SlideShare a Scribd company logo
1 of 36
On Continuum Limits of Markov Chains and
Network Modeling
2010 IEEE Conference on Decision and Control
Yang Zhang (Colorado State University)
Edwin K. P. Chong (Colorado State University)
Jan Hannig (University of North Carolina)
Don Estep (Colorado State University)
2010 CDC (Atlanta, GA) December 17, 2010 1 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Motivation
Networks modeled by Markov chains (discrete).
Traditional approach: Monte Carlo simulation.
For very large networks (large number of components): Practically
infeasible.
2010 CDC (Atlanta, GA) December 17, 2010 2 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Motivation
ScienceDaily Aug. 12, 2003
Researchers Create The World’s Fastest Detailed Computer
Simulations Of The Internet
The Georgia Tech researchers have demonstrated the ability to simulate network traffic from over
1 million web browsers in near real time. This feat means that the simulators could model a
minute of such large-scale network operations in only a few minutes of clock time. Using the
high-performance computers at the Pittsburgh Super computing Center, the Georgia Tech
simulators used as many as 1,534 processors to simultaneously work on the simulation
computation, enabling them to model more than 106 million packet transmissions in one second
of clock time – two to three orders of magnitude faster than simulators commonly used today.
What if slower computers or larger networks?
2010 CDC (Atlanta, GA) December 17, 2010 2 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Motivation
Networks modeled by Markov chains (discrete).
Traditional approach: Monte Carlo simulation.
For very large networks (large number of components): Practically
infeasible.
Continuum limits of Markov chains: solutions of PDEs.
Available mathematical tools for PDEs: Great reduction in
computation time.
2010 CDC (Atlanta, GA) December 17, 2010 2 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Example: Wireless Sensor Network
Sensor nodes: generate data messages and relay them to
destination nodes at boundary.
All nodes have message queues.
Nodes only communicate with immediate neighbors.
Nodes transmit or receive at each time step.
2010 CDC (Atlanta, GA) December 17, 2010 3 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Channel Model
All nodes share the same wireless channel.
A transmission from a transmitter to a neighboring receiver is
successful if and only if none of the other neighbors of the receiver
is a transmitter.
Reception at a node fails when more than one of its neighbors
transmit.
2010 CDC (Atlanta, GA) December 17, 2010 4 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Quantities of Interest
Interested in calculating message queue lengths at nodes.
Index nodes by (i, j), distance between nodes dx and dy.
Notation:
◮ Q(k, i, j): queue length of node (i, j) at time k
◮ M: maximum queue length
◮ F(i, j, Q(k, i, j)): probability that node (i, j) tries to transmit
◮ Set F(i, j, Q(k, i, j)) = Q(k, i, j): nodes transmit with probability
proportional to queue length
◮ Pn(k, i, j), Ps(k, i, j), Pe(k, i, j), Pw(k, i, j): probability of transmitting to
north, south, east, west (resp.)
Pe(k, i, j) = 1
4 + ce(k, i, j)dx, Pw(k, i, j) = 1
4 + cw(k, i, j)dx
Pn(k, i, j) = 1
4 + cn(k, i, j)dy, Ps(k, i, j) = 1
4 + cs(k, i, j)dy
◮ U(k, i, j): number of messages generated at node (i, j) at time k
2010 CDC (Atlanta, GA) December 17, 2010 5 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Stochastic Difference Equation
Q(k + 1, i, j) − Q(k, i, j) =



1+U(k,i,j)
M
, with probability
(1 − Q(k, i, j))
× [Pw(k, i − 1, j)Q(k, i − 1, j))(1 − Q(k, i + 1, j))(1 − Q(k, i, j + 1))(1 − Q(k, i, j − 1))
+ Pe(k, i + 1, j)Q(k, i + 1, j)(1 − Q(k, i − 1, j))(1 − Q(k, i, j + 1))(1 − Q(k, i, j − 1))
+ Pn(k, i, j − 1)Q(k, i, j − 1)(1 − Q(k, i + 1, j))(1 − Q(k, i − 1, j))(1 − Q(k, i, j + 1))
+ Ps(k, i, j + 1)Q(k, i, j + 1)(1 − Q(k, i + 1, j))(1 − Q(k, i − 1, j))(1 − Q(k, i, j − 1))]
−1+U(k,i,j)
M
, with probability
Q(k, i, j)
× [Pw(k, i, j)(1 − Q(k, i − 1, j))(1 − Q(k, i − 1, j + 1))(1 − Q(k, i − 1, j − 1))(1 − Q(k, i − 2, j))
+ Pe(k, i, j)(1 − Q(k, i + 1, j))(1 − Q(k, i + 1, j + 1))(1 − Q(k, i + 1, j − 1))(1 − Q(k, i + 2, j))
+ Ps(k, i, j)(1 − Q(k, i, j − 1))(1 − Q(k, i + 1, j − 1))(1 − Q(k, i − 1, j − 1))(1 − Q(k, i, j − 2))
+ Pn(k, i, j)(1 − Q(k, i, j + 1))(1 − Q(k, i + 1, j + 1))(1 − Q(k, i − 1, j + 1))(1 − Q(k, i, j + 2))]
U(k,i,j)
M
, otherwise
2010 CDC (Atlanta, GA) December 17, 2010 6 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Stochastic Difference Equation
Q(k + 1, i, j) − Q(k, i, j) =



1+U(k,i,j)
M
, with probability
(1 − Q(k, i, j))
× [Pw(k, i − 1, j)Q(k, i − 1, j))(1 − Q(k, i + 1, j))(1 − Q(k, i, j + 1))(1 − Q(k, i, j − 1))
+ Pe(k, i + 1, j)Q(k, i + 1, j)(1 − Q(k, i − 1, j))(1 − Q(k, i, j + 1))(1 − Q(k, i, j − 1))
+ Pn(k, i, j − 1)Q(k, i, j − 1)(1 − Q(k, i + 1, j))(1 − Q(k, i − 1, j))(1 − Q(k, i, j + 1))
+ Ps(k, i, j + 1)Q(k, i, j + 1)(1 − Q(k, i + 1, j))(1 − Q(k, i − 1, j))(1 − Q(k, i, j − 1))]
−1+U(k,i,j)
M
, with probability
Q(k, i, j)
× [Pw(k, i, j)(1 − Q(k, i − 1, j))(1 − Q(k, i − 1, j + 1))(1 − Q(k, i − 1, j − 1))(1 − Q(k, i − 2, j))
+ Pe(k, i, j)(1 − Q(k, i + 1, j))(1 − Q(k, i + 1, j + 1))(1 − Q(k, i + 1, j − 1))(1 − Q(k, i + 2, j))
+ Ps(k, i, j)(1 − Q(k, i, j − 1))(1 − Q(k, i + 1, j − 1))(1 − Q(k, i − 1, j − 1))(1 − Q(k, i, j − 2))
+ Pn(k, i, j)(1 − Q(k, i, j + 1))(1 − Q(k, i + 1, j + 1))(1 − Q(k, i − 1, j + 1))(1 − Q(k, i, j + 2))]
U(k,i,j)
M
, otherwise
2010 CDC (Atlanta, GA) December 17, 2010 6 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Monte Carlo Simulation Result
2010 CDC (Atlanta, GA) December 17, 2010 7 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Continuum Limit: PDE Solution
∂q
∂t
(t, x, y) =∇ ·
1
4
(1 − q(t, x, y))3
(1 + 5q(t, x, y))∇q(t, x, y)
+
cw(t, x, y) − ce(t, x, y)
cs(t, x, y) − cn(t, x, y)
q(t, x, y)(1 − q(t, x, y))4
+ u(x, y)
2010 CDC (Atlanta, GA) December 17, 2010 8 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
PDE Solution
2010 CDC (Atlanta, GA) December 17, 2010 9 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Monte Carlo Simulation Result
2010 CDC (Atlanta, GA) December 17, 2010 10 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Close? Why?
In what sense and under what conditions are they close?
These questions are answered in this paper.
First look at a simpler example of continuum limit.
2010 CDC (Atlanta, GA) December 17, 2010 11 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Single Random Walk
1/21/2 1/21/2
… …
1 n n+1n 1 N N+10
ds ∝ 1/N: distance between two points
dt: length of time step
Scaling law: dt = ds2
As N → ∞, ds, dt → 0.
2010 CDC (Atlanta, GA) December 17, 2010 12 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Deriving Diffusion Equation
P(k, n): probability of particle at point n at time k
P(k + 1, n) =
1
2
P(k, n − 1) +
1
2
P(k, n + 1)
P(k + 1, n) − P(k, n) =
1
2
(P(k, n − 1) − P(k, n)) +
1
2
(P(k, n + 1) − P(k, n))
Change notation: s = n · ds, t = k · dt, p(t, s) = P(k, n)
p(t + dt, s) − p(t, s) =
1
2
(p(t, s − ds) − p(t, s)) +
1
2
(p(t, s + ds) − p(t, s))
Taylor expansions:
p(t, s ± ds) = p(t, s) ±
∂p
∂s
(t, s)ds +
1
2
∂2p
∂s2
(t, s)ds2
+ o(ds2
)
p(t + dt, s) = p(t, s) +
∂p
∂t
(t, s)dt + o(dt2
)
Take limit as N → ∞, i.e., ds, dt → 0:
Diffusion equation:
∂p
∂t
(t, s) =
1
2
∂2p
∂s2
(t, s)
2010 CDC (Atlanta, GA) December 17, 2010 13 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Multiple Random Walks
… …
1 n n+1n 1 N N+10
Consider M i.i.d. random walks on the same domain.
X(k, n): number of particles at point n at time k
X(k) = [X(k, 1), . . . , X(k, N)]: Markov chain
X(k, n)/M → P(k, n) a.s. as M → ∞ (SLLN).
As M, N → ∞, X(k) converges to solution of diffusion equation.
2010 CDC (Atlanta, GA) December 17, 2010 14 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Compare
−1 −0.5 0 0.5 1
0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05
◦ Monte Carlo simulation —— PDE solution
2010 CDC (Atlanta, GA) December 17, 2010 15 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Convergence Analysis
Back to our problem: much more complicated than random walk.
Explanation to the "look-alike" phenomenon: convergence of a
sequence of Markov chains.
2010 CDC (Atlanta, GA) December 17, 2010 16 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
General Setting
D: fixed subset of Rd
N nodes at n = 1, . . . , N uniformly placed over D.
X(k, n) ∈ R: network state of node n at time k
X(k) = [X(k, 1), . . . , X(k, N)] ∈ RN: Markov chain
Stochastic difference equation (System behavior):
◮
X(k + 1) = X(k) + FN(X(k)/M, U(k))
◮ FN: random transition function
◮ M: “normalizing” parameter; M → ∞ as N → ∞
◮ U(k): i.i.d. random variables independent of X(k)
2010 CDC (Atlanta, GA) December 17, 2010 17 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
General Setting
Wireless Sensor Network: Stochastic Difference Equation
X: message queue length
M: maximum queue length
U: number of messages generated by nodes
Q(k + 1, i, j) − Q(k, i, j) =



1+U(k,i,j)
M
, with probability
(1 − Q(k, i, j))
× [Pw(k, i − 1, j)Q(k, i − 1, j))(1 − Q(k, i + 1, j))(1 − Q(k, i, j + 1))(1 − Q(k, i, j − 1))
+ Pe(k, i + 1, j)Q(k, i + 1, j)(1 − Q(k, i − 1, j))(1 − Q(k, i, j + 1))(1 − Q(k, i, j − 1))
+ Pn(k, i, j − 1)Q(k, i, j − 1)(1 − Q(k, i + 1, j))(1 − Q(k, i − 1, j))(1 − Q(k, i, j + 1))
+ Ps(k, i, j + 1)Q(k, i, j + 1)(1 − Q(k, i + 1, j))(1 − Q(k, i − 1, j))(1 − Q(k, i, j − 1))]
−1+U(k,i,j)
M
, with probability
Q(k, i, j)
× [Pw(k, i, j)(1 − Q(k, i − 1, j))(1 − Q(k, i − 1, j + 1))(1 − Q(k, i − 1, j − 1))(1 − Q(k, i − 2, j))
+ Pe(k, i, j)(1 − Q(k, i + 1, j))(1 − Q(k, i + 1, j + 1))(1 − Q(k, i + 1, j − 1))(1 − Q(k, i + 2, j))
+ Ps(k, i, j)(1 − Q(k, i, j − 1))(1 − Q(k, i + 1, j − 1))(1 − Q(k, i − 1, j − 1))(1 − Q(k, i, j − 2))
+ Pn(k, i, j)(1 − Q(k, i, j + 1))(1 − Q(k, i + 1, j + 1))(1 − Q(k, i − 1, j + 1))(1 − Q(k, i, j + 2))]
U(k,i,j)
M
, otherwise
2010 CDC (Atlanta, GA) December 17, 2010 17 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
General Setting
D: Fixed subset of Rd
N nodes at n = 1, . . . , N uniformly placed over D.
X(k, n) ∈ R: Network state of node n at time k
X(k) = [X(k, 1), . . . , X(k, N)] ∈ RN: Markov chain
Stochastic difference equation (System behavior):
◮
X(k + 1) = X(k) + FN(X(k)/M, U(k))
◮ FN: random transition function
◮ M: “normalizing” parameter; M → ∞ as N → ∞
◮ U(k): i.i.d. random variables independent of X(k)
fN(x) = EFN(x, U(k)): mean transition function
Define nonrandom sequence x(k) by deterministic difference
equation (Mean behavior):
x(k + 1) = x(k) + fN(x(k)/M)
2010 CDC (Atlanta, GA) December 17, 2010 17 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
General Setting
Wireless Sensor Network: Deterministic Difference Equation
q(k + 1, i, j) − q(k, i, j) =
1
M
{(1 − q(k, i, j))
× [Pw(k, i − 1, j)q(k, i − 1, j))(1 − q(k, i + 1, j))(1 − q(k, i, j + 1))(1 − q(k, i, j − 1))
+ Pe(k, i + 1, j)q(k, i + 1, j)/M)(1 − q(k, i − 1, j))(1 − q(k, i, j + 1))(1 − q(k, i, j − 1))
+ Pn(k, i, j − 1)q(k, i, j − 1)/M)(1 − q(k, i + 1, j))(1 − q(k, i − 1, j))(1 − q(k, i, j + 1))
+ Ps(k, i, j + 1)q(k, i, j + 1)/M)(1 − q(k, i + 1, j))(1 − q(k, i − 1, j))(1 − q(k, i, j − 1))]
− q(k, i, j)
× [Pw(k, i, j)(1 − q(k, i − 1, j))(1 − q(k, i − 1, j + 1))(1 − q(k, i − 1, j − 1))(1 − q(k, i − 2, j))
+ Pe(k, i, j)(1 − q(k, i + 1, j))(1 − q(k, i + 1, j + 1))(1 − q(k, i + 1, j − 1))(1 − q(k, i + 2, j))
+ Ps(k, i, j)(1 − q(k, i, j − 1))(1 − q(k, i + 1, j − 1))(1 − q(k, i − 1, j − 1))(1 − q(k, i, j − 2))
+ Pn(k, i, j)(1 − q(k, i, j + 1))(1 − q(k, i + 1, j + 1))(1 − q(k, i − 1, j + 1))(1 − q(k, i, j + 2))]
+ u(k, i, j)}.
2010 CDC (Atlanta, GA) December 17, 2010 17 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Continuous Time-Space Extension of the Markov
Chain
Step 1:
Xo(˜t) = X(⌊M˜t⌋)/M
Piecewise-constant time extensions of X(k) with constant piece
length dt = 1/M. As M → ∞, dt → 0.
Step 2:
Xp(t, s): Piecewise-constant space extensions of Xo(˜t) on D with
constant piece length ds = distance between neighboring nodes.
As N → ∞, ds → 0.
Xp: Continuous time-space extension of X(k).
In the same manner, define xo(˜t) and xp(t, s) for x(k).
2010 CDC (Atlanta, GA) December 17, 2010 18 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
An Illustration of the Time-Space Extension
x(k,n) & xp(t,s)( , ) p( , )
n & s
k & t
x(k,n) xp(t,s)
2010 CDC (Atlanta, GA) December 17, 2010 19 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Main Result
Theorem
Under some conditions, if fN/ds2 → f as N → ∞ and z solves PDE
∂z
∂t
(s, t) = f s, z(s, t),
∂z
∂s
(s, t),
∂2z
∂s2
(s, t) ,
then Xp, the continuous time-space extension of the Markov chain X(k),
converges uniformly to z, the solution to the PDE, as N → ∞ (M → ∞).
2010 CDC (Atlanta, GA) December 17, 2010 20 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Main Result
Wireless Sensor Network: Continuum Limit
∂q
∂t
(t, x, y) =∇ ·
1
4
(1 − q(t, x, y))3
(1 + 5q(t, x, y))∇q(t, x, y)
+
cw(t, x, y) − ce(t, x, y)
cs(t, x, y) − cn(t, x, y)
q(t, x, y)(1 − q(t, x, y))4
+ u(x, y)
2010 CDC (Atlanta, GA) December 17, 2010 20 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Outline of Proof
Xo close to xo for big M Xp close to xp for big M
l t f bi N
Xp close to z for big M, N
xp close to z for big N
Theorem
Under some conditions, if fN/ds2 → f as N → ∞ and z solves PDE
∂z
∂t
(s, t) = f s, z(s, t),
∂z
∂s
(s, t),
∂2z
∂s2
(s, t) ,
then Xp, the continuous time-space extension of the Markov chain X(k),
converges uniformly to z, the solution to the PDE, as N → ∞ (M → ∞).
2010 CDC (Atlanta, GA) December 17, 2010 21 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Greater M and N: Increasing Accuracy
−1
−0.5
0
0.5
1
−1
−0.5
0
0.5
1
0
0.002
0.004
0.006
0.008
0.01
0.012
N = 50, M = 1000
2010 CDC (Atlanta, GA) December 17, 2010 22 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Greater M and N: Increasing Accuracy
−1
−0.5
0
0.5
1
−1
−0.5
0
0.5
1
0
0.002
0.004
0.006
0.008
0.01
0.012
N = 60, M = 5000
2010 CDC (Atlanta, GA) December 17, 2010 22 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Greater M and N: Increasing Accuracy
−1
−0.5
0
0.5
1
−1
−0.5
0
0.5
1
0
0.002
0.004
0.006
0.008
0.01
N = 70, M = 10000
2010 CDC (Atlanta, GA) December 17, 2010 22 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Greater M and N: Increasing Accuracy
−1
−0.5
0
0.5
1
−1
−0.5
0
0.5
1
0
2
4
6
8
x 10
−3
N = 80, M = 50000
2010 CDC (Atlanta, GA) December 17, 2010 22 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Greater M and N: Increasing Accuracy
−1
−0.5
0
0.5
1
−1
−0.5
0
0.5
1
0
2
4
6
8
x 10
−3
N = 90, M = 100000
2010 CDC (Atlanta, GA) December 17, 2010 22 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Greater M and N: Increasing Accuracy
−1
−0.5
0
0.5
1
−1
−0.5
0
0.5
1
0
2
4
6
8
x 10
−3
N = 100, M = 1000000
2010 CDC (Atlanta, GA) December 17, 2010 22 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
Greater M and N: Increasing Accuracy
N = 200, M = 5000000
This took weeks!
2010 CDC (Atlanta, GA) December 17, 2010 22 / 23
On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep
PDE Solution
This took seconds.
2010 CDC (Atlanta, GA) December 17, 2010 23 / 23

More Related Content

What's hot

Applied Deep Learning 11/03 Convolutional Neural Networks
Applied Deep Learning 11/03 Convolutional Neural NetworksApplied Deep Learning 11/03 Convolutional Neural Networks
Applied Deep Learning 11/03 Convolutional Neural NetworksMark Chang
 
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural NetworkISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural NetworkHiroki Nakahara
 
Neural Networks: Radial Bases Functions (RBF)
Neural Networks: Radial Bases Functions (RBF)Neural Networks: Radial Bases Functions (RBF)
Neural Networks: Radial Bases Functions (RBF)Mostafa G. M. Mostafa
 
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018Universitat Politècnica de Catalunya
 
Convolutional Neural Network (CNN) presentation from theory to code in Theano
Convolutional Neural Network (CNN) presentation from theory to code in TheanoConvolutional Neural Network (CNN) presentation from theory to code in Theano
Convolutional Neural Network (CNN) presentation from theory to code in TheanoSeongwon Hwang
 
Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10) Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10) Larry Guo
 
Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020
Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020
Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020Universitat Politècnica de Catalunya
 
Neural Networks: Multilayer Perceptron
Neural Networks: Multilayer PerceptronNeural Networks: Multilayer Perceptron
Neural Networks: Multilayer PerceptronMostafa G. M. Mostafa
 
Introduction to CNN with Application to Object Recognition
Introduction to CNN with Application to Object RecognitionIntroduction to CNN with Application to Object Recognition
Introduction to CNN with Application to Object RecognitionArtifacia
 
Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018
Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018
Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018Universitat Politècnica de Catalunya
 
(研究会輪読) Weight Uncertainty in Neural Networks
(研究会輪読) Weight Uncertainty in Neural Networks(研究会輪読) Weight Uncertainty in Neural Networks
(研究会輪読) Weight Uncertainty in Neural NetworksMasahiro Suzuki
 
Reinforcement Learning (Reloaded) - Xavier Giró-i-Nieto - UPC Barcelona 2018
Reinforcement Learning (Reloaded) - Xavier Giró-i-Nieto - UPC Barcelona 2018Reinforcement Learning (Reloaded) - Xavier Giró-i-Nieto - UPC Barcelona 2018
Reinforcement Learning (Reloaded) - Xavier Giró-i-Nieto - UPC Barcelona 2018Universitat Politècnica de Catalunya
 
My invited talk at the 2018 Annual Meeting of SIAM (Society of Industrial and...
My invited talk at the 2018 Annual Meeting of SIAM (Society of Industrial and...My invited talk at the 2018 Annual Meeting of SIAM (Society of Industrial and...
My invited talk at the 2018 Annual Meeting of SIAM (Society of Industrial and...Anirbit Mukherjee
 
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural NetworksMasahiro Suzuki
 

What's hot (20)

Applied Deep Learning 11/03 Convolutional Neural Networks
Applied Deep Learning 11/03 Convolutional Neural NetworksApplied Deep Learning 11/03 Convolutional Neural Networks
Applied Deep Learning 11/03 Convolutional Neural Networks
 
Seminar
SeminarSeminar
Seminar
 
Intepretability / Explainable AI for Deep Neural Networks
Intepretability / Explainable AI for Deep Neural NetworksIntepretability / Explainable AI for Deep Neural Networks
Intepretability / Explainable AI for Deep Neural Networks
 
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural NetworkISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
 
Neural Networks: Radial Bases Functions (RBF)
Neural Networks: Radial Bases Functions (RBF)Neural Networks: Radial Bases Functions (RBF)
Neural Networks: Radial Bases Functions (RBF)
 
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
 
Csc446: Pattern Recognition
Csc446: Pattern Recognition Csc446: Pattern Recognition
Csc446: Pattern Recognition
 
Karas and atila
Karas and atilaKaras and atila
Karas and atila
 
Convolutional Neural Network (CNN) presentation from theory to code in Theano
Convolutional Neural Network (CNN) presentation from theory to code in TheanoConvolutional Neural Network (CNN) presentation from theory to code in Theano
Convolutional Neural Network (CNN) presentation from theory to code in Theano
 
Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10) Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10)
 
Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020
Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020
Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020
 
Neural Networks: Multilayer Perceptron
Neural Networks: Multilayer PerceptronNeural Networks: Multilayer Perceptron
Neural Networks: Multilayer Perceptron
 
CSC446: Pattern Recognition (LN6)
CSC446: Pattern Recognition (LN6)CSC446: Pattern Recognition (LN6)
CSC446: Pattern Recognition (LN6)
 
Introduction to CNN with Application to Object Recognition
Introduction to CNN with Application to Object RecognitionIntroduction to CNN with Application to Object Recognition
Introduction to CNN with Application to Object Recognition
 
Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018
Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018
Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018
 
(研究会輪読) Weight Uncertainty in Neural Networks
(研究会輪読) Weight Uncertainty in Neural Networks(研究会輪読) Weight Uncertainty in Neural Networks
(研究会輪読) Weight Uncertainty in Neural Networks
 
Reinforcement Learning (Reloaded) - Xavier Giró-i-Nieto - UPC Barcelona 2018
Reinforcement Learning (Reloaded) - Xavier Giró-i-Nieto - UPC Barcelona 2018Reinforcement Learning (Reloaded) - Xavier Giró-i-Nieto - UPC Barcelona 2018
Reinforcement Learning (Reloaded) - Xavier Giró-i-Nieto - UPC Barcelona 2018
 
My invited talk at the 2018 Annual Meeting of SIAM (Society of Industrial and...
My invited talk at the 2018 Annual Meeting of SIAM (Society of Industrial and...My invited talk at the 2018 Annual Meeting of SIAM (Society of Industrial and...
My invited talk at the 2018 Annual Meeting of SIAM (Society of Industrial and...
 
The Perceptron (D1L1 Insight@DCU Machine Learning Workshop 2017)
The Perceptron (D1L1 Insight@DCU Machine Learning Workshop 2017)The Perceptron (D1L1 Insight@DCU Machine Learning Workshop 2017)
The Perceptron (D1L1 Insight@DCU Machine Learning Workshop 2017)
 
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
 

Similar to On Continuum Limits of Markov Chains and Network Modeling

ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSijcsitcejournal
 
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Frank Nielsen
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...jedt_journal
 
α Nearness ant colony system with adaptive strategies for the traveling sales...
α Nearness ant colony system with adaptive strategies for the traveling sales...α Nearness ant colony system with adaptive strategies for the traveling sales...
α Nearness ant colony system with adaptive strategies for the traveling sales...ijfcstjournal
 
Spacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysisSpacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysisDavid Gleich
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...ijfcstjournal
 
Exploring temporal graph data with Python: 
a study on tensor decomposition o...
Exploring temporal graph data with Python: 
a study on tensor decomposition o...Exploring temporal graph data with Python: 
a study on tensor decomposition o...
Exploring temporal graph data with Python: 
a study on tensor decomposition o...André Panisson
 
Maneuvering target track prediction model
Maneuvering target track prediction modelManeuvering target track prediction model
Maneuvering target track prediction modelIJCI JOURNAL
 
Random walks and diffusion on networks
Random walks and diffusion on networksRandom walks and diffusion on networks
Random walks and diffusion on networksNaoki Masuda
 
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...Amro Elfeki
 
diffusion 모델부터 DALLE2까지.pdf
diffusion 모델부터 DALLE2까지.pdfdiffusion 모델부터 DALLE2까지.pdf
diffusion 모델부터 DALLE2까지.pdf수철 박
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
近似メッセージ伝搬法に基づく離散値ベクトル再構成の一般化
近似メッセージ伝搬法に基づく離散値ベクトル再構成の一般化近似メッセージ伝搬法に基づく離散値ベクトル再構成の一般化
近似メッセージ伝搬法に基づく離散値ベクトル再構成の一般化Ryo Hayakawa
 
Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...
Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...
Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...AIRCC Publishing Corporation
 
Improving initial generations in pso algorithm for transportation network des...
Improving initial generations in pso algorithm for transportation network des...Improving initial generations in pso algorithm for transportation network des...
Improving initial generations in pso algorithm for transportation network des...ijcsit
 
Delayed acceptance for Metropolis-Hastings algorithms
Delayed acceptance for Metropolis-Hastings algorithmsDelayed acceptance for Metropolis-Hastings algorithms
Delayed acceptance for Metropolis-Hastings algorithmsChristian Robert
 

Similar to On Continuum Limits of Markov Chains and Network Modeling (20)

ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
 
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
 
α Nearness ant colony system with adaptive strategies for the traveling sales...
α Nearness ant colony system with adaptive strategies for the traveling sales...α Nearness ant colony system with adaptive strategies for the traveling sales...
α Nearness ant colony system with adaptive strategies for the traveling sales...
 
Spacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysisSpacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysis
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...
 
Oral Defence
Oral DefenceOral Defence
Oral Defence
 
Exploring temporal graph data with Python: 
a study on tensor decomposition o...
Exploring temporal graph data with Python: 
a study on tensor decomposition o...Exploring temporal graph data with Python: 
a study on tensor decomposition o...
Exploring temporal graph data with Python: 
a study on tensor decomposition o...
 
Maneuvering target track prediction model
Maneuvering target track prediction modelManeuvering target track prediction model
Maneuvering target track prediction model
 
Random walks and diffusion on networks
Random walks and diffusion on networksRandom walks and diffusion on networks
Random walks and diffusion on networks
 
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
 
diffusion 모델부터 DALLE2까지.pdf
diffusion 모델부터 DALLE2까지.pdfdiffusion 모델부터 DALLE2까지.pdf
diffusion 모델부터 DALLE2까지.pdf
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
近似メッセージ伝搬法に基づく離散値ベクトル再構成の一般化
近似メッセージ伝搬法に基づく離散値ベクトル再構成の一般化近似メッセージ伝搬法に基づく離散値ベクトル再構成の一般化
近似メッセージ伝搬法に基づく離散値ベクトル再構成の一般化
 
Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...
Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...
Automated Information Retrieval Model Using FP Growth Based Fuzzy Particle Sw...
 
Improving initial generations in pso algorithm for transportation network des...
Improving initial generations in pso algorithm for transportation network des...Improving initial generations in pso algorithm for transportation network des...
Improving initial generations in pso algorithm for transportation network des...
 
Delayed acceptance for Metropolis-Hastings algorithms
Delayed acceptance for Metropolis-Hastings algorithmsDelayed acceptance for Metropolis-Hastings algorithms
Delayed acceptance for Metropolis-Hastings algorithms
 
Ds2 statistics
Ds2 statisticsDs2 statistics
Ds2 statistics
 
KAUST_talk_short.pdf
KAUST_talk_short.pdfKAUST_talk_short.pdf
KAUST_talk_short.pdf
 

Recently uploaded

定制英国白金汉大学毕业证(UCB毕业证书) 成绩单原版一比一
定制英国白金汉大学毕业证(UCB毕业证书)																			成绩单原版一比一定制英国白金汉大学毕业证(UCB毕业证书)																			成绩单原版一比一
定制英国白金汉大学毕业证(UCB毕业证书) 成绩单原版一比一ffjhghh
 
Midocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxMidocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxolyaivanovalion
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusTimothy Spann
 
BabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxBabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxolyaivanovalion
 
Introduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxIntroduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxfirstjob4
 
Ravak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxRavak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxolyaivanovalion
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
Mature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxMature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxolyaivanovalion
 
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...Suhani Kapoor
 
Smarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxSmarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxolyaivanovalion
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...Suhani Kapoor
 
B2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docxB2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docxStephen266013
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxolyaivanovalion
 
Halmar dropshipping via API with DroFx
Halmar  dropshipping  via API with DroFxHalmar  dropshipping  via API with DroFx
Halmar dropshipping via API with DroFxolyaivanovalion
 
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Invezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz1
 
April 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's AnalysisApril 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's Analysismanisha194592
 

Recently uploaded (20)

定制英国白金汉大学毕业证(UCB毕业证书) 成绩单原版一比一
定制英国白金汉大学毕业证(UCB毕业证书)																			成绩单原版一比一定制英国白金汉大学毕业证(UCB毕业证书)																			成绩单原版一比一
定制英国白金汉大学毕业证(UCB毕业证书) 成绩单原版一比一
 
Midocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxMidocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFx
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and Milvus
 
BabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxBabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptx
 
Introduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxIntroduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptx
 
Ravak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxRavak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptx
 
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
Mature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxMature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptx
 
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
 
Smarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxSmarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptx
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...
VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...
VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...
 
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
 
B2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docxB2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docx
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptx
 
Halmar dropshipping via API with DroFx
Halmar  dropshipping  via API with DroFxHalmar  dropshipping  via API with DroFx
Halmar dropshipping via API with DroFx
 
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
 
Invezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signals
 
April 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's AnalysisApril 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's Analysis
 

On Continuum Limits of Markov Chains and Network Modeling

  • 1. On Continuum Limits of Markov Chains and Network Modeling 2010 IEEE Conference on Decision and Control Yang Zhang (Colorado State University) Edwin K. P. Chong (Colorado State University) Jan Hannig (University of North Carolina) Don Estep (Colorado State University) 2010 CDC (Atlanta, GA) December 17, 2010 1 / 23
  • 2. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Motivation Networks modeled by Markov chains (discrete). Traditional approach: Monte Carlo simulation. For very large networks (large number of components): Practically infeasible. 2010 CDC (Atlanta, GA) December 17, 2010 2 / 23
  • 3. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Motivation ScienceDaily Aug. 12, 2003 Researchers Create The World’s Fastest Detailed Computer Simulations Of The Internet The Georgia Tech researchers have demonstrated the ability to simulate network traffic from over 1 million web browsers in near real time. This feat means that the simulators could model a minute of such large-scale network operations in only a few minutes of clock time. Using the high-performance computers at the Pittsburgh Super computing Center, the Georgia Tech simulators used as many as 1,534 processors to simultaneously work on the simulation computation, enabling them to model more than 106 million packet transmissions in one second of clock time – two to three orders of magnitude faster than simulators commonly used today. What if slower computers or larger networks? 2010 CDC (Atlanta, GA) December 17, 2010 2 / 23
  • 4. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Motivation Networks modeled by Markov chains (discrete). Traditional approach: Monte Carlo simulation. For very large networks (large number of components): Practically infeasible. Continuum limits of Markov chains: solutions of PDEs. Available mathematical tools for PDEs: Great reduction in computation time. 2010 CDC (Atlanta, GA) December 17, 2010 2 / 23
  • 5. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Example: Wireless Sensor Network Sensor nodes: generate data messages and relay them to destination nodes at boundary. All nodes have message queues. Nodes only communicate with immediate neighbors. Nodes transmit or receive at each time step. 2010 CDC (Atlanta, GA) December 17, 2010 3 / 23
  • 6. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Channel Model All nodes share the same wireless channel. A transmission from a transmitter to a neighboring receiver is successful if and only if none of the other neighbors of the receiver is a transmitter. Reception at a node fails when more than one of its neighbors transmit. 2010 CDC (Atlanta, GA) December 17, 2010 4 / 23
  • 7. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Quantities of Interest Interested in calculating message queue lengths at nodes. Index nodes by (i, j), distance between nodes dx and dy. Notation: ◮ Q(k, i, j): queue length of node (i, j) at time k ◮ M: maximum queue length ◮ F(i, j, Q(k, i, j)): probability that node (i, j) tries to transmit ◮ Set F(i, j, Q(k, i, j)) = Q(k, i, j): nodes transmit with probability proportional to queue length ◮ Pn(k, i, j), Ps(k, i, j), Pe(k, i, j), Pw(k, i, j): probability of transmitting to north, south, east, west (resp.) Pe(k, i, j) = 1 4 + ce(k, i, j)dx, Pw(k, i, j) = 1 4 + cw(k, i, j)dx Pn(k, i, j) = 1 4 + cn(k, i, j)dy, Ps(k, i, j) = 1 4 + cs(k, i, j)dy ◮ U(k, i, j): number of messages generated at node (i, j) at time k 2010 CDC (Atlanta, GA) December 17, 2010 5 / 23
  • 8. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Stochastic Difference Equation Q(k + 1, i, j) − Q(k, i, j) =    1+U(k,i,j) M , with probability (1 − Q(k, i, j)) × [Pw(k, i − 1, j)Q(k, i − 1, j))(1 − Q(k, i + 1, j))(1 − Q(k, i, j + 1))(1 − Q(k, i, j − 1)) + Pe(k, i + 1, j)Q(k, i + 1, j)(1 − Q(k, i − 1, j))(1 − Q(k, i, j + 1))(1 − Q(k, i, j − 1)) + Pn(k, i, j − 1)Q(k, i, j − 1)(1 − Q(k, i + 1, j))(1 − Q(k, i − 1, j))(1 − Q(k, i, j + 1)) + Ps(k, i, j + 1)Q(k, i, j + 1)(1 − Q(k, i + 1, j))(1 − Q(k, i − 1, j))(1 − Q(k, i, j − 1))] −1+U(k,i,j) M , with probability Q(k, i, j) × [Pw(k, i, j)(1 − Q(k, i − 1, j))(1 − Q(k, i − 1, j + 1))(1 − Q(k, i − 1, j − 1))(1 − Q(k, i − 2, j)) + Pe(k, i, j)(1 − Q(k, i + 1, j))(1 − Q(k, i + 1, j + 1))(1 − Q(k, i + 1, j − 1))(1 − Q(k, i + 2, j)) + Ps(k, i, j)(1 − Q(k, i, j − 1))(1 − Q(k, i + 1, j − 1))(1 − Q(k, i − 1, j − 1))(1 − Q(k, i, j − 2)) + Pn(k, i, j)(1 − Q(k, i, j + 1))(1 − Q(k, i + 1, j + 1))(1 − Q(k, i − 1, j + 1))(1 − Q(k, i, j + 2))] U(k,i,j) M , otherwise 2010 CDC (Atlanta, GA) December 17, 2010 6 / 23
  • 9. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Stochastic Difference Equation Q(k + 1, i, j) − Q(k, i, j) =    1+U(k,i,j) M , with probability (1 − Q(k, i, j)) × [Pw(k, i − 1, j)Q(k, i − 1, j))(1 − Q(k, i + 1, j))(1 − Q(k, i, j + 1))(1 − Q(k, i, j − 1)) + Pe(k, i + 1, j)Q(k, i + 1, j)(1 − Q(k, i − 1, j))(1 − Q(k, i, j + 1))(1 − Q(k, i, j − 1)) + Pn(k, i, j − 1)Q(k, i, j − 1)(1 − Q(k, i + 1, j))(1 − Q(k, i − 1, j))(1 − Q(k, i, j + 1)) + Ps(k, i, j + 1)Q(k, i, j + 1)(1 − Q(k, i + 1, j))(1 − Q(k, i − 1, j))(1 − Q(k, i, j − 1))] −1+U(k,i,j) M , with probability Q(k, i, j) × [Pw(k, i, j)(1 − Q(k, i − 1, j))(1 − Q(k, i − 1, j + 1))(1 − Q(k, i − 1, j − 1))(1 − Q(k, i − 2, j)) + Pe(k, i, j)(1 − Q(k, i + 1, j))(1 − Q(k, i + 1, j + 1))(1 − Q(k, i + 1, j − 1))(1 − Q(k, i + 2, j)) + Ps(k, i, j)(1 − Q(k, i, j − 1))(1 − Q(k, i + 1, j − 1))(1 − Q(k, i − 1, j − 1))(1 − Q(k, i, j − 2)) + Pn(k, i, j)(1 − Q(k, i, j + 1))(1 − Q(k, i + 1, j + 1))(1 − Q(k, i − 1, j + 1))(1 − Q(k, i, j + 2))] U(k,i,j) M , otherwise 2010 CDC (Atlanta, GA) December 17, 2010 6 / 23
  • 10. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Monte Carlo Simulation Result 2010 CDC (Atlanta, GA) December 17, 2010 7 / 23
  • 11. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Continuum Limit: PDE Solution ∂q ∂t (t, x, y) =∇ · 1 4 (1 − q(t, x, y))3 (1 + 5q(t, x, y))∇q(t, x, y) + cw(t, x, y) − ce(t, x, y) cs(t, x, y) − cn(t, x, y) q(t, x, y)(1 − q(t, x, y))4 + u(x, y) 2010 CDC (Atlanta, GA) December 17, 2010 8 / 23
  • 12. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep PDE Solution 2010 CDC (Atlanta, GA) December 17, 2010 9 / 23
  • 13. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Monte Carlo Simulation Result 2010 CDC (Atlanta, GA) December 17, 2010 10 / 23
  • 14. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Close? Why? In what sense and under what conditions are they close? These questions are answered in this paper. First look at a simpler example of continuum limit. 2010 CDC (Atlanta, GA) December 17, 2010 11 / 23
  • 15. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Single Random Walk 1/21/2 1/21/2 … … 1 n n+1n 1 N N+10 ds ∝ 1/N: distance between two points dt: length of time step Scaling law: dt = ds2 As N → ∞, ds, dt → 0. 2010 CDC (Atlanta, GA) December 17, 2010 12 / 23
  • 16. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Deriving Diffusion Equation P(k, n): probability of particle at point n at time k P(k + 1, n) = 1 2 P(k, n − 1) + 1 2 P(k, n + 1) P(k + 1, n) − P(k, n) = 1 2 (P(k, n − 1) − P(k, n)) + 1 2 (P(k, n + 1) − P(k, n)) Change notation: s = n · ds, t = k · dt, p(t, s) = P(k, n) p(t + dt, s) − p(t, s) = 1 2 (p(t, s − ds) − p(t, s)) + 1 2 (p(t, s + ds) − p(t, s)) Taylor expansions: p(t, s ± ds) = p(t, s) ± ∂p ∂s (t, s)ds + 1 2 ∂2p ∂s2 (t, s)ds2 + o(ds2 ) p(t + dt, s) = p(t, s) + ∂p ∂t (t, s)dt + o(dt2 ) Take limit as N → ∞, i.e., ds, dt → 0: Diffusion equation: ∂p ∂t (t, s) = 1 2 ∂2p ∂s2 (t, s) 2010 CDC (Atlanta, GA) December 17, 2010 13 / 23
  • 17. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Multiple Random Walks … … 1 n n+1n 1 N N+10 Consider M i.i.d. random walks on the same domain. X(k, n): number of particles at point n at time k X(k) = [X(k, 1), . . . , X(k, N)]: Markov chain X(k, n)/M → P(k, n) a.s. as M → ∞ (SLLN). As M, N → ∞, X(k) converges to solution of diffusion equation. 2010 CDC (Atlanta, GA) December 17, 2010 14 / 23
  • 18. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Compare −1 −0.5 0 0.5 1 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 ◦ Monte Carlo simulation —— PDE solution 2010 CDC (Atlanta, GA) December 17, 2010 15 / 23
  • 19. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Convergence Analysis Back to our problem: much more complicated than random walk. Explanation to the "look-alike" phenomenon: convergence of a sequence of Markov chains. 2010 CDC (Atlanta, GA) December 17, 2010 16 / 23
  • 20. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep General Setting D: fixed subset of Rd N nodes at n = 1, . . . , N uniformly placed over D. X(k, n) ∈ R: network state of node n at time k X(k) = [X(k, 1), . . . , X(k, N)] ∈ RN: Markov chain Stochastic difference equation (System behavior): ◮ X(k + 1) = X(k) + FN(X(k)/M, U(k)) ◮ FN: random transition function ◮ M: “normalizing” parameter; M → ∞ as N → ∞ ◮ U(k): i.i.d. random variables independent of X(k) 2010 CDC (Atlanta, GA) December 17, 2010 17 / 23
  • 21. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep General Setting Wireless Sensor Network: Stochastic Difference Equation X: message queue length M: maximum queue length U: number of messages generated by nodes Q(k + 1, i, j) − Q(k, i, j) =    1+U(k,i,j) M , with probability (1 − Q(k, i, j)) × [Pw(k, i − 1, j)Q(k, i − 1, j))(1 − Q(k, i + 1, j))(1 − Q(k, i, j + 1))(1 − Q(k, i, j − 1)) + Pe(k, i + 1, j)Q(k, i + 1, j)(1 − Q(k, i − 1, j))(1 − Q(k, i, j + 1))(1 − Q(k, i, j − 1)) + Pn(k, i, j − 1)Q(k, i, j − 1)(1 − Q(k, i + 1, j))(1 − Q(k, i − 1, j))(1 − Q(k, i, j + 1)) + Ps(k, i, j + 1)Q(k, i, j + 1)(1 − Q(k, i + 1, j))(1 − Q(k, i − 1, j))(1 − Q(k, i, j − 1))] −1+U(k,i,j) M , with probability Q(k, i, j) × [Pw(k, i, j)(1 − Q(k, i − 1, j))(1 − Q(k, i − 1, j + 1))(1 − Q(k, i − 1, j − 1))(1 − Q(k, i − 2, j)) + Pe(k, i, j)(1 − Q(k, i + 1, j))(1 − Q(k, i + 1, j + 1))(1 − Q(k, i + 1, j − 1))(1 − Q(k, i + 2, j)) + Ps(k, i, j)(1 − Q(k, i, j − 1))(1 − Q(k, i + 1, j − 1))(1 − Q(k, i − 1, j − 1))(1 − Q(k, i, j − 2)) + Pn(k, i, j)(1 − Q(k, i, j + 1))(1 − Q(k, i + 1, j + 1))(1 − Q(k, i − 1, j + 1))(1 − Q(k, i, j + 2))] U(k,i,j) M , otherwise 2010 CDC (Atlanta, GA) December 17, 2010 17 / 23
  • 22. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep General Setting D: Fixed subset of Rd N nodes at n = 1, . . . , N uniformly placed over D. X(k, n) ∈ R: Network state of node n at time k X(k) = [X(k, 1), . . . , X(k, N)] ∈ RN: Markov chain Stochastic difference equation (System behavior): ◮ X(k + 1) = X(k) + FN(X(k)/M, U(k)) ◮ FN: random transition function ◮ M: “normalizing” parameter; M → ∞ as N → ∞ ◮ U(k): i.i.d. random variables independent of X(k) fN(x) = EFN(x, U(k)): mean transition function Define nonrandom sequence x(k) by deterministic difference equation (Mean behavior): x(k + 1) = x(k) + fN(x(k)/M) 2010 CDC (Atlanta, GA) December 17, 2010 17 / 23
  • 23. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep General Setting Wireless Sensor Network: Deterministic Difference Equation q(k + 1, i, j) − q(k, i, j) = 1 M {(1 − q(k, i, j)) × [Pw(k, i − 1, j)q(k, i − 1, j))(1 − q(k, i + 1, j))(1 − q(k, i, j + 1))(1 − q(k, i, j − 1)) + Pe(k, i + 1, j)q(k, i + 1, j)/M)(1 − q(k, i − 1, j))(1 − q(k, i, j + 1))(1 − q(k, i, j − 1)) + Pn(k, i, j − 1)q(k, i, j − 1)/M)(1 − q(k, i + 1, j))(1 − q(k, i − 1, j))(1 − q(k, i, j + 1)) + Ps(k, i, j + 1)q(k, i, j + 1)/M)(1 − q(k, i + 1, j))(1 − q(k, i − 1, j))(1 − q(k, i, j − 1))] − q(k, i, j) × [Pw(k, i, j)(1 − q(k, i − 1, j))(1 − q(k, i − 1, j + 1))(1 − q(k, i − 1, j − 1))(1 − q(k, i − 2, j)) + Pe(k, i, j)(1 − q(k, i + 1, j))(1 − q(k, i + 1, j + 1))(1 − q(k, i + 1, j − 1))(1 − q(k, i + 2, j)) + Ps(k, i, j)(1 − q(k, i, j − 1))(1 − q(k, i + 1, j − 1))(1 − q(k, i − 1, j − 1))(1 − q(k, i, j − 2)) + Pn(k, i, j)(1 − q(k, i, j + 1))(1 − q(k, i + 1, j + 1))(1 − q(k, i − 1, j + 1))(1 − q(k, i, j + 2))] + u(k, i, j)}. 2010 CDC (Atlanta, GA) December 17, 2010 17 / 23
  • 24. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Continuous Time-Space Extension of the Markov Chain Step 1: Xo(˜t) = X(⌊M˜t⌋)/M Piecewise-constant time extensions of X(k) with constant piece length dt = 1/M. As M → ∞, dt → 0. Step 2: Xp(t, s): Piecewise-constant space extensions of Xo(˜t) on D with constant piece length ds = distance between neighboring nodes. As N → ∞, ds → 0. Xp: Continuous time-space extension of X(k). In the same manner, define xo(˜t) and xp(t, s) for x(k). 2010 CDC (Atlanta, GA) December 17, 2010 18 / 23
  • 25. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep An Illustration of the Time-Space Extension x(k,n) & xp(t,s)( , ) p( , ) n & s k & t x(k,n) xp(t,s) 2010 CDC (Atlanta, GA) December 17, 2010 19 / 23
  • 26. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Main Result Theorem Under some conditions, if fN/ds2 → f as N → ∞ and z solves PDE ∂z ∂t (s, t) = f s, z(s, t), ∂z ∂s (s, t), ∂2z ∂s2 (s, t) , then Xp, the continuous time-space extension of the Markov chain X(k), converges uniformly to z, the solution to the PDE, as N → ∞ (M → ∞). 2010 CDC (Atlanta, GA) December 17, 2010 20 / 23
  • 27. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Main Result Wireless Sensor Network: Continuum Limit ∂q ∂t (t, x, y) =∇ · 1 4 (1 − q(t, x, y))3 (1 + 5q(t, x, y))∇q(t, x, y) + cw(t, x, y) − ce(t, x, y) cs(t, x, y) − cn(t, x, y) q(t, x, y)(1 − q(t, x, y))4 + u(x, y) 2010 CDC (Atlanta, GA) December 17, 2010 20 / 23
  • 28. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Outline of Proof Xo close to xo for big M Xp close to xp for big M l t f bi N Xp close to z for big M, N xp close to z for big N Theorem Under some conditions, if fN/ds2 → f as N → ∞ and z solves PDE ∂z ∂t (s, t) = f s, z(s, t), ∂z ∂s (s, t), ∂2z ∂s2 (s, t) , then Xp, the continuous time-space extension of the Markov chain X(k), converges uniformly to z, the solution to the PDE, as N → ∞ (M → ∞). 2010 CDC (Atlanta, GA) December 17, 2010 21 / 23
  • 29. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Greater M and N: Increasing Accuracy −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 0 0.002 0.004 0.006 0.008 0.01 0.012 N = 50, M = 1000 2010 CDC (Atlanta, GA) December 17, 2010 22 / 23
  • 30. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Greater M and N: Increasing Accuracy −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 0 0.002 0.004 0.006 0.008 0.01 0.012 N = 60, M = 5000 2010 CDC (Atlanta, GA) December 17, 2010 22 / 23
  • 31. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Greater M and N: Increasing Accuracy −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 0 0.002 0.004 0.006 0.008 0.01 N = 70, M = 10000 2010 CDC (Atlanta, GA) December 17, 2010 22 / 23
  • 32. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Greater M and N: Increasing Accuracy −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 0 2 4 6 8 x 10 −3 N = 80, M = 50000 2010 CDC (Atlanta, GA) December 17, 2010 22 / 23
  • 33. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Greater M and N: Increasing Accuracy −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 0 2 4 6 8 x 10 −3 N = 90, M = 100000 2010 CDC (Atlanta, GA) December 17, 2010 22 / 23
  • 34. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Greater M and N: Increasing Accuracy −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 0 2 4 6 8 x 10 −3 N = 100, M = 1000000 2010 CDC (Atlanta, GA) December 17, 2010 22 / 23
  • 35. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep Greater M and N: Increasing Accuracy N = 200, M = 5000000 This took weeks! 2010 CDC (Atlanta, GA) December 17, 2010 22 / 23
  • 36. On Continuum Limits of Markov Chains and Network Modeling Yang Zhang, Edwin K. P. Chong, Jan Hannig, Don Estep PDE Solution This took seconds. 2010 CDC (Atlanta, GA) December 17, 2010 23 / 23