SlideShare a Scribd company logo
1 of 13
Download to read offline
Factor-Based GTAA Strategy
Report
MATH G4078 Final Project
Working Group:
Fengqiao Chen (fc2530) Peijun Dai (pd2485)
Yicheng Wang (yw2761) Yichao Xue (yx2311)
May 6, 2016
1
1 Abstract
In this project, we will create and back-test a Factor-Based Long-Short GTAA strategy
with 10% risk and monthly rebalancing. Our ultimate goal is to present a strategy where
there is no exposure to global equity market and exposure to 10 % risk. Our investment
universe is comprised of 10 developed country equity index futures with 10 years of
monthly data. We constructed three 2-factor-mimicking portfolio for the equity universe,
and we found that the model with Volatility and Value factor performed the best.
2
2 Data Preparation
2.1 Investment Universe
The first step in this project is to determine the investment universe. As described in
the abstract above, the chosen investment universe is comprised of Investment universe
is comprised of 10 developed country equity index futures from MSCI. The ten countries
are: Australia, Canada, Germany, Spain, France, UK, Italy, Japan, Netherlands, USA.
2.2 Data Transformation and Explanations
The returns to value and momentum strategies have become quintessential to the market
efficiency debate. 1
Based on the Asness, Tobias and Lasse’s conclusion, it is therefore
natural for us to employ value and momentum to build a two factor-mimicking portfolios
for the equity universe.
Our basic scheme of value premium is associated with investors bias to over-extrapolate
past earnings growth and higher risk of value equities. A momentum factor is important
to our project as it is one of the most investigated and persistent effects. Another factor
volatility is included to make pair combination testing. For the weight of volatility factor,
we decide to long asset with low volatility and short asset with high volatility. In order to
identify the underlying outliers, we transformed the data through this formula below, this
formula make sure that the sum of the new weight will be zero, the rank in the formula
is constructed based on the E/P ratio of the asset: the smaller E/P Ratio, the higher
Ranking. Also we can use the adjusting factor Ct to adjust the long-short strategy :
WSignal
t,i = Ct[Rank(Signalt,i) −
1
10
10
j=1
Rank(Signalt,j)].
For the factors like momentum and volatility, we do not need to identify the outliers, we
transformed as this way:
WSignal
t,i = Ct[(Signalt,i) −
1
10
10
j=1
(Signalt,j)].
1. Asness, Clifford S., Tobias J. Moskowitz, and Lasse Heje Pedersen. ”Value and Momentum Every-
where.” The Journal of Finance 68, no. 3 (2013): 929-85. doi:10.1111/jofi.12021.
3
For the three factors, we get the new transformed weight as below:
WValue
t,i = +{Rank(Fept,i) −
1
10
10
j=1
Rank(Fept,j)},
WMomentum
t,i = +{(Momt,i) −
1
10
10
j=1
(Momt,j)},
WVolatility
t,j = −{(Volt,i) −
1
10
10
j=1
(Volt,j)}.
After the transformation, for value factor: we tend to short the high ranking asset
(Low E/P Ratio) and long the low raning asset (High E/P Ratio); for the momentum
factor, we tend to short the Low momentum asset and long high momentum asset; for
the volatility factor, we tend to short high volatility asset and long low volatility asset.
Rather than optimize the portfolio to build the best possible complex model of future
volatility, or to time volatility, we decide to scale the portfolios, using a simple ex-ante
measure, to roughly constant volatility (10 %). The return on the portfolio could be
calculated by using the ranks and weights of the signals as we mentioned above. We take
the return on a 50/50 equal combination of every pair of 3 factors into consideration.
4
3 Risk Model
3.1 Risk Estimation
We choose the 36-month rolling window of returns to create monthly covariance matrix,
use a rule of thumb and multiply each element of the matrix by 12 to annualize the
covariance. The following formula represents the element on the i, j unit of the whole
covariance matrix Σ
σm
ij =
1
36
m
t=m−35
(Rt,i − ¯Ri)(Rt,j − ¯Rj) ∗ 12 .
The risk of each portfolio is calculated by its weight and the covariance matrix:
Ex-ante risk =
√
wT Σw,
then scale to the target risk:
wnew
t = wt ∗
Target Risk
Ex-ante risk
The following graphics show the holdings for each portfolio in terms of different factors.
Figure 1: Value Factor
-0.08
-0.06
-0.04
-0.02
0
0.02
0.04
0.06
0.08
1-Jan-88
1-Sep-88
1-May-89
1-Jan-90
1-Sep-90
1-May-91
1-Jan-92
1-Sep-92
1-May-93
1-Jan-94
1-Sep-94
1-May-95
1-Jan-96
1-Sep-96
1-May-97
1-Jan-98
1-Sep-98
1-May-99
1-Jan-00
1-Sep-00
1-May-01
1-Jan-02
1-Sep-02
1-May-03
1-Jan-04
1-Sep-04
1-May-05
1-Jan-06
1-Sep-06
1-May-07
1-Jan-08
1-Sep-08
1-May-09
1-Jan-10
1-Sep-10
1-May-11
1-Jan-12
1-Sep-12
1-May-13
1-Jan-14
Value Factor Holdings
AUD CAD DEM ESP FRF GBP ITL JPY NLG USD
5
Figure 2: Momentum Factor
-0.2
-0.15
-0.1
-0.05
0
0.05
0.1
0.15 1-Jan-88
1-Sep-88
1-May-89
1-Jan-90
1-Sep-90
1-May-91
1-Jan-92
1-Sep-92
1-May-93
1-Jan-94
1-Sep-94
1-May-95
1-Jan-96
1-Sep-96
1-May-97
1-Jan-98
1-Sep-98
1-May-99
1-Jan-00
1-Sep-00
1-May-01
1-Jan-02
1-Sep-02
1-May-03
1-Jan-04
1-Sep-04
1-May-05
1-Jan-06
1-Sep-06
1-May-07
1-Jan-08
1-Sep-08
1-May-09
1-Jan-10
1-Sep-10
1-May-11
1-Jan-12
1-Sep-12
1-May-13
1-Jan-14
Momentum Factor Holdings
AUD CAD DEM ESP FRF GBP ITL JPY NLG USD
Figure 3: Volatility Factor
-0.1
-0.08
-0.06
-0.04
-0.02
0
0.02
0.04
0.06
0.08
0.1
1-Jan-88
1-Aug-88
1-Mar-89
1-Oct-89
1-May-90
1-Dec-90
1-Jul-91
1-Feb-92
1-Sep-92
1-Apr-93
1-Nov-93
1-Jun-94
1-Jan-95
1-Aug-95
1-Mar-96
1-Oct-96
1-May-97
1-Dec-97
1-Jul-98
1-Feb-99
1-Sep-99
1-Apr-00
1-Nov-00
1-Jun-01
1-Jan-02
1-Aug-02
1-Mar-03
1-Oct-03
1-May-04
1-Dec-04
1-Jul-05
1-Feb-06
1-Sep-06
1-Apr-07
1-Nov-07
1-Jun-08
1-Jan-09
1-Aug-09
1-Mar-10
1-Oct-10
1-May-11
1-Dec-11
1-Jul-12
1-Feb-13
1-Sep-13
Vol Factor Holdings
AUD CAD DEM ESP FRF GBP ITL JPY NLG USD
6
3.2 Discussion of the client zero-equity-beta constraint
To accommodate the request of zero equity beta from the client, we orthogonalized factor
portfolios with respect to some liquid proxy for the global equity market. In our case, we
use the equal-weighted portfolio of 10 country MSCI futures index as the proxy. Since
there are 10 countries’ futures index, we set the equal weight as 0.1. The orthogonalization
is shown below.
Orthogonalized Factori,t = Original Factori,t − Proxy Weight × ˆβt
Where i represents the i − th asset and t represent the t month, and
ˆβt =
Cov(Original, Proxy)
V ar(Proxy)
=
(wnew
t )T
Σ(wProxy
t )
(wProxy)T Σ(wProxy
t )
The following graphics show the β for each portfolio:
Figure 4: Betas
-0.1
-0.08
-0.06
-0.04
-0.02
0
0.02
0.04
0.06
0.08
1-Jan-88
1-Jul-88
1-Jan-89
1-Jul-89
1-Jan-90
1-Jul-90
1-Jan-91
1-Jul-91
1-Jan-92
1-Jul-92
1-Jan-93
1-Jul-93
1-Jan-94
1-Jul-94
1-Jan-95
1-Jul-95
1-Jan-96
1-Jul-96
1-Jan-97
1-Jul-97
1-Jan-98
1-Jul-98
1-Jan-99
1-Jul-99
1-Jan-00
1-Jul-00
1-Jan-01
1-Jul-01
1-Jan-02
1-Jul-02
1-Jan-03
1-Jul-03
1-Jan-04
1-Jul-04
1-Jan-05
1-Jul-05
1-Jan-06
1-Jul-06
1-Jan-07
1-Jul-07
1-Jan-08
1-Jul-08
1-Jan-09
1-Jul-09
1-Jan-10
1-Jul-10
1-Jan-11
1-Jul-11
1-Jan-12
1-Jul-12
1-Jan-13
1-Jul-13
1-Jan-14
Equity Betas
Value Momentum Vol
7
4 Conclusion
The following two tables are the required statistics we need. Value Factor, Momentum
Factor and Volatility Factor are correspondent to 1,2,3 indicators (i.e. Combined 1&
2 represents the combination of Value Factor and Momentum Factor). The Realized
correlation in Table represents the correlation between each portfolio and equal weighted
global equity index (MSCI). According to the Table Results, we can see that Combined
Factors Portfolio (Value and Volatility Factor) performed best among all portfolios. Its
annualized return is 7.24% with 13.01% drawdown. The Return to Risk Ratio is 0.68.
Table 1
Value factor Momentum factor
Annulized Return 0.58% 0.21%
Annulized realized risk 1.05% 1.10%
Average drawdown 0.44% 1.04%
Return to risk ratio 0.55 0.19
Realized correlation 0.19 -0.20
Table 2
Combined 1 & 2 Combined 1& 3 Combined 2 & 3
Annulized Return 3.63% 7.24% 4.88%
Annulized realized risk 10.93% 10.64% 10.74%
Average drawdown 24.29% 13.01% 10.19%
Return to risk ratio 0.33 0.68 0.45
Realized correlation -0.03 0.15 0.03
8
The following graphics show the cumulative returns for each portfolio (Combined
Factors and Single Factor):
Figure 5: Combined Factors Portfolio Cumulative Returns
0
1
2
3
4
5
6
7
1-Jan-88
1-Sep-88
1-May-89
1-Jan-90
1-Sep-90
1-May-91
1-Jan-92
1-Sep-92
1-May-93
1-Jan-94
1-Sep-94
1-May-95
1-Jan-96
1-Sep-96
1-May-97
1-Jan-98
1-Sep-98
1-May-99
1-Jan-00
1-Sep-00
1-May-01
1-Jan-02
1-Sep-02
1-May-03
1-Jan-04
1-Sep-04
1-May-05
1-Jan-06
1-Sep-06
1-May-07
1-Jan-08
1-Sep-08
1-May-09
1-Jan-10
1-Sep-10
1-May-11
1-Jan-12
1-Sep-12
1-May-13
1-Jan-14
Cumulative Returns fordifferent combinations
Cumulative	Returns	 for	combined	 1&2	portfolio Cumulative	Returns	 for	combined	 1&3	portfolio
Cumulative	Returns	 for	combined	 2&3	portfolio
Figure 6: Single Factor Portfolio Cumulative Returns
0.85
0.9
0.95
1
1.05
1.1
1.15
1.2
1-Jan-88
1-Sep-88
1-May-89
1-Jan-90
1-Sep-90
1-May-91
1-Jan-92
1-Sep-92
1-May-93
1-Jan-94
1-Sep-94
1-May-95
1-Jan-96
1-Sep-96
1-May-97
1-Jan-98
1-Sep-98
1-May-99
1-Jan-00
1-Sep-00
1-May-01
1-Jan-02
1-Sep-02
1-May-03
1-Jan-04
1-Sep-04
1-May-05
1-Jan-06
1-Sep-06
1-May-07
1-Jan-08
1-Sep-08
1-May-09
1-Jan-10
1-Sep-10
1-May-11
1-Jan-12
1-Sep-12
1-May-13
1-Jan-14
Cumulative Returns
Cumulative	Returns	 of	Value	Factor Cumulative	Returns	 for	Momentum	Factor Cumulative	Returns	 for	Vol	Factor
9
The following graphics show the drawdown each portfolio (Combined Factors and
Single Factor):
Figure 7: Combined Factors Portfolio Drawdown
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1
7
13
19
25
31
37
43
49
55
61
67
73
79
85
91
97
103
109
115
121
127
133
139
145
151
157
163
169
175
181
187
193
199
205
211
217
223
229
235
241
247
253
259
265
271
277
283
289
295
301
307
313
Drawdowns for different combinations
Drawdowns	for	combined	1&2	portfolio Drawdowns	for	combined	1&3	portfolio Drawdowns	for	combined	2&3	portfolio
Figure 8: Single Factor Portfolio Drawdown
0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
1-Jan-88
1-Aug-88
1-Mar-89
1-Oct-89
1-May-90
1-Dec-90
1-Jul-91
1-Feb-92
1-Sep-92
1-Apr-93
1-Nov-93
1-Jun-94
1-Jan-95
1-Aug-95
1-Mar-96
1-Oct-96
1-May-97
1-Dec-97
1-Jul-98
1-Feb-99
1-Sep-99
1-Apr-00
1-Nov-00
1-Jun-01
1-Jan-02
1-Aug-02
1-Mar-03
1-Oct-03
1-May-04
1-Dec-04
1-Jul-05
1-Feb-06
1-Sep-06
1-Apr-07
1-Nov-07
1-Jun-08
1-Jan-09
1-Aug-09
1-Mar-10
1-Oct-10
1-May-11
1-Dec-11
1-Jul-12
1-Feb-13
1-Sep-13
Drawdowns
Drawdowns	for	Value	Factor Drawdowns	for	Momentum	Factor Drawdowns	for	Vol	Factor
10
5 Appendix
setwd("~/Documents/columbia/W4078/final/")
# install.packages("openxlsx", dependencies=TRUE)
# install.packages("utils",dependencies=TRUE)
library(openxlsx)
returns <- read.xlsx("Input Data for COV and BETA.xlsx",sheet=1)
fep <- read.xlsx("Input Data for COV and BETA.xlsx",sheet=2)
momentum <- read.xlsx("Input Data for COV and BETA.xlsx",sheet=3)
returns <- returns[,-1]
returns <- as.matrix(returns)
momentum <- momentum[,-1]
momentum <- as.matrix(momentum)
fep <- fep[,-1]
fep <- as.matrix(fep)
vol <- read.xlsx("vol factor.xlsx")
vol <- as.matrix(vol)
#36
covar <- matrix(NA,nrow=(length(returns[,1])-36),ncol=10)
for (i in 2:315){
covar[(i-1),] <- diag(cov(returns[i:(i+35),])*35/36*12)
}
momentum.risk <-matrix(NA,314,1)
for(i in 1:314){
momentum.risk[i,] <- sqrt((momentum[i,])%*%
(cov(returns[(i+1):(i+36),])*35/36*12)%*%(momentum[i,])
)}
value.risk<-matrix(NA,314,1)
for(i in 1:314){
value.risk[i,] <- sqrt(fep[i,]%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%(fep[i,]))
}
vol.risk<-matrix(NA,314,1)
for(i in 1:314){
vol.risk[i,] <- sqrt(vol[i,]%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%(vol[i,]))
11
}
write.xlsx(covar,file="covar.xlsx")
write.xlsx(momentum.risk,file='momentum risk.xlsx')
write.xlsx(value.risk,file='value risk.xlsx')
write.xlsx(vol.risk,file='vol risk.xlsx')
############Scaled####################
value.new <- read.xlsx("project results.xlsx",sheet=5)
value.new <- as.matrix(value.new[,2:11])
momentum.new <- read.xlsx("project results.xlsx",sheet=6)
momentum.new <- as.matrix(momentum.new[,2:11])
#vol
vol.new <- read.xlsx("project results.xlsx",sheet=8)
vol.new <- as.matrix(vol.new[,2:11])
a <- rep(0.1,10)
value.beta <- matrix(NA,314,1)
momentum.beta <- matrix(NA,314,1)
vol.beta <- matrix(NA,314,1)
for(i in 1:314){
value.beta[i,] <- value.new[i,]%*%(cov(returns[(i+1):(i+36),])*35/36*12)
%*%a/(a%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%a)
momentum.beta[i,] <- momentum.new[i,]%*%(cov(returns[(i+1):(i+36),])*35/36*12)
%*%a/(a%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%a)
}
#vol
for(i in 1:314){
vol.beta[i,] <- vol.new[i,]%*%(cov(returns[(i+1):(i+36),])*35/36*12)
%*%a/(a%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%a)
}
write.xlsx(vol.beta,file="vol.beta.xlsx")
write.xlsx(value.beta,file="value.beta.xlsx")
write.xlsx(momentum.beta,file="momentum.beta.xlsx")
# momentum%*%covar%*%t(momentum)
# diag(1/sqrt(covar[314,]))
%*%(cov(returns[314:(314+36),])*36/36*12)%*%diag(1/sqrt(covar[314,]))
write.xlsx(diag(1/sqrt(covar[314,]))
%*%(cov(returns[315:(315+35),])*35/36*12)%*%diag(1/sqrt(covar[314,]))
12
,file="correaltion.xlsx")
# write.xlsx(covar,file="covar.xlsx")
combined.weight <- matrix(NA,314,10)
for (i in 1:314){
a <- 0.5*(value.new[i,]-0.1*value.beta[i]+momentum.new[i,]-0.1*momentum.beta[i])
b <- sqrt(a%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%a)
m <- 0.1/b
combined.weight[i,] <- as.numeric(m)*a
}
write.xlsx(combined.weight,file="combined weight.xlsx")
combined.weight1 <- matrix(NA,314,10)
for (i in 1:314){
a <- 0.5*(value.new[i,]-0.1*value.beta[i]+vol.new[i,]-0.1*vol.beta[i])
b <- sqrt(a%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%a)
m <- 0.1/b
combined.weight1[i,] <- as.numeric(m)*a
}
write.xlsx(combined.weight1,file="combined weight value vol.xlsx")
combined.weight2 <- matrix(NA,314,10)
for (i in 1:314){
a <- 0.5*(momentum.new[i,]-0.1*momentum.beta[i]+vol.new[i,]-0.1*vol.beta[i])
b <- sqrt(a%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%a)
m <- 0.1/b
combined.weight2[i,] <- as.numeric(m)*a
}
write.xlsx(combined.weight2,file="combined weight momentom vol.xlsx")
13

More Related Content

Similar to final

Affine Term Structure Model with Stochastic Market Price of Risk
Affine Term Structure Model with Stochastic Market Price of RiskAffine Term Structure Model with Stochastic Market Price of Risk
Affine Term Structure Model with Stochastic Market Price of RiskSwati Mital
 
Financial Frictions under Learning
Financial Frictions under LearningFinancial Frictions under Learning
Financial Frictions under LearningGRAPE
 
Time series mnr
Time series mnrTime series mnr
Time series mnrNH Rao
 
PATTEM JAGADESH_21mt0269_research proposal presentation.pptx
PATTEM JAGADESH_21mt0269_research proposal presentation.pptxPATTEM JAGADESH_21mt0269_research proposal presentation.pptx
PATTEM JAGADESH_21mt0269_research proposal presentation.pptxPATTEMJAGADESH
 
Scenario generation and stochastic programming models for asset liabiltiy man...
Scenario generation and stochastic programming models for asset liabiltiy man...Scenario generation and stochastic programming models for asset liabiltiy man...
Scenario generation and stochastic programming models for asset liabiltiy man...Nicha Tatsaneeyapan
 
Garch Models in Value-At-Risk Estimation for REIT
Garch Models in Value-At-Risk Estimation for REITGarch Models in Value-At-Risk Estimation for REIT
Garch Models in Value-At-Risk Estimation for REITIJERDJOURNAL
 
Precautionary Savings and the Stock-Bond Covariance
Precautionary Savings and the Stock-Bond CovariancePrecautionary Savings and the Stock-Bond Covariance
Precautionary Savings and the Stock-Bond CovarianceEesti Pank
 
Goal-based_wealth_management_benchmarks_-_20230312.pdf
Goal-based_wealth_management_benchmarks_-_20230312.pdfGoal-based_wealth_management_benchmarks_-_20230312.pdf
Goal-based_wealth_management_benchmarks_-_20230312.pdfKarén Chaltikian
 
Goal-based wealth management benchmarks - 20230312.pdf
Goal-based wealth management benchmarks - 20230312.pdfGoal-based wealth management benchmarks - 20230312.pdf
Goal-based wealth management benchmarks - 20230312.pdfKarén Chaltikian
 
Estimating Financial Frictions under Learning
Estimating Financial Frictions under LearningEstimating Financial Frictions under Learning
Estimating Financial Frictions under LearningGRAPE
 
Measuring the behavioral component of financial fluctuation: an analysis bas...
Measuring the behavioral component of  financial fluctuation: an analysis bas...Measuring the behavioral component of  financial fluctuation: an analysis bas...
Measuring the behavioral component of financial fluctuation: an analysis bas...SYRTO Project
 
Stock price prediction regression nn
Stock price prediction   regression nnStock price prediction   regression nn
Stock price prediction regression nnZanshila Rodrigues
 
Estimating Financial Frictions under Learning
Estimating Financial Frictions under LearningEstimating Financial Frictions under Learning
Estimating Financial Frictions under LearningGRAPE
 
Holtwinters terakhir lengkap
Holtwinters terakhir lengkapHoltwinters terakhir lengkap
Holtwinters terakhir lengkapZulyy Astutik
 
Optimal Portfolio Selection for a Defined Contribution Pension Fund with Retu...
Optimal Portfolio Selection for a Defined Contribution Pension Fund with Retu...Optimal Portfolio Selection for a Defined Contribution Pension Fund with Retu...
Optimal Portfolio Selection for a Defined Contribution Pension Fund with Retu...BRNSS Publication Hub
 
Combining Economic Fundamentals to Predict Exchange Rates
Combining Economic Fundamentals to Predict Exchange RatesCombining Economic Fundamentals to Predict Exchange Rates
Combining Economic Fundamentals to Predict Exchange RatesBrant Munro
 

Similar to final (20)

Affine Term Structure Model with Stochastic Market Price of Risk
Affine Term Structure Model with Stochastic Market Price of RiskAffine Term Structure Model with Stochastic Market Price of Risk
Affine Term Structure Model with Stochastic Market Price of Risk
 
Financial Frictions under Learning
Financial Frictions under LearningFinancial Frictions under Learning
Financial Frictions under Learning
 
Time series mnr
Time series mnrTime series mnr
Time series mnr
 
PATTEM JAGADESH_21mt0269_research proposal presentation.pptx
PATTEM JAGADESH_21mt0269_research proposal presentation.pptxPATTEM JAGADESH_21mt0269_research proposal presentation.pptx
PATTEM JAGADESH_21mt0269_research proposal presentation.pptx
 
Scenario generation and stochastic programming models for asset liabiltiy man...
Scenario generation and stochastic programming models for asset liabiltiy man...Scenario generation and stochastic programming models for asset liabiltiy man...
Scenario generation and stochastic programming models for asset liabiltiy man...
 
Garch Models in Value-At-Risk Estimation for REIT
Garch Models in Value-At-Risk Estimation for REITGarch Models in Value-At-Risk Estimation for REIT
Garch Models in Value-At-Risk Estimation for REIT
 
Precautionary Savings and the Stock-Bond Covariance
Precautionary Savings and the Stock-Bond CovariancePrecautionary Savings and the Stock-Bond Covariance
Precautionary Savings and the Stock-Bond Covariance
 
FParaschiv_Davos
FParaschiv_DavosFParaschiv_Davos
FParaschiv_Davos
 
Goal-based_wealth_management_benchmarks_-_20230312.pdf
Goal-based_wealth_management_benchmarks_-_20230312.pdfGoal-based_wealth_management_benchmarks_-_20230312.pdf
Goal-based_wealth_management_benchmarks_-_20230312.pdf
 
Asian basket options
Asian basket optionsAsian basket options
Asian basket options
 
Robust Optimal Reinsurance and Investment Problem with p-Thinning Dependent a...
Robust Optimal Reinsurance and Investment Problem with p-Thinning Dependent a...Robust Optimal Reinsurance and Investment Problem with p-Thinning Dependent a...
Robust Optimal Reinsurance and Investment Problem with p-Thinning Dependent a...
 
Goal-based wealth management benchmarks - 20230312.pdf
Goal-based wealth management benchmarks - 20230312.pdfGoal-based wealth management benchmarks - 20230312.pdf
Goal-based wealth management benchmarks - 20230312.pdf
 
Estimating Financial Frictions under Learning
Estimating Financial Frictions under LearningEstimating Financial Frictions under Learning
Estimating Financial Frictions under Learning
 
Measuring the behavioral component of financial fluctuation: an analysis bas...
Measuring the behavioral component of  financial fluctuation: an analysis bas...Measuring the behavioral component of  financial fluctuation: an analysis bas...
Measuring the behavioral component of financial fluctuation: an analysis bas...
 
Stock price prediction regression nn
Stock price prediction   regression nnStock price prediction   regression nn
Stock price prediction regression nn
 
Estimating Financial Frictions under Learning
Estimating Financial Frictions under LearningEstimating Financial Frictions under Learning
Estimating Financial Frictions under Learning
 
Master_Thesis_Harihara_Subramanyam_Sreenivasan
Master_Thesis_Harihara_Subramanyam_SreenivasanMaster_Thesis_Harihara_Subramanyam_Sreenivasan
Master_Thesis_Harihara_Subramanyam_Sreenivasan
 
Holtwinters terakhir lengkap
Holtwinters terakhir lengkapHoltwinters terakhir lengkap
Holtwinters terakhir lengkap
 
Optimal Portfolio Selection for a Defined Contribution Pension Fund with Retu...
Optimal Portfolio Selection for a Defined Contribution Pension Fund with Retu...Optimal Portfolio Selection for a Defined Contribution Pension Fund with Retu...
Optimal Portfolio Selection for a Defined Contribution Pension Fund with Retu...
 
Combining Economic Fundamentals to Predict Exchange Rates
Combining Economic Fundamentals to Predict Exchange RatesCombining Economic Fundamentals to Predict Exchange Rates
Combining Economic Fundamentals to Predict Exchange Rates
 

final

  • 1. Factor-Based GTAA Strategy Report MATH G4078 Final Project Working Group: Fengqiao Chen (fc2530) Peijun Dai (pd2485) Yicheng Wang (yw2761) Yichao Xue (yx2311) May 6, 2016 1
  • 2. 1 Abstract In this project, we will create and back-test a Factor-Based Long-Short GTAA strategy with 10% risk and monthly rebalancing. Our ultimate goal is to present a strategy where there is no exposure to global equity market and exposure to 10 % risk. Our investment universe is comprised of 10 developed country equity index futures with 10 years of monthly data. We constructed three 2-factor-mimicking portfolio for the equity universe, and we found that the model with Volatility and Value factor performed the best. 2
  • 3. 2 Data Preparation 2.1 Investment Universe The first step in this project is to determine the investment universe. As described in the abstract above, the chosen investment universe is comprised of Investment universe is comprised of 10 developed country equity index futures from MSCI. The ten countries are: Australia, Canada, Germany, Spain, France, UK, Italy, Japan, Netherlands, USA. 2.2 Data Transformation and Explanations The returns to value and momentum strategies have become quintessential to the market efficiency debate. 1 Based on the Asness, Tobias and Lasse’s conclusion, it is therefore natural for us to employ value and momentum to build a two factor-mimicking portfolios for the equity universe. Our basic scheme of value premium is associated with investors bias to over-extrapolate past earnings growth and higher risk of value equities. A momentum factor is important to our project as it is one of the most investigated and persistent effects. Another factor volatility is included to make pair combination testing. For the weight of volatility factor, we decide to long asset with low volatility and short asset with high volatility. In order to identify the underlying outliers, we transformed the data through this formula below, this formula make sure that the sum of the new weight will be zero, the rank in the formula is constructed based on the E/P ratio of the asset: the smaller E/P Ratio, the higher Ranking. Also we can use the adjusting factor Ct to adjust the long-short strategy : WSignal t,i = Ct[Rank(Signalt,i) − 1 10 10 j=1 Rank(Signalt,j)]. For the factors like momentum and volatility, we do not need to identify the outliers, we transformed as this way: WSignal t,i = Ct[(Signalt,i) − 1 10 10 j=1 (Signalt,j)]. 1. Asness, Clifford S., Tobias J. Moskowitz, and Lasse Heje Pedersen. ”Value and Momentum Every- where.” The Journal of Finance 68, no. 3 (2013): 929-85. doi:10.1111/jofi.12021. 3
  • 4. For the three factors, we get the new transformed weight as below: WValue t,i = +{Rank(Fept,i) − 1 10 10 j=1 Rank(Fept,j)}, WMomentum t,i = +{(Momt,i) − 1 10 10 j=1 (Momt,j)}, WVolatility t,j = −{(Volt,i) − 1 10 10 j=1 (Volt,j)}. After the transformation, for value factor: we tend to short the high ranking asset (Low E/P Ratio) and long the low raning asset (High E/P Ratio); for the momentum factor, we tend to short the Low momentum asset and long high momentum asset; for the volatility factor, we tend to short high volatility asset and long low volatility asset. Rather than optimize the portfolio to build the best possible complex model of future volatility, or to time volatility, we decide to scale the portfolios, using a simple ex-ante measure, to roughly constant volatility (10 %). The return on the portfolio could be calculated by using the ranks and weights of the signals as we mentioned above. We take the return on a 50/50 equal combination of every pair of 3 factors into consideration. 4
  • 5. 3 Risk Model 3.1 Risk Estimation We choose the 36-month rolling window of returns to create monthly covariance matrix, use a rule of thumb and multiply each element of the matrix by 12 to annualize the covariance. The following formula represents the element on the i, j unit of the whole covariance matrix Σ σm ij = 1 36 m t=m−35 (Rt,i − ¯Ri)(Rt,j − ¯Rj) ∗ 12 . The risk of each portfolio is calculated by its weight and the covariance matrix: Ex-ante risk = √ wT Σw, then scale to the target risk: wnew t = wt ∗ Target Risk Ex-ante risk The following graphics show the holdings for each portfolio in terms of different factors. Figure 1: Value Factor -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 1-Jan-88 1-Sep-88 1-May-89 1-Jan-90 1-Sep-90 1-May-91 1-Jan-92 1-Sep-92 1-May-93 1-Jan-94 1-Sep-94 1-May-95 1-Jan-96 1-Sep-96 1-May-97 1-Jan-98 1-Sep-98 1-May-99 1-Jan-00 1-Sep-00 1-May-01 1-Jan-02 1-Sep-02 1-May-03 1-Jan-04 1-Sep-04 1-May-05 1-Jan-06 1-Sep-06 1-May-07 1-Jan-08 1-Sep-08 1-May-09 1-Jan-10 1-Sep-10 1-May-11 1-Jan-12 1-Sep-12 1-May-13 1-Jan-14 Value Factor Holdings AUD CAD DEM ESP FRF GBP ITL JPY NLG USD 5
  • 6. Figure 2: Momentum Factor -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 1-Jan-88 1-Sep-88 1-May-89 1-Jan-90 1-Sep-90 1-May-91 1-Jan-92 1-Sep-92 1-May-93 1-Jan-94 1-Sep-94 1-May-95 1-Jan-96 1-Sep-96 1-May-97 1-Jan-98 1-Sep-98 1-May-99 1-Jan-00 1-Sep-00 1-May-01 1-Jan-02 1-Sep-02 1-May-03 1-Jan-04 1-Sep-04 1-May-05 1-Jan-06 1-Sep-06 1-May-07 1-Jan-08 1-Sep-08 1-May-09 1-Jan-10 1-Sep-10 1-May-11 1-Jan-12 1-Sep-12 1-May-13 1-Jan-14 Momentum Factor Holdings AUD CAD DEM ESP FRF GBP ITL JPY NLG USD Figure 3: Volatility Factor -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 1-Jan-88 1-Aug-88 1-Mar-89 1-Oct-89 1-May-90 1-Dec-90 1-Jul-91 1-Feb-92 1-Sep-92 1-Apr-93 1-Nov-93 1-Jun-94 1-Jan-95 1-Aug-95 1-Mar-96 1-Oct-96 1-May-97 1-Dec-97 1-Jul-98 1-Feb-99 1-Sep-99 1-Apr-00 1-Nov-00 1-Jun-01 1-Jan-02 1-Aug-02 1-Mar-03 1-Oct-03 1-May-04 1-Dec-04 1-Jul-05 1-Feb-06 1-Sep-06 1-Apr-07 1-Nov-07 1-Jun-08 1-Jan-09 1-Aug-09 1-Mar-10 1-Oct-10 1-May-11 1-Dec-11 1-Jul-12 1-Feb-13 1-Sep-13 Vol Factor Holdings AUD CAD DEM ESP FRF GBP ITL JPY NLG USD 6
  • 7. 3.2 Discussion of the client zero-equity-beta constraint To accommodate the request of zero equity beta from the client, we orthogonalized factor portfolios with respect to some liquid proxy for the global equity market. In our case, we use the equal-weighted portfolio of 10 country MSCI futures index as the proxy. Since there are 10 countries’ futures index, we set the equal weight as 0.1. The orthogonalization is shown below. Orthogonalized Factori,t = Original Factori,t − Proxy Weight × ˆβt Where i represents the i − th asset and t represent the t month, and ˆβt = Cov(Original, Proxy) V ar(Proxy) = (wnew t )T Σ(wProxy t ) (wProxy)T Σ(wProxy t ) The following graphics show the β for each portfolio: Figure 4: Betas -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 1-Jan-88 1-Jul-88 1-Jan-89 1-Jul-89 1-Jan-90 1-Jul-90 1-Jan-91 1-Jul-91 1-Jan-92 1-Jul-92 1-Jan-93 1-Jul-93 1-Jan-94 1-Jul-94 1-Jan-95 1-Jul-95 1-Jan-96 1-Jul-96 1-Jan-97 1-Jul-97 1-Jan-98 1-Jul-98 1-Jan-99 1-Jul-99 1-Jan-00 1-Jul-00 1-Jan-01 1-Jul-01 1-Jan-02 1-Jul-02 1-Jan-03 1-Jul-03 1-Jan-04 1-Jul-04 1-Jan-05 1-Jul-05 1-Jan-06 1-Jul-06 1-Jan-07 1-Jul-07 1-Jan-08 1-Jul-08 1-Jan-09 1-Jul-09 1-Jan-10 1-Jul-10 1-Jan-11 1-Jul-11 1-Jan-12 1-Jul-12 1-Jan-13 1-Jul-13 1-Jan-14 Equity Betas Value Momentum Vol 7
  • 8. 4 Conclusion The following two tables are the required statistics we need. Value Factor, Momentum Factor and Volatility Factor are correspondent to 1,2,3 indicators (i.e. Combined 1& 2 represents the combination of Value Factor and Momentum Factor). The Realized correlation in Table represents the correlation between each portfolio and equal weighted global equity index (MSCI). According to the Table Results, we can see that Combined Factors Portfolio (Value and Volatility Factor) performed best among all portfolios. Its annualized return is 7.24% with 13.01% drawdown. The Return to Risk Ratio is 0.68. Table 1 Value factor Momentum factor Annulized Return 0.58% 0.21% Annulized realized risk 1.05% 1.10% Average drawdown 0.44% 1.04% Return to risk ratio 0.55 0.19 Realized correlation 0.19 -0.20 Table 2 Combined 1 & 2 Combined 1& 3 Combined 2 & 3 Annulized Return 3.63% 7.24% 4.88% Annulized realized risk 10.93% 10.64% 10.74% Average drawdown 24.29% 13.01% 10.19% Return to risk ratio 0.33 0.68 0.45 Realized correlation -0.03 0.15 0.03 8
  • 9. The following graphics show the cumulative returns for each portfolio (Combined Factors and Single Factor): Figure 5: Combined Factors Portfolio Cumulative Returns 0 1 2 3 4 5 6 7 1-Jan-88 1-Sep-88 1-May-89 1-Jan-90 1-Sep-90 1-May-91 1-Jan-92 1-Sep-92 1-May-93 1-Jan-94 1-Sep-94 1-May-95 1-Jan-96 1-Sep-96 1-May-97 1-Jan-98 1-Sep-98 1-May-99 1-Jan-00 1-Sep-00 1-May-01 1-Jan-02 1-Sep-02 1-May-03 1-Jan-04 1-Sep-04 1-May-05 1-Jan-06 1-Sep-06 1-May-07 1-Jan-08 1-Sep-08 1-May-09 1-Jan-10 1-Sep-10 1-May-11 1-Jan-12 1-Sep-12 1-May-13 1-Jan-14 Cumulative Returns fordifferent combinations Cumulative Returns for combined 1&2 portfolio Cumulative Returns for combined 1&3 portfolio Cumulative Returns for combined 2&3 portfolio Figure 6: Single Factor Portfolio Cumulative Returns 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1-Jan-88 1-Sep-88 1-May-89 1-Jan-90 1-Sep-90 1-May-91 1-Jan-92 1-Sep-92 1-May-93 1-Jan-94 1-Sep-94 1-May-95 1-Jan-96 1-Sep-96 1-May-97 1-Jan-98 1-Sep-98 1-May-99 1-Jan-00 1-Sep-00 1-May-01 1-Jan-02 1-Sep-02 1-May-03 1-Jan-04 1-Sep-04 1-May-05 1-Jan-06 1-Sep-06 1-May-07 1-Jan-08 1-Sep-08 1-May-09 1-Jan-10 1-Sep-10 1-May-11 1-Jan-12 1-Sep-12 1-May-13 1-Jan-14 Cumulative Returns Cumulative Returns of Value Factor Cumulative Returns for Momentum Factor Cumulative Returns for Vol Factor 9
  • 10. The following graphics show the drawdown each portfolio (Combined Factors and Single Factor): Figure 7: Combined Factors Portfolio Drawdown 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 169 175 181 187 193 199 205 211 217 223 229 235 241 247 253 259 265 271 277 283 289 295 301 307 313 Drawdowns for different combinations Drawdowns for combined 1&2 portfolio Drawdowns for combined 1&3 portfolio Drawdowns for combined 2&3 portfolio Figure 8: Single Factor Portfolio Drawdown 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 1-Jan-88 1-Aug-88 1-Mar-89 1-Oct-89 1-May-90 1-Dec-90 1-Jul-91 1-Feb-92 1-Sep-92 1-Apr-93 1-Nov-93 1-Jun-94 1-Jan-95 1-Aug-95 1-Mar-96 1-Oct-96 1-May-97 1-Dec-97 1-Jul-98 1-Feb-99 1-Sep-99 1-Apr-00 1-Nov-00 1-Jun-01 1-Jan-02 1-Aug-02 1-Mar-03 1-Oct-03 1-May-04 1-Dec-04 1-Jul-05 1-Feb-06 1-Sep-06 1-Apr-07 1-Nov-07 1-Jun-08 1-Jan-09 1-Aug-09 1-Mar-10 1-Oct-10 1-May-11 1-Dec-11 1-Jul-12 1-Feb-13 1-Sep-13 Drawdowns Drawdowns for Value Factor Drawdowns for Momentum Factor Drawdowns for Vol Factor 10
  • 11. 5 Appendix setwd("~/Documents/columbia/W4078/final/") # install.packages("openxlsx", dependencies=TRUE) # install.packages("utils",dependencies=TRUE) library(openxlsx) returns <- read.xlsx("Input Data for COV and BETA.xlsx",sheet=1) fep <- read.xlsx("Input Data for COV and BETA.xlsx",sheet=2) momentum <- read.xlsx("Input Data for COV and BETA.xlsx",sheet=3) returns <- returns[,-1] returns <- as.matrix(returns) momentum <- momentum[,-1] momentum <- as.matrix(momentum) fep <- fep[,-1] fep <- as.matrix(fep) vol <- read.xlsx("vol factor.xlsx") vol <- as.matrix(vol) #36 covar <- matrix(NA,nrow=(length(returns[,1])-36),ncol=10) for (i in 2:315){ covar[(i-1),] <- diag(cov(returns[i:(i+35),])*35/36*12) } momentum.risk <-matrix(NA,314,1) for(i in 1:314){ momentum.risk[i,] <- sqrt((momentum[i,])%*% (cov(returns[(i+1):(i+36),])*35/36*12)%*%(momentum[i,]) )} value.risk<-matrix(NA,314,1) for(i in 1:314){ value.risk[i,] <- sqrt(fep[i,]%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%(fep[i,])) } vol.risk<-matrix(NA,314,1) for(i in 1:314){ vol.risk[i,] <- sqrt(vol[i,]%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%(vol[i,])) 11
  • 12. } write.xlsx(covar,file="covar.xlsx") write.xlsx(momentum.risk,file='momentum risk.xlsx') write.xlsx(value.risk,file='value risk.xlsx') write.xlsx(vol.risk,file='vol risk.xlsx') ############Scaled#################### value.new <- read.xlsx("project results.xlsx",sheet=5) value.new <- as.matrix(value.new[,2:11]) momentum.new <- read.xlsx("project results.xlsx",sheet=6) momentum.new <- as.matrix(momentum.new[,2:11]) #vol vol.new <- read.xlsx("project results.xlsx",sheet=8) vol.new <- as.matrix(vol.new[,2:11]) a <- rep(0.1,10) value.beta <- matrix(NA,314,1) momentum.beta <- matrix(NA,314,1) vol.beta <- matrix(NA,314,1) for(i in 1:314){ value.beta[i,] <- value.new[i,]%*%(cov(returns[(i+1):(i+36),])*35/36*12) %*%a/(a%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%a) momentum.beta[i,] <- momentum.new[i,]%*%(cov(returns[(i+1):(i+36),])*35/36*12) %*%a/(a%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%a) } #vol for(i in 1:314){ vol.beta[i,] <- vol.new[i,]%*%(cov(returns[(i+1):(i+36),])*35/36*12) %*%a/(a%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%a) } write.xlsx(vol.beta,file="vol.beta.xlsx") write.xlsx(value.beta,file="value.beta.xlsx") write.xlsx(momentum.beta,file="momentum.beta.xlsx") # momentum%*%covar%*%t(momentum) # diag(1/sqrt(covar[314,])) %*%(cov(returns[314:(314+36),])*36/36*12)%*%diag(1/sqrt(covar[314,])) write.xlsx(diag(1/sqrt(covar[314,])) %*%(cov(returns[315:(315+35),])*35/36*12)%*%diag(1/sqrt(covar[314,])) 12
  • 13. ,file="correaltion.xlsx") # write.xlsx(covar,file="covar.xlsx") combined.weight <- matrix(NA,314,10) for (i in 1:314){ a <- 0.5*(value.new[i,]-0.1*value.beta[i]+momentum.new[i,]-0.1*momentum.beta[i]) b <- sqrt(a%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%a) m <- 0.1/b combined.weight[i,] <- as.numeric(m)*a } write.xlsx(combined.weight,file="combined weight.xlsx") combined.weight1 <- matrix(NA,314,10) for (i in 1:314){ a <- 0.5*(value.new[i,]-0.1*value.beta[i]+vol.new[i,]-0.1*vol.beta[i]) b <- sqrt(a%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%a) m <- 0.1/b combined.weight1[i,] <- as.numeric(m)*a } write.xlsx(combined.weight1,file="combined weight value vol.xlsx") combined.weight2 <- matrix(NA,314,10) for (i in 1:314){ a <- 0.5*(momentum.new[i,]-0.1*momentum.beta[i]+vol.new[i,]-0.1*vol.beta[i]) b <- sqrt(a%*%(cov(returns[(i+1):(i+36),])*35/36*12)%*%a) m <- 0.1/b combined.weight2[i,] <- as.numeric(m)*a } write.xlsx(combined.weight2,file="combined weight momentom vol.xlsx") 13