SlideShare a Scribd company logo
1 of 15
Download to read offline
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
An Improved Control Algorithm of Shunt Active Filter for
Voltage Regulation, Harmonic Elimination, Power-Factor
Correction, and Balancing of Nonlinear Loads
ABSTRACT:
This paper deals with an implementation of a new control algorithm for a three-phase shunt
active filter to regulate load terminal voltage, eliminate harmonics, correct supply power-factor,
and balance the nonlinear unbalanced loads. A three-phase insulated gate bipolar transistor
(IGBT) based current controlled voltage source inverter (CC-VSI) with a dc bus capacitor is used
as an active filter (AF). The control algorithm of the AF uses two closed loop PI controllers. The
dc bus voltage of the AF and three-phase supply voltages are used as feed back signals in the PI
controllers. The control algorithm of the AF provides three-phase reference supply currents. A
carrier wave pulse width modulation (PWM) current controller is employed over the reference
and sensed supply currents to generate gating pulses of IGBT’s of the AF. Test results are
presented and discussed to demonstrate the voltage regulation, harmonic elimination, power-
factor correction and load balancing capabilities of the AF system.
KEYWORDS:
1. Active filter
2. Harmonic compensation
3. Load balancing
4. Power-factor correction
5. Voltage regulation
SOFTWARE: MATLAB/SIMULINK
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
BLOCK DIAGRAM:
Fig. 1. Fundamental building block of the active filter.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
EXPECTED SIMULATION RESULTS:
Fig. 2. Performance of the AF system under switch IN and steady state conditions with a three-phase nonlinear load.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Fig. 3. Steady state response of the AF for voltage regulation and harmonic elimination with a three-phase nonlinear
load.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Fig. 4. Steady state response of the AF for voltage regulation, harmonic elimination, and load balancing with a
single-phase nonlinear load.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Fig. 5. Switch IN response of the AF for voltage regulation, harmonic elimination with a three-phase nonlinear load.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Fig. 6. Switch IN response of the AF for voltage regulation, harmonic elimination and load balancing with a single-
phase nonlinear load.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Fig. 7. Dynamic response of the AF for voltage regulation, harmonic elimination, and load balancing under the load
change from three-phase to single-phase.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Fig. 8. Dynamic response of the AF for voltage regulation, harmonic elimination, and load balancing under the load
change from single-phase to three-phase.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Fig. 9. Steady state response of the AF for power-factor correction, harmonic elimination with a three-phase
nonlinear load.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Fig. 10. Steady state response of the AF for power-factor correction, harmonic elimination, and load balancing with
a single-phase nonlinear load.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Fig. 11. Switch IN response of the AF for power-factor correction and harmonic elimination with a three-phase
nonlinear load.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Fig. 12. Switch IN response of the AF for power-factor correction, harmonic elimination, and load balancing with a
single-phase nonlinear load.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
CONCLUSION:
An improved control algorithm of the AF system has been implemented on a DSP system for
voltage regulation/power-factor correction, harmonic elimination and load balancing of nonlinear
loads. Dynamic and steady state performances of the AF system have been observed under
different operating conditions of the load. The performance of the AF system has been found to
be excellent. The AF system has been found capable of improving the power quality, voltage
profile, power-factor correction, harmonic elimination and balancing the nonlinear loads. The
proposed control algorithm of the AF has an inherent property to provide a self-supporting dc
bus and requires less number of current sensors resulting in an over all cost reduction. It has been
found that for voltage regulation and power-factor correction to unity are two different things
and can not be achieved simultaneously. However, a proper weight-age to in-phase and
quadrature components of the supply current can provide a reasonably good level of performance
and voltage at PCC can be regulated with a leading power-factor near to unity. It has been found
that the AF system reduces harmonics in the voltage at PCC and the supply currents well below
the mark of 5% specified in IEEE-519 standard.
REFERENCES:
[1] L. Gyugyi and E. C. Strycula, “Active AC power filters,” in Proc.IEEE-IAS Annu. Meeting
Record, 1976, pp. 529–535.
[2] T. J. E. Miller, Reactive Power Control in Electric Systems. Toronto,Ont., Canada: Wiley,
1982.
[3] J. F. Tremayne, “Impedance and phase balancing of main-frequency induction furnaces,”
Proc. Inst. Elect. Eng. B, pt. B, vol. 130, no. 3, pp. 161–170, May 1983.
ELECTRICAL PROJECTS USING MATLAB/SIMULINK
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
[4] H. Akagi, Y. Kanazawa, and A. Nabae, “Instantaneous reactive power compensators
comprising switching devices without energy storage components,” IEEE Trans. Ind. Applicat.,
vol. IA-20, pp. 625–630, May/June 1984.
[5] T. A. Kneschki, “Control of utility system unbalance caused by single-phase electric
traction,” IEEE Trans. Ind. Applicat., vol. IA-21, pp. 1559–1570, Nov./Dec. 1985.

More Related Content

What's hot

A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...
A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...
A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...
Asoka Technologies
 
A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...
Asoka Technologies
 
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
Asoka Technologies
 
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
Asoka Technologies
 
Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...
Asoka Technologies
 

What's hot (20)

Comparison of Modulation Techniques for Matrix Converter
Comparison of Modulation Techniques for Matrix ConverterComparison of Modulation Techniques for Matrix Converter
Comparison of Modulation Techniques for Matrix Converter
 
A Simplified Space Vector Pulse-Width Modulation Scheme for Three-Phase Casca...
A Simplified Space Vector Pulse-Width Modulation Scheme for Three-Phase Casca...A Simplified Space Vector Pulse-Width Modulation Scheme for Three-Phase Casca...
A Simplified Space Vector Pulse-Width Modulation Scheme for Three-Phase Casca...
 
Novel symmetric modular hybrid multilevel inverter with reduced number of sem...
Novel symmetric modular hybrid multilevel inverter with reduced number of sem...Novel symmetric modular hybrid multilevel inverter with reduced number of sem...
Novel symmetric modular hybrid multilevel inverter with reduced number of sem...
 
A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...
A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...
A New Family of Step-up Hybrid Switched- Capacitor Integrated Multilevel Inve...
 
A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...A simplified phase shift pwm-based feedforward distributed mppt method for gr...
A simplified phase shift pwm-based feedforward distributed mppt method for gr...
 
Cascaded two level inverter-based multilevel statcom for high power applications
Cascaded two level inverter-based multilevel statcom for high power applicationsCascaded two level inverter-based multilevel statcom for high power applications
Cascaded two level inverter-based multilevel statcom for high power applications
 
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
A multi cell 21-level hybrid multilevel inverter synthesizes a reduced number...
 
Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...
Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...
Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multileve...
 
A generalized multilevel inverter topology with reduction of total standing v...
A generalized multilevel inverter topology with reduction of total standing v...A generalized multilevel inverter topology with reduction of total standing v...
A generalized multilevel inverter topology with reduction of total standing v...
 
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
Power Quality Improvement in Solar Fed Cascaded Multilevel Inverter with Outp...
 
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
Novel High Performance Stand Alone Solar PV System with High Gain, High Effic...
 
Single phase active power filtering method using diode-rectifier-fed motor drive
Single phase active power filtering method using diode-rectifier-fed motor driveSingle phase active power filtering method using diode-rectifier-fed motor drive
Single phase active power filtering method using diode-rectifier-fed motor drive
 
A Variable DC Link based Novel Multilevel Inverter Topology for Low Voltage A...
A Variable DC Link based Novel Multilevel Inverter Topology for Low Voltage A...A Variable DC Link based Novel Multilevel Inverter Topology for Low Voltage A...
A Variable DC Link based Novel Multilevel Inverter Topology for Low Voltage A...
 
Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...Development of wind and solar based ac microgrid with power quality improveme...
Development of wind and solar based ac microgrid with power quality improveme...
 
A Simple Active and Reactive Power Control for Applications of Single-Phase E...
A Simple Active and Reactive Power Control for Applications of Single-Phase E...A Simple Active and Reactive Power Control for Applications of Single-Phase E...
A Simple Active and Reactive Power Control for Applications of Single-Phase E...
 
Single- and Two-Stage Inverter-Based Grid-Connected Photovoltaic Power Plants...
Single- and Two-Stage Inverter-Based Grid-Connected Photovoltaic Power Plants...Single- and Two-Stage Inverter-Based Grid-Connected Photovoltaic Power Plants...
Single- and Two-Stage Inverter-Based Grid-Connected Photovoltaic Power Plants...
 
An integrated boost resonant converter for photovoltaic applications
An integrated boost resonant converter for photovoltaic applicationsAn integrated boost resonant converter for photovoltaic applications
An integrated boost resonant converter for photovoltaic applications
 
Multiconverter Unified Power Quality Conditioning System Using Artificial Neu...
Multiconverter Unified Power Quality Conditioning System Using Artificial Neu...Multiconverter Unified Power Quality Conditioning System Using Artificial Neu...
Multiconverter Unified Power Quality Conditioning System Using Artificial Neu...
 
New control strategy for three phase grid-connected lcl inverters without a p...
New control strategy for three phase grid-connected lcl inverters without a p...New control strategy for three phase grid-connected lcl inverters without a p...
New control strategy for three phase grid-connected lcl inverters without a p...
 
Design tools for rapid, multi domain virtual prototyping of power electronic ...
Design tools for rapid, multi domain virtual prototyping of power electronic ...Design tools for rapid, multi domain virtual prototyping of power electronic ...
Design tools for rapid, multi domain virtual prototyping of power electronic ...
 

Similar to An improved control algorithm of shunt active filter for voltage regulation, harmonic elimination, power factor correction, and balancing of nonlinear loads

Analysis of the_operation_of_a_d-statcom_in
Analysis of the_operation_of_a_d-statcom_inAnalysis of the_operation_of_a_d-statcom_in
Analysis of the_operation_of_a_d-statcom_in
Asoka Technologies
 
High frequency ac-link pv inverter
High frequency ac-link pv inverterHigh frequency ac-link pv inverter
High frequency ac-link pv inverter
Asoka Technologies
 
Performance comparison of SVC and SSSC with POD controller for Power System S...
Performance comparison of SVC and SSSC with POD controller for Power System S...Performance comparison of SVC and SSSC with POD controller for Power System S...
Performance comparison of SVC and SSSC with POD controller for Power System S...
Asoka Technologies
 

Similar to An improved control algorithm of shunt active filter for voltage regulation, harmonic elimination, power factor correction, and balancing of nonlinear loads (20)

A three phase grid tied spv system with adaptive dc link voltage for cpi volt...
A three phase grid tied spv system with adaptive dc link voltage for cpi volt...A three phase grid tied spv system with adaptive dc link voltage for cpi volt...
A three phase grid tied spv system with adaptive dc link voltage for cpi volt...
 
Design and Control of Wind integrated Shunt Active Power Filter to Improve Po...
Design and Control of Wind integrated Shunt Active Power Filter to Improve Po...Design and Control of Wind integrated Shunt Active Power Filter to Improve Po...
Design and Control of Wind integrated Shunt Active Power Filter to Improve Po...
 
Study on PWM Rectifier without Grid Voltage Sensor Based on Virtual Flux Dela...
Study on PWM Rectifier without Grid Voltage Sensor Based on Virtual Flux Dela...Study on PWM Rectifier without Grid Voltage Sensor Based on Virtual Flux Dela...
Study on PWM Rectifier without Grid Voltage Sensor Based on Virtual Flux Dela...
 
A solar power generation system with a seven level inverter
A solar power generation system with a seven level inverterA solar power generation system with a seven level inverter
A solar power generation system with a seven level inverter
 
An Efficient Constant Current Controller for PV Solar Power Generator Integra...
An Efficient Constant Current Controller for PV Solar Power Generator Integra...An Efficient Constant Current Controller for PV Solar Power Generator Integra...
An Efficient Constant Current Controller for PV Solar Power Generator Integra...
 
A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Mic...
A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Mic...A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Mic...
A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Mic...
 
Simulation of distributed power flow controller for voltage sag compensation
Simulation of distributed power flow controller for voltage sag compensationSimulation of distributed power flow controller for voltage sag compensation
Simulation of distributed power flow controller for voltage sag compensation
 
A Unity Power Factor Converter with Isolation for Electric Vehicle Battery Ch...
A Unity Power Factor Converter with Isolation for Electric Vehicle Battery Ch...A Unity Power Factor Converter with Isolation for Electric Vehicle Battery Ch...
A Unity Power Factor Converter with Isolation for Electric Vehicle Battery Ch...
 
Analysis of the_operation_of_a_d-statcom_in
Analysis of the_operation_of_a_d-statcom_inAnalysis of the_operation_of_a_d-statcom_in
Analysis of the_operation_of_a_d-statcom_in
 
Performance enhancement of shunt active power filter with fuzzy and hysteresi...
Performance enhancement of shunt active power filter with fuzzy and hysteresi...Performance enhancement of shunt active power filter with fuzzy and hysteresi...
Performance enhancement of shunt active power filter with fuzzy and hysteresi...
 
High frequency ac-link pv inverter
High frequency ac-link pv inverterHigh frequency ac-link pv inverter
High frequency ac-link pv inverter
 
Performance comparison of SVC and SSSC with POD controller for Power System S...
Performance comparison of SVC and SSSC with POD controller for Power System S...Performance comparison of SVC and SSSC with POD controller for Power System S...
Performance comparison of SVC and SSSC with POD controller for Power System S...
 
Power quality improvement in distribution network using DSTATCOM with battery...
Power quality improvement in distribution network using DSTATCOM with battery...Power quality improvement in distribution network using DSTATCOM with battery...
Power quality improvement in distribution network using DSTATCOM with battery...
 
Performance enhancement of actively controlled hybrid dc microgrid incorporat...
Performance enhancement of actively controlled hybrid dc microgrid incorporat...Performance enhancement of actively controlled hybrid dc microgrid incorporat...
Performance enhancement of actively controlled hybrid dc microgrid incorporat...
 
A transformerless grid connected photovoltaic inverter with switched capacitors
A transformerless grid connected photovoltaic inverter with switched capacitorsA transformerless grid connected photovoltaic inverter with switched capacitors
A transformerless grid connected photovoltaic inverter with switched capacitors
 
Statcom for improved dynamic performance of wind farms in power grid
 Statcom for improved dynamic performance of wind farms in power grid Statcom for improved dynamic performance of wind farms in power grid
Statcom for improved dynamic performance of wind farms in power grid
 
Analysis of 12 pulse phase control ac dc converter
Analysis of 12 pulse phase control ac dc converterAnalysis of 12 pulse phase control ac dc converter
Analysis of 12 pulse phase control ac dc converter
 
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
Power Quality Improvement of Grid-Connected Photovoltaic Systems Using Trans-...
 
Improving the Dynamic Performance of Wind Farms with STATCOM
Improving the Dynamic Performance of Wind Farms with STATCOMImproving the Dynamic Performance of Wind Farms with STATCOM
Improving the Dynamic Performance of Wind Farms with STATCOM
 
Three phase unidirectional rectifiers with open-end source and cascaded float...
Three phase unidirectional rectifiers with open-end source and cascaded float...Three phase unidirectional rectifiers with open-end source and cascaded float...
Three phase unidirectional rectifiers with open-end source and cascaded float...
 

More from Asoka Technologies

Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...
Asoka Technologies
 
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Asoka Technologies
 
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Asoka Technologies
 
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Asoka Technologies
 
Implementation of solar pv battery and diesel generator based electric vehic...
Implementation of solar pv  battery and diesel generator based electric vehic...Implementation of solar pv  battery and diesel generator based electric vehic...
Implementation of solar pv battery and diesel generator based electric vehic...
Asoka Technologies
 
Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...
Asoka Technologies
 
Control and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv systemControl and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv system
Asoka Technologies
 

More from Asoka Technologies (20)

Solar pv charging station for electric vehicles
Solar pv charging station for electric vehiclesSolar pv charging station for electric vehicles
Solar pv charging station for electric vehicles
 
Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...
Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...
Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower ...
 
Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...Residential Community Load Management based on Optimal Design of Standalone H...
Residential Community Load Management based on Optimal Design of Standalone H...
 
Reliability evaluation of MPPT based interleaved boost converter for PV system
Reliability evaluation of MPPT based interleaved boost converter for PV systemReliability evaluation of MPPT based interleaved boost converter for PV system
Reliability evaluation of MPPT based interleaved boost converter for PV system
 
Power optimisation scheme of induction motor using FLC for electric vehicle
Power optimisation scheme of induction motor using FLC for electric vehiclePower optimisation scheme of induction motor using FLC for electric vehicle
Power optimisation scheme of induction motor using FLC for electric vehicle
 
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
Power Flow Control of Interconnected AC-DC Microgrids in Grid-Connected Hybri...
 
Power flow control of hybrid micro grids using modified uipc
Power flow control of hybrid micro grids using modified uipcPower flow control of hybrid micro grids using modified uipc
Power flow control of hybrid micro grids using modified uipc
 
Multifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms controlMultifunctional grid tied pv system using modified klms control
Multifunctional grid tied pv system using modified klms control
 
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
Modelling and voltage control of the solar wind hybrid micro-grid with optimi...
 
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Po...
 
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mod...
 
Implementation of solar pv battery and diesel generator based electric vehic...
Implementation of solar pv  battery and diesel generator based electric vehic...Implementation of solar pv  battery and diesel generator based electric vehic...
Implementation of solar pv battery and diesel generator based electric vehic...
 
High step up quasi-z source dc-dc converter
High step up quasi-z source dc-dc converterHigh step up quasi-z source dc-dc converter
High step up quasi-z source dc-dc converter
 
Fuel cell integrated unified power quality conditioner for voltage and curren...
Fuel cell integrated unified power quality conditioner for voltage and curren...Fuel cell integrated unified power quality conditioner for voltage and curren...
Fuel cell integrated unified power quality conditioner for voltage and curren...
 
Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...Distributed incremental adaptive filter controlled grid interactive residenti...
Distributed incremental adaptive filter controlled grid interactive residenti...
 
Application of Artificial Neural Networks for Shunt APF Control
Application of Artificial Neural Networks for Shunt APF ControlApplication of Artificial Neural Networks for Shunt APF Control
Application of Artificial Neural Networks for Shunt APF Control
 
Control strategy of pmsg based wind energy conversion system under strong win...
Control strategy of pmsg based wind energy conversion system under strong win...Control strategy of pmsg based wind energy conversion system under strong win...
Control strategy of pmsg based wind energy conversion system under strong win...
 
Control and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv systemControl and energy management of a large scale grid connected pv system
Control and energy management of a large scale grid connected pv system
 
Application of boost converter to increase the speed range of dual stator win...
Application of boost converter to increase the speed range of dual stator win...Application of boost converter to increase the speed range of dual stator win...
Application of boost converter to increase the speed range of dual stator win...
 
A low voltage ride-through strategy using mixed potential function for three-...
A low voltage ride-through strategy using mixed potential function for three-...A low voltage ride-through strategy using mixed potential function for three-...
A low voltage ride-through strategy using mixed potential function for three-...
 

Recently uploaded

FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Tonystark477637
 

Recently uploaded (20)

chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 

An improved control algorithm of shunt active filter for voltage regulation, harmonic elimination, power factor correction, and balancing of nonlinear loads

  • 1. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 An Improved Control Algorithm of Shunt Active Filter for Voltage Regulation, Harmonic Elimination, Power-Factor Correction, and Balancing of Nonlinear Loads ABSTRACT: This paper deals with an implementation of a new control algorithm for a three-phase shunt active filter to regulate load terminal voltage, eliminate harmonics, correct supply power-factor, and balance the nonlinear unbalanced loads. A three-phase insulated gate bipolar transistor (IGBT) based current controlled voltage source inverter (CC-VSI) with a dc bus capacitor is used as an active filter (AF). The control algorithm of the AF uses two closed loop PI controllers. The dc bus voltage of the AF and three-phase supply voltages are used as feed back signals in the PI controllers. The control algorithm of the AF provides three-phase reference supply currents. A carrier wave pulse width modulation (PWM) current controller is employed over the reference and sensed supply currents to generate gating pulses of IGBT’s of the AF. Test results are presented and discussed to demonstrate the voltage regulation, harmonic elimination, power- factor correction and load balancing capabilities of the AF system. KEYWORDS: 1. Active filter 2. Harmonic compensation 3. Load balancing 4. Power-factor correction 5. Voltage regulation SOFTWARE: MATLAB/SIMULINK
  • 2. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 BLOCK DIAGRAM: Fig. 1. Fundamental building block of the active filter.
  • 3. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 EXPECTED SIMULATION RESULTS: Fig. 2. Performance of the AF system under switch IN and steady state conditions with a three-phase nonlinear load.
  • 4. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 3. Steady state response of the AF for voltage regulation and harmonic elimination with a three-phase nonlinear load.
  • 5. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 4. Steady state response of the AF for voltage regulation, harmonic elimination, and load balancing with a single-phase nonlinear load.
  • 6. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 5. Switch IN response of the AF for voltage regulation, harmonic elimination with a three-phase nonlinear load.
  • 7. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 6. Switch IN response of the AF for voltage regulation, harmonic elimination and load balancing with a single- phase nonlinear load.
  • 8. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 7. Dynamic response of the AF for voltage regulation, harmonic elimination, and load balancing under the load change from three-phase to single-phase.
  • 9. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 8. Dynamic response of the AF for voltage regulation, harmonic elimination, and load balancing under the load change from single-phase to three-phase.
  • 10. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 9. Steady state response of the AF for power-factor correction, harmonic elimination with a three-phase nonlinear load.
  • 11. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 10. Steady state response of the AF for power-factor correction, harmonic elimination, and load balancing with a single-phase nonlinear load.
  • 12. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 11. Switch IN response of the AF for power-factor correction and harmonic elimination with a three-phase nonlinear load.
  • 13. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 Fig. 12. Switch IN response of the AF for power-factor correction, harmonic elimination, and load balancing with a single-phase nonlinear load.
  • 14. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 CONCLUSION: An improved control algorithm of the AF system has been implemented on a DSP system for voltage regulation/power-factor correction, harmonic elimination and load balancing of nonlinear loads. Dynamic and steady state performances of the AF system have been observed under different operating conditions of the load. The performance of the AF system has been found to be excellent. The AF system has been found capable of improving the power quality, voltage profile, power-factor correction, harmonic elimination and balancing the nonlinear loads. The proposed control algorithm of the AF has an inherent property to provide a self-supporting dc bus and requires less number of current sensors resulting in an over all cost reduction. It has been found that for voltage regulation and power-factor correction to unity are two different things and can not be achieved simultaneously. However, a proper weight-age to in-phase and quadrature components of the supply current can provide a reasonably good level of performance and voltage at PCC can be regulated with a leading power-factor near to unity. It has been found that the AF system reduces harmonics in the voltage at PCC and the supply currents well below the mark of 5% specified in IEEE-519 standard. REFERENCES: [1] L. Gyugyi and E. C. Strycula, “Active AC power filters,” in Proc.IEEE-IAS Annu. Meeting Record, 1976, pp. 529–535. [2] T. J. E. Miller, Reactive Power Control in Electric Systems. Toronto,Ont., Canada: Wiley, 1982. [3] J. F. Tremayne, “Impedance and phase balancing of main-frequency induction furnaces,” Proc. Inst. Elect. Eng. B, pt. B, vol. 130, no. 3, pp. 161–170, May 1983.
  • 15. ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 For Simulation Results of the project Contact Us Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in 0-9347143789/9949240245 [4] H. Akagi, Y. Kanazawa, and A. Nabae, “Instantaneous reactive power compensators comprising switching devices without energy storage components,” IEEE Trans. Ind. Applicat., vol. IA-20, pp. 625–630, May/June 1984. [5] T. A. Kneschki, “Control of utility system unbalance caused by single-phase electric traction,” IEEE Trans. Ind. Applicat., vol. IA-21, pp. 1559–1570, Nov./Dec. 1985.