SlideShare a Scribd company logo
1 of 25
Download to read offline
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
Problem 1: Computation of Reactions
Problem 2: Computation of Reactions
Problem 3: Computation of Reactions
Problem 4: Computation of forces and moments
Problem 5: Bending Moment and Shear force
Problem 6: Bending Moment Diagram
Problem 7: Bending Moment and Shear force
Problem 8: Bending Moment and Shear force
Problem 9: Bending Moment and Shear force
Problem 10: Bending Moment and Shear force
Problem 11: Beams of Composite Cross Section
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
Problem 1: Computation of Reactions
Find the reactions at the supports for a simple beam as shown in the diagram. Weight of
the beam is negligible.
Figure:
Concepts involved
• Static Equilibrium equations
Procedure
Step 1:
Draw the free body diagram for the beam.
Step 2:
Apply equilibrium equations
In X direction
∑ FX = 0
⇒ RAX = 0
In Y Direction
∑ FY = 0
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
⇒ RAY+RBY – 100 –160 = 0
⇒ RAY+RBY = 260
Moment about Z axis (Taking moment about axis pasing through A)
∑ MZ = 0
We get,
∑ MA = 0
⇒ 0 + 250 N.m + 100*0.3 N.m + 120*0.4 N.m - RBY *0.5 N.m = 0
⇒ RBY = 656 N (Upward)
Substituting in Eq 5.1 we get
∑ MB = 0
⇒ RAY * 0.5 + 250 - 100 * 0.2 – 120 * 0.1 = 0
⇒ RAY = -436 (downwards)
TOP
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
Problem 2: Computation of Reactions
Find the reactions for the partially loaded beam with a uniformly varying load shown in
Figure. Neglect the weight of the beam
Find the reactions for the partially loaded beam with a uniformly varying load shown in
Figure. Neglect the weight of the beam
FigureFigure
(a) (b)
Procedure:
The reactions and applied loads are shown in figure (b). A crude outline of the beam is
also shown to indicate that the configuration of the member is not important for finding out
the reactions. The resultant force P acting though the centroid of the distributed forces is
found out. Once a free body diagram is prepared, the solution is found out by applying the
equations of static equilibrium.
∑ Fx = 0
RAx = 0
∑ MA = 0 Anticlockwise
+12 X 2 - RBy X 6 = 0
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
RBy = 4 kN downwards
∑ MB = 12 * (6 - 2) - RAy * 6
=> RAy = 8 kN
Check ∑ Fy = 0
8 + 12 − 4 = 0 ok!
TOP
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
Problem 3: Computation of Reactions
Determine the reactions at A and B for the beam shown due to the applied force.
Figure
Solution
At A, the reaction components is x and y directions are RAx and RAy. The reaction RB acting
at B and inclined force F can be resolved into two components along x and y directions.
This will simplify the problem.
Calculation:
Fy = 12, Fx = 9; (By resolving the applied force)
∑ MA = 0
12 X 3 – RBy X 9 = 0
RBy = 4 kN = RBx
∑ MB = 0
12 X 6 - RAy X 9 = 0
RAy = 8kN
∑ Fx = 0
RAx – 9–4 = 0
RAx = 13kN
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
So,
( )
( )
2 2
A
2 2
B
R = 8 + 13 = 233 kN
R = 4 + 4 = 4 2 kN
Check:
∑ Fy = 0
+ 8 – 12 + 4= 0 ok!
TOP
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
Problem 4: Computation of forces and moments
In the earlier Example, determine the internal system of forces at sections a-a and b-b; see
Figure
Figure
(a)
(b)
(c)
(d)
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
Solution:
A free-body diagram for the member, including reactions, is shown in Fig. (a). A free-body
to the left of section a-a in Fig. 5-20(b) shows the maximum ordinate for the isolated part of
the applied load. Using this information,
Va = -8 + 1/2 * 2 * 2/3 * 8 = -2.67 kN
and
Ma = -8 * 2 + {1/2 * 2 * (2/3 * 8)} * {1/3 * 2} = -14.45 kN
These forces are shown in the figure.
A free-body diagram to the left of section b-b is shown in Figure. This gives
Vb = - 4 kN
And
Mb = -4 x 2 = - 8 kN-m
TOP
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
Problem 5: Bending Moment and Shear force
Construct shear and bending-moment diagrams for the beam loaded with the forces
shown in the figure.
Figure
Solution.
Taking an arbitrary section at a distance x from the left support isolates the beam segment
shown in Fig.(b). This section is applicable for any value of x just to the left of the applied
force P. The shear, remains constant and is +P. The bending moment varies linearly from
the support, reaching a maximum of +Pa.
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
An arbitrary section applicable anywhere between the two applied forces is shown in
Fig.(c). Shear force is not necessary to maintain equilibrium of a segment in this part of the
beam. Only a constant bending moment of +Pa must be resisted by the beam in this zone.
Such a state of bending or flexure is called pure bending.
Shear and bending-moment diagrams for this loading condition are shown in Figs (d) and
(e). No axial-force diagram is necessary, as there is no axial force at any section of the
beam
TOP
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
Problem 6: Bending Moment Diagram
Plot shear and bending-moment diagrams for a simply supported beam with a uniformly
distributed load; see Figure.
Figure
Solution
A section at a distance x from the left support is taken as shown in figure (b). The shear is
found out by subtracting the load to the left of the section from the left upward reaction.
The internal bending moment M resists the moment caused by the re-action on the left
less the moment caused by the forces to the left of the same section. The summation of
moments is performed around an axis at the section.
Similar expressions may be obtained by considering the right-hand segment of the beam,
while taking care of the sign conventions. The plot of the V and M functions is shown in
Figs(c) and (d)
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
TOP
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
Problem 7: Bending Moment and Shear force
For the beam as shown in Fig 5, express the shear V and the bending moment M as a
function of x along the horizontal member.
Figure:
Fig (a)
Solution
A load discontinuity occurs at x == 3 m, in this problem. Hence, the solution is determined
in two parts for each of which the functions V and M are continuous.
V(x) =-8 + 1/2 x [(x/3) * 8)] = -8 + (4/3) x2
kN for 0 < x < 3
M(x) = -8x + 1/2x[(x/3) * 8 *(x/3)] = -8x + 4/9x3
kN.m for 0 < x < 3
V(x) = -8 +12 =+4KN For 3<x<6,
M(x) = -8x + 12(x-2) = 4x - 24kN.m For 3<x<6,
TOP
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
Problem 8: Bending Moment and shear force
A parabolic beam is subjected to a 10kN force as shown above. Find axial force, shear
force and bending moment at a section, as shown above.
Solution :
We first find the equation of the beam and the point where section is cut. With origin at A,
equation of the parabola can be written as
( )
= −
= = ⇒ =
= −
= = − = =
+
⇒ =
y kx(4 x).Itremainstofindk.
wrt y 4 whenx 2 k 1
so y x(4 x).
dy 1
slope, y' 4 2x tan30
dx 3
4 3 1
x
2 3
Now, we only have to resolve the force at the section along the normal and tangential
directions. But before that, we first have to find the support reactions.
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
x Ax
A By By
F 0 R 0
M 0 10 2 R 4 R 5kN.
= ⇒ =
= ⇒ × = × =
∑
∑
By symmetry (since RAX = 0), Ay Ay ByR 5kN [or R 10 R ]= = −
We now draw the free body diagram of the cut body
We now resolve the 5kN force
( )
= = =
= − = −
+
= ⇒ × = =∑ c
3
Shear force 5cos30 5 4.33 kN.
2
Axialforce 5cos30 2.50 kN(compression)
4 3 1
M 0 5 M 11.44 kNm
2 3
The Reader can repeat the exercise for a general angle θ and check where each of
quantities reaches their zeros and maxima.
TOP
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
Problem 9: Bending Moment and Shear force
A constant load of ω0 per unit length is applied on a simply supported beam as shown
below. Draw the shear force and bending moment diagram by
a. Method of sections
b. Integration method
Solution:
Formulas used:
dv dm
q V
dx dx
.= =
We first find the support reactions which are necessary for both the methods.
x Ax
0
Ay By
F 0 R 0
L
Bysymmetry,R R
2
= ⇒ =
ω
= =
∑
a. Method of section
We cut a section at a distance 'x' from left and of the beam.
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
( )
0
y 0
0
c 0
L
F 0 V x
2
L x x
M 0 M x x L x
2 2 2
0
ω
= ⇒ = − ω
ω
= ⇒ = × − ω × × = ω −
∑
∑
b. Method of Integration
( )
( )
( )
0
0
0 1
0
0
1
0
0
20
2
dv
q.
dx
Here,q
dv
dx
Integrating V x C
L
wkt Vat x 0is . Putting x 0in above equation,
2
L
We get C
2
V L 2x
2
dm
V L 2x
dx 2
M Lx x C
2
=
= −ω
⇒ = −ω
= −ω +
ω
= =
ω
=
ω
= −
ω
= = −
ω
= − +
wkt, for a simply supported beam, bending moment is zero at the two ends.
( ) ( )
2
20 0
M 0 at x 0 C 0
x
M Lx x L
2 2
= = ⇒ =
ω ω
⇒ = − = − x
We see that the expression for shear force and bending moment is the same using the two
methods. It only remains to plot them.
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
Points to ponder:
The relation
dm
dx
= V can be construed from two diagrams as below.
As shear force decreases (with increasing x), the slope of the bending moment diagram
also decreases.
Further the bending moment is maximum when its derivative, the shear force is zero.
TOP
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
Problem 10: Bending Moment and Shear force
A beam with a hinge is loaded as above. Draw the shear force and bending moment
diagram.
Solution:
Concept: A hinge can transfer axial force and shear force but not bending moment. So,
bending moment at the hinge location is zero.
Also, without the hinge, the system is statically indeterminate (to a degree 1). The hinge
imposes an extra condition thus rendering the system determinate.
We first find the support reactions.
[ ]
x Ax
B Ay Ay
D cy
cy
Dy
F 0 R 0.
M 0 R 2 0 R 0 Bending moment at hinge = 0
M 0 10 5 5 4 2 R 4
R 22.5kN
R 10 5 4 22.5 7.5kN
= ⇒ =
= ⇒ × = ⇒ =
= ⇒ × + × × = ×
=
= + × − =
∑
∑
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
Shear force Diagram
The shear force remains zero till the 10kN load is reached. It is then constant and equal to
-10 kN till it reaches the point C where it jumps up by the value of Rcy. From C to D it
decreases linearly at 5kN/m. From above considerations, the shear force diagram is as
below.
Bending moment diagram:
Let us draw the bending moment diagram from the shear force diagram, keeping in mind
the fact that the slope of bending moment diagram at any point must be equal to the shear
at that point. Further, we know that the bending moment is zero at end supports.
The bending moment remains zero till the 10kN force, as shear is zero. It then decreases
linearly at 10 kNm/m up to the point C. From the point C, it is parabolic till it finally reaches
zero at the right support D. Further, it reaches a maximum where shear is zero, keeping
these in mind, the BM diagram is as below.
max
1.5
M 7.5 1.5 5 1.5 5.625 kNm
2
= × − × × =
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
TOP
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
Problem 11: Beams of Composite Cross section
The composite beam shown in figure is made up of two materials. A top wooden portion
and a bottom steel portion. The dimensions are as shown in the figure. Take young’s
modulus of steel as 210 GPa and that wood as 15 GPa. The beam is subjected to a
bending moment of 40 kNm about the horizontal axis. Calculate the maximum stress
experienced by two sections.
Solution:
The solution procedure involves hiding an equivalent dimension for one of the materials
keeping the other as reference.
Let us take, Reference Material as steel.
Ratio of modulii,
wood
steel
-2
E 15
r = .00714
E 210
= 7.14 10
= =
×
The equivalent section is as shown in following Figure.
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
The equivalent thickness of wood sections, h
= 120 × r
= 120 × 7.14 × 10-2
= 8.568 mm
Distance of the neutral axis from the bottom of the beam,
( ) ( ) (
( ) ( )
)120 10 5 200 8.568 100 10
y
120 10 200 8.568
66.75 mm
× × + × × +
=
× + ×
=
( )
( ) ( )
( ) ( )
( ) ( ) ( )
3
2i i
i i
3 3
2 2
6 4
b d
Moment of Inertia I = A y
12
8.568 200 120 10
= 8.568 200 43.25 120 10 61.75
12 12
= 13.5 10 mm
+
× ×
+ × × + + × ×
×
∑
Stresses in beams
( )
( )
( ) ( )
steel max
3 -
46 -3
wood steelmax max
M.y
I
40 10 66.75 10
=
13.5 10 10
= 197.78 MPa
r
= 14.12 MPa
σ =
× × ×
× ×
σ = σ ×
3
Strength of Materials Prof. M. S. Sivakumar
Indian Institute of Technology Madras
TOP

More Related Content

What's hot

Engineering mechanics-question-and-answers-for-gate-ias
Engineering mechanics-question-and-answers-for-gate-iasEngineering mechanics-question-and-answers-for-gate-ias
Engineering mechanics-question-and-answers-for-gate-iashitusp
 
Castigliano’s Method
Castigliano’s MethodCastigliano’s Method
Castigliano’s Methodaapx
 
Energy principle in structure analysis in civil engineering
Energy principle in structure analysis in civil engineeringEnergy principle in structure analysis in civil engineering
Energy principle in structure analysis in civil engineeringNagma Modi
 
205 wikarta-kuliah i mektek ti
205 wikarta-kuliah i mektek ti205 wikarta-kuliah i mektek ti
205 wikarta-kuliah i mektek tiAri Indrajaya
 
Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Mahdi Damghani
 
Chapter 03 MECHANICS OF MATERIAL
Chapter 03 MECHANICS OF MATERIALChapter 03 MECHANICS OF MATERIAL
Chapter 03 MECHANICS OF MATERIALabu_mlk
 
Cap 03
Cap 03Cap 03
Cap 03UO
 
Aircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Aircraft Structures for Engineering Students 5th Edition Megson Solutions ManualAircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Aircraft Structures for Engineering Students 5th Edition Megson Solutions ManualRigeler
 
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...JudithLandrys
 
16201806 bahan-ajar-ptm117-mekanika-teknik
16201806 bahan-ajar-ptm117-mekanika-teknik16201806 bahan-ajar-ptm117-mekanika-teknik
16201806 bahan-ajar-ptm117-mekanika-teknikDedy Wonkso
 
IIT JEEPhysics Paper I
IIT JEEPhysics Paper IIIT JEEPhysics Paper I
IIT JEEPhysics Paper Iguestac78ef4
 

What's hot (19)

Engineering Mechanics
Engineering MechanicsEngineering Mechanics
Engineering Mechanics
 
Engineering mechanics-question-and-answers-for-gate-ias
Engineering mechanics-question-and-answers-for-gate-iasEngineering mechanics-question-and-answers-for-gate-ias
Engineering mechanics-question-and-answers-for-gate-ias
 
Castigliano’s Method
Castigliano’s MethodCastigliano’s Method
Castigliano’s Method
 
Energy principle in structure analysis in civil engineering
Energy principle in structure analysis in civil engineeringEnergy principle in structure analysis in civil engineering
Energy principle in structure analysis in civil engineering
 
Flexibility ppt 1
Flexibility ppt 1Flexibility ppt 1
Flexibility ppt 1
 
205 wikarta-kuliah i mektek ti
205 wikarta-kuliah i mektek ti205 wikarta-kuliah i mektek ti
205 wikarta-kuliah i mektek ti
 
Ce 255 handout
Ce 255 handoutCe 255 handout
Ce 255 handout
 
statics
staticsstatics
statics
 
Statics01
Statics01Statics01
Statics01
 
Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1
 
Chapter 03 MECHANICS OF MATERIAL
Chapter 03 MECHANICS OF MATERIALChapter 03 MECHANICS OF MATERIAL
Chapter 03 MECHANICS OF MATERIAL
 
Cap 03
Cap 03Cap 03
Cap 03
 
Aircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Aircraft Structures for Engineering Students 5th Edition Megson Solutions ManualAircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Aircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
 
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
 
16201806 bahan-ajar-ptm117-mekanika-teknik
16201806 bahan-ajar-ptm117-mekanika-teknik16201806 bahan-ajar-ptm117-mekanika-teknik
16201806 bahan-ajar-ptm117-mekanika-teknik
 
IIT JEEPhysics Paper I
IIT JEEPhysics Paper IIIT JEEPhysics Paper I
IIT JEEPhysics Paper I
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Finite element analysis qb
Finite element analysis qbFinite element analysis qb
Finite element analysis qb
 
Energy method
Energy methodEnergy method
Energy method
 

Viewers also liked

Bia net
Bia  netBia  net
Bia netSenVol
 
Volunteering at Lithuania
Volunteering at LithuaniaVolunteering at Lithuania
Volunteering at LithuaniaSenVol
 
6992.green chemistry
6992.green chemistry6992.green chemistry
6992.green chemistryakshay garg
 
Prezentacja tewp ang 2011 wizyta studyjna sen_vol
Prezentacja tewp ang 2011 wizyta studyjna sen_volPrezentacja tewp ang 2011 wizyta studyjna sen_vol
Prezentacja tewp ang 2011 wizyta studyjna sen_volSenVol
 
Volunteering in Austria
Volunteering in AustriaVolunteering in Austria
Volunteering in AustriaSenVol
 
Env monitoring (2)
Env monitoring (2)Env monitoring (2)
Env monitoring (2)akshay garg
 
SenVol Presentation Romania 3. Klaipeda July 2012
SenVol Presentation Romania 3. Klaipeda July 2012SenVol Presentation Romania 3. Klaipeda July 2012
SenVol Presentation Romania 3. Klaipeda July 2012SenVol
 
SenVol Presentation Italy. Klaipeda July 2012
SenVol Presentation Italy. Klaipeda July 2012SenVol Presentation Italy. Klaipeda July 2012
SenVol Presentation Italy. Klaipeda July 2012SenVol
 
วิจัยชั้นเรียน
วิจัยชั้นเรียนวิจัยชั้นเรียน
วิจัยชั้นเรียนtohadi
 
SenVol presentation. Meeting 3. Klaipeda July 2012.
SenVol presentation. Meeting 3. Klaipeda July 2012.SenVol presentation. Meeting 3. Klaipeda July 2012.
SenVol presentation. Meeting 3. Klaipeda July 2012.SenVol
 
6377.types of ecosystems 10
6377.types of ecosystems  106377.types of ecosystems  10
6377.types of ecosystems 10akshay garg
 
Bmg 310 environment science ugc evs_book
Bmg 310 environment science ugc evs_bookBmg 310 environment science ugc evs_book
Bmg 310 environment science ugc evs_bookakshay garg
 
All-IP Telecom Networks
All-IP Telecom NetworksAll-IP Telecom Networks
All-IP Telecom Networksalrohily
 
2presentation otto-cycle-101225122612-phpapp012
2presentation otto-cycle-101225122612-phpapp0122presentation otto-cycle-101225122612-phpapp012
2presentation otto-cycle-101225122612-phpapp012akshay garg
 
Child labour ppt
Child labour pptChild labour ppt
Child labour pptsaranyaroy
 

Viewers also liked (17)

Bia net
Bia  netBia  net
Bia net
 
Contractor tips
Contractor tipsContractor tips
Contractor tips
 
Volunteering at Lithuania
Volunteering at LithuaniaVolunteering at Lithuania
Volunteering at Lithuania
 
6992.green chemistry
6992.green chemistry6992.green chemistry
6992.green chemistry
 
Prezentacja tewp ang 2011 wizyta studyjna sen_vol
Prezentacja tewp ang 2011 wizyta studyjna sen_volPrezentacja tewp ang 2011 wizyta studyjna sen_vol
Prezentacja tewp ang 2011 wizyta studyjna sen_vol
 
Volunteering in Austria
Volunteering in AustriaVolunteering in Austria
Volunteering in Austria
 
Env monitoring (2)
Env monitoring (2)Env monitoring (2)
Env monitoring (2)
 
SenVol Presentation Romania 3. Klaipeda July 2012
SenVol Presentation Romania 3. Klaipeda July 2012SenVol Presentation Romania 3. Klaipeda July 2012
SenVol Presentation Romania 3. Klaipeda July 2012
 
SenVol Presentation Italy. Klaipeda July 2012
SenVol Presentation Italy. Klaipeda July 2012SenVol Presentation Italy. Klaipeda July 2012
SenVol Presentation Italy. Klaipeda July 2012
 
วิจัยชั้นเรียน
วิจัยชั้นเรียนวิจัยชั้นเรียน
วิจัยชั้นเรียน
 
SenVol presentation. Meeting 3. Klaipeda July 2012.
SenVol presentation. Meeting 3. Klaipeda July 2012.SenVol presentation. Meeting 3. Klaipeda July 2012.
SenVol presentation. Meeting 3. Klaipeda July 2012.
 
Read alone
Read aloneRead alone
Read alone
 
6377.types of ecosystems 10
6377.types of ecosystems  106377.types of ecosystems  10
6377.types of ecosystems 10
 
Bmg 310 environment science ugc evs_book
Bmg 310 environment science ugc evs_bookBmg 310 environment science ugc evs_book
Bmg 310 environment science ugc evs_book
 
All-IP Telecom Networks
All-IP Telecom NetworksAll-IP Telecom Networks
All-IP Telecom Networks
 
2presentation otto-cycle-101225122612-phpapp012
2presentation otto-cycle-101225122612-phpapp0122presentation otto-cycle-101225122612-phpapp012
2presentation otto-cycle-101225122612-phpapp012
 
Child labour ppt
Child labour pptChild labour ppt
Child labour ppt
 

Similar to Strength of Materials Problems and Solutions

Mekanikateknik 140330175907-phpapp01
Mekanikateknik 140330175907-phpapp01Mekanikateknik 140330175907-phpapp01
Mekanikateknik 140330175907-phpapp01frans2014
 
Shear Force Diagram and its exampls
Shear Force Diagram and its examplsShear Force Diagram and its exampls
Shear Force Diagram and its examplsJaydrath Sindhav
 
Deformation of structures
Deformation of structuresDeformation of structures
Deformation of structuresAhmed zubydan
 
Three.hinged.arch
Three.hinged.archThree.hinged.arch
Three.hinged.archengr jafar
 
Lecture 3 d_equilibrium [compatibility mode]
Lecture 3 d_equilibrium [compatibility mode]Lecture 3 d_equilibrium [compatibility mode]
Lecture 3 d_equilibrium [compatibility mode]sharancm2009
 
Advanced mathematical analysis of chassis integrated platform designed for un...
Advanced mathematical analysis of chassis integrated platform designed for un...Advanced mathematical analysis of chassis integrated platform designed for un...
Advanced mathematical analysis of chassis integrated platform designed for un...Dr.Vikas Deulgaonkar
 
2-vector operation and force analysis.ppt
2-vector operation and force analysis.ppt2-vector operation and force analysis.ppt
2-vector operation and force analysis.pptRanaUmair74
 
Mechanics.
Mechanics. Mechanics.
Mechanics. NJutt
 

Similar to Strength of Materials Problems and Solutions (20)

ME 245_ 2.pptx
ME 245_ 2.pptxME 245_ 2.pptx
ME 245_ 2.pptx
 
Mekanikateknik 140330175907-phpapp01
Mekanikateknik 140330175907-phpapp01Mekanikateknik 140330175907-phpapp01
Mekanikateknik 140330175907-phpapp01
 
Mekanika teknik
Mekanika teknikMekanika teknik
Mekanika teknik
 
Ch06 ssm
Ch06 ssmCh06 ssm
Ch06 ssm
 
Equilibrium
EquilibriumEquilibrium
Equilibrium
 
consistent deformation
consistent deformationconsistent deformation
consistent deformation
 
Beams
BeamsBeams
Beams
 
Shear Force Diagram and its exampls
Shear Force Diagram and its examplsShear Force Diagram and its exampls
Shear Force Diagram and its exampls
 
Deformation of structures
Deformation of structuresDeformation of structures
Deformation of structures
 
chapter2.ppt
chapter2.pptchapter2.ppt
chapter2.ppt
 
Types of beam
Types of beamTypes of beam
Types of beam
 
Three.hinged.arch
Three.hinged.archThree.hinged.arch
Three.hinged.arch
 
Gr
GrGr
Gr
 
Module 5
Module 5Module 5
Module 5
 
Lecture 3 d_equilibrium [compatibility mode]
Lecture 3 d_equilibrium [compatibility mode]Lecture 3 d_equilibrium [compatibility mode]
Lecture 3 d_equilibrium [compatibility mode]
 
Statics
StaticsStatics
Statics
 
Advanced mathematical analysis of chassis integrated platform designed for un...
Advanced mathematical analysis of chassis integrated platform designed for un...Advanced mathematical analysis of chassis integrated platform designed for un...
Advanced mathematical analysis of chassis integrated platform designed for un...
 
Capitulo2
Capitulo2Capitulo2
Capitulo2
 
2-vector operation and force analysis.ppt
2-vector operation and force analysis.ppt2-vector operation and force analysis.ppt
2-vector operation and force analysis.ppt
 
Mechanics.
Mechanics. Mechanics.
Mechanics.
 

Recently uploaded

result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGSIVASHANKAR N
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 

Recently uploaded (20)

result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 

Strength of Materials Problems and Solutions

  • 1. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem 6: Bending Moment Diagram Problem 7: Bending Moment and Shear force Problem 8: Bending Moment and Shear force Problem 9: Bending Moment and Shear force Problem 10: Bending Moment and Shear force Problem 11: Beams of Composite Cross Section
  • 2. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Problem 1: Computation of Reactions Find the reactions at the supports for a simple beam as shown in the diagram. Weight of the beam is negligible. Figure: Concepts involved • Static Equilibrium equations Procedure Step 1: Draw the free body diagram for the beam. Step 2: Apply equilibrium equations In X direction ∑ FX = 0 ⇒ RAX = 0 In Y Direction ∑ FY = 0
  • 3. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras ⇒ RAY+RBY – 100 –160 = 0 ⇒ RAY+RBY = 260 Moment about Z axis (Taking moment about axis pasing through A) ∑ MZ = 0 We get, ∑ MA = 0 ⇒ 0 + 250 N.m + 100*0.3 N.m + 120*0.4 N.m - RBY *0.5 N.m = 0 ⇒ RBY = 656 N (Upward) Substituting in Eq 5.1 we get ∑ MB = 0 ⇒ RAY * 0.5 + 250 - 100 * 0.2 – 120 * 0.1 = 0 ⇒ RAY = -436 (downwards) TOP
  • 4. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Problem 2: Computation of Reactions Find the reactions for the partially loaded beam with a uniformly varying load shown in Figure. Neglect the weight of the beam Find the reactions for the partially loaded beam with a uniformly varying load shown in Figure. Neglect the weight of the beam FigureFigure (a) (b) Procedure: The reactions and applied loads are shown in figure (b). A crude outline of the beam is also shown to indicate that the configuration of the member is not important for finding out the reactions. The resultant force P acting though the centroid of the distributed forces is found out. Once a free body diagram is prepared, the solution is found out by applying the equations of static equilibrium. ∑ Fx = 0 RAx = 0 ∑ MA = 0 Anticlockwise +12 X 2 - RBy X 6 = 0
  • 5. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras RBy = 4 kN downwards ∑ MB = 12 * (6 - 2) - RAy * 6 => RAy = 8 kN Check ∑ Fy = 0 8 + 12 − 4 = 0 ok! TOP
  • 6. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Problem 3: Computation of Reactions Determine the reactions at A and B for the beam shown due to the applied force. Figure Solution At A, the reaction components is x and y directions are RAx and RAy. The reaction RB acting at B and inclined force F can be resolved into two components along x and y directions. This will simplify the problem. Calculation: Fy = 12, Fx = 9; (By resolving the applied force) ∑ MA = 0 12 X 3 – RBy X 9 = 0 RBy = 4 kN = RBx ∑ MB = 0 12 X 6 - RAy X 9 = 0 RAy = 8kN ∑ Fx = 0 RAx – 9–4 = 0 RAx = 13kN
  • 7. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras So, ( ) ( ) 2 2 A 2 2 B R = 8 + 13 = 233 kN R = 4 + 4 = 4 2 kN Check: ∑ Fy = 0 + 8 – 12 + 4= 0 ok! TOP
  • 8. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Problem 4: Computation of forces and moments In the earlier Example, determine the internal system of forces at sections a-a and b-b; see Figure Figure (a) (b) (c) (d)
  • 9. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Solution: A free-body diagram for the member, including reactions, is shown in Fig. (a). A free-body to the left of section a-a in Fig. 5-20(b) shows the maximum ordinate for the isolated part of the applied load. Using this information, Va = -8 + 1/2 * 2 * 2/3 * 8 = -2.67 kN and Ma = -8 * 2 + {1/2 * 2 * (2/3 * 8)} * {1/3 * 2} = -14.45 kN These forces are shown in the figure. A free-body diagram to the left of section b-b is shown in Figure. This gives Vb = - 4 kN And Mb = -4 x 2 = - 8 kN-m TOP
  • 10. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Problem 5: Bending Moment and Shear force Construct shear and bending-moment diagrams for the beam loaded with the forces shown in the figure. Figure Solution. Taking an arbitrary section at a distance x from the left support isolates the beam segment shown in Fig.(b). This section is applicable for any value of x just to the left of the applied force P. The shear, remains constant and is +P. The bending moment varies linearly from the support, reaching a maximum of +Pa.
  • 11. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras An arbitrary section applicable anywhere between the two applied forces is shown in Fig.(c). Shear force is not necessary to maintain equilibrium of a segment in this part of the beam. Only a constant bending moment of +Pa must be resisted by the beam in this zone. Such a state of bending or flexure is called pure bending. Shear and bending-moment diagrams for this loading condition are shown in Figs (d) and (e). No axial-force diagram is necessary, as there is no axial force at any section of the beam TOP
  • 12. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Problem 6: Bending Moment Diagram Plot shear and bending-moment diagrams for a simply supported beam with a uniformly distributed load; see Figure. Figure Solution A section at a distance x from the left support is taken as shown in figure (b). The shear is found out by subtracting the load to the left of the section from the left upward reaction. The internal bending moment M resists the moment caused by the re-action on the left less the moment caused by the forces to the left of the same section. The summation of moments is performed around an axis at the section. Similar expressions may be obtained by considering the right-hand segment of the beam, while taking care of the sign conventions. The plot of the V and M functions is shown in Figs(c) and (d)
  • 13. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras TOP
  • 14. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Problem 7: Bending Moment and Shear force For the beam as shown in Fig 5, express the shear V and the bending moment M as a function of x along the horizontal member. Figure: Fig (a) Solution A load discontinuity occurs at x == 3 m, in this problem. Hence, the solution is determined in two parts for each of which the functions V and M are continuous. V(x) =-8 + 1/2 x [(x/3) * 8)] = -8 + (4/3) x2 kN for 0 < x < 3 M(x) = -8x + 1/2x[(x/3) * 8 *(x/3)] = -8x + 4/9x3 kN.m for 0 < x < 3 V(x) = -8 +12 =+4KN For 3<x<6, M(x) = -8x + 12(x-2) = 4x - 24kN.m For 3<x<6, TOP
  • 15. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Problem 8: Bending Moment and shear force A parabolic beam is subjected to a 10kN force as shown above. Find axial force, shear force and bending moment at a section, as shown above. Solution : We first find the equation of the beam and the point where section is cut. With origin at A, equation of the parabola can be written as ( ) = − = = ⇒ = = − = = − = = + ⇒ = y kx(4 x).Itremainstofindk. wrt y 4 whenx 2 k 1 so y x(4 x). dy 1 slope, y' 4 2x tan30 dx 3 4 3 1 x 2 3 Now, we only have to resolve the force at the section along the normal and tangential directions. But before that, we first have to find the support reactions.
  • 16. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras x Ax A By By F 0 R 0 M 0 10 2 R 4 R 5kN. = ⇒ = = ⇒ × = × = ∑ ∑ By symmetry (since RAX = 0), Ay Ay ByR 5kN [or R 10 R ]= = − We now draw the free body diagram of the cut body We now resolve the 5kN force ( ) = = = = − = − + = ⇒ × = =∑ c 3 Shear force 5cos30 5 4.33 kN. 2 Axialforce 5cos30 2.50 kN(compression) 4 3 1 M 0 5 M 11.44 kNm 2 3 The Reader can repeat the exercise for a general angle θ and check where each of quantities reaches their zeros and maxima. TOP
  • 17. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Problem 9: Bending Moment and Shear force A constant load of ω0 per unit length is applied on a simply supported beam as shown below. Draw the shear force and bending moment diagram by a. Method of sections b. Integration method Solution: Formulas used: dv dm q V dx dx .= = We first find the support reactions which are necessary for both the methods. x Ax 0 Ay By F 0 R 0 L Bysymmetry,R R 2 = ⇒ = ω = = ∑ a. Method of section We cut a section at a distance 'x' from left and of the beam.
  • 18. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras ( ) 0 y 0 0 c 0 L F 0 V x 2 L x x M 0 M x x L x 2 2 2 0 ω = ⇒ = − ω ω = ⇒ = × − ω × × = ω − ∑ ∑ b. Method of Integration ( ) ( ) ( ) 0 0 0 1 0 0 1 0 0 20 2 dv q. dx Here,q dv dx Integrating V x C L wkt Vat x 0is . Putting x 0in above equation, 2 L We get C 2 V L 2x 2 dm V L 2x dx 2 M Lx x C 2 = = −ω ⇒ = −ω = −ω + ω = = ω = ω = − ω = = − ω = − + wkt, for a simply supported beam, bending moment is zero at the two ends. ( ) ( ) 2 20 0 M 0 at x 0 C 0 x M Lx x L 2 2 = = ⇒ = ω ω ⇒ = − = − x We see that the expression for shear force and bending moment is the same using the two methods. It only remains to plot them.
  • 19. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Points to ponder: The relation dm dx = V can be construed from two diagrams as below. As shear force decreases (with increasing x), the slope of the bending moment diagram also decreases. Further the bending moment is maximum when its derivative, the shear force is zero. TOP
  • 20. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Problem 10: Bending Moment and Shear force A beam with a hinge is loaded as above. Draw the shear force and bending moment diagram. Solution: Concept: A hinge can transfer axial force and shear force but not bending moment. So, bending moment at the hinge location is zero. Also, without the hinge, the system is statically indeterminate (to a degree 1). The hinge imposes an extra condition thus rendering the system determinate. We first find the support reactions. [ ] x Ax B Ay Ay D cy cy Dy F 0 R 0. M 0 R 2 0 R 0 Bending moment at hinge = 0 M 0 10 5 5 4 2 R 4 R 22.5kN R 10 5 4 22.5 7.5kN = ⇒ = = ⇒ × = ⇒ = = ⇒ × + × × = × = = + × − = ∑ ∑
  • 21. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Shear force Diagram The shear force remains zero till the 10kN load is reached. It is then constant and equal to -10 kN till it reaches the point C where it jumps up by the value of Rcy. From C to D it decreases linearly at 5kN/m. From above considerations, the shear force diagram is as below. Bending moment diagram: Let us draw the bending moment diagram from the shear force diagram, keeping in mind the fact that the slope of bending moment diagram at any point must be equal to the shear at that point. Further, we know that the bending moment is zero at end supports. The bending moment remains zero till the 10kN force, as shear is zero. It then decreases linearly at 10 kNm/m up to the point C. From the point C, it is parabolic till it finally reaches zero at the right support D. Further, it reaches a maximum where shear is zero, keeping these in mind, the BM diagram is as below. max 1.5 M 7.5 1.5 5 1.5 5.625 kNm 2 = × − × × =
  • 22. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras TOP
  • 23. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Problem 11: Beams of Composite Cross section The composite beam shown in figure is made up of two materials. A top wooden portion and a bottom steel portion. The dimensions are as shown in the figure. Take young’s modulus of steel as 210 GPa and that wood as 15 GPa. The beam is subjected to a bending moment of 40 kNm about the horizontal axis. Calculate the maximum stress experienced by two sections. Solution: The solution procedure involves hiding an equivalent dimension for one of the materials keeping the other as reference. Let us take, Reference Material as steel. Ratio of modulii, wood steel -2 E 15 r = .00714 E 210 = 7.14 10 = = × The equivalent section is as shown in following Figure.
  • 24. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras The equivalent thickness of wood sections, h = 120 × r = 120 × 7.14 × 10-2 = 8.568 mm Distance of the neutral axis from the bottom of the beam, ( ) ( ) ( ( ) ( ) )120 10 5 200 8.568 100 10 y 120 10 200 8.568 66.75 mm × × + × × + = × + × = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 2i i i i 3 3 2 2 6 4 b d Moment of Inertia I = A y 12 8.568 200 120 10 = 8.568 200 43.25 120 10 61.75 12 12 = 13.5 10 mm + × × + × × + + × × × ∑ Stresses in beams ( ) ( ) ( ) ( ) steel max 3 - 46 -3 wood steelmax max M.y I 40 10 66.75 10 = 13.5 10 10 = 197.78 MPa r = 14.12 MPa σ = × × × × × σ = σ × 3
  • 25. Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras TOP