: bi .-:«;.:;« U) W. Ui Ui Ui Ui Ui Ä s •-. o >0 O <0 ^. ■» «.-. O. ^O O rt f^ »- C; c. ^j o aj t- .- :- t^ o u. <■<•-< '',- r-i ^ fV; fj ^ ?j ri -t •* a *> ;- - t.) (/I '. i . ;: ••. a u CO £g 1 1 1 i i i i i ■ (0 i ■• (A '.. •. i' .*. *'. :' •-. ', S£ iH -« H s - ■ ' .. - IT ci *o t^- o ri r- ö « «5 S o ö o o' fvj fy o .3 .7 3 co M ?ä Kg ?. h- ^ o: *> ^ r- •'> >H rt H Cj »H iH #-l r^ OJ H »-< rH f-l •..'-■.;-•.-.;•.;-. u) (/) to » ts » a: I I I I I I I I I I I I I :t ;'. vi :z v> vt as x s m n eft en _; U -( 1- ON ^ O OJ •, ■: ~' ■ c- <n ^ O & Q ir> 'O 0 H « It <H l/ CJ U. - i »". O "^ tH O IT. <-l rH -» 1A O -3 VO CO Cv i^ <H rO O 1/ iT. 0> IO M o; -t rH "^ I- O <% CJ. O ^t iT. Ox -3 O Ox CXJ H IC H O C J I- OJ OJ •C- ^ -5 -I -^ <2 Q -"' ^ Q PJ K'' 3 '•, "^ o oi 6 w -? O j tS if- 3 ^t J »Ti 'O »O »O >0 O xO ^O ^ i; /. L'. IT. J -•» L"- r- »O »S h-i rt <H N vO iT-. <M «% K^. ?A rH 1-1 O 01 W CM s v' Q Q Q <?> ON ON (J, ON q ON ON 0 (?> ON ON Ox q> NO vo Ni N5 a^ UN ITN LS J, UTN ITN ?> iA ir IT» ir IA iA »j5 VÖ VO vö 'O vO VÖ )• U U i. %, (< >. ;. :. >. .q A A A A A c) o< o< i* :• (;, m ;■ P< P, »;., >. j w 0 O H H rH H r-l Cj K> fo IO. s^ rrN m iTv r— h- t^ I— KN tr, a» ITN o aj i' if, i(-, _-f _■}• [T, [^ Ch OA ON 0 a CT ON ON ON ON ON ON 0 ON ON ON ON 0 t<~i lt rO ^t a H (U O cocococococococococoaDaDcoco mirNiAiAirvifNiAirNirxiAiniTNiAiri ;* to y ;;., r., ;J. P, toconPiP^^ "-. ^f -■; -I L' . 01 (•J & -=» lA f.'N ON & O AJ KN H L-N rH (TN O o o a. o 1- I'. 8 lA s M H CO ir, -3 CJ 1A -4- H O IT, r-l C-J IT, ir- IT. IT, CO £ ^ ^ ^ ^ $ ^5 5 ü $ ^ $ $ Ü 5 H H H H H H H H H H H H H 0) U) 01 01 (li 01 m 01 m 01 01 111 P P P P (J W P P P n n P P p. p. p, fi. n, n, n. ö" 0 ö ä1 ö ö Ö ON ON ON ON ON ON ON 1A ITN 1A lA 1A lA 1A ]3 ^3 ^ ^ i! ^ ^ o u u N IS) N o; ai oj ai M N N N ON ON ON ON ON ON ON 1A 1A lA 1A 1A lA 1A 17
  • 20. .: ..-: 0 r- O M |3 15ra.1öo -I c — t ■3 It 3 ■a I •P D 55 I 5 I 11911 a s s s JJ ^ 5 a ^ 5 s fj «o ;o•: wS r'"t' •.: Q V. o o IT» tf% v o o o o o :::::::::: 3 ^ 5 J? »^ 3 ?. g: ^ ?. - ?. ^ t- SA »a cCv rt ^ «O w q ^ a w ^ % f' -I ^^ O -T O -J I.'. M «J •o e- a. t> ■w 3 •a K'. i. s .-.:«:< ut .-. ?: S-^ 3 ^ & 8 Ü C( 7; *^ C; -« .1 f; f. ^, •■ c. :•! b: iii u f|j o Q 'O ■■•■■■....:•:... : ? <? S' S 8 s a § ?: -H PJ «-■ rt ev; -r. ^ c; v. ;-. CO CO CO <(OC CO o t~ •H "^i ir ^ »- S p £ Ü ö- tv; <; rn -» r J rj ^ PJ 3 3 3 3 3 * § § § 33 3 i nn:nn ^nn s iiiiiiiimi : 0 T t^ o o o m rn CJ ^ <%: CM fw f.j i~ >- ^ . ^ r-i O t< I IR S 'I - ^ - 3 S1 5 8 8 & 8 JÜ O O 21 S ^ ^«RR3SS{?8&^ IJJ 00 r. CO .7v Ö rH K-, c^ {^ CO ^ " -^ ~ CO (J HO, H HHHHHöinrt CVI f- CO co Pi pi fü H i-H rH 5 5l III in um 1 HIHHini I f- O O O CO CO (^ •jD co co co 1r. ir ^ vo o 5 t- {- co & a H H cvi eg vo vo oj in % IIIHI n 1 iiWlili 'ik SJ ,9J S^ S1 Q> 9» OS o^ in minm. inmininiA n w ^^HHHCVJCvjfJOJCVjOJPJ CO m CO »O o CM H O H tn vj, 3 K -* jrt CO o-. O H H H H H H H 1^ tn fo m m m m m m rA m 0) p p ssssssssssss 18
  • 21. 15 ja •a p 0 5 f-l o o ?. •' n w a o •« r, o ft « ?3 O -• 5.» gu E •e CM 3 O *> !■ !•: •rl #-! K4 iJfl o ^ w 00 ',. ;- ,'. • - n o i 1 1 1 i i ä ü <: ■--. v. ü 1 >J d fT. O ir. o. H h0 > ö z I t= 1s ti 1 ll 1 s g n s i 5 5 1s d «« d H Ü :; l Ü 1 5 5 5 i! 0 South South .9 .9 3 1 <d> r<f>j j.j• 1 °l 1 | [j g S 8 .'^ a 5 s:> ti o 81 ^ o ooooooooo tfx a. ^ iTv sf> O O cp o o o r > q o O tf1« J- -j* J. o o o •r»!r»s(>pitf>sAOQCO <n Ci {- Hl Ov «f 'OHI.IcjCO^rtO^CJh- »O Hl rl rl ^1 fHI ri r< ri rl •< rt ,| . • . . . . ,,....,.,..,,.,,.-,,, ^ Ox IA Q -3 Oj t- -J 'S O -p . . O 0} -4) !- .1 CO £1 «o VO oj «H -a ^ ä -» ä >-( -3 H i-i fc; -i >o -T c-i « ^« -5 r- K HI r- co ^i ^i rj to ^ c>j eo f-r- 4 »-f r'l H O. i" -J «O J ON O O p -t G Ci -t f, H <-« co rt ^t t- t~ <ir- a Ö ............. u: u: u> i<: b: u: ... :t ... tii bl b) Id ;....;..:.; WWW « K W H ;i III I I I I I a a. a n (A as SB W SB '-. 10 »* ^ !.r. ;-. ■.-. IQ M « •.!-. ;-. ;-. t". jg A A ;-. ;- M 0 o ^a3O0>HW«"NK^-3 K H KS J» o •H H H Ö rH «H IT. 1A iT. «^i CJ ^> 01 Ö t~- f- t- vö 'O ^O >0 vß vO CD 00 -O vd m iHHHOOOrHHr-l OOHHO « rH H O O <§ »ö VO Vö VO VO vS vO vö >0 •. !• Ii I. I. Ii Ii Ii I. <nÄ<P<iP<ip<,<P?iP?ift<p, iniTNiTtVOvOvO^OvOVO CJ cy oj CJ oj CJ cvj oj cj vo vo vß ir» in in CM cj w iTiifNmvovovo S-S-t*- HHHHHrHHHH lO ro |A rn fr» tr» tr ir> if s—' ^^ ^s ^^ s«x ^„^ s^ ^_^ ^_y HHHHHHHHH 1U OJ 0) OJ Q) OJ lU 01 OJ OPPPppppO >,>.|-.>> q q >. ^ >. ^ ^ >> 00 H ^t tA 0 CO H CJ CM OJ H H ir J3 ^t ^t t~ »^ rfS f) CV) 01 01 CJ CVJ CM 81 C O U" >D CM »ß t^ f- t^- m -3- rA 0> vß f- H H >A ro m vD in ö ir ^o ä5 CM o in -* ii- H rt m in H i-l iH CMCMOICMCMCMCMOIOIOJ :•; b 5 S "' g^ & !?: ? £■ £ S Ä ^ S ° S f- ?. S ü ?; 8 & ?. p: 51 ^ ^ ^ rt !■>•-«- Oj »^ Oj rj f. j r^ rt j ir >f IHHHH^M rtfjrjfjCif. CifMOiOj0;<-ICV10JCJ0; Oi i-. A Hu^io.ogjvocN incg^r(j,Hrt .3vor-r--30cor-o^ 0 mir.rHOOinoj o.^. -ainJj» oiJfinmHOininiAH w m in o oi in oi .i' in ö cö >H m m oi CM U'N --t L" oi ^f H ^r t^ >o p- t- vo vö tn m CM oi ^ H H oi o 'ä 'Ja io y6 i6 D vö'IövövO'So'ö'Iö^vovÖ vo Ol sOl 0 a a 0 n n a r! (1 (1 S (1 ri n n c a 0 o o O o o 0 O O O n o o o n n H H H a H H H H H d H H H H H d H ■H ■H •H •H •H ■H ■H •H •H •H •H •H •H •rl 0) 11) 0) M 1/1 M 10 IQ in w in in in OOOOOOOOO OOOQOO oooooooooo o vovovovO,X)VOVO'0D vovOvOkQ^OvO '.DVOVOVOVOV£IVD>5,30 VO ig
  • 22. -•- ■• R § ^ ■ r. :■: I as •' c: - o a — b ir. ri 1« ^ -1 a .- a w P K 3 3 ■P I o o o o •^ ^ 5» fi i'. ? r. o o CD w w W u) s: -" O rH 05 S ö S •^ ^J ^ 1=3 r>i O r- IC-. CM »1o' oH •A OJ tA IA VO Vü 1 s 8 S 3 a d a n w to to ä äf ü fi s s Q o r-l CJ IO -d- :. I — • ' I. o ■% jr. i. os >. o f> ■-i II •> 3 • 5 i o3 +•>! to c OJ 3 v> c3ü to t. v cou 'U o ?-. f I O K X> 0) O & O- D" b1 o CVJ IA -3- iTv vo 20
  • 23. •> | 8 I § 0 § OJ « en u O CO H P «I to p • CO Ü 2 EH EH Ü lOv OJ C O P. 10 ITV (J lf CM In OiTkOOOiAOOOOOlfvOO vOHO^r^rJHOON vOt-iAVOCOvOVOh-r- I I H H I {•^ ON t^ 0 -tf r- ir vo ir t^ i o o o H r «Tk iTvOJt^VOOI^VOHlAH H^rcO-s CJ Or-Ooovo OOOOOOOOOlTkOOiAiA r-<j irviA_-r us tr D <X) tcvm^r tcvcvj t3 •J s: ua U M U M ^ Tt] u (JO o -•r roi H IA O irv OJ vo O -3- ■a a) o>o U M M U ^ Us t) HH t-d Q IA CVi 00 O 00 CVJ »O (I H -? NS OCOl^vOOIAOtAO cr{— po>oo Q ox^ O>O>Q H -a- ON H OJ H CJ rj H 00 O fO P OJ fO O O CVJ ^ O H I H OJ J- tA fA O ^t fO fA j- tA in H O H -4 fO -J f- iA v2> OJ vo H H H O H ON NO 00 tA VO IA ^t OJ 00 OJ H OJ OJ OJ H O ONONONONONONONOOOO lAlAlAlAlAlALAVDVDVDVO 3(Utt)ooaiä)3a)(U(i) •olcocooopp'-o^f^Pn t— -3- OJ H IAHNO-* H OJCO HHOJ HHHHrHHH t^ O VO IA OJ O O H ON O O O O O O VO VO VO 3 3 3 S S 2 H H ON OJ a §uo 4-> co I u <-■)c o •H -P CJ 0) 0) Ö *■>1 I CO o d ü >o o ■pwo 3 0) to •n CO g3n IA I. iÜ (0 3 15- O >ou i) U O ■p Üg 0(0 d d »I s «j p a Pto. o o Ol pG Ü -d •H >> H 0) P HS 21
  • 24. C. Peppier Recording The typical forra in which DOPLOC data we recorded for eatellite detection is shown in Figure 60, a record of Discoverer VII (59 Kappa). An explanation of this record and the ALO device by which it was obtained follows. The upper portion of the chart is an analog record of tracking filter output frequency. The short, evealy spaced marks indicate the successive frequencies at which the tracking filter is set while the system is in the search mode. The tracking filter is stepped in 1 kc/s intervals to maintain a frequency midway in the 1 kc/o spectrum to which the comb filters are set. This minimizes the time required to pull the tracking filter frequency to a nlgnal frequency detected in one of the fixed filters. The comb filter bank consists of ten filters, each with a 20 c/s bandwidth, spaced 100 c/« apart. The filter bank "looks" at a 1 kc/s frequency bund for 0.1 :;ccond; then It Is switched up 1 kc/s by a heterodyne method and this procc:i.> continues, until either the desired frequency band haa been covered or u signal is detected. Figure 60 shows the tracking filter output when a 12 kc/s ccan is used. The ALO can also be adjusted to acan a h kc/s range (see Figure 19) or a 2 kc/s range (sec Figure 2h), or it may be manually positioned to a desired frequency value. Manual operation is useful when attempting to lock the filter on a signal being played buck from magnetic tape, where the initial Doppler frequency is known within a few cycles per second. Figures 13 and 22 are exumples of manual filter positioning. The initiation of phase-locked tracking is accomplished quickly when a signal frequency is detected in one of the fixed filters. The control circuit pulls the tracking filter frequency over to the received Doppler signal frequency in about 10 milliseconds and within 80 to 90 milliseconds all transients have subsided and phase-locked tracking begins. Figure 60 shows this transition from step scanning to continuous tracking at 1714:58 Z time. Concurrently, the digital counter and printer is started and the tijne period of 1000 cycles of the Doppler is printed at one second intervals on paper tape. Simultaneously, the period count is converted to binary forra 22
  • 25. mid punched into five-hole teletype tape. The Doppler period count for Revolution lö) of 59 Kappa, which correopondß to the Doppler frequency analog record, is shown at the top left of Figure 60. The right five digits constitute the count, while the left six digits represent Universal Time in hours, minutes o«d seconds. The Doppler frequency in cycles per second is 10 times the reciprocal of the count. A Doppler frequency record readable to 0.1 c/s is obtained in this manner. If desired, the Doppler frequency may also be printed dii'ectly in digital form (see Figure 7). D. Signal Strength The lower part of the chart in Figure 60 is a record of the AGO voltage from the tracking filter. While in the search mode, the AGC is shorted, giving the clean, otroight line at 2 mm deflection. When a signal is defected, the AGC voltage first decreases due to an initial threshold voltage of opposite polarity existing on the AGC line, which causes a deflection toward zero on the chart. Then, as the signal amplitude increases, the AGC voltage increases as shown by the scale calibration. The chart is calibrated in power input level (in dbw) to the receiver input terminals and also In relative signal In terms of the signal-to-noise ratio at the receiver output, i.e., in db below 1:1 S/N at the receiver output. With a 10 z/a bandwidth, the tracking filter can track signals that are 26 db down in the noise from the 16 kc/s bandwidth receiver. The signal strength record of 59 Kappa in Figure 60 shows a maximum signal of -161 dbw which is 2 db down in the noise at the receiver output. The rather narrow, peaked signal response curve with the slight dip on the leading portion is "signature" information indicating considerable attitude change during the six second passage time through the antenna beam. The peak cross section for this pass of 59 Kappa was calculated to be 226 square feet from this record. The rather detailed treatment of this one pass of 59 Kappa has been given to illustrate the detailed nature, quantity, and quality of the data that are provided by the DOPLOC satellite tracking system from a single pass recorded by a s.lngle receiving station. 25
  • 26. E. Multiple Antenna Recordu The previous discussion of experimental results has been largely devoted to data received by the vertically directed center antenna. Figure 63 shows a similar Doppler record of a satellite signal received by the north antenna and later by the center antenna. The Doppler frequency has a low value and is nearly constant during transit through the north antenna beam which Is directed 20 degrees above the horizon. During this Interval the Doppler corresponds to the flat portion of the "S" curve. The region between the satellite signal in the north and the center antenna is of Interest In this record since it represents a period of unusually high spuriouo signal activity. The short, steep slope lines are typical of meteor head echoes,"and are easily distinguished from the satellite record either by their steep slope or their very short duration AGO record (one second or less). Two of the slopes are of opposite sign to those of the satellite record due to the extremely high velocity of the meteor, which places the Doppler frequency on the opposite side of the heterodyne frequency. Optimum performance of the DOPLOC system is shown in Figure 80, which is a record of a satellite passing through the three antenna beams successively. This record depicts the step-scan frequency search, the lock-on, and the continuous track sequence as the satellite passed through the north antenna beam, the center beam and the south beam. It can be seen that the k kc/s scan range is switched up as soon as the satellite signal has ended in each antenna. This operation is performed manually by the operator who is visually monitoring the ALO output. This record is of particular interest since it is the last revolution of i960 Delta over the Northern Hemisphere. During the latter part of this revolution, this satellite re-entered the earth's atmosphere over the Southern Hemisphere. F. Meteor's In addition to the satellite Doppler frequency record in Figure 60, other short lines of about one second duration are evident In the upper portion of the chart • These are spurious responses due to strong noise 2k
  • 27. pulsea or meteor head echoea. It is clgnlflcont to note that a spurious frequency signal occurred Juat a few tenth.: of a second prior to the « satellite Doppler signal reception, yet the ALO was able to respond with full sensitivity to the desired signal. Spurious signals from meteors ore identified by their short time duration and ateep slopes. Signal reflec-tions from meteor trails, which are large ionized columns moving at very low velocities, are recorded as nearly constant frequency, called "flats", which are close to or equal to the bias frequency. G. Satelltto Trails There is some indication that the passage of a satellite through 12 5 the lonaphere produces a cloud of Ionized particles in ita wake, ' ' ' causing a constant frequency reflection similar to the "flat" reflections produced by meteor trails. The existence of such an ionized cloud is further supported by data as shown in Figures 16 and 18, where a "flat" is seen immediately following the Doppler reflection from 58 Delta. Other constant frequency reflections appearing after a satellite pass may be seen in Figures 26, 27, 30, 66, 89, 92 and 100. Figure 15 shows an interesting example of a satellite pass occurring simultaneously with a "flat". Revolution 6586 of 58 Delta was detected three seconds after the constant frequency reflection was observed. This example demonstrates the ability of the DOPLOC system to detect and track a satellite in the presence of a large, Interfering signal. H. Predictions Satellite predictions computed and distributed by Space Track Control Center were used to determine base line crossing times for known satellites. Two chart speeds were used for the analog recordings; 2.5 mm/second during specifically selected search periods when a satellite was predicted to cross the DOPLOC base line and 1 ram/second at all other times during routine surveillance. Not every satellite known to have passed between the transmitter and receiver was detected, apparently because of Insufficient reflected signal 25
  • 28. due to satellite attitude at the tljnc it traversed the antenna beam. For the some rcaoon, «any paases were detected by one or two antennas but not by all three antennae. These one or two-antenna reflections prove extremely usefuli however, when exaalned In conjunction with the three-antenna data, in analysts and coasparison of cross sectional areas, "signature", sat .lite attitude changes (spin and tumble) and scintillation. 26
  • 29. IV. RKFLECTION CROSS SßCTIONS AW) POWER RATIOS As previoucly stated, the Doppler frequency vs tljne data are digitally recorded at the receiving station as the satellite passes through the antenna beam. From these data, we may calculate the Doppler slope (rate of change of Doppler frequency) and, subsequently, the altitude and east-west position of the satellite as it crossed the base line Joining the transmitter and receiver. Using these values and the method described in Appendix I, we calculate the power ratio* (ratio of calculated received power to measured received power) and the apparent cross section observed for each satellite pass through each antenna beam. Table h presents these values. Before calculating the cross section and power ratio for a specific satellite it is necessary to estimate the dimensions of the satellite and calculate the power that would be radiated from an object of this size, assuming It were located at a point in space corresponding to the satellite position (altitude and east-west location). Subsequently, when the true measured power is determined using the actual received signal amplitude reflected from the satellite, the ratio of calculated power to measured power gives the power ratio. Since all the reflected power readings from one satellite are compared to the calculated value for that satellite alone, we are permitted to examine the individual power ratios as a composite group, regardless of the satellite from which they were determined. In other words, a power ratio of 1 Indicates that the measured power equals the calculated power, regardless of the physical size of the satellite involved. Figures 115, 116, and 117 present the power ratios measured in the center, north and south antennas, respectively, and Figure 118 shows all the ratios, regardless of antenna. * ä power raiiio vaxue of 1 Indicates that the measured power equals the calculated power; a value of 10 indicates the measured power equals l/lO of the calculated power. 27
  • 30. a u o 19 C -H o a tj to «r. 5 jr. gp o -j « !«, m a +» o t« • U (0 (0 1 I I I I I I 1 I I I I IAVO VO I • I 1 ' • i i I N% I H^ I K^l H H rt <^ H (Vj O 0 w w '^^ * I I IA 1 ' ' ••••• ^ ....") ..^ <*« 'O OJ (VJ^J I I I a ? P O (3 l. o »rJ. oC +>• V " -H &, ü W +J O O • o to w .^.^.^OO^H^WIAOHOX (Vi COW t- co^ H W CU rH I gooimo<^HCJHiAocvjOHoaxo ., f. -^ O irv • • I O J-co r-o ■ XI > a K 0) ■p •H 0) ■pa e; w cd P H 4) R co 28
  • 31. d 8 o en u o IA o H S »* i i 1 • 1 1 1 • • i i i i 1 • 1 1 • i i o a US 2j (■- Oi OS 1 '.j -* Si. o ir O i i • 1 o • 1 1 1 1 i i op« u o & 5 1*11 ■ i i o w w « d .: 01 ;. o Cl -• 3 +> o a r-, .:. *•Ct• u•s evi o r- • • i i i I i i I i I i I i o 3 o c • O -P O ^ tu (A .-■ U (/} CA O•CO• -»• O r-4 1^ -3- f^^T Wv -•O• .3 I I i I I I I I I I I I I I OÜ c H ua -p c 4) C ti o O -H O eJ c • o i> V) •H I: a .> o u • u o CJ* o w w I I I H III • • I 0 O *scO . i VOCO t- W fl * * I ••pi vooo j- O S W t-vo^fVO • i i • • • • CVJ H H O Cf-r^CVJ CVJ OJ C t- ONH H KS 4> CJ I/MAIA H K H f-l tA o 81 > OMAH H t^-rO lAt— ONO Q CVJ ONONON O O O ONOONO O O ro O H J- ^J-00 CJ lAVO CI H H KS t^ rH KS^t J* US ^r o H IA-* IAIA CO HVO IAH r- J- IA IASCO CVJ IA00COCO H (U -p d •H ■p H 0) H 3§ a» P ■P S a) 00 CO us § mft W ON IA •p 0) N IA sK 29
  • 32. s0 Öl li OI i> ■Hl o el a. ft: o ♦» o ü • O W M I I g • •it I I I I l l l i I H•vO•c•O•W•t-•W•O•h- ^O »^H OVCVJVO Oi^r • •••••». o gepr«-1^0.5 o CVJ Cvt^-HOjOJvOvO Hl Hl Hl 3 ^ . - ■ ö J O H tl. O ü • i. n er o a to • 1 3 • as 1 1 1 1 1 1 ^0^1 H O H HOO • • I VO »«^ H ri HI H CO h•- «^• 1^• eg• r-• cJ• Co• .5 CVI ^Q^S^H'S»1^ r J ^ o d c • o *> U H t», Ö Ü • u o a1 o to to -5 ^J vO - : vO H -s "% 0> CJ ITNOO l-ON - cvj o c p^r cvj H H O H »A oj o r- J: H CJ i^iiAOO cvj fÄ o o l/!A,~ o H ^ o ^ IAVOCO t^ cj IA 1 CVO ^T rj 0 (A fTv ■ • CVJ OJ Cvi C K H• O•we• ir• O• I IA O O H o «A CM H f- H OJ VOCQ OD tA ITvVO CMAr—COCO H H CVJVO CJ IA CO lACO^O O CJ H O H (Avo ^3- fN ^r -=• CO C oH onr-^rovoiACJ ^VO H CJ ^T IAV£) r- H H H H H H 0 ■p 3 ,0 H 3§ OJ ■p a a] ON to IA CJ a a p v> R H w O Ü O 0 O ^D -O 50
  • 33. r.) a u o ? +» o d P. ps c • o ^ ri •-t W 'H b« • • a T> 1- I vO • o o • OV m t. 4" o- CVJ w (jtntA 4» -HI :« >■> i-. K d O o -• ? *■> o a O 4J o • M 0) a) 3 o 3 a cq n vi b. a P 1 CO o o • rH «H 5 o"1 o o w r-i OVO tA ON O ITvVO CJ lAOMTWOCQ CVJ H H SS IA c 0) o ■p •H d >-j 0) v 9 W +r>t B o CO VO a« -! CVJ J i i i i i .. 3' I .3 I !- III! i • i • • i • : •H CVJ <-l VO (•J IT» I -1 C•v-5• »Arrv -H CVJ i • • i • lArA CM CVJ U t^O H •TkO 1 • • • • • 1 1 1 IA HVO 1 lf^T CJ H O CVJ ru 1 I ^T VO I VO vo C— t-tA^r IA O tA^t tACTNQ H H H H H rAl WO t-i IAH vrAvo I o VO o G CO OJ tA IA (A <J a CO CM vo IA I I I I I I o^• ^:• H• »A r-l »A CVJ »A O CVJ CVJ t^J-CO CVJ H CU lAH g g 8 § d d d d w w 10 w Ö § Ö ^ o o o o vo vo vo vo I. o a •a o a G Ü > ^ ü ^ o 8 . i. T) •rl «9 ^1 nt et .» a o « • d < C O -: i. o ^J h -rl 43 ■P to o c c oH d to 5^1 •»HJd, d u 5H U d O U) VO Q CVJ tA 1 •d OJ ft § -0 4) 1 ■P o VO a Ü p, & p 51
  • 34. It la noted that '»5$ of the ratios itx Fleure 118 occur between 1 and 5, and that slightly more than ÖC$ are between 1 and 15. This means that almost half of the reflections possess a power value which la 1/5 of the calculated value or larger, while 8 out of 10 reflections are I/15 the calculated value or larger. An Interesting situation exists In connection with the cross sections measured for 60 Delta (see Table h). Of the eight pusses received, six passes were three-untenna reflections, offering on excellent opportunity for comparison of cross sections us measured by the different antennas. It is also noted that, of the six three-antenna passes, five passes exhibited the largest cross section in the north untenna, and four passes were almost equal to the calculated value, as Indicated by the power ratio approaching unity (Revolutions 12'», li»ü, 156, and 165). »0 clear cut ex-planation can be presented for this preponderance of large cross sections In the north antenna. All the antennas wore Identiical ir.«configuration, dimensions and operating specifications, and ail were oriented with ref-erence to a first-order geodetic survey. Subsequent to installation, a signal generator was mounted ir. un airplane and a series of flights were made over the antenna field at each station. In this manner, the radiation patterns and antenna alignments were measured and determined to be optimum. Thus, it would appear that each of the antennae should "see" a satellite in the same way, and any variance in apparent size from one antenna to another would be purely random, dependent solely on such variables as satellite altitude, east-west location, and attitude. The observed cross sections for 60 Delta do not appear random, however. Further examination of the data, specifically Table 5 which presents average values for all cross sections and power ratios, indicates that in three of the four instances where a comparison can be made between the three antennas for one satellite (58 Delta, 60 Delta, 60 Epsilon 1 and 60 Epsilon 2), the largest average cross section is that measured by the north antenna. Since i^ appears that the north antennas consistently produced larger power and cross section values, we might conclude that the north antennas were perfectly aligned, or possessed greater gain than either the center or south antennas. 52
  • 35. a I :3 ■i. f. o • ■• r- U ■. B :- I a u n m i. 0 5 I 8J o u • i, i f h > ti u >• o s •r" 3^ ... «: • o •' ao ^u • u X tr o w o :• ►> o e i, x r. • o .» n -i :■. n . • o o • i. . cr D ÜJ W ■•) :: .-: 0 .J •H :J •' o d m r. 'J n ?. B »■> i-) i. 0 <.-< s 0^ t. HI u ^ >J a 3 o 2 u H 0) H a to vOHHO^oococjfyoooo GOOOOOOr-rH»AOOOO 0) P • ••••••■••• tr•v co• <a >o o• o•* J•» •o •tfv •ov•o•r- *rv >o cm va 4) «^eöiOSI *N2 t *l !f^ ä P rl• O•i •**•_*• ! 04 9 «- CVl vo if» p. w 1A 8 •'N• iH•I f1-• (O "< "^ , « , , -0 « « , , , , N •'N t- « ^ ^ » »O *N C> t~ O «O ill . • • i i i i J e- HI ■ ■;. : (TV CO »O III! O C 'I Ä d ^ -r H (M f. <r o» CO «% OJ »^ "^ rA vo 0> JS 0 CO m N IA (g #-4 .H H H P. a IA IA (1) P O s .& s o O O U3 f- if> vO ßOH •H W P, W O K^^riA.HlAiArHVOiriAH CVJ ao d 0] & O U3 P< W O 53
  • 36. A;; iioutx no we nukv Uilü toni^ttlvo uucunplloi», however, wa ore faced with controdlclory tiiita a« obacrved for Cü Kpailon i. Table S ohowa six ptt^c;: of IhU üalelllte, Uu-ce meaeurcd by the center anteiuja, two by the eoulh uud one by the north. Kxcludlng the north antenna pace for the icoacnt, the five rcaalAlne fkua«'cji ctCibluta have an average cross section of 2j6.ß squai'c fv^-t and on uvuroge power ratio of 1.8. These values represent the largest average cross section utid best average power ratio of any satellite observed, yet the one pass of this satellite received by the north anunna Sias a crosa section that Is tmaller than this average by a factor of 12. The fact that we observed this one saail cross section In the north antenna la not significant, since a single observation cannot be considered dtatlstlcaiiy oeanlngful. However, it Is significant that the average cross sections for tne five passeu received by the center and south antennas are large, nearly -quäl to the calculated value. Why these two antennas operated so excellently .n •.:.!« an« satellite lu a aatter of con-jecture. Referring again to Tab,..- I, wc r.-••• tnat the couth antenna produced average cross scctiona tnat ■.•ere larger In 5 out of V .'nstar.ces than those observed by the center antenna for the aatx- uatelllte. Here agaljn, it cost be pointed out that 2 of the 5 are based or. only one pass each (59 Epsilon and 59 Zeta), and r.j valid conclusions can be drawn from sucn a s-Tiall amount of daia. 51*
  • 37. V. CROSS SBCTIOK "SIGMATURE" OBSERVATIOIIS When the signal Btrength reflected fro« a number of paoees of one catelllto lc recorded In analog foj-n, the sitapc of the oboervcd croco occtlon envelopea Ray appear very ouch alike, provided tliot the satellite attitude renains reasonably constant fi-oa pass to pass and that propagation conditions are similar. Under Ideal conditions, a particular satellite nay consistently produce a unique "signature", thus perelttlng Identifi-cation on this basis alone. Others may produce a wide variety of shapes, which appear to possess nothing In coamon. A satellite with dimensions omall compared with the wavelength will generate an approximately semi-circular or semi-elliptical signal strength pattern that Is Independent of physical configuration. Signal strength changes due-to scintillation and attitude change (spin and tumble) are usually present with large satellites which produce a very complex received signal envelope configuration and make "signature" Identification difficult. In general, the DOPLOC records obtained by the center antenna are charocterized by a short duration, syjcmetrlcal envelope that rises and decays smoothly and possesses a rounded peak, with little or no oscillation visible at any time. The average duration and signal strength of the 6? center antenna measurements are 7.5 seconds and -l69.lt dbw. The north and south antennas produced two general shapes; either a semi-circular configuration with a smoothly changing signal level or a semi-rectangular envelope with an abrupt rise and decay and a reasonably constant signal level. Considerable variations, some quite large in amplitude, are usually visible in both types. Signals from the north and south antennas were longer than those from the center antenna, since the beams were directed 20 degrees above the horizon as opposed to the vertical center beam. For the 22 observations in the north antenna the averages are 21*.8 seconds and -170.4 dbw, while in the south antenna the averages are 15.7 seconds and -175-6 dbw. The overall averages for the kk reflections are 20.5 seconds and -172.0 dbw. A discussion of several specific "signatures" follows. 35
  • 38. 3Q Pelta - A« outstandliig example of "cignature" Is evident lo Figure:: 37 and 'JO, whore a sharp null la prominent on each record approxlmtely 10 seconds after the appearance of the Doppler signal. In both cases the reflection Is In the north antenna and the length of record peralts easy observation of this characteristic null. A severe sl#ml dropout is evident In Figure 25 and, to a lesser extent, in Figure 22. This any be on Indication of "aignature". Slallarly, a ssall dip is seen in each of the south antenna portluns of Figures 31, 35, 36 and ^6, approximately 3 seconds prior to signal loss. 59 Epsilon - There is no clear Haication of "signature", despite the prevalence of periodic change in signal level, especially in Figures ^6, 50 and 52. This c»tunge In signal anplltude is probably caused by satellite attitude change rather than by satellite configuration. %> Zeta - A Bhorp spike is easily vleiblo on the leading edge of each of the envelopes in Figures 53, 55, 50 and 59- The latter two records show a periodic change in signal strength, whereas none of the other 59 Zeta records possessed this characteristic. The variations in Figures 58 and 59 are due to attitude change, which apparently coissenced (or at least increased In frequency) late in the orbital lifetime of 59 Zeta. Even as late as Revolution 855 (Figure 57), there is no indication of this periodic nodulation. It is very evident, however, in Revolutions 871 and 877, the last two DOPLOC observations of this satellite before its re-entry into the earth's aunosphere (estimated by Space Track Control Center to have occurred between Revolutions 96h and 966). 59 Kappa - Only one pass was received for this satellite and it shows no significant features. 59 Lambda - The very abrupt signal loss in the middle of Revolution 96 of 59 Lambda (Figure 6l) nay be "signature" information, though two factors are present which make this assumption appear somewhat doubtful. First, there is no evidence of this unique signal dropout on any of the other records of 59 Lambda. Secondly, and of greater linportance, is the extremely rapid signal decay. It is unlikely that any motion or physical configuration of the satellite could produce such a steep decay curve. The aLnost instan-taneous decay strongly suggests that equipment failure or propagation phenom-ena, rather than satellite movement or shape, caused this sudden loss of signal. 36
  • 39. 60 Conoa 1 - Anotlicr excellent example of "olgnature" in found in Figures 69, 70, and 71, vhere the Y-ohaped peak ia easily seen. Fieiu*e 67 also chows traces of this shape, but the high altitude of this pass ('»'»0 ailes) severely attenuated the received signal and prevented this characteristic frota being oore prominent. This pass was the highest pass recorded by the DOPLOC system during its operation. A further Identifying feature in these data for 60 Qaosa 1 appears to be the signal losses shown in Figures 68, 69, and 70 which occurred in the middle of the passes where the signal is normally at a maximum. On two of these passes, the tracking filter lost lock completely, but the ALO was able to lock-on again when the signal level increased. 60 Gaaaa 2 - Only one pass was recorded for this satellite and It displays no uignificaot envelope shape. 60 Delta - Here we see a severe null in both Figure 78 (center) and Figure 79 (north). Once again, the tracking filter lost lock during the former pass but the ALO regained the signal automatically when it became stronger. A hint of a similar null may be visible in both Figure 73 (south) and Fi-ure 78 (south). It is worthwhile to point out that Revolution 6l (Figure 7k) was received by the north and south antennas but not by the center antenna. Perhaps the satellite was oriented In its maximum null-producing attitude during the middle portion of this pass and, consequently, this orientation reduced the reflected signal to a level lower than the ALO threshold level and no lock was obtained. Repeated rerunning of the magnetic tape of this pass in on attempt to lock the ALO on the Doppler signal was without success. It appears that the center antenna portion of Revolution 156 (Figure 78) may have been approaching this complete signal fadeout condition also. 60 Epsilon 1 - There does not appear to be any clear indication of "signature" in these data. The record of revolution 150 (Figure 83) exhibits a nine second signal loss in the middle of the pass. The absence of signal dropout in the other records of 60 Epsilon 1 makes it difficult to correlate these data with "signature" information. It may be noted that data shown in Figure Qk was recorded at 1 mm/second which served to 57
  • 40. condense the envelope. The 2.5 eta/second chart tspeed would have enlarged the envelope and produced a trace ulfiiilar to Figure 86. ^0 Kpullon 2 - The distinguishing feature here secas to be the oscillations observed In the center antenna portions of Figures 68, 92 93 and 95. Reflections frora the majority of other satellites observed In the center antenna an? scoolh. Again it Is noted tliat the chart speed In Figures 92 and 95 Is 1 cs/second, vhllc In Figures 66, 69 and 95 It Is 2.5 Bä/second. Had the fonser passes been recorded at 2.5 Em/second, the resulting envelope would be very similar to Figure 95« a0 :-:p;:ll0ii 5. k. 5 and ^ - It Is not possible to evaluate Individually these data in terms of "signature", since only one or two pasoej of each ssatellite arc avullabic and none jooms to possess any distinguishing features. Intercomporison is not valid either, even though they are ail fra^ents from t>0 Epüllon 1 (Sputnik IV), because the physical configuration of the fragments is probably not the same ~" and, therefore, any üimiiarity in envelope shape would be purely random. 58
  • 41. VI. CROSS SECTIOH MODULATIOII DUK TO ATTITÜDE CltAIKJE Evidence of IXTUNJIC ul^nul nodulaiion« such a» alght W caused by öpin or tuablc-, la vlulble In the oaJorLty or »i^nal strength records. This cross section nodulutlan Is visible both In the records of ground-originated reflected signals and In ihc records of signals which originate froa a satelllte-bornc irao^altter. For this discussion, we shall tern the foraer aethod of satellite detection and observation ,,J;asslve,, track-ing, and the latter tsethod "active" tracking. Measurement and analysis of signal strength sodulatlun observed with the two methods of tracking are difficult for several reasons. Propagation variances alone «ay in-troduce periodic changes in observed signal strength which can be »istaken for modulation cauued by satellite attitude change. The relatively short duration of the passive records recorded by the center antenna cake it iopossiblc to deteralne a aadulatlon periodicity In this antenna of core than a second or two. The passive records recorded by the north and south antennas, though fewer in nicabcr, are of greater value in modulation analysis since they are considerably longer in duration and penait measure-ment of several cycles of a modulation possessing a period in the order of 1 cycle per 5 seconds or longer. Also, when active tracking records are exa-alned, especially those taken on Sputnik III and IV which transmitted on a nominal frequency of 20 Mc/s, the Faraday effect must be considered. This effect varies inversely with the reciprocal of the frequency squared. Thus, it is definitely a prime factor in producing periodic signal modula-tion at 20 Mc/s, considerably less a factor at 108 Mc/s (the DOPLCC reflec-tion frequency), and virtually non-existent at still higher frequencies such as the transmitting beacons in the Discoverer satellites. Fluctua-tions in received signal, while not necessarily periodic, may also be caused by changes in the amplitude of the transmitted signal or the gain of the receiver. Within these limitations, an attempt has been made to analyze the D0PL0C records for evidences of cross section modulation caused by satellite attitude change. Examination of passive and active records for 58 Delta (Sputnik III) and 60 Epsilon 1 (Sputnik IV) show signal strength nulls occurring in a 2;1 ratio, i.e., two nulls are observed on the passive records for every 59
  • 42. nuil on the active recordo. Flcurto 29 (north), JJ (uouth) and 59 (north) are records of pasalve reflection» fro« 56 Delta and show an ovcroG« of 1 null per ,J üeconda, while Flgm-e H9, on active record for 5B Delta, display 1 null pt»r 6 oecondü. Slallarly, Figuren OS (north), 85 (couth), and 85, p««ölvo obaervatlono of 60 Epsilon 1, «ase satellite (Figure 120) amua i null per J seconds. It Is evident froa these data tl^t the physical configuration of the sateUlte produces a four-lobed pattern when reflecting the ground-originated DOPLOC slcnal, whereas the transslttlng antennas on the satellite radiale a tvo-lobed pattern for active tracking. As the satellite tumbles and spins, these radiation putu-rns produce the 2:1 ratio seen la the signal strength null frequency. Evidence of »lailar periodic nullc is seen in the records of 59 Epsilon (Discoverer V). Here, however, the passive to active ratio Is 8:1. Fleures UB (south), 50 and $2 (couth) are passive reflection records of 59 Epsilon and display an average of i nuil per ^ seconds. Each of two active records for 59 Epsiicn, one of which Is shown Ix, Figure 121, show i null per 2k seconds. Apparently, the cylindrical shape of the Discoverer satellite creates a multl-lobed reflection pattern, while the transmitting antenna radiates the tvo-lobed pattern. The validity of this assumption regarding the reflection pattern is enhanced by the fact that the length of the cylinder (I9.2 feet) is approxL-nately twice the wavelength of the DOPLOC frequency (9.1 feet). Where the length of the reflecting object is large compared to the wavelength, as in this case, the result Is a multl-lobed radiation pattern. It is worthwhile to note that a total of nine active records taken on 59 Zeta and 60 Delta (Discoverer VI and XI) show an average of 1 null per 2k seconds, with individual values ranging from 11 to 40 seconds. The agreement with the null rate observed for 59 Epsilon is striking. Table 6 summarizes the data discussed above and lists null rates for several other satellites as well. ho
  • 43. 4» T1 O o ♦; I« •• •• | •H H H y ^8 . «I uo O *J . ä 1. > o ;. ,Q O « o VO KN ^a ja Ji CVJ 01 (l o c oj r- w ra a> *: i: K -4 • U ru 03 CH C M • • • o Ü lA H H »^ 01 H • a 4/ ta > « > 4J << t> >Ü m ■Hn IQ <3 Pk o 3 •H • Cj fA (A ■O tf (M OJ Ö E ^) V m 3 & R o aj ao oa oa 0) H H ■P -rl -ri w H d h •H aJ P i) H W W 0) 10 P H 4J U) aj Pt p( (H ^ (U 0) •H ^ o w w eg o H a CO o o uS VO vO o ov o 0) -p Ü ir IA VO ■p 3 !fl a3 P( •H CO M p lü
  • 44. vii. scnrriLLATiOH A nuaber of the DOPLOC rccorde of reflected olgnal otrength chow trftcea of eclntiliatlon and Table 7 preoents a suscaai-y of the oost proalneat ejtirapleo, grouped occordhig to pass tlao. The eotlmted peok-to-peok ajüitlllatlon In db is given for each pass, as well as the antenna In which the reflection was received. A notation Is also Bade concerning the season of the year In which the pass was recorded. Certain qualitative features In the data are rather pronounced and deserve oddltlonal coanent. The existence of a diurnal cycle Is apparent, with the scintillation oaplltude being greater at night than during the day. The average peak-to- peak signal fade for 9 observations made at night Is 2.h db, while for 20 dnytLce observations the average value Is only 1.1« db. Also, the diurnal effect Is auch core pronounced In susaner than In winter, evidenced by the fact that 8 of the 9 night passes occurred In the months between March and October. A series of one-way radar transmission tests conducted by the Bell Telephone Laboratories, at wavelengths rang-ing from 30^cm to 1? m, revealed corresponding diurnal and seasonal variations. Similarly, tests carried out by Ross A. Hull, with the aid of other radio amateurs, the U. S. Weather Bureau and Harvard University In the 5 to 8 m wavelength region, yielded comparable results. 5' 6 The data in Table 7 show that scintillation occurs more frequently in the north and south antenna reflections than in the center antenna. Considering the total number of reflections received by each antenna, we find scintillation appearing in kft of the north antenna passes (10 of 22), klf of the south antenna passes (9 of 22) and only I556 of the center antenna passes (10 of 67). The indication here is that the reflecting and diffracting properties of the terrain and the irregularities of the atmosphere near the earth's surface combine to produce interference waves which, in turn, cause variation In signal strength. These phenomena would heavily Influence reflections in the north and south antennas, since they are beamed only 20 degrees above the horizon. The k2
  • 45. TÄIU-K 7 A-iimiXAm« V4 »re- TIK5: PcftS-ld-IVftH . S»teUtt« Rcvatullon * SctALLUAtlOO hiss TUuc Bane Ruatoer Aft'-cftRfi !a 4b U. T. C. S. T. 60 Bpslioo 2 30) - .'. 0355 2155 60 Deli« :■-: - 2.0 tjteB oa?a & Epatl^JC 2 :., n ).o uiAS 0CA2 •kJ Dr't« 9937 :; 2.0 tiO.1 (M2 58 tvlia 5-9)7 :■■ :■." <&* 0CA2 fß IfcllA fv."- ' .-. '>V C052 50 Dell« ;. i. ■7'-'- •woo &ü ••:... 2 i-; « 2.5 crf2i 0121 58 Itollfc .-... :.■ >. 0&.9 C2b9 Smpufl s s s 8 I :J U s 60 Ej-dlloa 2 Jty • 2.0 1)26 Wx, s 53 Dclu» 87% : '.. 1)56 0758 w cO Epsilon £ 501 : • •: IbCO cöoo s iö Dcl:n 87> • .. ...> <A9> w W LDaMa . :•-• « ..^ ■ ',■• C^CA V ^ Dell« 8719 : .. 1530 W V 58 Bell« 9959 n 1.0 15UJ 0^8 s ^8 Dell« ««' n :. 160) 100) s V6 Dell« e6bj c 1.0 161*7 10i7 H 5? r.eui .'- s .. 1650 -'■'>- w ÖJ Kpnlloi. 2 :•/. .; :. 173) 11)) s * 60 Dell« 61 :: 1.5 1605 120) s ä 5Ö Dclt« >&*8 s 1.5 1812 1212 s 58 Dell« }6J2 - 2.0 1815 ia) s 60 DclUi JO :; 2.0 iBJiO 121*0 s 58 Delta 9722 ;: 1.5 2C1.5 llti.5 s 5Ö Delta ejac : 1.0 21)6 1536 w 6C Epoilon 2 617 c 2.0 2218 1618 s 58 Delt« 9612 li 1.0 2219 1619 s 59 Lonbda 685 3 2.0 0016 1816 w S - south, C - center, II - north W - Winter (November - February) *S - summer (March - October) 'O
  • 46. greater leugth of the observationa by the north and south ontemma Bay aliso contribute to the more frequent obaervations of signal fade In thejti antennas. Fro« an examination of a number of active tracking records made at Aberdeen Proving Ground, Maryland, there appears to be more gclntlllatlon present In these active records than In the passive reflection records. Figure 122 ohovs a Doppler record of 58 Delta obtained at Aberdeen by tracking the 20 Kc/s satelllte-borne transmitter. Peak-to-peak signal variations for this record are approximately 6 db, roughly twice as large aa any variations noted In the passive records! This satellite was probably experiencing severe buffeting when this recording was made, since re-entry occurred only JO revolutions later. These drastic oscillations may have increased the scintillation amplitude to some extent, since records taken earlier in the lifetime of 58 Delta chow signal fade in the order of 5-i. db. Then too, the very slight Doppler frequency shift during this Fa3s indicates that the satellite was at a great distance from the station and that the inclination of the line of sight to the horizontal was small. Thus, as mentioned previously with respect to scintillation in the north and south antennas, interference waves may have contributed to the increased amplitude of the signal variations. HAROLD T. LOOTENS kk
  • 47. REFEREIKES 1. J. D. Ki-uuß, "Eviüenco yf Sutclllte-Inducc-ü Ionisation Effccto Between Heaslöphercs"^ Proe. BE, '«Ö, 1913-191^, (i960). 2. J. D. KTAUS, R. C. ':ii;r.,'.y, D. J. Schecr and y. R. Crone, "observations of Ionisation Induced by Artlflcal Earth Satellltea'', Mature, 1Ö5, 520-521, (i960). 5. Roberts and Kirchner, QST, r>. jft, (1959). '». J. C. SchellIng, C. R. Bwi'owö, ond S. 3. Ferrell, "Ultra-Bhort-wave Propogatlon", Proc. IRE, 21, Ii27, (1933); C. R. Burrows, A. Declno, and L. E. Hunt, "liritra-short-wave Propagation over Land!*, Ibid, 33, 1507, (1935); and "Stability of Two-seter Waves", Ibid, 26, 516, (1938); C. R. Burrows, A. B. Cs-awford, and V. W. Kusford, "Ultra-short-wave Tranaalsslon over a 59-slle Optical Path", Ibid 28, 3Ö0, (i9'iO). 5. R. A. Bull, QST, 19, 3, (1935)> ond 21, 16, (1937). 6. A. W. Friend, Proc. IRE, 33, 3^8, (li^). ii5
  • 48. Arraron i CALCUUTIOJf OF PCWKR RATIO ;jkD CHÜSS SECTIOH Center Antenna - As prcvloucly stated, tho Dopjilor frequency vs tlKO inta arc digitally recorded at th«- receiving station aa tho satellite pasties through tncl: of the tlu'ce antenim beasa. Frea tJje dUTltttl Doppler daUt wo calculate the Dopplcr slope (j-ate of cJ'^jjge of Dappler frequency)« Knuvlng the Doppler frt-quvney and slope and assualng clrcultu* aotlou, U 1^- possible to obtain the altitude and east-vest location of the atollltc a;; it crosses the base line Join-ing the trar.scltter uad receiver, with the aid of a chart of the type prer-er.tcd in Figure 12>. Constant coatoui' ILnta have been coaputcd and druvn Tor the Dopplcr frequency und the tlae derivative of the frequency (the elope) In the vertlcul plane conUiinlns both the transieittcr and receiver. Th« -• oor.toura vary vlth ::ut<;llitö or-bital inclination, so thai tevorai cliarta u.v: reqv;ired for orbits of various inclinations. '£tazh cJiart i.» valid, however, only for data received in the center bens:. Giver, u Doj.plcr frequency of 300 cps and a slope of 90 crs at, x.':.> :;.l.i. ,.i:.t oV the record, ue locate the cui'ves representing these vnluej 01. the chart and, ut tiieir intersection, read an altitude of l/{ nile.i and a sub-satellite point on the base line located jJ5u ftiies east of Fort ;-:iii. Having determined these distances, a sketch sinilar to Ficare 12'« is prepared to assist in cow.pleting the power and CIJ:;:; ..vction calculations. liortli rtnd .cJ-.>uth Ant'-.'-.-.'-i- - The ^c-unietry and calculations necessary to locate the point, of int •■:•.>. otii:: of a satellite in the north or south antenna, and Its correspof.aln,: ground ranjjc froiii Fort Siil, vary some-what from the method described for the center antenna. In these antennas, the Intersection point and its corresponding distance east or west of Fort Sill are function:; of satellite altitude, and the inclination of the orbital plane and bur,..- line with respect to the equator. For purposes hi
  • 49. of thlo vUccusaion, uc oluUl confine ouraclvc» to the ::outh antenmi. Calcukitlono in tho nox-th nntennti are ;;ißilar. Figxu-o 125 (jlvos a cmrhlc m-caentatlon of the cectjetry involved. The uoutl: oatenna is elevated 20 degreoo above the horizon and oriented In aslcuth ua oh^vn in Figure 11. The altitude of the satellite Intersection point In the center antenna Is taken aa the height of the jwtnt of intersection in the south antenna pattern. The curvature of the earth la Ignored here slaee It la negligible over UR- relatively short distance Involved. Referring to Figure 125, we calculate X, the perpen-dicular distance fro« tne base llr.e to the point or Intersection of the satellite In the south antenna, using the trlgonoaictrlc function :•: air. 20° Subsequently, the perpendicular distance '{, fror, the 20 degree plane of the south antenna zo the 90 degree plane of the center antenna is deterr.Lied by Y--± •v,an <r0 The next step Is to calculate ^ the angle at which the satellite crosces the base line. If we let i ^qual the orbital inclination at the equator and l' the orbital Inclination at any North Latitude 0, then cos 1'/ = COS i COS 0 Solving for 1' gives the angle at which the satellite crosses the particular North Latitude 0. The Forrest City - Fort Sill base line is a segment of a great circle which is not parallel to the equator; hence as shown in Figure 126, the satellite crosses the base line at an angle different from i', the difference being equal to the inclination of the base line to the equator. The base line is inclined 3 degrees to the equator so, for a north-south pass 3 degrees must be added to i', while for a south-north pass j, degrees is subtracted from i' to obtain Q . ii8
  • 50. Finally, knowing 3 and Y, the distance d noved along the base line In Figure l.'~y can be determined by the trlgonooetrlc relation tan «. • ^ * I a This value d oust be added to or subtracted free r (the ground range from Fort 3111 as deteralned Tor satellite intersection In the center antenna), depending on the pass direction and the antenna In-volved. As shown In Figure i:f[, Vor a north-south pass, ground range In the north antenna Is equal to r - d, while for the saae pass in the south antenna the ground range Is r ■«■ d. Having thus determined the distance from the base line to the satellite Intersection point in the 20 degree plane and the corresponding ground range from Fort Sill, a sketch is prepared as shown in Figure 128 to aid in coopleting the calculutions. Power 6nd Crotis Section Caleulations Having determined satellite altitude (or the perpendicular distance from the base line to the point of intersection In the 20 degree plane), as well as the ground range east or west of Fort Sill, and knowing that the distance between the transmitter and receiver Is ^35 miles, the distances R and R2 and the angles a and ß con be computed using standard trigonometric functions (refer to Figures 121» and 128). The azimuth angles of the trans-mitting and receiving antennas are known (see Figure 11); hence the angles 7 and 6 can be determined and, from the curve presented In Figure 129, the factors F-, and F , which are decimal representations for the angles 7 and 5, are obtained. It Is now possible to proceed with the computation of the cal-culated power Pn, the measured power received P, , the power ratio PD/Pw, and the apparent cross section of the reflecting object 5~^ . The calculated power In watts that would be radiated from an object of known dimensions at a given distance from the transmitter and receiver is determined first. For example, a length of 20 feet and a radius of 2.5 feet is assumed for the Discoverer satellite. The maximum reflection h9
  • 51. croats section that an object huvlnn theüo dlaenalons would preaent ia calculuted by nuln^ the foraulu where X. at 106 ^te/s la 9.1 feet. Solving for ZU» « volue of 690 oquare feet la obtained for the Discoverer aatelllte. Adalttedly, thla proceso la an approxlcatlon, since accm-ale deteralnatlon of£21« dependent upon r and / being huge coapared to X. Slallur eatksatea of phyalcol dlaenalona were aade for Sputnik IH and IV and for Tranalt I, and the reeultlng valuea of C^re used In the calculations pertaining to thoae sateUltea. Using the basic ruiar equation, . ''T'V(ilt rFTF ri) ' ' 5 Bg5— (I) R (''«)^(R.r (R^r the value of21 and the following DOPLOC syHtea conatonta are Ineerted: P = power transalttod - 1»0 Jew G„ » G = antenna gain In power » kO X « 9.1 feet Thus, equation (1) becomes . 1-66 x to8 FTPR « 5 ö (2) (RJ- {R^f where R^ und R are expressed in feet or -„ • ^ V0'6 rT F B (5, (R^ (R2)2 where R and R are expressed in miles. Next, equation (5) is solved for PR to detennine the power in watts that would be radiated from an object of this size if it were located at the point in space occupied by the satellite. To detennine the measured received power in watts, the peak of the received signal recorded in db below unity S/N at receiver output is con-verted to a voltage ratio X. Tlldenour^ L., "Radar System Engineering", M3T Radiation Laboratory Series No, 1, p. 66. (l^T). 50
  • 52. X = log" (max db) If E1 Is the received algnal for a 1:1 s/jl ratio at the receiver out-put (which for the DOPLOC oystcm U 0.0? mlcrovoltß) and E2 Is the meaoured received algnal voltage, the «eaaured power in watto io PH . <■=/ R where R, the antenna reslütance, is equal to 50 ohma. The power ratio, PR^PM cxPreoßeo the relation between calculated and measured power. To calculate the cross section corresponding to the peak signal received, equation (1) Is used to solve for JT-After substituting PM for PH, equation (1) may be rearranged to give 5.'»9 x 10"9 F7. PR Solving for 23 gives the apparent cross section of the reflecting object In square feet. 51
  • 53. APPEHDK n BRL-DOPLOC REPORTS No. 1 BRI. Meao Report Ho. 1055 - October I95Ö "Doppler Signals and Antenna Orientation for a Doppler Syetea" by L. P. Bolglano, Jr. COfiTIDEJITIAL Ho. 2 BRL Hcxo Report No . 1185 - January 1959 Flr.st ScÄl-Aanual Technical Smmoary Report Purijd 1 July 1958 - 31 Docesjber I958 by L. G. dcDey, V. W. Richard, A. H. Hodge, R. B. Patton, C L. Adans (EML 39-60) CO.'fFIDrffriAL Ho. 3 BRI, Tech Hote Ho. 1265 - June I959 "Orbital Data Handling and Preotntatlon" by R. E. A. Putrma UNCLASSIFIED Ho. h BRL Tech Hote Ho. 1266 - July I959 "An Approach to the Doppler Dark Satellite Detection Problem" by L. G. deBey COHFIDEHTIAL Ho. 5 BRL Meao Report Ho. 1220 - July 1959 Second Serai-Annual Technical Suraraary Report Period 1 January - 30 June I959 by L. G. deBey, V. W. Richard and R. B. Patton (BML 208-59) COHFIDEHTIAL Ho. 6 BRL Tech Hote Ho. I278 - September I959 "Synchronization of Tracking Antennas" by R. E. A. Putnam UNCIASSIFEED Ho. 7 BRL Memo Report Ho. 1237 - September I959 "A Method of Solution for the Determination of Satellite Orbital Parameters from DOPLOC Measurements" by R. B. Patton, Jr. ■ UHCIASSIFIED
  • 54. nuliUDOPlJDC RhitiiCf^ (continued) No. S mi Neno Report No. 1093 - Morch I960 "The Dyiuuaic Cliorftctcrlotlcs of PJuuse-Lock Reeelvero" by Dr. Keats Pullen tniCLASiJIPIED Ko. 9 "Station Geccsetry Studies for the DOPLOC Syotea" 3t!inford Research Institute l^iCL/^ÜIFIED Uo. 10 Final Rvport, Part B, Stanford Rußearch Institute - July I960 "DOPLOC Syatca Studies" by H. £. Schurfcan, H. Rothaan, H. Guthart, T. Horlta UTiCLASSIFIED No. 11 Phllco Corporation - U May i960 "Poly^tatlon Doppler Syatea" No. 12 UNCLASSIFIED Space Science Laboratory, General electric Co. - October i960 "Orbit Determination of a Non-Tranamlttlng Satellite Ualng'Doppler Tracking Data" by Dr. Paul 3. Richards UNCLASSIFIED No. 13 Final Technical Report - University of Delaware - June 15, i960 "Quantua Mechanical Analysis of Radio Frequency Radiation" by L. P. Bolgiano, Jr. and W. M. Gottschalk UNCLASSIFIED Ho. Ik Final Report F/157, Columbia University - February 11, i960 "Nummary of the Preliminary Study of the Applicability of the Ordir System Techniques to the Tracking of Passive Satellites" UNCLASSIFIED ^
  • 55. BKUDCPLOC REPORTS (continued) No. 15 HRL Report lio, 1110 - June i960 "Precision Frequeney Kcasureaent of Jtolay Doppler Signal»1 by W. A. Ikan UIJCIJU^IFISD Uo. l6 Third Technical iJuraitiry Report - Period July 1959 through June 30, i960 2RL y.va.0 Report lio. 126? by A. L. 0. deBey UltCl^SSIFIKD Jio. I? Columbia University Tech. Report Uo. T-l/157 - Auguat 1, 1959 "The Theory of Phase Synchronlxutlon of Osclllutorü vlth Application to the DOPLOC Tracking Filter" by ?:. Krelndler UHCLASSIFIL'D Uo. 16 BRL Tech I.'ote Uo. 15^5 - Auguat i960 "DOPLCC Receiver for Use with Circulating Mczory Filter" by K. Patterson UNCLASSIFIED No. 19 BRL Tech Note Uo. I'&k - October i960 "Puremetrlc Pre-Amplifier Reaulta" by K. Patterson UNCLASSIFIED No. 20 BRL Tech Note No. 1567 - December i960 "Data Generation and Handling for Scanning DOPLCC Syatem" by Ralph E. A. Putnam UNCLASSIFIED No. 21 BRL Report No. 1123 - January I96I "The DOPLOC Instrumentation System for Satellite Tracking" by C. L. Adams UNCLASSIFIED 55
  • 56. jgUDOPLOC g^OMS (continued) Ho. ^2 BRL Kec» Repoi-t Ho. IjJ^) - «arch 1961 "DOPLOC Obaervatlono of Reflection Croaa Section of Sutellltea" by H. T. Lootena "i^a UNCLASSIFIED In Prcpftratlon "DOPLOC Cosb Filter" by R. Vltek "DOPLOC Orbit Determination Methoda" by R. Putton, Jr. "Final Suwory Report on the BRL-DOPLOC Project" by Dr. A. H. Hodge 56
  • 57. 5 y > 03 Q. 0 0 5 i E u hz 0 (/) < CD AONanoaa.-i 57
  • 58. oIM I? 8o a4 oi is Hi it u - 3 ■ -> o a « u uo un va o M iff* iss »ig 8 = ? mo s5 Sis u. Ul < uo •H 1. ill 58
  • 59. I! .11! il li It 1 R V III l! Ij- t I! ■Ill •i-i f " I L i.i I't ■ •n l.i 'il 0i !.l ii r Hi! -^li : is -I i« HI li IS ©e II II a i CO fH !! 59
  • 60. i5 m oz 5K§ i hi ao. oo 3 I •H
  • 61. 61
  • 62. IM • 8 I c» •; •• «r c »f"«'»rt O c N irt — ci •• c c c f. e - ■•* ci — n <• e. oocvf• — or.cc»» K.f. r < c«. cjf.f. -------cocrr.ooc re OOOOOCOOOOOOCoroorcrC»«' _„ ...................... rrc «MO«0O,rwOa)<0CMOc:o»rfjOeO«rcv;O KiOfjNwc^cv;-- - - - O' r oc^ooiotf» «^ CSJ IN. M t* f« <M W f- W tJ f« f •«. *W f- f•— — "-"" •" tfi tf> tfi in «r»« «t tft IAmm«n IA «A «n «n IA mm m w) m i i r- L". r?«• r C r. r c ■ v f c* c • • •' — • • r r r r « tf*.-? ro» i I t'f.r i c ' c « ' r—• < i i (ft ' : . * • « f • '" l*. i • f i' r- • « «'i • ' ■*« -». • «*' •*" * . < < < <• r ' .. . f • i : • < 1 t I I ! ! I » • ' ' t ( I I f ( t (. ' (II" r f i.) in o in i") o oo i." i.> i.i i.i o i.*i'-" i'' '• -l-" l" '•" '• '• IzI o o S S -I >• 63
  • 63. Vjf s • •z < IÜ 0 O > CM O Z QC o (0 l&J u H 1HP UJ c 5 w < bi H SÜ iU P ÜJ iz s£o z > OD z UJ O K z 3 UJ Q. < 3 Z O o (/) Z z >. < V) 2 z < z tr. 1 i oz (T (0 Q UJ to d § Z z CD H o < .-^^ -' Q. ÜJ § t;w O j o ^ UJ S <^ _l QC CD 62
  • 64. ft • 4% 9 8 -i • ■*•' a s 5l s 1^ K a 21 2 .11 ? UIH K> Sj Hd c- •: •• c «r »r «'«•■« o o N ••*- c •• c c o c c - ■•• c* — o r c oif» IT.cc" — o r.c «r »i Kc. r ( c«. c.r.c ooccoooc rc ooooocooo<■>oocoroorc«r«»«• „„__„«„»_- -.. ror {VJcvj«v. CSJfw cs; wNf«CVJrjf«c.c,r» cf;-" — — -— ■ r. rf» tf» if« rf» *> «o o rf> «o «r» rf> ir o «o«.'»«ft m «o m o o jd 3P 5 <* 5 r IT. r«•: * c r. f c • s-«.- c* c •••'-••«" f f r ' • l- . : Ki » if O f) f ' C ' < l f r • — • ( I , <: c c ' :.' » f r • '■ f. i »• .' r- • « i"« • • • t' * - • • * . < ( c c *• .. • • t : • < • (»■••• ' . ■ • i t i i ' ■• i i.) uo in o i."» o om i.". i.> i." i."> i-"' >'' ^ ••' '• - '•'• '•' '■ • '• —« zf 8 8t I- S i -I >• 63
  • 65. i si« iv i o Q.uii< Sä 058 18 Uli CD 0) JH 6k
  • 66. 'A ■JL—' ,H ^rm ANTI w z H^^ : <o S(0 z < X 1- 65
  • 67. ffNiii SANOS 1 if ^ i (' NORTH 11 1 I ANTENNAS 1 1 . s sv i /s^ J'/ 1 / / i w ' i/ ^^ M «v' ronT^^'SILL N^ ii ■ i / i v-/^/ i A / l v / i / Nv / ' h^Y i' AA.I SOUTH » ^»«i ANTENNAS /i>V ! v y 7 1 iV V i FORREST CITY NORTH AND SOUTH ANTENNAS (TOP VIEW) (EDGE VIEW) WHITE SANOS FORT SILL FORREST C|TV CENTER ANTENNAS (SIDE VIEW) (EDGE VIEW) FIG. 10 - INITIAL ANTENNA ORIENTATION 66
  • 68. / / 1 P^ 1 ' /I ^ 1 1 7 NORTN V 1 > yf t ANTCNNAS H / 11 // i [l^y^ ^N rotuYS^ ^w^ Nii SILL /^v ^k /!V .X i / ' ^ >^ 11 / ' ^ xx / i / ' ^ /it/ N / ; / L^l SOUTH NJ / K^6 1 v , v 1 w7 ANTENNAS / ^H FORREST CITY 20o NORTH AND SOUTH ANTENNAS (IOP vitWi (EDGE VIEW) FORREST CITY CENTER ANTENNAS (SIDE VIEW) (EDGE VIEW) FIG. II - ANTENNA ORIENTATION FOLLOWING DEACTIVATION OF WHITE SANDS STATION 67
  • 69. A3N3n03Ud «31ddOÜ CM f* •1 4t H19N3Ü1S 1VN9IS MBO CD r« ^ *? *? li • i ' IddinO U3AI333U I« N/S 11 Moiae oo :? ^ « ° II I > ) 4 a. '■ 0» tf) ■ a M w - = 5 OZo o UJ 10 ♦ 2 »- w »fl N 1- tf» a UJ Ö (ft : •- c. UJ 9C «J J o 1" i 2 8 »o Z UJ »- 3C ^ 3 t J> a « O »- •*» ■ iA -1 T >» UI • Ui '■a J ♦» o » — i z «« U ■» ^ CO < Ü o w s> u) Ö s. »- z < Z a u o o •J o -1 UI UJ ^ 1/) X O a o (t c. D 3 UJ or O < -* ^ u o UJ _ UJ >- O ^ 3 •J <J au»- _i a (/) a UJ o cr o ao -1 o u. Ci o _) a o zo -I ^4 U i- «n o (Ä v> i/i Q. CD <s < _i UJ -J UJ 0. tr 5 UI i CD 0) UI ►- 1 m o _l D <J UI O a o »- S V) cr z o l < < Ö lO I UJ (0 (M o«. r in 2 «• M UJ _i oo u> O i Z > <■ r>- z UJ tr o o o u 1- z< <i UJ UJ _J UJ Q a: Q CE UJ 1- < t- z OO UI _) UJ IT) S < o r ta 68
  • 70. Hl9N3diS 1VN9IS M80 00 N in in ADN3n03dJ M3"ldd0a S31DADOni)« II I II indino «3Ai303ti iv N/S ii MOI3Q na «CO (NJ «M - — «0 O II I I .-»««■.3-1....■. l^n.,B—»—Ii ,pi »j,^»!,, < z< < J U. N »- O I- s = an a: co UJ tc o . O o> 9 K u> vt (A O UJ U -I Si a 3O J~ Iz t- ec o to •O — - z bi O cj « CM < z z UJ u »o u z < 0C < 2 0 Ct 0D O (C W _| 2 < z UJ o 69
  • 71. Hi9N38lS nvNOis lO N OO N M80 in ADN3n03äJ M31ddOO II II indino aJAi3D3a IV N/S I I MOT38 80 <VJ V 0) •j eo «M - I I <J I !-J -." :*: : i : : : rr r •ft" rr-pi '••: ...^j........i....j,...r...r. .• .. •f—t -i • t •f : r f ... g • ! -Oo ; i .u T" ■ < z ct u. < o c - O ü o.» Ill »- a: </) u oc a: UJ oc o - o oo m o to o ^ _i a- > O UJ o oc OD J 2° tt: » M b. M M -»- « -. w < S W 0- »I O w »- UJ u, 3 y - w) _ ö 2 i u) UJ x r1 . . o M «» Z m U_J, . (VJ -2 Z u> a: ^ <r « tl i' < »- « U -J W 5 < O TO
  • 72. sanoAOoiiM NI .ON3n03MJ U31ddOQ Hl9N3diS 1VN9IS MBQ CO K N IP 0» II I II snoAoaDiw zoo «0130 $1381330 NI Hi9N3UlS IVNOIS CJ - I I fJi I «0 i s 4 i ! „•■•■;■ i • r i I i; :r-!H;H V) < 0) z u. < o o < IM »O o Ü > • • UJ U o «r UJ H H o: (/) o UJ UJ n _J a: UJ Q. a: Q; Q. o n O u. n u> N o 00 3 IO 00 IO (j Q. (D O > IO O UJ (t N ,.J (t <r O UJ «1 ^ o: UJ 3 ^ o (/) 0. < (C on UJ < in 5 V) I- < UJ to UJ -J öS (O (A > I w z UJ . =i< 2 Z Z (M UJ N I- "" z < UJ - z -I UJ < Ü IA 71
  • 73. S31DA301IX Nl ADN3n038d H3nddOO «n to <y> i • : s • • • ..... 1 • • PASS • : : . • • N : • • •* i .... ■. 4 *> J ... - • * 0 i ■ ■ .... : .. • if , , r .f. ■" f ■ -» - ■• .... .:.! .... ... ... <m > -- ,'A ■*: H i; ■ •* -Of ■ > ■■"■■ ''' ';.'. siiOAoaoiw zoo MOisa snsaiDSO NI Hl9N3dJ1S -IVN9IS « CD <M — I I T i o 8 1• 1 .. !;i 1 i. I•li I ; 1 ■ .. . ili' | w azo Ii L . .. •• o z «0 ..!. I N O 3 - 0) w<l z u. < o * o >- <-> h- Ui - g-Is Ü io o * -I u> a. oo o , 0 >u -J x oc CD < 1 -i ac oo < m (A * I- - < o ^ Ul (ft H UJ y -J a. io N eft M d U) to o UJ UJ a: o (ft H u< nH z < <ft (ft x »- D O (ft IX so O u, <zz UJ H Z < QC UJ h- z Ul o 72
  • 74. Hi9N3dlS IVNOIS M8Q S313AD01IX Nl A0N3nO3MJ uaiddOO «n <o o • - if I- : . ....... ... 1 i- • i : ' : i ;... . .. • ;__ i • .....■ ... ■ .... . .... ...j.. ...J. .. .... f" ■ .... .A. .... . ■ ...J;. •i • i i ■ : ...S.... ...j; ...: ■ .... •1 ....... ....._ 1; .•• ; ■■■'■ ...j " i Ij j 1 .... . :> ■ t •: !'JI .... •: j (0 N ii 7 SX10A0U3IM ZOO M0138 $1381330 Nl »UONJöiS IVNOIS (/> < (A Z u. < o N o < in a >. <o o H O Ui ü o ÜC ti H h IT (0 u UI -1 a. a. oo a ct o b. p o UJ a. a o 00 <0 N O a-i ro 00 • • o in o > o Ui o -i (t tc o CD < UJ 1< a. b UJ Q a: (0 < a: 00 UJ < m 2 _ (/) (0 V) H a U. z < O< UJ z i-i a: i UJ z > »- o 3 * O to (0 UJ ^ -1 < 2 zz 10 UJ ? Z< Ui o a: UJ i- H z -1 UJ < Ü «j 75
  • 75. A3Nan03UJ U31ddOO SlIOAOUDin zoo Memo snaeioaa NI H19N3U1S 1VN0IS «n to oo o» T CO CM - (VJ in ■ • ■ . . j. : '.. . .. | :! : :: M Iü4.Li.'n ;.::t|::j:::i ri;t;i:::j:::ii • ' |: ■ ;: ;::; jÜ' ;•;■ ;• s I I 2 §1 u I i o U3 2 O O Z NI . sz O < tr • o >- ü H a: </) Ui UJ u o -I a. oo a: m oo > UJ a: < 00 -J -i ü> N H W CO U- <3 <NJ L. g « w o uj I-ü w 55 UJ 2 x ' , o N (/) Z UI o < UJ UJ a: o a: 3 2 UJ (/> i- i_ < P z UJ Lj UJ Z < u 00 H 74
  • 76. S31DA001IX Nl A3Nan03HJ HllddOQ in u) CO <T> o i snoAOtom zoo M0138 81381330 Nl Hl9N3UiS 1VN0IS <M - ™ i o 5..|:: !,::tfe" .«III - i : ! •r rt> :..kJ..! ...ji.J.::|4....Li..J...j..;J.. n.iji... ■ Ul. z ... „Ii... T-kri" V) < o ^ o% oc - o >- £2 N d en 2 10 kJ 2 u! o »- t UJ 0) 3 H < O O U M 5 o: = a, oo o > UJ • a: CD u « a: a. i2oi •a-: - o w j - o - < ♦ s 5 * (0 tu - oo H to ÜJ Ui ^ K 9 a: I -* ^ 3 ^ liJ S L^ o?- "o ?<2 tH o: QD uj < UJ ^ t h-io _l 2 < UJ o 75
  • 77. S31DA3CniX Nl SnOAOUDIW zoo MOT30 5*1301330 Nl MiONlüiS IVNOIS N 00 N m u) N CD J» ■ i * c ;; J :-t i ??K . .,:-■: iPiiiniimfiiii" .;5| "J .11 !....„. .}-£... . ••& ^^ ^ . ;i .% i *• II - ■> >■■■ ■1 ■■e" Snl -. ■ V'-'A---'i...A- .... ■ •i • ■ '"" .... • •• Ii Ijij .... || ""■ r nr --(■■ ll .... • : ■-:{■ ■ " •^ . ... ■«- . .... .A- .. .... -., ■ ••■ .••■ .... ■ ■■■• .... "■■■ ■ • .... "i - i i , .... ; ! :i 1 , .. • • « "• •» • ■■% • :• ' • * 1 i ■ .... ■c. .... F' ■ ■•■ i ": U.""" li - : .J,. i u, =! .... i i .5.. • • « 3 i -■[- . til — • •„ f-•^ ...i s ,!«•• g- Jf* .. . .I m.... </> ■ ■ * ».. CO to: ^ .... .... ....r."!!. «M •—» V , ...pwr * •' .... -' r;.:: s :: it : . . ..i '...J ".1... > ... t;: .... •^^ .... •« ■ ..j. J.... »• : • ■ 4 <rt I ........ ^ .... o j's ' ■■' j i' : . ! l.r^ 'ri'c ■■;■■?■■ < : .. , . %« ä • — ' T • """ •:t S" .. .... Ul •-.-. .... .1 1: • ;: • ^ •S- • . L. £ 1 J. '" " 1 i .••• .... •••• • . i." I :: 5 1 ! : If:: ■ i ■ " i ji ••?' :| :;;; ?r- • .;.. »•;i ..;; ••M •• V"* .... ..j: .... s;; , ,1 .::. ::.: .... ...; .... .:;. ..;; .... *"! / 'i: '.*' ■ L;| ; s . ,: ..;■ ...f • >•• . — •« rt 1: I hi; ;;t; £••• •■■> ■... .... ——- -—— • .... *•«. .,.. •■•• , !•; ; .in • till i j!{| ':;; : ••:: ::P :: ••• ::r: tp •r: ::H nit—.ii lifi .... !••' :•;: :i:: .... (»* : illl i III] T- [■;• ;;;; R t Ml. . .. .... !:.. .... ':! ig II ili I [iii .••» : v ;;:: i 1 ft iH "" iili .... ■ iii; ..j. .. • tin .4.1 . ;::: .... ittl " ; }1iti 11 ili l!. | i hj [Jlj ii!; t|] :;::; ill üii j)| II [Iii illl i v.f. mi ittl ili: i Hi un ;;i: ;"; iiti tin i!i! üii (ft < (A in u. 2 ^ u. O ff o ^ IO o: ^ io UJ o o a: {2 y w ^ 0 S-I- Ko aU £ iL a. § - - •ON o 0* — o ^ o a. • oO Q>J n12l a<. O" W< t~ a: oo ui < m 2 (A H (A (O < < s Ui <n Xi- Ui 3 -j o 2 IX m CO t- *■' K • Oz Ui -1 m 2 <z (0 z Ui z Ui < o Ui »- z -1 Ui < o 8 T-l 76
  • 78. S313A0Ü1IM Nl ON3nOJUJ H3">ddOQ rf) Vi> <T> snoAOdDiw zoo M013Q $1381330 Nl H10N3U1S IVNOIS O « 00 io w — i i i i I t uK J -1 Ua .... ■ 1 •- 1*« .... • • •1 .... ... 3"" s... ; • < .... ... • ■ •-! ■••- ■ ■ • • ■«. ■ •*. .... • .... .... .... :- ill -I - - .... ..; .... "t ..;• .... "T ■•i- - ' # ...... (.L>.|....i .......... -.JJ-J^. ..... }] r-r % ■■] • V &P .1.... i ...... j.mg I„M ...... 1 bisi ..... H::.j.::-|^ ■ i....N.._: 1..J: I 2 dn CVJ L :r 5z u. < J O * V) o < I-: K . ik .. o >: N MILES WEST -SOUTH PASS 21 gs 0> o o PLER RREST o U (»)- 0. o o u c: DOPLOC EV. 9009 u. IM' w 5 134 MILES NTENNA , NC P _| ^ Q UJ . . < %< D H (/> P UJ P K H < |- z ^ w UJ -1 UJ J?0 s < o (C oo < to 77
  • 79. sanoADOiix Ni .ON3nt>3Mj UBIddOQ SilüAOäDlw ZOO MOIBB si38i33Q NI M10N3W1S 1VN0IS j V) (0 < CO o <* O » IM in (t O CM Ul UJ -J a u a a o o e o o CSJ _l 0> a. o > o UJ a: _J nr < CD ü i UJ < o 0. cc GO < m O «A H U UJ K I- J O a i « UJ O X ? 0 ^ ^ ^2 • «o N M V) UJ , 2O s- z< — m UJ U UJ (E O K 3 P UJ W) H J_ < P Z UJ _| UJ 5 «J o to 78
  • 80. SSHOADOIIM Nl ADN3n03aJ «aiddOO snoAOdoiw zoo M013a 81381030 Nl Hi9N3dlS IVNOIS CO <z < o a a: >- o H Ö V K i- «, w (C üJ UJ a 10 in OJ 3 o> a o > o UJ a: _i QC < CD Ü 1 UJ < o a. a: 00 < m .J to 5w) «»- !g2 UP. UWJ 5H so s- M9 q * i a £f ^ • . o N y» Z . «?;<&- K) * Z «^ -. z Om wao uj H S u < SI 5) t UJ C H UJ S UJ o 79
  • 81. S31DOCniM Nl ADN3n03di «3TddOO 4, u> 05 53 0. UJ - uJ -i Ui I I ,..... • • o ■ • • : • ■ • ■ ;; i ! > :1 . J . snoAOuoin /00 MOlSa 91381330 Nl Hi9N3HlS 1VN9IS 9 00 <M - I 1 1 I i ! 1 r S ill ■ I N L : r : ! • 1 1 I I Mill M • ........ ...... 1 . j.... •r— M < 0) u. z < -1 0 0 0: < M c N b. «/> Ü a >- in (A 0 V) s UJ a: 0 0u 1- 3 -1 un UI -J O in a. (E UJ 2 ! a. 0 0 £ ac X IM » O u 0) 00 m III 2 U> 0 rvj !t _J n o> 00 z m S 0 0 >' UJ O 10 z UI K Z -J «J a: 0 UJ UI 0 < 0 =) UJ 1 -i UJ < UJ b z UJ < 0 S < 0 a. a: 00 < in 80
  • 82. ON3n038J allddOÜ S31DAD01IM (0 HiON'JUlS HVNOIS Mao CD T K - to Ok N N <£ in T 7 T T mdino «3AI3D3« IV N/S hi MOiae 80 or u. <^ O ac O < O >- O bl o (t H a </> UJ UJ a-I. oac 0o. oÜL o » o «0 o u> _l * a. a> oo >w _i a: (C a? < »- 1 -i bl a<. O a: 00 < m d IM «•- 2 w) tf> <5n<22 tj UJ UJ o> tE CD Q. CM N tO UJ 00 -J -? i CM •n in in h- — (V oUi UJ e'n$H < H UJ j 3 < Z H KOZ J » => o 10 C. < z z UJ h- z < (E UJ z UJ a 81
  • 83. HiON3ülS 1VN9IS M9Q OB r» t ADN3n03yi a31dd00 SSHDAOOllX II I II indino a3Ai3'jJö IV N/S 1:1 MOT3Ü 80 « • - W «0 o n (o N> CD en i i 1 1 1 1 , _i L -, - _ ,i i, II ■ ' "•"T- .... • •a a ■■■<< ■ ; ..*. ...... .... ■■■ •* ■•■■ i ■ : :*: ..... 91t ••■■ .... :::..::. 1 i« ■• i /> * ...i....L.... LJ... Jj.-1 •i1 ! .... s ,.■.. , ■ i : 4J.... j.;..... ......f.;...;....,........., • • • • • '"f- •■•••-•i TEL • ■ • • ■•-• i .... < ;- -ji ..:....:^..i.—i ■•t ,.:.... w I ::p^;ii[:i:::::|: : |................. ..:.... / 1 S : „.... .i J •■ .:..:. LJ it 'i. ••i i• -•"■It-•-•"■•"• •t-ft-i | I.1 .;... ... .i.....:. 1 ! ...JJ„J..J A L' •j i m ■■■■■&■ 8 ••: kl.... % i i i ;; .: i ! ... tA. •••• 1 i r mim || ...L....:.:. . .... .... Iii • •■■ ■ ■ ■ i , :::::;; :.. : V a iii: 3! iiii M ;i:: li li iüi .... 1'"■ iü?li in {g ifj im IM ;:i: ; ill 1 IM j ": ;HT i :: ::■ ■Uli iii: iii: [iii (Hl 11 liji jjjj III 111 :::; i li üi ill iii; | :i || in nti i fj ft i iii: iiii iüi ii iii: jiiiii iiiiii Im iiii iiii iiii Iiii iilf li; iiii iili iiii ijü | ptl ii 1 j ;;*. ii iiii iiiiii i ijti [in i ;;;: Iii iiii i iili iiii iiii ill! ::;: ilii li; ;;;! i ;i ü 1 iiii iiii iiii ii I'll ;;;; iiii iiii i!i' II! 1 :; ;:i: U u < z < (/> O C u o lil a I-V) flC u UJ oc -i a: a. p 0 . O N O 0> -j K < 1 uj so K (D < IO N y, (D »- < M V) Q. bJ o > .1 p vt UJ UJ h _J bi a. o to iX • «/) N U _ -J 2f o o 2 in t < H W J Z < 4 Z Z tu C UJ »- z UJ o tu 82
  • 84. Mao ADN3n03dJ U31ddOQ S313A301IX K OB A —183 —177 — 171 —165 — 159 indino d3Al3D3M XV N/S i:i M0138 80 M - — tO O il II (0 < (ft z< u. ^ o ac o < V) er * >- ^K (rt o: UJ U ou 0043 AST F H PAS »- O u K (r (ft bi 3 UJ -j UJ KOTO U UJ M as 2 Q — 1 £8i ! o IO o O uj - -■ 3 0. in IO _| < o> 2^1 o > o O o w oc UJ — z Q < -1 UJ tu mig UJ o MEASUR ALTITUO CENTER QC 00 < IO 83