This document discusses scenario generation methods for asset liability management models. It proposes a multi-stage stochastic programming model for a Dutch pension fund to determine optimal investment policies. Two methods for generating scenarios are explored: randomly sampled event trees and event trees that fit the mean and covariance of returns. Rolling horizon simulations are used to compare the performance of the stochastic programming approach to a fixed mix model. The results show that appropriately generated scenarios can significantly improve the performance of the stochastic programming model relative to the fixed mix benchmark.