SlideShare a Scribd company logo
1 of 42
PID Controller Tuning
Comparison of classical tuning methods
1
Content
June 16, 2015 2
โ–ถ Introduction
โ–ถ Objectives
โ–ถ Closed-loop Methods
๏ƒ˜ Ziegler-Nichols Closed-loop
๏ƒ˜ Tyreus-Luyben
๏ƒ˜ Damped Oscillation
โ–ถ Open-loop Methods
๏ƒ˜ Ziegler-Nichols Open-loop
๏ƒ˜ C-H-R
๏ƒ˜ Cohen-Coon
๏ƒ˜ Ciancone-Marlin
๏ƒ˜ Minimum Error Integral
โ–ถ Simulation and Results
โ–ถ GUI Description
Introduction
โ–ถ PID tuning is to find the optimum Kp, Ki and Kd for the controller.
Control objective > Setpoint tracking, Disturbance rejection
Actions > Instantaneous proportional action, Reset integral action, Rate derivative
action
Optimum criteria > Depends on application and system requirements
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 3
Introduction
โ–ถ Conceptual real-world example
Driver
(PID)
Car mechanism
(Process)
Crosswind
Front wheels
angle Car position
Driverโ€™s eyes
(Feedback)
Desired position
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 4
Introduction
โ–ถ PID configuration
๐ถ๐‘œ๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘™๐‘™๐‘’๐‘Ÿ ๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก = ๐พ๐‘ ๐‘’(๐‘ก) + ๐พ๐‘– โˆซ ๐‘’(๐‘ก)๐‘‘๐‘ก + ๐พ๐‘‘
d๐‘’(๐‘ก)
๐‘‘๐‘ก
= ๐พ๐‘ ร— (1 +
1
๐‘Ÿ๐‘–
โˆซ ๐‘’(๐‘ก)๐‘‘๐‘ก + ๐‘Ÿ๐‘‘
d๐‘’(๐‘ก)
๐‘‘๐‘ก
)
๐พ๐‘๐‘’(๐‘ก)
๐พ๐‘– โˆซ ๐‘’(๐‘ก)๐‘‘๐‘ก
d๐‘’(๐‘ก)
๐พ๐‘‘
๐‘‘๐‘ก
SP
PV
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 5
Controller output
e(t)
Introduction
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 6
โ–ถ Many tuning methods have been proposed for PID controllers each of which
has its advantages and disadvantages. So, no one can be considered the best
for all purposes.
โ–ถ Closed-loop methods tune the PID while it is attached to the loop while in
open-loop methods the process is estimated using a FOPDT model
โ–ถ A comparison of the most popular methods is to be done
โ–ถ Simulation will be implemented for 1st, 2nd and 3rd-order processes, some of
which are lag-dominant and the others are dead-time dominant.
โ–ถ IAE as criterion (which adds up the time and amplitude weight of the error)
Objectives
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 7
โ–ถ Compare studied tuning methods for performance and robustness
โ–ถ Develop a GUI to do the comparison automatically for a given process model
Closed-loop methods
โ–ถ Ziegler-Nichols Closed-loop
โ–ถ Tyreus-Luyben
โ–ถ Damped Oscillation
PID Process
D
C PV
Feedback
SP
Tuning
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 8
Open-loop methods
โ–ถ Ziegler-Nichols Open-loop
โ–ถ C-H-R
โ–ถ Cohen-Coon
โ–ถ Ciancone-Marlin
โ–ถ Minimum Error Integral
PID Process
D
PV
Tuning
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 9
Ziegler-Nichols Closed-loop
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 10
โ–ถ ยผ decay ratio as design criterion (stability condition)
โ–ถ Trial-and-error procedure to find ๐‘ฒ๐’– and ๐‘ท๐’–
โ–ถ Drives the process into marginal stability
โ–ถ Performs well when ๐‘Ÿ๐’Ž โ‰ฅ ๐Ÿ๐’•๐’… (lag dominant)
โ–ถ Performs very poorly for ๐’•๐’… > ๐Ÿ๐‘Ÿ๐’Ž (dead-time dominant)
โ–ถ Fast recovery from disturbance but leads to oscillatory response
โ–ถ Not applicable to open-loop-unstable processes
โ–ถ Some processes do not have ultimate gain
Ziegler-Nichols Closed-loop
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 11
Controller ๐พ๐‘ ๐‘Ÿ๐‘– ๐‘Ÿ๐‘‘
P 0.5๐พ๐‘ข - -
PI 0.45๐พ๐‘ข 0.83๐‘ƒ๐‘ข -
PID 0.6๐พ๐‘ข 0.5๐‘ƒ๐‘ข 0.125๐‘ƒ๐‘ข
โ–ถ Procedure:
๏ƒ˜ Set ๐พ๐‘– and ๐พ๐‘‘ to 0
๏ƒ˜ Increase ๐พ๐‘ till sustained oscillation and find ๐พ๐‘ข and ๐‘ƒ๐‘ข
๏ƒ˜ Use the correlations in the table below
Tyreus-Luyben
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 12
โ–ถ An improvement for Ziegler-Nichols closed-loop to make response less
oscillatory
โ–ถ More robust to imprecise model
โ–ถ Gives better disturbance response
โ–ถ Procedure:
๏ƒ˜ Same procedure as Ziegler-Nichols closed-loop
Controller ๐พ๐‘ ๐‘Ÿ๐‘– ๐‘Ÿ๐‘‘
PI 0.45๐พ๐‘ข 2.2๐‘ƒ๐‘ข -
PID 0.313๐พ๐‘ข 2.2๐‘ƒ๐‘ข 0.16๐‘ƒ๐‘ข
Damped Oscillation
โ–ถ Another improvement for Ziegler-Nichols closed-loop
โ–ถ Solves the problem of marginal stability
โ–ถ Can be used with open-loop-unstable processes
0.8
0.6
0.4
0.2
0
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 13
1
1.2
0 10 20 30 40 50 60 70 80
4:1
Damped Oscillation
Controller ๐พ๐‘ ๐‘Ÿ๐‘– ๐‘Ÿ๐‘‘
PI ๐‘Ž๐‘‘๐‘—๐‘ข๐‘ ๐‘ก๐‘’๐‘‘ ๐‘ƒ๐‘‘/6 -
PID ๐‘Ž๐‘‘๐‘—๐‘ข๐‘ ๐‘ก๐‘’๐‘‘ ๐‘ƒ๐‘‘/6 ๐‘ƒ๐‘‘/1.5
โ–ถ Procedure:[1]
๏ƒ˜ Set ๐พ๐‘– and ๐พ๐‘‘ to 0
๏ƒ˜ Increase ๐พ๐‘ till ยผ damping ratio is maintained and find ๐‘ƒ๐‘‘ only
๏ƒ˜ Use the correlations in the table below to find ๐‘Ÿ๐‘– and ๐‘Ÿ๐‘‘
๏ƒ˜ Adjust ๐พ๐‘ till ยผ damping ratio is maintained again
[1] Liptaฬk, Beฬla G., and Kriszta Venczel. Instrument Engineers' Handbook: Process Control 4thed, Volume T
w
o
.
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 14
Ziegler-Nichols Open-loop
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 15
โ–ถ ยผ decay ratio as design criterion
โ–ถ Performs well when ๐‘Ÿ๐‘š โ‰ฅ 2๐‘ก๐‘‘ (lag dominant)
โ–ถ Performs very poorly for ๐‘ก๐‘‘ > 2๐‘Ÿ๐‘š (dead-time dominant)
โ–ถ Fast recovery from disturbance but leads to oscillatory response
Ziegler-Nichols Open-loop
๐บ๐‘š ๐‘  =
โ–ถ Procedure:
๏ƒ˜ The process dynamics is modeled by a first order plus dead time model
๐พ๐‘š๐‘’โˆ’๐‘ก๐‘‘๐‘ 
๐‘Ÿ๐‘š๐‘  + 1
2.5
2
1.5
1
0.5
0
-0.5
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 16
Ziegler-Nichols Open-loop
๏ƒ˜ PID parameters are calculated from the table below
Controller ๐พ๐‘ ๐‘Ÿ๐‘– ๐‘Ÿ๐‘‘
P 1 ๐‘Ÿ๐‘š
๐พ๐‘š ๐‘ก๐‘‘
- -
PI 0.9 ๐‘Ÿ๐‘š
๐พ๐‘š ๐‘ก๐‘‘
๐‘ก๐‘‘
0.3
-
PID 1.2 ๐‘Ÿ๐‘š
๐พ๐‘š ๐‘ก๐‘‘
2๐‘ก๐‘‘ 0.5๐‘ก๐‘‘
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 17
C-H-R
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 18
โ–ถ A modification of Ziegler-Nichols Open-loop
โ–ถ Aims to find the โ€œquickest response with 0% overshootโ€ or โ€œquickest
response with 20% overshootโ€
โ–ถ Tuning for setpoint responses differs from load disturbance responses
C-H-R
Setpoint
Controller ๐พ๐‘ ๐‘Ÿ๐‘– ๐‘Ÿ๐‘‘ ๐พ๐‘ ๐‘Ÿ๐‘– ๐‘Ÿ๐‘‘
0% overshoot 20% overshoot
P 0.3 ๐‘Ÿ๐‘š
๐พ๐‘š ๐‘ก๐‘‘
- -
0.7 ๐‘Ÿ๐‘š
๐พ๐‘š ๐‘ก๐‘‘
- -
PI 0.35๐‘Ÿ๐‘š
๐พ๐‘š ๐‘ก๐‘‘
1.2๐‘Ÿ๐‘š -
0.6 ๐‘Ÿ๐‘š
๐พ๐‘š ๐‘ก๐‘‘
๐‘Ÿ๐‘š -
PID 0.6 ๐‘Ÿ๐‘š
๐พ๐‘š ๐‘ก๐‘‘
๐‘Ÿ๐‘š 0.5๐‘ก๐‘‘
0.95๐‘Ÿ๐‘š
๐พ๐‘š ๐‘ก๐‘‘
1.4๐‘Ÿ๐‘š 0.47๐‘ก๐‘‘
Disturbance
P 0.3 ๐‘Ÿ๐‘š
๐พ๐‘š ๐‘ก๐‘‘
- -
0.7 ๐‘Ÿ๐‘š
๐พ๐‘š ๐‘ก๐‘‘
- -
PI 0.6 ๐‘Ÿ๐‘š
๐พ๐‘š ๐‘ก๐‘‘
4๐‘ก๐‘‘ -
0.7 ๐‘Ÿ๐‘š
๐พ๐‘š ๐‘ก๐‘‘
2.3๐‘ก๐‘‘ -
PID 0.95๐‘Ÿ๐‘š
๐พ๐‘š ๐‘ก๐‘‘
2.4๐‘ก๐‘‘ 0.42๐‘ก๐‘‘
1.2 ๐‘Ÿ๐‘š
๐พ๐‘š ๐‘ก๐‘‘
2๐‘ก๐‘‘ 0.42๐‘ก๐‘‘
โ–ถ Procedure:
๏ƒ˜ Same as Ziegler-Nichols Open-loop
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 19
Cohen-Coon
โ–ถ Second in popularity after Ziegler-Nichols tuning rules
โ–ถ ยผ decay ratio has considered as design criterion for this method
โ–ถ More robust
๐’•
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 20
๐’…
๐‘Ÿ ๐‘‘
(i.e. ๐‘ก > 2๐‘Ÿ)
โ–ถ Applicable to wider range of
โ–ถ PD rules available
Cohen-Coon
โ–ถ Procedure:[1]
๏ƒ˜ The process reaction curve is obtained by an open loop test and the FOPDT
model is estimated as follows:
3
๐‘Ÿ๐‘š =
2
๐‘ก2 โˆ’ ๐‘ก1
๐‘ก๐‘‘ = ๐‘ก2 โˆ’ ๐‘Ÿ๐‘š 1.5
2
2.5
1
0.5
0
-0.5
[1] Smith,C.A.,A.B. Copripio; โ€œPrinciples and Practice of Automatic Process Controlโ€, John Wiley & Sons,1985
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 21
Cohen-Coon
Controller ๐พ๐‘ ๐‘Ÿ๐‘– ๐‘Ÿ๐‘‘
P
1 ๐‘Ÿ๐‘š ๐‘ก๐‘‘
(1 + )
๐พ๐‘š ๐‘ก๐‘‘ 3๐‘Ÿ๐‘š
- -
PI
1 ๐‘Ÿ๐‘š ๐‘ก๐‘‘
(0.9 + )
๐พ๐‘š ๐‘ก๐‘‘ 12๐‘Ÿ๐‘š
30 + 3๐‘ก๐‘‘
๐‘Ÿ๐‘š
๐‘ก๐‘‘ 20๐‘ก๐‘‘
9 + ๐‘Ÿ๐‘š
-
PD
1 ๐‘Ÿ๐‘š ๐‘ก๐‘‘
(1.25 + )
๐พ๐‘š ๐‘ก๐‘‘ 6๐‘Ÿ๐‘š
-
6 โˆ’ 2๐‘ก๐‘‘
๐‘Ÿ๐‘š
๐‘ก๐‘‘ 3๐‘ก๐‘‘
22 + ๐‘Ÿ๐‘š
PID
1 ๐‘Ÿ๐‘š ๐‘ก๐‘‘
(1.33 + )
๐พ๐‘š ๐‘ก๐‘‘ 4๐‘Ÿ๐‘š
32 + 6๐‘ก๐‘‘
๐‘Ÿ๐‘š
๐‘ก๐‘‘ 8๐‘ก๐‘‘
13 + ๐‘Ÿ๐‘š
4
๐‘ก๐‘‘ 2๐‘ก๐‘‘
11 + ๐‘Ÿ๐‘š
๏ƒ˜ PID parameters are calculated from the table
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 22
Ciancone-Marlin
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 23
โ–ถ Design criteria:
๏ƒ˜ Minimization of IAE
๏ƒ˜ Assumption of ยฑ25% change in the process model parameters
โ–ถ A set of graphs are used for the tuning
โ–ถ Tuning for setpoint responses differs from load disturbance responses
Ciancone-Marlin
โ–ถ Procedure:
๏ƒ˜ Estimate the process with FOPDT as for Cohen-Coon method
๏ƒ˜ Calculate the ratio
๐‘ก๐‘‘
๐‘ก๐‘‘+๐‘๐‘š
๐‘ ๐‘š
๏ƒ˜ From the appropriate graph determine the values (๐พ ๐พ , ,
๐‘๐‘– ๐‘๐‘‘
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 24
๐‘ก๐‘‘+๐‘๐‘š ๐‘ก๐‘‘+๐‘๐‘š
)
๏ƒ˜ Do the calculation to find the PID parameters
Ciancone-Marlin
0
0.5
1
1.5
0 0.5 1
1.5
1.3
1.1
0.9
0.7
0.5
0 0.5 1
1
0.8
0.6
0.4
0.2
0
0 0.5 1
1
0.8
0.6
0.4
0.2
0
0 0.5 1
setpoint
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 25
Disturbance
Ciancone-Marlin
0.5
0
1
1.5
2
0 0.5 1
0.5
0
1
1.5
2
0 0.5 1
0.2
0
0.4
0.6
0.8
0 0.5 1
1
0.8
0.6
0.4
0.2
0
0 0.5 1
0.25
0.2
0.15
0.1
0.05
0
0 0.5 1
0.25
0.2
0.15
0.1
0.05
0
0 0.5 1
setpoint
Disturbance
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 26
Minimum Error Integral
โ–ถ Considers the entire closed loop response not like the ยผ-decay tuning methods which
considers only the first two peaks
โ–ถ Less oscillations in response than ยผ-decay
โ–ถ Performs well when ๐‘Ÿ๐’Ž โ‰ฅ ๐Ÿ๐’•๐’… (lag dominant)
โ–ถ Performs very poorly for ๐’•๐’… > ๐‘Ÿ๐’Ž (dead-time dominant)
โ–ถ Tuning for setpoint responses differs from load disturbance responses
โ–ถ Different error integrals can be used (IAE, ISE, ITAE, ITSE)
โˆž
๐ผ๐ด๐ธ = โˆซ ๐‘’(๐‘ก) ๐‘‘๐‘ก ,
0
โˆž
๐ผ๐‘†๐ธ = โˆซ ๐‘’(๐‘ก)2 ๐‘‘๐‘ก ,
0
โˆž
๐ผ๐‘‡๐ด๐ธ = โˆซ ๐‘ก ๐‘’(๐‘ก) ๐‘‘๐‘ก ,
0
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 27
โˆž
๐ผ๐‘‡๐‘†๐ธ = โˆซ ๐‘ก๐‘’(๐‘ก)2 ๐‘‘๐‘ก
0
Minimum Error Integral
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 28
โ–ถ Procedure:
๏ƒ˜ Estimate the process with FOPDT as for Cohen-Coon method
๏ƒ˜ Use the appropriate table to find the PID parameters
Minimum Error Integral
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 29
Error integral IAE ITAE
PI Controller
๐‘Ž1 ๐‘ก๐‘‘
๐พ๐‘ = ( )๐‘1
๐พ๐‘š ๐‘Ÿ๐‘š
๐‘Ž1 = 0.758
๐‘1 = โˆ’0.861
๐‘Ž1 = 0.586
๐‘1 = โˆ’0.916
๐‘Ÿ๐‘š
๐‘Ÿ๐‘– = ๐‘ก๐‘‘
๐‘Ž2 + ๐‘2(๐‘Ÿ๐‘š
)
๐‘Ž2 = 1.02
๐‘2 = โˆ’0.323
๐‘Ž2 = 1.03
๐‘2 = โˆ’0.165
PID Controller
๐‘Ž1 ๐‘ก๐‘‘
๐พ๐‘ = ( )๐‘1
๐พ๐‘š ๐‘Ÿ๐‘š
๐‘Ž1 = 1.086
๐‘1 = โˆ’0.869
๐‘Ž1 = 0.965
๐‘1 = โˆ’0.855
๐‘Ÿ๐‘š
๐‘Ÿ๐‘– = ๐‘ก๐‘‘
๐‘Ž2 + ๐‘2(๐‘Ÿ๐‘š
)
๐‘Ž2 = 0.74
๐‘2 = โˆ’0.13
๐‘Ž2 = 0.796
๐‘2 = 0.147
๐‘ก๐‘‘
๐‘Ÿ๐‘‘ = ๐‘Ž3๐‘Ÿ๐‘š( )๐‘3
๐‘Ÿ๐‘š
๐‘Ž3 = 0.348
๐‘3 = 0.914
๐‘Ž3 = 0.308
๐‘3 = 0.9292
โ–ถ Setpoint tracking table
Minimum Error Integral
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 30
Error integral IST IAE ITAE
P Controller
๐‘Ž1 ๐‘ก๐‘‘
๐พ๐‘ = ( )๐‘1
๐พ๐‘š ๐‘Ÿ๐‘š
๐‘Ž1 = 1.411
๐‘1 = โˆ’0.917
๐‘Ž1 = 0.902
๐‘1 = โˆ’0.985
๐‘Ž1 = 0.49
๐‘1 = โˆ’1.084
PI Controller
๐‘Ž1 ๐‘ก๐‘‘
๐พ๐‘ = ( )๐‘1
๐พ๐‘š ๐‘Ÿ๐‘š
๐‘Ž1 = 1.305
๐‘1 = โˆ’0.959
๐‘Ž1 = 0.984
๐‘1 = โˆ’0.986
๐‘Ž1 = 0.859
๐‘1 = 0.977
๐‘Ÿ๐‘š ๐‘ก๐‘‘
๐‘Ÿ๐‘– = ( )๐‘2
๐‘Ž2 ๐‘Ÿ๐‘š
๐‘Ž2 = 0.492
๐‘2 = 0.739
๐‘Ž2 = 0.608
๐‘2 = 0.707
๐‘Ž2 = 0.674
๐‘2 = 0.68
PID Controller
๐‘Ž1 ๐‘ก๐‘‘
๐พ๐‘ = ( )๐‘1
๐พ๐‘š ๐‘Ÿ๐‘š
๐‘Ž1 = 1.495
๐‘1 = 0.945
๐‘Ž1 = 1.435
๐‘1 = โˆ’0.921
๐‘Ž1 = 1.357
๐‘1 = โˆ’0.947
๐‘Ÿ๐‘š ๐‘ก๐‘‘
๐‘Ÿ๐‘– = ( )๐‘2
๐‘Ž2 ๐‘Ÿ๐‘š
๐‘Ž2 = 1.101
๐‘2 = 0.771
๐‘Ž2 = 0.878
๐‘2 = 0.749
๐‘Ž2 = 0.842
๐‘2 = 0.738
๐‘ก๐‘‘
๐‘Ÿ๐‘‘ = ๐‘Ž3๐‘Ÿ๐‘š( )๐‘3
๐‘Ÿ๐‘š
๐‘Ž3 = 0.56
๐‘3 = 1.006
๐‘Ž3 = 0.482
๐‘3 = 1.137
๐‘Ž3 = 0.381
๐‘3 = 0.995
โ–ถ Disturbance rejection table
Simulation and Results
โ–ถ Simulation performed for two purposes:
๏ƒ˜ Performance Assessment
๏ƒ˜ Robustness Assessment
โ–ถ Simulation for two response objectives:
๏ƒ˜ Set point tracking
๏ƒ˜ Disturbance rejection
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 31
Simulation and Results
โ–ถ Test cases include processes of:
๏ƒ˜ Dead-time dominant (๐‘ก๐‘‘ > 2๐‘Ÿ๐‘š)
๏ƒ˜ Lag dominant (๐‘Ÿ๐‘šโ‰ฅ 2๐‘ก๐‘‘)
๏ƒ˜ In-between cases
๏ƒ˜ Complex poles
๏ƒ˜ Unstable process
1
1. ๐บ ๐‘  =
๐‘ +1
2. ๐บ ๐‘ 
0.5๐‘ +1
= 1
๐‘’โˆ’0.2๐‘ 
3. ๐บ ๐‘  =
1
0.5+1
๐‘’โˆ’1.2๐‘ 
4. ๐บ ๐‘ 
1
=
30๐‘ 2+13๐‘ +1
5. ๐บ ๐‘  =
1
๐‘ 2+3๐‘ +1
๐‘’โˆ’0.2๐‘ 
6. ๐บ ๐‘  =
1
๐‘ 2+1.8๐‘ +1
๐‘’โˆ’3๐‘ 
7. ๐บ ๐‘  =
1
25๐‘ +1 20๐‘ +1 30๐‘ +1
8. ๐บ ๐‘ 
150๐‘ 3+95๐‘ 2+18๐‘ +1
= 2
๐‘’โˆ’0.5๐‘ 
9. ๐บ ๐‘  =
2
2๐‘ 3+5๐‘ 2+4๐‘ +1
๐‘’โˆ’4.2๐‘ 
10. ๐บ ๐‘ 
250
=
๐‘ 2+4๐‘ +50
11. ๐บ ๐‘ 
7๐‘ 2+28๐‘ +28
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 32
=
10๐‘ 3โˆ’10๐‘ 2โˆ’50๐‘ โˆ’30
Simulation Example (Closed-loop)
โ–ถ ๐บ ๐‘  =
1
0.5+1
๐‘’โˆ’1.2๐‘ 
Method ๐‘ฒ๐’‘ ๐‘ฒ๐’Š ๐‘ฒ๐’…
Ziegler-Nichols Closed-
loop
0.63 0.24 0
Tyreus-Luyben 0.44 0.06 0
Damped Oscillation 0.76 0.28 0
Method Overshoot Rise time
Settling
time
Ziegler-Nichols Closed-
loop
0 9.41773 20.10063
Tyreus-Luyben 0 41.5833 78.08328
Damped Oscillation 0 1.14425 17.86827
Method IAE ITAE ISE
Ziegler-Nichols Closed-
loop
4.287635 21.66082 2.14574
Tyreus-Luyben 16.21587 326.4134 6.600629
Damped Oscillation 3.657051 16.38796 1.930914
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 33
Simulation Example (Open-loop)
โ–ถ ๐บ ๐‘  =
1
0.5+1
๐‘’โˆ’1.2๐‘ 
Method ๐‘ฒ๐’‘ ๐‘ฒ๐’Š ๐‘ฒ๐’…
Ziegler-Nichols Open-loop 0.38 0.096 0
C-H-R 0.26 0.50 0
Cohen-Coon 0.46 0.59 0
Ciancone-Marlin 0.65 0.61 0
Minimum Error Integral 0.36 0.19 0
Method IAE ITAE ISE
Ziegler-Nichols Open-loop 10.62439 133.3877 4.672032
C-H-R 2.534889 4.215979 1.916891
Cohen-Coon 2.23463 3.378988 1.687213
Ciancone-Marlin 2.31806 4.337486 1.623838
Minimum Error Integral 5.443972 29.46653 2.827566
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 34
Robustness Assessment Example
โ–ถ ๐บ ๐‘  =
1
๐‘ 2+3๐‘ +1
๐‘’โˆ’0.2๐‘ 
โ‰ซ ๐บ ๐‘  =
1
๐‘ 2+3.4๐‘ +1
๐‘’โˆ’0.4๐‘ 
Method ๐‘ฒ๐’‘ ๐‘ฒ๐’Š ๐‘ฒ๐’…
Ziegler-Nichols
Closed-loop
7.38 5.13 0
Tyreus-Luyben 5.13 1.35 0
Damped Oscillation 8.26 4.36 0
Method โˆ†%Overshoot โˆ†%Rise time
โˆ†%Settling
time
Ziegler-Nichols
Closed-loop
2.53E+46 0.005528
Tyreus-Luyben 0.780894 0.021236 0.222945
Damped Oscillation 7.51E+58 0.002601
Method โˆ†%IAE โˆ†%ITAE โˆ†%ISE
Ziegler-Nichols
Closed-loop
65535 65535 65535
Tyreus-Luyben 0.578426 1.141222 0.534852
Damped Oscillation 65535 65535 65535
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 35
---- After process parameters change
With original process parameters
โ–ถ Only Tyreus Luyben method could preserve the
system stability in this example
Results
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 36
Method
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6
Set. Dis. Set. Dis. Set. Dis. Set. Dis. Set. Dis. Set. Dis.
ZN-Closed - - 0.445789 0.283633 4.287635 4.173887 - - 2.220379 0.30278 13.41728 13.1761
Tyreus-Luyben - - 1.102981 1.070794 16.21587 15.8735 - - 1.180371 0.735662 50.61003 49.72932
Damped Oscillation - - 0.612071 0.236871 3.657051 3.591137 5.435811 0.227883 2.036804 0.273401 12.38092 12.11599
ZN-Open - - 0.477394 0.283206 10.62439 10.40774 6.652971 0.659678 2.429928 0.313117 16.09085 15.75623
C-H-R - - 0.421681 0.25155 2.534889 9.219109 4.185609 1.19549 1.174634 0.444315 6.268245 14.07367
Cohen-Coon - - 0.903723 0.290855 2.23463 2.054926 6.597632 1.828374 1.629527 0.386198 6.621596 6.228913
Ciancone-Marlin - - 0.595529 0.316686 2.31806 2.235919 10.79177 4.51365 2.417798 1.027116 7.183998 6.603842
Minimum Integral E. - - 0.426224 0.264112 5.443972 3.585999 5.563018 1.75844 1.204237 0.367181 14.60711 10.23431
Method
Example 7 Example 8 Example 9 Example 10 Example 11 Average
Set. Dis. Set. Dis. Set. Dis. Set. Dis. Set. Dis. Set. Dis.
ZN-Closed 121.105 33.93362 24.0696 13.75189 19.49302 38.61412 - - - - 26.434 14.8908
Tyreus-Luyben 82.82336 75.37933 19.84668 36.28508 74.32392 145.8678 - - - - 35.1576 46.42
Damped Oscillation 74.90803 33.03475 18.32106 13.56714 17.76392 34.84851 0.8825 4.247397 2.4965 0.5507 13.849 10.269
ZN-Open 203.0636 48.10066 41.21583 19.02999 20.80098 40.49981 - - - - 37.669 16.8813
C-H-R 71.53518 62.488 15.79547 23.05193 10.29351 35.97429 - - - - 14.026 18.337
Cohen-Coon 82.23544 40.9686 18.73435 17.27418 11.04538 19.81969 - - - - 16.25 11.106
Ciancone-Marlin 72.66559 54.42106 17.36664 24.75492 10.93768 21.3825 - - - - 15.5346 14.4069
Minimum Integral E. 61.47353 37.4164 14.01516 15.94768 17.36168 29.64329 - - - - 15.0118 12.402
โ–ถ Performance assessment
Results
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 37
Method
Example 12 Example 13 Example 14 Average
Set. Dis. Set. Dis. Set. Dis. Set. Dis.
ZN-Closed 0.30377 0.000776 - - 0.485444 0.391874 0.3946 0.1963
Tyreus-Luyben 0.013379 0.003065 0.578426 0.008142 0.027758 0.000149 0.2065 0.003785
Damped Oscillation 0.325173 0.164803 - - 0.322041 0.132218 0.3236 0.1485
ZN-Open 0.283954 0.000466 - - - - 0.283954 0.00466
C-H-R - 0.128355 0.619157 - 0.220264 - 0.4197 0.128355
Cohen-Coon - - - 0.903723 - 0.148872 - 0.52629
Ciancone-Marlin 0.004346 0.012664 0.009255 0.595529 0.01106 0.001862 0.00822 0.20335
Minimum Integral E. 0.293021 - 0.295112 0.426224 0.165632 0.101298 0.2512 0.26376
โ–ถ Robustness assessment
GUI Description
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 38
GUI Description
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 39
GUI Description
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 40
GUI Description
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 41
GUI Description
University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 42

More Related Content

What's hot

Chapter 2 robot kinematics
Chapter 2   robot kinematicsChapter 2   robot kinematics
Chapter 2 robot kinematics
nguyendattdh
ย 
Robotics: Cartesian Trajectory Planning
Robotics: Cartesian Trajectory PlanningRobotics: Cartesian Trajectory Planning
Robotics: Cartesian Trajectory Planning
Damian T. Gordon
ย 
Robot Architecture.pptx
Robot Architecture.pptxRobot Architecture.pptx
Robot Architecture.pptx
RabiaAsif31
ย 
The line follower robot
The line follower robotThe line follower robot
The line follower robot
Poonam Narang
ย 

What's hot (20)

Robotics ch 4 robot dynamics
Robotics ch 4 robot dynamicsRobotics ch 4 robot dynamics
Robotics ch 4 robot dynamics
ย 
Chapter 2 robot kinematics
Chapter 2   robot kinematicsChapter 2   robot kinematics
Chapter 2 robot kinematics
ย 
Robot programming , accuracy ,repeatability and application
Robot programming , accuracy ,repeatability  and applicationRobot programming , accuracy ,repeatability  and application
Robot programming , accuracy ,repeatability and application
ย 
Robotics: Cartesian Trajectory Planning
Robotics: Cartesian Trajectory PlanningRobotics: Cartesian Trajectory Planning
Robotics: Cartesian Trajectory Planning
ย 
Robot programming
Robot programmingRobot programming
Robot programming
ย 
Discrete Fourier Transform
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier Transform
ย 
Robot Architecture.pptx
Robot Architecture.pptxRobot Architecture.pptx
Robot Architecture.pptx
ย 
07 robot arm kinematics
07 robot arm kinematics07 robot arm kinematics
07 robot arm kinematics
ย 
ROBOTICS - Introduction to Robotics
ROBOTICS -  Introduction to RoboticsROBOTICS -  Introduction to Robotics
ROBOTICS - Introduction to Robotics
ย 
Robotics
RoboticsRobotics
Robotics
ย 
Design of Pulse mode sequential circuit
Design of Pulse mode sequential circuitDesign of Pulse mode sequential circuit
Design of Pulse mode sequential circuit
ย 
Robot Classification
Robot ClassificationRobot Classification
Robot Classification
ย 
Note on fourier transform of unit step function
Note on fourier transform of unit step functionNote on fourier transform of unit step function
Note on fourier transform of unit step function
ย 
Mobile Robot Vechiles
Mobile Robot VechilesMobile Robot Vechiles
Mobile Robot Vechiles
ย 
Robot vision
Robot visionRobot vision
Robot vision
ย 
Tms320 f2812
Tms320 f2812Tms320 f2812
Tms320 f2812
ย 
Matlab robotics toolbox
Matlab robotics toolboxMatlab robotics toolbox
Matlab robotics toolbox
ย 
Position control system block diagram
Position control system block diagramPosition control system block diagram
Position control system block diagram
ย 
Manipulator Jacobian
Manipulator JacobianManipulator Jacobian
Manipulator Jacobian
ย 
The line follower robot
The line follower robotThe line follower robot
The line follower robot
ย 

Similar to PID Controller Tuning

PID Controller Tuning
PID Controller TuningPID Controller Tuning
PID Controller Tuning
Ahmad Taan
ย 
PID controller auto tuning based on process step response and damping optimum...
PID controller auto tuning based on process step response and damping optimum...PID controller auto tuning based on process step response and damping optimum...
PID controller auto tuning based on process step response and damping optimum...
ISA Interchange
ย 

Similar to PID Controller Tuning (20)

PID Controller Tuning
PID Controller TuningPID Controller Tuning
PID Controller Tuning
ย 
Classical Techniques for PID Tunning: Review
Classical Techniques for PID Tunning: ReviewClassical Techniques for PID Tunning: Review
Classical Techniques for PID Tunning: Review
ย 
pid controller
 pid controller pid controller
pid controller
ย 
6_P-I-D_Controller.pdf
6_P-I-D_Controller.pdf6_P-I-D_Controller.pdf
6_P-I-D_Controller.pdf
ย 
6_P-I-D_Controller.pdf
6_P-I-D_Controller.pdf6_P-I-D_Controller.pdf
6_P-I-D_Controller.pdf
ย 
Screenshot 2021-02-23 at 2.46.02 PM.pdf
Screenshot 2021-02-23 at 2.46.02 PM.pdfScreenshot 2021-02-23 at 2.46.02 PM.pdf
Screenshot 2021-02-23 at 2.46.02 PM.pdf
ย 
Tuning of pid controller
Tuning of pid controllerTuning of pid controller
Tuning of pid controller
ย 
Isa saint-louis-exceptional-opportunities-short-course-day-2
Isa saint-louis-exceptional-opportunities-short-course-day-2Isa saint-louis-exceptional-opportunities-short-course-day-2
Isa saint-louis-exceptional-opportunities-short-course-day-2
ย 
Controller Tuning Method for Non-Linear Conical Tank System
Controller Tuning Method for Non-Linear Conical Tank SystemController Tuning Method for Non-Linear Conical Tank System
Controller Tuning Method for Non-Linear Conical Tank System
ย 
10 Tips for Tuning of Pid Looops
10 Tips for Tuning of Pid Looops10 Tips for Tuning of Pid Looops
10 Tips for Tuning of Pid Looops
ย 
05 tuning.pid.controllers
05 tuning.pid.controllers05 tuning.pid.controllers
05 tuning.pid.controllers
ย 
apidays LIVE Paris - Sopra Steria: path to the industrialization of sustaina...
 apidays LIVE Paris - Sopra Steria: path to the industrialization of sustaina... apidays LIVE Paris - Sopra Steria: path to the industrialization of sustaina...
apidays LIVE Paris - Sopra Steria: path to the industrialization of sustaina...
ย 
control technology of bachlor of engineering technology
control technology of bachlor of engineering technologycontrol technology of bachlor of engineering technology
control technology of bachlor of engineering technology
ย 
V13I1006.pdf
V13I1006.pdfV13I1006.pdf
V13I1006.pdf
ย 
IRJET- Interlooping Process of Diode Continuity Clamping Voltage Checking Mac...
IRJET- Interlooping Process of Diode Continuity Clamping Voltage Checking Mac...IRJET- Interlooping Process of Diode Continuity Clamping Voltage Checking Mac...
IRJET- Interlooping Process of Diode Continuity Clamping Voltage Checking Mac...
ย 
Class 17 integral and derivative control mode
Class 17   integral and derivative control modeClass 17   integral and derivative control mode
Class 17 integral and derivative control mode
ย 
A simple nonlinear PD controller for integrating processes
A simple nonlinear PD controller for integrating processesA simple nonlinear PD controller for integrating processes
A simple nonlinear PD controller for integrating processes
ย 
Advanced Nonlinear PID-Based Antagonistic Control for Pneumatic Muscle Actuators
Advanced Nonlinear PID-Based Antagonistic Control for Pneumatic Muscle ActuatorsAdvanced Nonlinear PID-Based Antagonistic Control for Pneumatic Muscle Actuators
Advanced Nonlinear PID-Based Antagonistic Control for Pneumatic Muscle Actuators
ย 
Applying QbD to Biotech Process Validation
Applying QbD to Biotech Process ValidationApplying QbD to Biotech Process Validation
Applying QbD to Biotech Process Validation
ย 
PID controller auto tuning based on process step response and damping optimum...
PID controller auto tuning based on process step response and damping optimum...PID controller auto tuning based on process step response and damping optimum...
PID controller auto tuning based on process step response and damping optimum...
ย 

More from aravind Guru

Connections finale competitions answers.
Connections finale competitions answers.Connections finale competitions answers.
Connections finale competitions answers.
aravind Guru
ย 
Process Control Laboratory.pptx
Process Control Laboratory.pptxProcess Control Laboratory.pptx
Process Control Laboratory.pptx
aravind Guru
ย 
SANJAY.K MINOR PROJECT 2-3.pptx
SANJAY.K MINOR PROJECT 2-3.pptxSANJAY.K MINOR PROJECT 2-3.pptx
SANJAY.K MINOR PROJECT 2-3.pptx
aravind Guru
ย 
_tmpA8_ minor project ppt.pptx
_tmpA8_ minor project ppt.pptx_tmpA8_ minor project ppt.pptx
_tmpA8_ minor project ppt.pptx
aravind Guru
ย 
6.4 - Finance management and Resorce Mobilization.pptx
6.4 - Finance management and Resorce Mobilization.pptx6.4 - Finance management and Resorce Mobilization.pptx
6.4 - Finance management and Resorce Mobilization.pptx
aravind Guru
ย 

More from aravind Guru (18)

A PROFICIENT SENSOR NETWORK BASED SMART METER MULTI-DEMAND RESPONSE SYSTEM US...
A PROFICIENT SENSOR NETWORK BASED SMART METER MULTI-DEMAND RESPONSE SYSTEM US...A PROFICIENT SENSOR NETWORK BASED SMART METER MULTI-DEMAND RESPONSE SYSTEM US...
A PROFICIENT SENSOR NETWORK BASED SMART METER MULTI-DEMAND RESPONSE SYSTEM US...
ย 
Word Warriors Questions of the symposium for students
Word Warriors Questions of the symposium for studentsWord Warriors Questions of the symposium for students
Word Warriors Questions of the symposium for students
ย 
Connections finale competitions answers.
Connections finale competitions answers.Connections finale competitions answers.
Connections finale competitions answers.
ย 
Pulp and Paper making (2).pptx
Pulp and Paper making (2).pptxPulp and Paper making (2).pptx
Pulp and Paper making (2).pptx
ย 
Arduino_Beginner.pptx
Arduino_Beginner.pptxArduino_Beginner.pptx
Arduino_Beginner.pptx
ย 
3.Project Management.pptx
3.Project Management.pptx3.Project Management.pptx
3.Project Management.pptx
ย 
Process Control Laboratory.pptx
Process Control Laboratory.pptxProcess Control Laboratory.pptx
Process Control Laboratory.pptx
ย 
SANJAY.K MINOR PROJECT 2-3.pptx
SANJAY.K MINOR PROJECT 2-3.pptxSANJAY.K MINOR PROJECT 2-3.pptx
SANJAY.K MINOR PROJECT 2-3.pptx
ย 
_tmpA8_ minor project ppt.pptx
_tmpA8_ minor project ppt.pptx_tmpA8_ minor project ppt.pptx
_tmpA8_ minor project ppt.pptx
ย 
application layer protocol for iot.pptx
application layer protocol for iot.pptxapplication layer protocol for iot.pptx
application layer protocol for iot.pptx
ย 
AASP_SUMMIT2015_Project_Mgt.pptx
AASP_SUMMIT2015_Project_Mgt.pptxAASP_SUMMIT2015_Project_Mgt.pptx
AASP_SUMMIT2015_Project_Mgt.pptx
ย 
Genetic Algorithm
Genetic AlgorithmGenetic Algorithm
Genetic Algorithm
ย 
6.4 - Finance management and Resorce Mobilization.pptx
6.4 - Finance management and Resorce Mobilization.pptx6.4 - Finance management and Resorce Mobilization.pptx
6.4 - Finance management and Resorce Mobilization.pptx
ย 
26-170918023441.pptx
26-170918023441.pptx26-170918023441.pptx
26-170918023441.pptx
ย 
isoosimodel
isoosimodelisoosimodel
isoosimodel
ย 
2. IoT Intro.pptx
2. IoT Intro.pptx2. IoT Intro.pptx
2. IoT Intro.pptx
ย 
1. IoT.pptx
1. IoT.pptx1. IoT.pptx
1. IoT.pptx
ย 
BATCH 1.pptx
BATCH 1.pptxBATCH 1.pptx
BATCH 1.pptx
ย 

Recently uploaded

UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
rknatarajan
ย 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
SUHANI PANDEY
ย 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
ย 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
ย 
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
ย 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
ย 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Tonystark477637
ย 

Recently uploaded (20)

Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
ย 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
ย 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
ย 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
ย 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
ย 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
ย 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ย 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
ย 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
ย 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
ย 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
ย 
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
ย 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
ย 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
ย 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
ย 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
ย 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
ย 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
ย 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
ย 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
ย 

PID Controller Tuning

  • 1. PID Controller Tuning Comparison of classical tuning methods 1
  • 2. Content June 16, 2015 2 โ–ถ Introduction โ–ถ Objectives โ–ถ Closed-loop Methods ๏ƒ˜ Ziegler-Nichols Closed-loop ๏ƒ˜ Tyreus-Luyben ๏ƒ˜ Damped Oscillation โ–ถ Open-loop Methods ๏ƒ˜ Ziegler-Nichols Open-loop ๏ƒ˜ C-H-R ๏ƒ˜ Cohen-Coon ๏ƒ˜ Ciancone-Marlin ๏ƒ˜ Minimum Error Integral โ–ถ Simulation and Results โ–ถ GUI Description
  • 3. Introduction โ–ถ PID tuning is to find the optimum Kp, Ki and Kd for the controller. Control objective > Setpoint tracking, Disturbance rejection Actions > Instantaneous proportional action, Reset integral action, Rate derivative action Optimum criteria > Depends on application and system requirements University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 3
  • 4. Introduction โ–ถ Conceptual real-world example Driver (PID) Car mechanism (Process) Crosswind Front wheels angle Car position Driverโ€™s eyes (Feedback) Desired position University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 4
  • 5. Introduction โ–ถ PID configuration ๐ถ๐‘œ๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘™๐‘™๐‘’๐‘Ÿ ๐‘œ๐‘ข๐‘ก๐‘๐‘ข๐‘ก = ๐พ๐‘ ๐‘’(๐‘ก) + ๐พ๐‘– โˆซ ๐‘’(๐‘ก)๐‘‘๐‘ก + ๐พ๐‘‘ d๐‘’(๐‘ก) ๐‘‘๐‘ก = ๐พ๐‘ ร— (1 + 1 ๐‘Ÿ๐‘– โˆซ ๐‘’(๐‘ก)๐‘‘๐‘ก + ๐‘Ÿ๐‘‘ d๐‘’(๐‘ก) ๐‘‘๐‘ก ) ๐พ๐‘๐‘’(๐‘ก) ๐พ๐‘– โˆซ ๐‘’(๐‘ก)๐‘‘๐‘ก d๐‘’(๐‘ก) ๐พ๐‘‘ ๐‘‘๐‘ก SP PV University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 5 Controller output e(t)
  • 6. Introduction University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 6 โ–ถ Many tuning methods have been proposed for PID controllers each of which has its advantages and disadvantages. So, no one can be considered the best for all purposes. โ–ถ Closed-loop methods tune the PID while it is attached to the loop while in open-loop methods the process is estimated using a FOPDT model โ–ถ A comparison of the most popular methods is to be done โ–ถ Simulation will be implemented for 1st, 2nd and 3rd-order processes, some of which are lag-dominant and the others are dead-time dominant. โ–ถ IAE as criterion (which adds up the time and amplitude weight of the error)
  • 7. Objectives University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 7 โ–ถ Compare studied tuning methods for performance and robustness โ–ถ Develop a GUI to do the comparison automatically for a given process model
  • 8. Closed-loop methods โ–ถ Ziegler-Nichols Closed-loop โ–ถ Tyreus-Luyben โ–ถ Damped Oscillation PID Process D C PV Feedback SP Tuning University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 8
  • 9. Open-loop methods โ–ถ Ziegler-Nichols Open-loop โ–ถ C-H-R โ–ถ Cohen-Coon โ–ถ Ciancone-Marlin โ–ถ Minimum Error Integral PID Process D PV Tuning University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 9
  • 10. Ziegler-Nichols Closed-loop University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 10 โ–ถ ยผ decay ratio as design criterion (stability condition) โ–ถ Trial-and-error procedure to find ๐‘ฒ๐’– and ๐‘ท๐’– โ–ถ Drives the process into marginal stability โ–ถ Performs well when ๐‘Ÿ๐’Ž โ‰ฅ ๐Ÿ๐’•๐’… (lag dominant) โ–ถ Performs very poorly for ๐’•๐’… > ๐Ÿ๐‘Ÿ๐’Ž (dead-time dominant) โ–ถ Fast recovery from disturbance but leads to oscillatory response โ–ถ Not applicable to open-loop-unstable processes โ–ถ Some processes do not have ultimate gain
  • 11. Ziegler-Nichols Closed-loop University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 11 Controller ๐พ๐‘ ๐‘Ÿ๐‘– ๐‘Ÿ๐‘‘ P 0.5๐พ๐‘ข - - PI 0.45๐พ๐‘ข 0.83๐‘ƒ๐‘ข - PID 0.6๐พ๐‘ข 0.5๐‘ƒ๐‘ข 0.125๐‘ƒ๐‘ข โ–ถ Procedure: ๏ƒ˜ Set ๐พ๐‘– and ๐พ๐‘‘ to 0 ๏ƒ˜ Increase ๐พ๐‘ till sustained oscillation and find ๐พ๐‘ข and ๐‘ƒ๐‘ข ๏ƒ˜ Use the correlations in the table below
  • 12. Tyreus-Luyben University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 12 โ–ถ An improvement for Ziegler-Nichols closed-loop to make response less oscillatory โ–ถ More robust to imprecise model โ–ถ Gives better disturbance response โ–ถ Procedure: ๏ƒ˜ Same procedure as Ziegler-Nichols closed-loop Controller ๐พ๐‘ ๐‘Ÿ๐‘– ๐‘Ÿ๐‘‘ PI 0.45๐พ๐‘ข 2.2๐‘ƒ๐‘ข - PID 0.313๐พ๐‘ข 2.2๐‘ƒ๐‘ข 0.16๐‘ƒ๐‘ข
  • 13. Damped Oscillation โ–ถ Another improvement for Ziegler-Nichols closed-loop โ–ถ Solves the problem of marginal stability โ–ถ Can be used with open-loop-unstable processes 0.8 0.6 0.4 0.2 0 University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 13 1 1.2 0 10 20 30 40 50 60 70 80 4:1
  • 14. Damped Oscillation Controller ๐พ๐‘ ๐‘Ÿ๐‘– ๐‘Ÿ๐‘‘ PI ๐‘Ž๐‘‘๐‘—๐‘ข๐‘ ๐‘ก๐‘’๐‘‘ ๐‘ƒ๐‘‘/6 - PID ๐‘Ž๐‘‘๐‘—๐‘ข๐‘ ๐‘ก๐‘’๐‘‘ ๐‘ƒ๐‘‘/6 ๐‘ƒ๐‘‘/1.5 โ–ถ Procedure:[1] ๏ƒ˜ Set ๐พ๐‘– and ๐พ๐‘‘ to 0 ๏ƒ˜ Increase ๐พ๐‘ till ยผ damping ratio is maintained and find ๐‘ƒ๐‘‘ only ๏ƒ˜ Use the correlations in the table below to find ๐‘Ÿ๐‘– and ๐‘Ÿ๐‘‘ ๏ƒ˜ Adjust ๐พ๐‘ till ยผ damping ratio is maintained again [1] Liptaฬk, Beฬla G., and Kriszta Venczel. Instrument Engineers' Handbook: Process Control 4thed, Volume T w o . University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 14
  • 15. Ziegler-Nichols Open-loop University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 15 โ–ถ ยผ decay ratio as design criterion โ–ถ Performs well when ๐‘Ÿ๐‘š โ‰ฅ 2๐‘ก๐‘‘ (lag dominant) โ–ถ Performs very poorly for ๐‘ก๐‘‘ > 2๐‘Ÿ๐‘š (dead-time dominant) โ–ถ Fast recovery from disturbance but leads to oscillatory response
  • 16. Ziegler-Nichols Open-loop ๐บ๐‘š ๐‘  = โ–ถ Procedure: ๏ƒ˜ The process dynamics is modeled by a first order plus dead time model ๐พ๐‘š๐‘’โˆ’๐‘ก๐‘‘๐‘  ๐‘Ÿ๐‘š๐‘  + 1 2.5 2 1.5 1 0.5 0 -0.5 University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 16
  • 17. Ziegler-Nichols Open-loop ๏ƒ˜ PID parameters are calculated from the table below Controller ๐พ๐‘ ๐‘Ÿ๐‘– ๐‘Ÿ๐‘‘ P 1 ๐‘Ÿ๐‘š ๐พ๐‘š ๐‘ก๐‘‘ - - PI 0.9 ๐‘Ÿ๐‘š ๐พ๐‘š ๐‘ก๐‘‘ ๐‘ก๐‘‘ 0.3 - PID 1.2 ๐‘Ÿ๐‘š ๐พ๐‘š ๐‘ก๐‘‘ 2๐‘ก๐‘‘ 0.5๐‘ก๐‘‘ University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 17
  • 18. C-H-R University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 18 โ–ถ A modification of Ziegler-Nichols Open-loop โ–ถ Aims to find the โ€œquickest response with 0% overshootโ€ or โ€œquickest response with 20% overshootโ€ โ–ถ Tuning for setpoint responses differs from load disturbance responses
  • 19. C-H-R Setpoint Controller ๐พ๐‘ ๐‘Ÿ๐‘– ๐‘Ÿ๐‘‘ ๐พ๐‘ ๐‘Ÿ๐‘– ๐‘Ÿ๐‘‘ 0% overshoot 20% overshoot P 0.3 ๐‘Ÿ๐‘š ๐พ๐‘š ๐‘ก๐‘‘ - - 0.7 ๐‘Ÿ๐‘š ๐พ๐‘š ๐‘ก๐‘‘ - - PI 0.35๐‘Ÿ๐‘š ๐พ๐‘š ๐‘ก๐‘‘ 1.2๐‘Ÿ๐‘š - 0.6 ๐‘Ÿ๐‘š ๐พ๐‘š ๐‘ก๐‘‘ ๐‘Ÿ๐‘š - PID 0.6 ๐‘Ÿ๐‘š ๐พ๐‘š ๐‘ก๐‘‘ ๐‘Ÿ๐‘š 0.5๐‘ก๐‘‘ 0.95๐‘Ÿ๐‘š ๐พ๐‘š ๐‘ก๐‘‘ 1.4๐‘Ÿ๐‘š 0.47๐‘ก๐‘‘ Disturbance P 0.3 ๐‘Ÿ๐‘š ๐พ๐‘š ๐‘ก๐‘‘ - - 0.7 ๐‘Ÿ๐‘š ๐พ๐‘š ๐‘ก๐‘‘ - - PI 0.6 ๐‘Ÿ๐‘š ๐พ๐‘š ๐‘ก๐‘‘ 4๐‘ก๐‘‘ - 0.7 ๐‘Ÿ๐‘š ๐พ๐‘š ๐‘ก๐‘‘ 2.3๐‘ก๐‘‘ - PID 0.95๐‘Ÿ๐‘š ๐พ๐‘š ๐‘ก๐‘‘ 2.4๐‘ก๐‘‘ 0.42๐‘ก๐‘‘ 1.2 ๐‘Ÿ๐‘š ๐พ๐‘š ๐‘ก๐‘‘ 2๐‘ก๐‘‘ 0.42๐‘ก๐‘‘ โ–ถ Procedure: ๏ƒ˜ Same as Ziegler-Nichols Open-loop University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 19
  • 20. Cohen-Coon โ–ถ Second in popularity after Ziegler-Nichols tuning rules โ–ถ ยผ decay ratio has considered as design criterion for this method โ–ถ More robust ๐’• University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 20 ๐’… ๐‘Ÿ ๐‘‘ (i.e. ๐‘ก > 2๐‘Ÿ) โ–ถ Applicable to wider range of โ–ถ PD rules available
  • 21. Cohen-Coon โ–ถ Procedure:[1] ๏ƒ˜ The process reaction curve is obtained by an open loop test and the FOPDT model is estimated as follows: 3 ๐‘Ÿ๐‘š = 2 ๐‘ก2 โˆ’ ๐‘ก1 ๐‘ก๐‘‘ = ๐‘ก2 โˆ’ ๐‘Ÿ๐‘š 1.5 2 2.5 1 0.5 0 -0.5 [1] Smith,C.A.,A.B. Copripio; โ€œPrinciples and Practice of Automatic Process Controlโ€, John Wiley & Sons,1985 University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 21
  • 22. Cohen-Coon Controller ๐พ๐‘ ๐‘Ÿ๐‘– ๐‘Ÿ๐‘‘ P 1 ๐‘Ÿ๐‘š ๐‘ก๐‘‘ (1 + ) ๐พ๐‘š ๐‘ก๐‘‘ 3๐‘Ÿ๐‘š - - PI 1 ๐‘Ÿ๐‘š ๐‘ก๐‘‘ (0.9 + ) ๐พ๐‘š ๐‘ก๐‘‘ 12๐‘Ÿ๐‘š 30 + 3๐‘ก๐‘‘ ๐‘Ÿ๐‘š ๐‘ก๐‘‘ 20๐‘ก๐‘‘ 9 + ๐‘Ÿ๐‘š - PD 1 ๐‘Ÿ๐‘š ๐‘ก๐‘‘ (1.25 + ) ๐พ๐‘š ๐‘ก๐‘‘ 6๐‘Ÿ๐‘š - 6 โˆ’ 2๐‘ก๐‘‘ ๐‘Ÿ๐‘š ๐‘ก๐‘‘ 3๐‘ก๐‘‘ 22 + ๐‘Ÿ๐‘š PID 1 ๐‘Ÿ๐‘š ๐‘ก๐‘‘ (1.33 + ) ๐พ๐‘š ๐‘ก๐‘‘ 4๐‘Ÿ๐‘š 32 + 6๐‘ก๐‘‘ ๐‘Ÿ๐‘š ๐‘ก๐‘‘ 8๐‘ก๐‘‘ 13 + ๐‘Ÿ๐‘š 4 ๐‘ก๐‘‘ 2๐‘ก๐‘‘ 11 + ๐‘Ÿ๐‘š ๏ƒ˜ PID parameters are calculated from the table University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 22
  • 23. Ciancone-Marlin University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 23 โ–ถ Design criteria: ๏ƒ˜ Minimization of IAE ๏ƒ˜ Assumption of ยฑ25% change in the process model parameters โ–ถ A set of graphs are used for the tuning โ–ถ Tuning for setpoint responses differs from load disturbance responses
  • 24. Ciancone-Marlin โ–ถ Procedure: ๏ƒ˜ Estimate the process with FOPDT as for Cohen-Coon method ๏ƒ˜ Calculate the ratio ๐‘ก๐‘‘ ๐‘ก๐‘‘+๐‘๐‘š ๐‘ ๐‘š ๏ƒ˜ From the appropriate graph determine the values (๐พ ๐พ , , ๐‘๐‘– ๐‘๐‘‘ University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 24 ๐‘ก๐‘‘+๐‘๐‘š ๐‘ก๐‘‘+๐‘๐‘š ) ๏ƒ˜ Do the calculation to find the PID parameters
  • 25. Ciancone-Marlin 0 0.5 1 1.5 0 0.5 1 1.5 1.3 1.1 0.9 0.7 0.5 0 0.5 1 1 0.8 0.6 0.4 0.2 0 0 0.5 1 1 0.8 0.6 0.4 0.2 0 0 0.5 1 setpoint University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 25 Disturbance
  • 26. Ciancone-Marlin 0.5 0 1 1.5 2 0 0.5 1 0.5 0 1 1.5 2 0 0.5 1 0.2 0 0.4 0.6 0.8 0 0.5 1 1 0.8 0.6 0.4 0.2 0 0 0.5 1 0.25 0.2 0.15 0.1 0.05 0 0 0.5 1 0.25 0.2 0.15 0.1 0.05 0 0 0.5 1 setpoint Disturbance University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 26
  • 27. Minimum Error Integral โ–ถ Considers the entire closed loop response not like the ยผ-decay tuning methods which considers only the first two peaks โ–ถ Less oscillations in response than ยผ-decay โ–ถ Performs well when ๐‘Ÿ๐’Ž โ‰ฅ ๐Ÿ๐’•๐’… (lag dominant) โ–ถ Performs very poorly for ๐’•๐’… > ๐‘Ÿ๐’Ž (dead-time dominant) โ–ถ Tuning for setpoint responses differs from load disturbance responses โ–ถ Different error integrals can be used (IAE, ISE, ITAE, ITSE) โˆž ๐ผ๐ด๐ธ = โˆซ ๐‘’(๐‘ก) ๐‘‘๐‘ก , 0 โˆž ๐ผ๐‘†๐ธ = โˆซ ๐‘’(๐‘ก)2 ๐‘‘๐‘ก , 0 โˆž ๐ผ๐‘‡๐ด๐ธ = โˆซ ๐‘ก ๐‘’(๐‘ก) ๐‘‘๐‘ก , 0 University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 27 โˆž ๐ผ๐‘‡๐‘†๐ธ = โˆซ ๐‘ก๐‘’(๐‘ก)2 ๐‘‘๐‘ก 0
  • 28. Minimum Error Integral University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 28 โ–ถ Procedure: ๏ƒ˜ Estimate the process with FOPDT as for Cohen-Coon method ๏ƒ˜ Use the appropriate table to find the PID parameters
  • 29. Minimum Error Integral University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 29 Error integral IAE ITAE PI Controller ๐‘Ž1 ๐‘ก๐‘‘ ๐พ๐‘ = ( )๐‘1 ๐พ๐‘š ๐‘Ÿ๐‘š ๐‘Ž1 = 0.758 ๐‘1 = โˆ’0.861 ๐‘Ž1 = 0.586 ๐‘1 = โˆ’0.916 ๐‘Ÿ๐‘š ๐‘Ÿ๐‘– = ๐‘ก๐‘‘ ๐‘Ž2 + ๐‘2(๐‘Ÿ๐‘š ) ๐‘Ž2 = 1.02 ๐‘2 = โˆ’0.323 ๐‘Ž2 = 1.03 ๐‘2 = โˆ’0.165 PID Controller ๐‘Ž1 ๐‘ก๐‘‘ ๐พ๐‘ = ( )๐‘1 ๐พ๐‘š ๐‘Ÿ๐‘š ๐‘Ž1 = 1.086 ๐‘1 = โˆ’0.869 ๐‘Ž1 = 0.965 ๐‘1 = โˆ’0.855 ๐‘Ÿ๐‘š ๐‘Ÿ๐‘– = ๐‘ก๐‘‘ ๐‘Ž2 + ๐‘2(๐‘Ÿ๐‘š ) ๐‘Ž2 = 0.74 ๐‘2 = โˆ’0.13 ๐‘Ž2 = 0.796 ๐‘2 = 0.147 ๐‘ก๐‘‘ ๐‘Ÿ๐‘‘ = ๐‘Ž3๐‘Ÿ๐‘š( )๐‘3 ๐‘Ÿ๐‘š ๐‘Ž3 = 0.348 ๐‘3 = 0.914 ๐‘Ž3 = 0.308 ๐‘3 = 0.9292 โ–ถ Setpoint tracking table
  • 30. Minimum Error Integral University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 30 Error integral IST IAE ITAE P Controller ๐‘Ž1 ๐‘ก๐‘‘ ๐พ๐‘ = ( )๐‘1 ๐พ๐‘š ๐‘Ÿ๐‘š ๐‘Ž1 = 1.411 ๐‘1 = โˆ’0.917 ๐‘Ž1 = 0.902 ๐‘1 = โˆ’0.985 ๐‘Ž1 = 0.49 ๐‘1 = โˆ’1.084 PI Controller ๐‘Ž1 ๐‘ก๐‘‘ ๐พ๐‘ = ( )๐‘1 ๐พ๐‘š ๐‘Ÿ๐‘š ๐‘Ž1 = 1.305 ๐‘1 = โˆ’0.959 ๐‘Ž1 = 0.984 ๐‘1 = โˆ’0.986 ๐‘Ž1 = 0.859 ๐‘1 = 0.977 ๐‘Ÿ๐‘š ๐‘ก๐‘‘ ๐‘Ÿ๐‘– = ( )๐‘2 ๐‘Ž2 ๐‘Ÿ๐‘š ๐‘Ž2 = 0.492 ๐‘2 = 0.739 ๐‘Ž2 = 0.608 ๐‘2 = 0.707 ๐‘Ž2 = 0.674 ๐‘2 = 0.68 PID Controller ๐‘Ž1 ๐‘ก๐‘‘ ๐พ๐‘ = ( )๐‘1 ๐พ๐‘š ๐‘Ÿ๐‘š ๐‘Ž1 = 1.495 ๐‘1 = 0.945 ๐‘Ž1 = 1.435 ๐‘1 = โˆ’0.921 ๐‘Ž1 = 1.357 ๐‘1 = โˆ’0.947 ๐‘Ÿ๐‘š ๐‘ก๐‘‘ ๐‘Ÿ๐‘– = ( )๐‘2 ๐‘Ž2 ๐‘Ÿ๐‘š ๐‘Ž2 = 1.101 ๐‘2 = 0.771 ๐‘Ž2 = 0.878 ๐‘2 = 0.749 ๐‘Ž2 = 0.842 ๐‘2 = 0.738 ๐‘ก๐‘‘ ๐‘Ÿ๐‘‘ = ๐‘Ž3๐‘Ÿ๐‘š( )๐‘3 ๐‘Ÿ๐‘š ๐‘Ž3 = 0.56 ๐‘3 = 1.006 ๐‘Ž3 = 0.482 ๐‘3 = 1.137 ๐‘Ž3 = 0.381 ๐‘3 = 0.995 โ–ถ Disturbance rejection table
  • 31. Simulation and Results โ–ถ Simulation performed for two purposes: ๏ƒ˜ Performance Assessment ๏ƒ˜ Robustness Assessment โ–ถ Simulation for two response objectives: ๏ƒ˜ Set point tracking ๏ƒ˜ Disturbance rejection University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 31
  • 32. Simulation and Results โ–ถ Test cases include processes of: ๏ƒ˜ Dead-time dominant (๐‘ก๐‘‘ > 2๐‘Ÿ๐‘š) ๏ƒ˜ Lag dominant (๐‘Ÿ๐‘šโ‰ฅ 2๐‘ก๐‘‘) ๏ƒ˜ In-between cases ๏ƒ˜ Complex poles ๏ƒ˜ Unstable process 1 1. ๐บ ๐‘  = ๐‘ +1 2. ๐บ ๐‘  0.5๐‘ +1 = 1 ๐‘’โˆ’0.2๐‘  3. ๐บ ๐‘  = 1 0.5+1 ๐‘’โˆ’1.2๐‘  4. ๐บ ๐‘  1 = 30๐‘ 2+13๐‘ +1 5. ๐บ ๐‘  = 1 ๐‘ 2+3๐‘ +1 ๐‘’โˆ’0.2๐‘  6. ๐บ ๐‘  = 1 ๐‘ 2+1.8๐‘ +1 ๐‘’โˆ’3๐‘  7. ๐บ ๐‘  = 1 25๐‘ +1 20๐‘ +1 30๐‘ +1 8. ๐บ ๐‘  150๐‘ 3+95๐‘ 2+18๐‘ +1 = 2 ๐‘’โˆ’0.5๐‘  9. ๐บ ๐‘  = 2 2๐‘ 3+5๐‘ 2+4๐‘ +1 ๐‘’โˆ’4.2๐‘  10. ๐บ ๐‘  250 = ๐‘ 2+4๐‘ +50 11. ๐บ ๐‘  7๐‘ 2+28๐‘ +28 University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 32 = 10๐‘ 3โˆ’10๐‘ 2โˆ’50๐‘ โˆ’30
  • 33. Simulation Example (Closed-loop) โ–ถ ๐บ ๐‘  = 1 0.5+1 ๐‘’โˆ’1.2๐‘  Method ๐‘ฒ๐’‘ ๐‘ฒ๐’Š ๐‘ฒ๐’… Ziegler-Nichols Closed- loop 0.63 0.24 0 Tyreus-Luyben 0.44 0.06 0 Damped Oscillation 0.76 0.28 0 Method Overshoot Rise time Settling time Ziegler-Nichols Closed- loop 0 9.41773 20.10063 Tyreus-Luyben 0 41.5833 78.08328 Damped Oscillation 0 1.14425 17.86827 Method IAE ITAE ISE Ziegler-Nichols Closed- loop 4.287635 21.66082 2.14574 Tyreus-Luyben 16.21587 326.4134 6.600629 Damped Oscillation 3.657051 16.38796 1.930914 University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 33
  • 34. Simulation Example (Open-loop) โ–ถ ๐บ ๐‘  = 1 0.5+1 ๐‘’โˆ’1.2๐‘  Method ๐‘ฒ๐’‘ ๐‘ฒ๐’Š ๐‘ฒ๐’… Ziegler-Nichols Open-loop 0.38 0.096 0 C-H-R 0.26 0.50 0 Cohen-Coon 0.46 0.59 0 Ciancone-Marlin 0.65 0.61 0 Minimum Error Integral 0.36 0.19 0 Method IAE ITAE ISE Ziegler-Nichols Open-loop 10.62439 133.3877 4.672032 C-H-R 2.534889 4.215979 1.916891 Cohen-Coon 2.23463 3.378988 1.687213 Ciancone-Marlin 2.31806 4.337486 1.623838 Minimum Error Integral 5.443972 29.46653 2.827566 University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 34
  • 35. Robustness Assessment Example โ–ถ ๐บ ๐‘  = 1 ๐‘ 2+3๐‘ +1 ๐‘’โˆ’0.2๐‘  โ‰ซ ๐บ ๐‘  = 1 ๐‘ 2+3.4๐‘ +1 ๐‘’โˆ’0.4๐‘  Method ๐‘ฒ๐’‘ ๐‘ฒ๐’Š ๐‘ฒ๐’… Ziegler-Nichols Closed-loop 7.38 5.13 0 Tyreus-Luyben 5.13 1.35 0 Damped Oscillation 8.26 4.36 0 Method โˆ†%Overshoot โˆ†%Rise time โˆ†%Settling time Ziegler-Nichols Closed-loop 2.53E+46 0.005528 Tyreus-Luyben 0.780894 0.021236 0.222945 Damped Oscillation 7.51E+58 0.002601 Method โˆ†%IAE โˆ†%ITAE โˆ†%ISE Ziegler-Nichols Closed-loop 65535 65535 65535 Tyreus-Luyben 0.578426 1.141222 0.534852 Damped Oscillation 65535 65535 65535 University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 35 ---- After process parameters change With original process parameters โ–ถ Only Tyreus Luyben method could preserve the system stability in this example
  • 36. Results University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 36 Method Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Set. Dis. Set. Dis. Set. Dis. Set. Dis. Set. Dis. Set. Dis. ZN-Closed - - 0.445789 0.283633 4.287635 4.173887 - - 2.220379 0.30278 13.41728 13.1761 Tyreus-Luyben - - 1.102981 1.070794 16.21587 15.8735 - - 1.180371 0.735662 50.61003 49.72932 Damped Oscillation - - 0.612071 0.236871 3.657051 3.591137 5.435811 0.227883 2.036804 0.273401 12.38092 12.11599 ZN-Open - - 0.477394 0.283206 10.62439 10.40774 6.652971 0.659678 2.429928 0.313117 16.09085 15.75623 C-H-R - - 0.421681 0.25155 2.534889 9.219109 4.185609 1.19549 1.174634 0.444315 6.268245 14.07367 Cohen-Coon - - 0.903723 0.290855 2.23463 2.054926 6.597632 1.828374 1.629527 0.386198 6.621596 6.228913 Ciancone-Marlin - - 0.595529 0.316686 2.31806 2.235919 10.79177 4.51365 2.417798 1.027116 7.183998 6.603842 Minimum Integral E. - - 0.426224 0.264112 5.443972 3.585999 5.563018 1.75844 1.204237 0.367181 14.60711 10.23431 Method Example 7 Example 8 Example 9 Example 10 Example 11 Average Set. Dis. Set. Dis. Set. Dis. Set. Dis. Set. Dis. Set. Dis. ZN-Closed 121.105 33.93362 24.0696 13.75189 19.49302 38.61412 - - - - 26.434 14.8908 Tyreus-Luyben 82.82336 75.37933 19.84668 36.28508 74.32392 145.8678 - - - - 35.1576 46.42 Damped Oscillation 74.90803 33.03475 18.32106 13.56714 17.76392 34.84851 0.8825 4.247397 2.4965 0.5507 13.849 10.269 ZN-Open 203.0636 48.10066 41.21583 19.02999 20.80098 40.49981 - - - - 37.669 16.8813 C-H-R 71.53518 62.488 15.79547 23.05193 10.29351 35.97429 - - - - 14.026 18.337 Cohen-Coon 82.23544 40.9686 18.73435 17.27418 11.04538 19.81969 - - - - 16.25 11.106 Ciancone-Marlin 72.66559 54.42106 17.36664 24.75492 10.93768 21.3825 - - - - 15.5346 14.4069 Minimum Integral E. 61.47353 37.4164 14.01516 15.94768 17.36168 29.64329 - - - - 15.0118 12.402 โ–ถ Performance assessment
  • 37. Results University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 37 Method Example 12 Example 13 Example 14 Average Set. Dis. Set. Dis. Set. Dis. Set. Dis. ZN-Closed 0.30377 0.000776 - - 0.485444 0.391874 0.3946 0.1963 Tyreus-Luyben 0.013379 0.003065 0.578426 0.008142 0.027758 0.000149 0.2065 0.003785 Damped Oscillation 0.325173 0.164803 - - 0.322041 0.132218 0.3236 0.1485 ZN-Open 0.283954 0.000466 - - - - 0.283954 0.00466 C-H-R - 0.128355 0.619157 - 0.220264 - 0.4197 0.128355 Cohen-Coon - - - 0.903723 - 0.148872 - 0.52629 Ciancone-Marlin 0.004346 0.012664 0.009255 0.595529 0.01106 0.001862 0.00822 0.20335 Minimum Integral E. 0.293021 - 0.295112 0.426224 0.165632 0.101298 0.2512 0.26376 โ–ถ Robustness assessment
  • 38. GUI Description University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 38
  • 39. GUI Description University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 39
  • 40. GUI Description University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 40
  • 41. GUI Description University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 41
  • 42. GUI Description University of Jordan, Department of Mechatronics Engineering, 2014 June 16, 2015 42