SlideShare a Scribd company logo
1 of 203
Download to read offline
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
EJERCICIOS RESUELTOS DE MATEMATICA
BASICA
Temas:
- AXIOMAS DE ORDEN
- DOMINIO DE FUNCIONES
- ALGEBRA DE FUNCIONES
- COMPOSICION DE FUNCIONES
- FUNCIONES: INYECTIVAS
- FUNCIONES: INVERSAS
Ing. WIDMAR AGUILAR, Msc
julio 2021
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
1)
2 βˆ’ 3 +6=0 β†’ = 2 + 6
Encontremos dos puntos y trazar la recta que pase por ellos
X= 0 β†’ = 2 ---------A(0,2)
= 3 β†’ = 4 βˆ’ βˆ’ βˆ’ βˆ’ 3,4
De la grΓ‘fica se puede determinar dominio y rango de la funciΓ³n:
D(f) = R
Ran (f) = R
2)
βˆ’ 2 + βˆ’ 1 = 0
+ 1 =1+2x
= ; β‰  βˆ’1
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
Realizando su grΓ‘fica, se puede observar el dominio y
rango de la funciΓ³n:
D (f) = R-{-1}
De: βˆ’ 2 + βˆ’ 1 = 0
βˆ’ 2 = 1 βˆ’
= ; y β‰  2
Ran (f) = R –{2}
3)
Del dato se define:
Ran (f) = ]2, 6]
3y= 2x+8
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
= 2 + 8
Si: = 2 β†’ = βˆ’1 ; βˆ’1,2 βˆ‰βˆ‹ !
= 6 β†’ = 5 ; 5,6
La grΓ‘fica de la funciΓ³n es una recta:
D(f) = ]-1, 5]
4)
4 + 4 βˆ’ 16 + 4 βˆ’ 47 = 0
4 βˆ’ 16 + 4 + 4 βˆ’ 47 = 0
4 βˆ’ 16 + 16 + 4 + 4 + 1 βˆ’ 47 βˆ’ 17 = 0
4 βˆ’ 4 + 4 + 4 $ + +
%
& = 64
4 βˆ’ 2 + 4 $ + & = 64
βˆ’ 2 + $ + & = 16 βˆ’ βˆ’ βˆ’ 'Γ­)'*+,
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
C(h,k) = C(2, -1/2) ; r = 4
- ! = .β„Ž βˆ’ ), β„Ž + )0 = .βˆ’2,60
123 ! = .4 βˆ’ ), 4 + )0 = 5βˆ’
6
,
7
8
5)
= 1 βˆ’ √15 βˆ’ 2 βˆ’
= 1 βˆ’ :βˆ’ + 2 + 1 + 16
= 1 βˆ’ :16 βˆ’ + 1 ---------semicirculo (hacia abajo)
16 βˆ’ + 1 = βˆ’ 1
+ 1 + βˆ’ 1 = 16
; β„Ž, 4 = ; βˆ’1,1 ; ) = 4
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
- ! = .β„Ž βˆ’ ), β„Ž + )0 = .βˆ’5,30
123 ! = .4 βˆ’ ), 40 = .βˆ’3,10
6)
= βˆ’3 + √4 βˆ’ ---semicircunferencia
+ 3 = :βˆ’ βˆ’ 4 + 4 + 4
+ 3 = :4 βˆ’ βˆ’ 2
+ 3 = 4 βˆ’ βˆ’ 2
βˆ’ 2 + + 3 = 4
) = 2 ; ; β„Ž, 4 = ' 2, βˆ’3
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
- ! = .β„Ž βˆ’ ), β„Ž + )0 = .0,40
123 ! = .4, 4 + )0 = .βˆ’3, βˆ’10
7)
= 2 + :6 βˆ’
βˆ’ 2 = :βˆ’ βˆ’ 6 + 9 + 9
βˆ’ 2 = :9 βˆ’ βˆ’ 3
βˆ’ 2 = 9 βˆ’ βˆ’ 3
βˆ’ 2 + βˆ’ 3 = 9
β†’ = 2 + :6 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’=>?@'@)'*3!>)>3'@2
; β„Ž, 4 = ; 2,3 ; ) = 3
- ! = .β„Ž, β„Ž + )0 = .2,50
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
123 ! = .4 βˆ’ ), 4 + )0 = .0,60
8)
+ βˆ’ 2| | βˆ’ 6 + 1 = 0
| | = B
, β‰₯ 0
βˆ’ , < 0
a) X <0 ; + + 2 βˆ’ 6 + 1 = 0
+ 2 + 1 + βˆ’ 6 + 9 + 1 βˆ’ 1 βˆ’ 9 = 0
+ 1 + βˆ’ 3 = 9------circunferencia
; β„Ž, 4 = ; βˆ’1,3 ; ) = 3
b) X >0 ; + βˆ’ 2 βˆ’ 6 + 1 = 0
βˆ’ 2 + 1 + βˆ’ 6 + 9 + 1 βˆ’ 1 βˆ’ 9 = 0
βˆ’ 1 + βˆ’ 3 = 9------circunferencia
; β„Ž, 4 = ; 1,3 ; ) = 3
- ! = .βˆ’4,40
123 ! = .0,60
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
9)
+ 2 βˆ’ 2 + 7 = 0
2 = + 2 + 7
2 = + 2 + 1 + 6
= + 1 + 3 βˆ’ βˆ’ βˆ’ βˆ’E2)Γ‘G,+2
Que se abre hacia arriba
β„Ž = βˆ’1, 4 = 3
V(h.k) = V(-1,3)
- ! = 1
123 ! = .3, ∞ .
10)
2 βˆ’ 4 + + 3 = 0
= 4 βˆ’ 2 βˆ’ 3
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
= βˆ’ 2 βˆ’ 4 βˆ’ 3
= βˆ’2 βˆ’ 2 + 1 βˆ’ 3 + 2
= βˆ’1 βˆ’ 2 βˆ’ 1 βˆ’ βˆ’ βˆ’ βˆ’E2)Γ‘G,+2
V(h, k) = V(1,-1)
2 < 0 β†’ => 2G)> β„Ž2'@2 2G2I,
- ! = 1
123 ! = 0 βˆ’ ∞ , βˆ’10
11)
+ 4 + 3 βˆ’ 8 = 0
+ 4 + 4 + 3 βˆ’ 8 βˆ’ 4 = 0
3 = βˆ’ + 2 + 12
= βˆ’4 βˆ’ + 2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
β†’ βˆ’ < 0 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ => 2G)> β„Ž2'@2 +2 @JK*@>)L2
V(h,k )= V(-2, -4)
- ! = 0 βˆ’ ∞ , 40
123 ! = 1
12)
= 1 + √2 βˆ’
De: y= k+:βˆ’ βˆ’ β„Ž βˆ’ βˆ’ βˆ’ =>?@E2)Γ‘G,+2
Que se abre hacia la izquierda.
= 1 + :βˆ’ βˆ’ 2
h = 2 ; k=1
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
- ! = 0 βˆ’ ∞ , 20
123 ! = .1, ∞ .
13)
= βˆ’βˆš6 βˆ’ 2
= βˆ’ :βˆ’2 βˆ’ 3 = βˆ’βˆš2 :βˆ’ βˆ’ 3
Se sabe: y = 4 βˆ’ G:βˆ’ βˆ’ β„Ž βˆ’ βˆ’=>?@E2)Γ‘G,+2
-√2 < 0 β†’ => 2G)> β„Ž2'@2 +2 @JK*@>)L2
= βˆ’βˆš2 :βˆ’ βˆ’ 3
h = 3 ; k = 0
- ! = 0 βˆ’ ∞ , 30
123 ! = 0 βˆ’ ∞, 0 0
14)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
+ 1 = √3 + 5
= βˆ’1 + M3 +
N
= βˆ’1 + √3 M +
N
Si: y = k+b √ βˆ’ β„Ž βˆ’ βˆ’ βˆ’ βˆ’=>?@E2)Γ‘G,+2
Que se abre a la derecha
h = -5/3 ; k = -1
V(-5/3, -1)
- ! = .βˆ’
N
, ∞ .
123 ! = .βˆ’1, ∞.
15)
= 5 + :βˆ’3 βˆ’ 2
= 5 + √3 :βˆ’ βˆ’ 2
-----semiparΓ‘bola que se abre a la izquierda
h = 2 ; k =5
V (2,5)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
- ! = 0 βˆ’ ∞, 20
123 ! = .5, ∞ .
16)
4 + 9 βˆ’ 16 + 18 = 11
4 βˆ’ 4 + 9 + 2 = 11
4 βˆ’ 4 + 4 + 9 + 2 + 1 = 11 + 25
4 βˆ’ 4 + 4 + 9 + 2 + 1 = 36
O
6
+
O
%
= 1 βˆ’ βˆ’ βˆ’ >+@E=>
B
2 = 3
G = 2
; β„Ž, 4 = ; 2, βˆ’1
- ! = .β„Ž βˆ’ 2, β„Ž + 20 = .βˆ’1,50
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
)23 ! = .4 βˆ’ G, 4 + G0 = .βˆ’3, 10
17)
9 + 4 + 18 βˆ’ 32 = βˆ’37
9 + 2 + 1 + 4 βˆ’ 8 + 16 = βˆ’37 + 73
9 + 1 + 4 βˆ’ 4 = 36
O
%
+
% O
6
= 1 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ >+@E=>
2 = 2 ; G = 3
C(h, k) = C (-1, 4)
La grΓ‘fica es:
- ! = .β„Ž βˆ’ 2, β„Ž + 20 = .βˆ’3,10
123 ! = 4 βˆ’ G, 4 + G0 = 1,70
18)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
= + | βˆ’ 1|
| βˆ’ 1| = P
βˆ’ 1 ; β‰₯ 1
βˆ’ βˆ’ 1 ; < 1
a) X < 1 ; = βˆ’ + 1 = 1
b) X β‰₯ 1 = + βˆ’ 1 = 2 βˆ’ 1
! = B
2 βˆ’ 1 ; β‰₯ 1
1 ; < 1
La grΓ‘fica es:
- ! = 1
123 ! = .1, ∞ .
19)
=
| |
+
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
| βˆ’ 1| = P
βˆ’ 1 ; β‰₯ 1
βˆ’ βˆ’ 1 ; < 1
a) X < 1 ; = +
= 1 +
b) X β‰₯ 1 = + = = βˆ’ +
= βˆ’ 1
! = B
βˆ’ 1 ; β‰₯ 1
1 + ; < 1
Su grΓ‘fica es:
- ! = 1 βˆ’ 1Q
123 ! = 1
20)
| | + | | = 4
| | = 4 βˆ’ | |
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
a) X β‰₯ 0 ; | | =
| | = 4 βˆ’ ↔ 4 βˆ’ β‰₯ 0 ∧ 4 βˆ’ = Γ³ 4 βˆ’ = βˆ’ Q
X β‰₯ 0 β†’ ≀ 4 ∧ = 4 βˆ’ Γ³ = βˆ’ 4 Q
X β‰₯ 0 ∧ ≀ 4 β†’ 0 ≀ ≀ 4 ↔ = 4 βˆ’ Γ³ = βˆ’ 4Q
b) X <0 ; | | = βˆ’
| | = 4 + ↔ 4 + β‰₯ 0 ∧ 4 + = Γ³ 4 + = βˆ’ Q
X < 0 ∧ β‰₯ βˆ’4 β†’ βˆ’4 ≀ < 0 ↔ = 4 + Γ³ =
βˆ’ βˆ’ 4 Q
βˆ’4 ≀ ≀ 0 ↔ = 4 + Γ³ = βˆ’ βˆ’ 4Q
0 ≀ ≀ 4 β†’ ! = B
4 βˆ’
βˆ’ 4
βˆ’4 ≀ ≀ 0 β†’ ! = B
4 +
βˆ’ βˆ’ 4
V2 W)Γ‘!@'2 >=:
- ! = .βˆ’4,40
123 ! = .βˆ’4,40
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
21)
| + 2| + | βˆ’ 3| = 4
| βˆ’ 3| = 4 βˆ’ | + 2|
| + 2| = P
+ 2 ; β‰₯ βˆ’2
βˆ’ + 2 ; < 2
a)
β‰₯ βˆ’2 β†’ | + 2| = + 2 β†’ | βˆ’ 3| = 2 βˆ’ ↔ 2 βˆ’ β‰₯ 0 ∧
{ y-3=2-x Γ³ y-3 = x-2 }
β‰₯ βˆ’2 ∧ ≀ 2 β†’ βˆ’2 ≀ ≀ 2 ↔ βˆ’2 ≀ ≀ 2 ∧ =
5 βˆ’ Γ³ = + 1Q
b)
< βˆ’2 β†’ | + 2| = βˆ’ βˆ’ 2 β†’ | βˆ’ 3| = 6 + ↔ 6 + β‰₯ 0
∧ { y-3=6+x ó y-3 = -x-6 }
< βˆ’2 ∧ ≀ βˆ’6 β†’ βˆ’6 ≀ ≀ βˆ’2 ↔ βˆ’6 ≀ ≀ βˆ’2 ∧
= 9 + Γ³ = βˆ’3 βˆ’ Q
-2≀ ≀ 2 β†’ ! = B
5 βˆ’
+ 1
βˆ’6 ≀ ≀ βˆ’2 β†’ ! = B
9 +
βˆ’ βˆ’ 3
V2 W)Γ‘!@'2 >=:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
- ! = .βˆ’6, 20
123 ! = .βˆ’1, 70
22)
= | + 4 + 1|
= | + 4 + 4 βˆ’ 3|
= | + 2 βˆ’ 3|
β†’ β‰₯ 0 ∧ = + 2 βˆ’ 3 Γ³ = βˆ’ + 2 + 3 Q
De:
= + 2 βˆ’ 3 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ E2)Γ‘G,+2
β„Ž = βˆ’2 ; 4 = βˆ’3 ; Y βˆ’2,3
= βˆ’ + 2 + 3 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ E2)Γ‘G,+2
β„Ž = βˆ’2 ; 4 = 3 ; Y βˆ’2,3
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
- ! = 1
123 ! = .0, ∞ .
23)
! + 2 =
Con x = 1 β†’ ! 3 = 1 β†’ 3,1 ∈ !
Con x =-1 β†’ ! 1 = βˆ’1 β†’ 1,1 ∈ !
De; (x,y ) ∈ ! ∧ , J ∈ ! β†’ = J
3,1 ∧ 1, βˆ’1 ∈ !
Luego --------------- f es una funciΓ³n
24)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! + 2 =
Con x = 1 β†’ ! 3 = 1 β†’ 3,1 ∈ !
Con x =-1 β†’ ! 3 = βˆ’1 β†’ 3, βˆ’1 ∈ !
De; (x,y ) ∈ ! ∧ , J ∈ ! β†’ = J
3,1 ∧ 3, βˆ’1 ∈ ! 1 β‰  βˆ’1
Luego --------------- f no es una funciΓ³n
25)
Sea t = x+3 ; x = t-3
! [ = ([ βˆ’ 3 βˆ’ 1
! [ = [ βˆ’ 6[ + 9 βˆ’ 1 = [ βˆ’ 6[ + 8
β†’ ! = βˆ’ 6 + 8
Calculando:
 ] 
]
=
] O ^ ] _ 
]
=
]O %] % ^] _ % _
]
=
]O ]
]
=
] ]
]
= 2
 ] 
]
= 2
26)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
Calculando f(x).
Sea: x+1 = t
! [ = [ βˆ’ 1 + 3 = [ βˆ’ 2[ + 1 + 3
= [ βˆ’ 2[ + 4
! = βˆ’ 2 + 4
 ]  ]
]
=
] O ] % . ] O ] %0
]
=
]O %] % ] % % ]O %] % ] % %
]
=
_] _
]
=
_ ]
]
= 8
 ]  ]
]
= 8
27)
La grΓ‘fica es:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
Sea: 0<x ≀1
1< <
`
β†’ 1 < 1/
> 1
1 + > 2
! > 2
β†’ ! ∈ 01,2. βˆ’ βˆ’ βˆ’ βˆ’ βˆ’!2+=,
28)
= βˆ’ 1
Su grΓ‘fica es:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
- ! = ℝ
Si:
X= 1 β†’ ! 1 = 0 β†’ 1,0 ∈ !
= βˆ’1 β†’ ! βˆ’1 = 0 β†’ βˆ’1,0 ∈ !
(x,y ) ∈ ! ∧ , J ∈ ! β†’ = J
1,0 ∈ ! ∧ βˆ’1,0 ∈ !
! >= *32 !*3'@Γ³3
Despejando x:
= + 1
= Β± : + 1
+ 1 β‰₯ 0
β‰₯ βˆ’1
Rang(f) = [1, ∞ .
29)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
βˆ’ 4 βˆ’ 2 + 10 = 0
2 = βˆ’ 4 + 10
= βˆ’ 4 + 10
Como es polinomio β†’ - ! = ℝ
= βˆ’ 4 + 4 + 5 βˆ’ 2
= βˆ’ 2 + 3 β†’ E2)Γ‘G,+2
Y β„Ž, 4 = 2, 3
Si x =1 β†’ ! 1 =
7
β†’ $1,
7
& ∈ !
= βˆ’1 β†’ ! βˆ’1 =
N
β†’ $βˆ’1,
N
& ∈ !
$1,
7
& ∈ ! ∧ $βˆ’1,
N
& ∈ !
f es una funciΓ³n
2( y-3) = ( βˆ’ 2
:2 βˆ’ 6 = + 2
= :2 βˆ’ 6 + 2
Escriba aquΓ­ la ecuaciΓ³n.
2 βˆ’ 6 β‰₯ 0 β†’ βˆ’ 3 β‰₯ 0
β‰₯ 3
Luego el rango es: Rang(f) = [3, ∞ .
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
30)
= 3 + 2 βˆ’
= βˆ’ βˆ’ 2 + 1 + 3 + 1
= 4 βˆ’ βˆ’ 1
Si: βˆ’2 ≀ < 2
-3 ≀ βˆ’ 1 < 1
0≀ βˆ’ 1 < 9
βˆ’9 < βˆ’ βˆ’ 1 ≀ 0
4 βˆ’ 9 < 4 βˆ’ βˆ’ 1 ≀ 4
βˆ’5 < ! ≀ 4
Rang (f) = ]-5, 4 ]
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
31)
= 1 + √3 + 2 βˆ’
= 1 + :βˆ’ βˆ’ 2 + 1 + 4
= 1 + :4 βˆ’ βˆ’ 1
Partiendo del dominio: βˆ’1 < ≀ 2
-2 < x-1 ≀ 1
0 ≀ βˆ’ 1 < 4
βˆ’4 < βˆ’ βˆ’ 1 ≀ 0
0 < 4 βˆ’ βˆ’ 1 ≀ 4
0 < :4 βˆ’ βˆ’ 1 ≀ 2
1 < 1+ :4 βˆ’ βˆ’ 1 ≀ 3
Rang (f)= ]1, 3 ]
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
32)
Se traza la cuadrΓ­cula con los datos del dominio y rango y en Γ©l la
curva f(x)
Y= 0 β†’ 0 = + 4 + 4 βˆ’ 1
0 = + 2 βˆ’ 1 β†’ + 2 = 1
β†’ = βˆ’2 Β± 1
β†’ P
= βˆ’3
= βˆ’1
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
= 5 β†’ 5 = + 4 + 4 βˆ’ 1
5 = + 2 βˆ’ 1 β†’ + 2 = 6
β†’ = βˆ’2 Β± √6
β†’ r
= βˆ’2 βˆ’ √6
= βˆ’2 + √6
β‰  βˆ’4 β†’ β‰  16 βˆ’ 16 + 3 = 3
(-4, 3) βˆ‰ ) !
β‰  1 β†’ β‰  1 βˆ’ 4 + 3 = 0
(1, 0) βˆ‰ ) !
Luego:
D= D(g) = ]-4, 3[ U ]-1, √6 βˆ’ 2.
Rang(g) = f(D) = [0, 5]
33)
Se traza la cuadrΓ­cula con los datos del dominio y rango y en Γ©l la
curva f(x)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
Si:
= 3 β†’ 3 = √9 βˆ’
9 = 9 βˆ’
x= 0
= 1 β†’ 1 = √9 βˆ’
1 = 9 βˆ’
= 8 β†’ = Β±2√2
= 2 β†’ = √9 βˆ’ 4
y = √5
Luego:
D= D(g) = [-2, 2]
Rang(g) = f(D) = [√5, 3]
34)
Se traza la cuadrΓ­cula con los datos del dominio y rango y en Γ©l la
curva f(x)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
Y= 7 β†’ 7 = 3 βˆ’ 2
2 = βˆ’4 β†’ = βˆ’2
Y= -1 β†’ βˆ’1 = 3 βˆ’ 2
2 = 4 β†’ = 2
D= D(g) = [-2,2[
Rang(g) = f(D) = ]-1,7]
35)
Se traza la cuadrΓ­cula con los datos del dominio y rango y en Γ©l la
curva f(x)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
A= [-2,3[
B= [-1,2]
f (x) = x2 -2
W: - β†’ / ! = W
Si;
Y= -1 β†’ βˆ’1 = βˆ’ 2
= 1 β†’ = Β±1
Y= 2 β†’ 2 = βˆ’ 2
= 4 β†’ = Β±2
D = D(g) = .βˆ’2, βˆ’10s .1,2]
Rang(g) =f(D) = [-1,2]
36)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
A = [-2,3[ ; B = [-2, 6[
Trazar Ax B y dentro del rectΓ‘ngulo la funciΓ³n f( x)
β‰  6 β†’ 6 β‰  βˆ’ 9
β‰  15 β†’ β‰  Β± √15 ---fuera de Ax B
= βˆ’2 β†’ βˆ’2 = βˆ’ 9
= 7 β†’ = Β± √7
= √7 βˆ’ βˆ’ βˆ’ => L>='2)[2 >+ t2+,) 3>W2[@t,
Se tiene:
D = D(g) = [√7 , 3.
Rang(g) = [-2,0[
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
37)
! = | | + | βˆ’ 1|
De la definiciΓ³n de valor absoluto:
| | = B
, β‰₯ 0
βˆ’ , < 0
| βˆ’ 1| = P
βˆ’ 1 , β‰₯ 1
βˆ’ βˆ’ 1 , < 1
D(f) = A = [-3,3]
Redefiniendo la funciΓ³n f(x):
]-3, 0[ β†’ | | = βˆ’ ; | βˆ’ 1| = βˆ’ βˆ’ 1
! = βˆ’ βˆ’ βˆ’ 1 = 1 βˆ’ 2
[0, 1[ β†’ | | = ; | βˆ’ 1| = βˆ’ βˆ’ 1
! = βˆ’ βˆ’ 1 = 1
[1, 3] β†’ | | = ; | βˆ’ 1| = βˆ’ 1
! = βˆ’ 1 = 2 βˆ’ 1
! = u
1 βˆ’ 2 ; ∈ 0 βˆ’ 3,0.
1 ; ∈ .0,1 .
2 βˆ’ 1 ; ∈ .1, 30
Traza A x B y dentro de este perΓ­metro a funciΓ³n f(x);
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
Si:
Y= 2 β†’ 2 = 2 βˆ’ 1 β†’ =
= 5 β†’ 5 = 2 βˆ’ 1
= 3
Y= 2 β†’ 2 = 1 βˆ’ 2 β†’ = βˆ’
Y= 5 β†’ 5 = 1 βˆ’ 2 β†’ = βˆ’2
D= D(g) = ]-2,-βˆ’ s 0 , 30
Rang (g) = ]2,5]
38)
D(f) = [-2,-3[
Trazar la cuadricula A x B y dentro de ella dibujar la curva f( x):
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
La funciΓ³n f( x ) es una parΓ‘bola con vΓ©rtice: V(0,-9)
= βˆ’2 β†’ βˆ’2 = βˆ’ 9
β†’ = 7 β†’ = Β± √7
= √7
Se tiene:
D= D(f) = . :7, 30
Rang (g) = [-2,6[
39)
D(f) = ?
! = M
O
| N|
De:
O
| N|
β‰₯ 0
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
%
| N|
β‰₯ 0 ; |2 βˆ’ 5| = u
2 βˆ’ 5 , β‰₯
N
βˆ’ 2 βˆ’ 5 . <
N
a) 0 βˆ’ ∞,
N
. β†’ |2 βˆ’ 5| = 5 βˆ’ 2
f(x) =
%
N
β‰₯ 0 β†’ + 3 4 βˆ’ 5 βˆ’ 2 β‰₯ 0
S1 = ∈ .βˆ’3,
N
. s β‰₯ 4
De: .βˆ’ ∞,
N
. ∩ ∈ .βˆ’3,
N
. s β‰₯ 4
S1 = ∈ .βˆ’3,
N
.
B ) .
N
, ∞ . β†’ |2 βˆ’ 5| = 2 βˆ’ 5
f(x) =
%
N
β‰₯ 0 β†’ + 3 4 βˆ’ 2 βˆ’ 5 β‰₯ 0
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
De: .
N
, ∞ . ∩ x ≀ βˆ’3 s 0 5/2, 40
S2 = 0 5/2, 40
La soluciΓ³n serΓ‘: w1 s w2
S = [ 3,4] –{5/2}
40)
Sea: ! = 3 βˆ’ √2 βˆ’
= 3 βˆ’ √2 βˆ’ β†’ 2 βˆ’ = 3 βˆ’
X = 2 βˆ’ 3 βˆ’ β†’ = 2 βˆ’ βˆ’ 3
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
β†’ E2)Γ‘G,+2 L> tΓ©)[@'> =
Y 2,3 => 2G)> β„Ž2'@2 +2 L>)>'β„Ž2
Se tiene que:
Rang(f) = ]- ∞ , 30
Sea: g(x) = x2 +14x +50
W = + 14 + 49 + 1
W = + 7 + 1
β†’ E2)Γ‘G,+2 K*> => 2G)> β„Ž2'@2 2))@G2
V(h,k) = (-7, 1)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
En rango es: Ran (g) = [1, ∞ .
Luego; Rang(f) ∩ 123 W
Rang(f) ∩ 123 W = .1, 30
41)
De: βˆ’1 < ! < 3; βˆ€ ∈ 1
βˆ’1 <
O ]
O < 3
Se tiene que: + 2 + 2 > 0 E,) =>) βˆ† < 0
βˆ† = L@=')@?@323[>
-( + 2 + 2 < 2 βˆ’ 2 + 1 < 3 + 2 + 2
β†’ -( + 2 + 2 < 2 βˆ’ 2 + 1 ∧ 2 βˆ’ 2 + 1 < 3 +
2 + 2
a) -( + 2 + 2 < 2 βˆ’ 2 + 1
β†’ 0 < 3 + 2 βˆ’ 2 + 3
β†’ 3 + 2 βˆ’ 2 + 3 > 0
Debe cumplirse que el discriminante sea menor que
cero:
βˆ† < 0
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
β†’ 2 βˆ’ 2 βˆ’ 36 < 0 β†’ 2 βˆ’ 2 < 36
β†’ . 2 βˆ’ 2 βˆ’ 60.2 βˆ’ 2 + 60 < 0
β†’ βˆ’ 2 + 4 8-a) < 0
β†’ 2 + 4 8 βˆ’ 2 > 0
2 ∈ 0 βˆ’ 4, 8 .
b) 2 βˆ’ 2 + 1 < 3 + 2 + 2
β†’ 0 < + 2 + 6 + 5 > 0
Debe cumplirse que el discriminante sea menor que
cero:
βˆ† < 0
2 + 6 βˆ’ 20 < 0
β†’ 2 + 6 < 20 β†’ βˆ’ √20 < 2 + 6 < √20
β†’ βˆ’βˆš20 βˆ’ 6 < 2 < √20 βˆ’ 6
2 ∈0 βˆ’ √20 βˆ’ 6, √20 βˆ’ 6 .
Finalmente se tiene:
2 ∈ 0 βˆ’ 4, 8. ∧ 2 ∈0 βˆ’ √20 βˆ’ 6, √20 + 6 .
2 ∈ 0 βˆ’ 4, √20 βˆ’ 6.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
42)
! > 1
^ O { `
|N O |
> 1
5 βˆ’ 3 + 1 β†’ βˆ† < ,
Como el discriminante es menor que cero, la expresiΓ³n siempre
serΓ‘ positiva.
5 βˆ’ 3 + 1 > 0
β†’ 6 + 2 ? + 10 > 5 βˆ’ 3 + 1
β†’ + 2 ? + 3 + 9 > 0 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 2
Se tiene que (a) es positivo β†’ βˆ† < 0
2? + 3 βˆ’ 36 < 0
β†’ 2? + 3 < 36
β†’ βˆ’6 < 2? + 3 < 6
β†’ βˆ’9 < 2? < 3
β†’ βˆ’
6
< ? <
? ∈ 0 βˆ’
6
, .
43)
Si f……. es cuadrΓ‘tica β†’ ! = 2 + G + '
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! $ βˆ’ 1& βˆ’ ! $ + 1& = βˆ’8 + 1 ------(1)
Si:
! 0 = 1 β†’ 1 = 2 0 + G 0 + '
' = 1
! = 2 + G + 1
De la expresiΓ³n (1),
2 βˆ’ 1 + G $ + 1& + 1 βˆ’ .2 $ + 1 + G $ + 1& + 18 =
βˆ’8 + 1
2 $
O
%
βˆ’ + 1& + G. + G + 1 βˆ’ .2 $
O
%
+ + 1& + G. + G +
10 = βˆ’8 βˆ’ 8
βˆ’22 βˆ’ 2G = βˆ’8 βˆ’ 8
2 + G = 4 + 4
β†’ B
2 = 4
G = 4
La ecuaciΓ³n f(x) serΓ‘:
! = 4 + 4 + 1
! = 2 + 1
β†’
E2)Γ‘G,+2 K*> => 2G)> β„Ž2'@2 2))@G2 ',3 tΓ©)[@'> Y β„Ž, 4
Y β„Ž, 4 = β„Ž = βˆ’ ; 4 = 0
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
De la grΓ‘fica β†’ >+ ?Γ­3@?, L> ! >=: 0
Min. f = 0
44)
Sea: ! = 2 + G + '
|
2 = 2
G = 2√5 βˆ’ 1
' = βˆ’βˆš5
! = 2 } +
√N
+
~ √N β€’
O
^
€ βˆ’ √5 βˆ’
~ √N β€’
O
_
! = 2 +
√N
%
βˆ’ √5 +
~ √N β€’
O
_
! = 2 +
√N
%
βˆ’
_√N ` %√N
_
! = 2 +
√N
%
βˆ’
%√N
_
β†’ E2)Γ‘G,+2 K*> => β„Ž2G)> β„Ž2'@2 2))@G2.
β†’ u
β„Ž = βˆ’
√N
%
4 = βˆ’
%√N
_
La grΓ‘fica de f(x) es:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
El mΓ­nimo de f es: βˆ’
%√N
_
45)
P = + 2 +
β€’
= 2
β†’ 2 + 4 + β€š = 4
2 + β€š + 4 = 4
=
%
.4 βˆ’ 2 + β€š 0
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
El Γ‘rea de la ventana es:
A= xy +
β€’
=
%
.4 βˆ’ 2 + β€š 0+
β€’
_
= βˆ’
O
%
2 + β€š +
β€’
_
= βˆ’
O
βˆ’
β€’
%
+
β€’
_
= βˆ’
O
βˆ’
β€’
_
= βˆ’
O
βˆ’
β€’
_
A(x) = βˆ’ +
β€’
_
βˆ’ βˆ’ βˆ’ βˆ’ E2)Γ‘G,+2
Se abre hacia abajo
A(x) = βˆ’ $
% β€’
_
& = βˆ’. $
% β€’
_
& βˆ’ 0
= βˆ’. $
% β€’
_
& βˆ’ + $
_
β€’ %
& 0+ $
_
β€’ %
&
= βˆ’. . M
% β€’
_
βˆ’ M
_
% β€’
0 + $
_
β€’ %
&
Y β„Ž, 4 = Ζ’M
_
% β€’
, $
_
β€’ %
& β€ž
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
Derivando la funciΓ³n A(X) e igualando a cero para tener un
mΓ‘ximo:
…
= 0
0 = 1 βˆ’ 2 $
% β€’
_
&
2 $
% β€’
_
& = 1
=
%
β€’ %
46)
Del triΓ‘ngulo ;- †;1:
‑ˆ
‰‰‰‰
Ε β€Ή
‰‰‰‰
=
Ε’β€’
‰‰‰‰‰
Ε’Ε½
‰‰‰‰
β†’
`
=
Ε’β€’
‰‰‰‰‰
^ β€’
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
20 6 βˆ’ β„Ž = 6
β„Ž = 6 βˆ’
`
El Γ‘rea del rectΓ‘ngulo es: A= x.h
= . $6 βˆ’
`
& = βˆ’
`
+ 6
= βˆ’
`
βˆ’ 20
= βˆ’
`
βˆ’ 20 + 100 + 30
= 30 βˆ’
`
βˆ’ 10 ////
β†’ E2)Γ‘G,+2 K*> => 2G)>2 β„Ž2'@2 2G2I, …
V(h,k) = ( 10, 30)
El mΓ‘ximo se tiene cuando X = 10
X= 10 β†’ = 30
30 = . β„Ž = 10. β„Ž
β„Ž = 3
B
= 10
β„Ž = 3
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
47)
= β€š1 ; ',?,: 10 βˆ’ = 2β€š1
1 =
`
β€’
= β€š
`
β€’
=
` O
%β€’
= $%
& =
^
= + =
` O
%β€’
+ ^
=
`` ` O
%β€’
+
^
=
%`` _` % O β€’ O
^β€’
=
O
^
+
O
%β€’
βˆ’
N
β€’
+
N
β€’
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
A= $ ^
+
%β€’
& βˆ’
N
β€’
+
N
β€’
= $
β€’ %
^β€’
& βˆ’
N
β€’
+
N
β€’
=
^β€’
. 4 + β€š βˆ’ 80 +
^``
% β€’
0 +
%``
^β€’
βˆ’
^``
^β€’ % β€’
=
^β€’
. √4 + β€š βˆ’
%`
√% β€’
0 +
N
β€’
βˆ’
``
%β€’ β€’O
β†’ E2)Γ‘G,+2 K*> => 2G)> β„Ž2'@2 2))@G2 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’
El mΓ­nimo de f…. se tiene para x =
%`
% β€’
El perΓ­metro del cuadrado serΓ‘:
P1 = 4(x/4) =x
P1=
%`
% β€’
La longitud de la circunferencia:
L2= 2β€š1 = 2β€š $
`
β€’
&= 10 βˆ’
V2 = 10 βˆ’
%`
% β€’
=
`β€’
% β€’
El Γ‘rea del cuadrado es:
= $
4
& =
1
16
= ^
%`
% β€’
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
El Γ‘rea total es:
A =
` O
%β€’
+
^
=
^
%`
% β€’
+
`
β€˜β€™
β€˜β€œβ€
O
%β€’
A =
N
% β€’
‒–
β€’
=
β€”
β€”Λœ
β€˜β€™
β€˜β€œβ€
O
Oβ„’
β€˜β€œβ€
=
%
% β€’
Ε‘ =
%
% β€’
.
N
% β€’
=
``
% β€’ O
48)
De; ! =
%
=
% %
%
= 1 +
%
%
√ βˆ’ 4 β‰₯ 0
√ > 0 β†’ β‰₯ 0
β†’ β‰₯ 0 ∧ βˆ’ 4 β‰₯ 0
β‰₯ 0 ∧ (x+2)(x-2) β‰₯ 0
β‰₯ 0 ∧ { ≀ βˆ’2 Γ³ β‰₯ 2 Q
∈ .2, ∞ . βˆ’ 4Q
D (f) = .2, 4 . s 04, ∞ .
El rango serΓ‘:
2 ≀ < 4 Γ³ > 4
βˆ’2 ≀ βˆ’ 4 < 0 Γ³ βˆ’ 4 > 0
%
≀ βˆ’ Γ³
%
> 0
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
%
%
≀ βˆ’2 Γ³
%
%
> 0
1+
%
%
≀ βˆ’1 Γ³
%
%
> 0 + 1
1+
%
%
≀ βˆ’1 Γ³
%
%
> 1
Ran (f) = 0 βˆ’ ∞, βˆ’1 0 s 01, ∞.
49)
Se tiene:
! = 4 βˆ’ √ + 12 + 27 ; ∈0 βˆ’ ∞, βˆ’110
W = + 6 + 6 ; ∈ 00, ∞ .
+ 12 + 27 = + 12 + 36 + 27 βˆ’ 36
= + 6 βˆ’ 9
! = 4 βˆ’ : + 6 βˆ’ 9
W = + 6 + 9 + 6 βˆ’ 9
W = + 3 βˆ’ 3
Se determina el rango a partir del dominio de f.
< βˆ’11
+ 6 < βˆ’5
+ 6 β‰₯ 25 β†’ + 6 βˆ’ 9 β‰₯ 16
: + 6 βˆ’ 9 β‰₯ 4
βˆ’: + 6 βˆ’ 9 ≀ βˆ’4
4 βˆ’ : + 6 βˆ’ 9 ≀ 0
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! ≀ 0
Ran (f) = ] βˆ’βˆž, 0 0
De: x >0
+ 3 > 3
+ 3 > 9
+ 3 βˆ’ 3 > 6
W > 6
123 W = 06, ∞ .
50)
De: βˆ’1 < ! < 3; βˆ€ ∈ 1
βˆ’1 <
O β€Ί
O < 3
Se tiene que: + 2 + 2 > 0 E,) =>) βˆ† < 0
βˆ† = L@=')@?@323[>
-( + 2 + 2 < 2 βˆ’ 4 + 1 < 3 + 2 + 2
β†’ -( + 2 + 2 < 2 βˆ’ 4 + 1 ∧ 2 βˆ’ 4 + 1 < 3 +
2 + 2
a) -( + 2 + 2 < 2 βˆ’ 4 + 1
β†’ 0 < 3 + 2 βˆ’ 4 + 3
β†’ 3 + 2 βˆ’ 4 + 3 > 0
Debe cumplirse que el discriminante sea menor que
cero:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
βˆ† < 0
β†’ 2 βˆ’ 4 βˆ’ 36 < 0 β†’ 2 βˆ’ 4 < 36
β†’ . 2 βˆ’ 4 βˆ’ 60.2 βˆ’ 4 + 60 < 0
β†’ βˆ’ 4 + 4 8-k) < 0
β†’ 4 + 4 8 βˆ’ 4 > 0
4 ∈ 0 βˆ’ 4, 8 .
b) 2 βˆ’ 4 + 1 < 3 + 2 + 2
β†’ 0 < + 4 + 6 + 5 > 0
Debe cumplirse que el discriminante sea menor que
cero:
βˆ† < 0
4 + 6 βˆ’ 20 < 0
β†’ 4 + 6 < 20 β†’ βˆ’ √20 < 4 + 6 < √20
β†’ βˆ’βˆš20 βˆ’ 6 < 4 < √20 βˆ’ 6
4 ∈0 βˆ’ √20 βˆ’ 6, √20 βˆ’ 6 .
Finalmente se tiene:
4 ∈ 0 βˆ’ 4, 8. ∧ 4 ∈0 βˆ’ √20 βˆ’ 6, √20 + 6 .
4 ∈ 0 βˆ’ 4, √20 βˆ’ 6.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
51)
! = | βˆ’ 1| + | + 1|
Puntos crΓ­ticos = { 1, -1}
2 0 βˆ’ ∞, βˆ’1. β†’ | βˆ’ 1| = βˆ’ βˆ’ 1
| + 1| = βˆ’ + 1
! = βˆ’ βˆ’ 1 βˆ’ + 1 = βˆ’ + 1 βˆ’ βˆ’ 1
! = βˆ’2
b.- .βˆ’1,1. β†’ | βˆ’ 1| = βˆ’ βˆ’ 1
| + 1| = + 1
! = βˆ’ βˆ’ 1 + + 1 = βˆ’ + 1 + + 1
! = 2
c.- .1, ∞. β†’ | βˆ’ 1| = βˆ’ 1
| + 1| = + 1
! = βˆ’ 1 + + 1 = βˆ’ 1 + + 1
! = 2x
Redefiniendo a f:
! = |
βˆ’2 , < βˆ’1
2 , ∈ βˆ’1,1 .
2 , β‰₯ 1
La grΓ‘fica es:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
De la grΓ‘fica se aprecia que el rango es:
123 ! = .2, ∞ .
52)
De: βˆ’ 3 βˆ’ 4 β‰₯ 0
βˆ’ 4 + 1 β‰₯ 0
≀ βˆ’1 Γ³ β‰₯ 4
β†’ - ! = 0 βˆ’ ∞, βˆ’10 s .4, ∞ .
βˆ’ 3 βˆ’ 4 = βˆ’ 3 + 9/4 βˆ’ 4 βˆ’ 9/4
= βˆ’ βˆ’
N
%
De:
≀ βˆ’1 Γ³ β‰₯ 4
βˆ’ ≀ βˆ’
N
Γ³ βˆ’ β‰₯
N
βˆ’ β‰₯
N
%
Γ³ βˆ’ β‰₯
N
%
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
βˆ’ βˆ’
N
%
β‰₯ 0 Γ³ $ βˆ’ & βˆ’
N
%
β‰₯ 0
βˆ’ βˆ’
N
%
β‰₯ 0
! β‰₯ 0
123 ! = .0, ∞ .
Para graficar, se parte de la ecuaciΓ³n dada:
! = √ βˆ’ 3 βˆ’ 4
! = M βˆ’ βˆ’
N
%
= M βˆ’ βˆ’
N
%
β†’ = βˆ’ βˆ’
N
%
+
N
%
= βˆ’
$ βˆ’ & βˆ’ =
N
%
$
Ε“
O
&
O
Oβ„’
β€˜
βˆ’
O
Oβ„’
β€˜
= 1 β†’ β„Ž@EΓ©)G,+2
u
2 =
N
G =
N
Pero como se tiene la raΓ­z cuadrada -----la mitad de la hipΓ©rbola
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
53)
! =
O %
; β‰  βˆ’3
! = βˆ’ 4 βˆ’ 1
Como f(x) es polinomio β†’ - ! = 1 βˆ’ 3Q
! = βˆ’ 4 + 4 βˆ’ 5
! = βˆ’ 2 βˆ’ 5
La grΓ‘fica f…es una parΓ‘bola que se abre hacia arriba y de vΓ©rtice
V(h,k)
Y β„Ž, 4 = 2, βˆ’5
Ran (f) = .5, ∞ .
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
54)
Factorizando:
! =
O `
N
; β‰  βˆ’1, β‰  βˆ’5
! =
N
N
; β‰  βˆ’1, β‰  βˆ’5
! = βˆ’ 2
- ! = 1 βˆ’ βˆ’1, βˆ’5Q
= βˆ’ 2 β†’ = + 2
123 ! = 1 βˆ’ βˆ’3, βˆ’7Q
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
55)
! = | |. | βˆ’ 1|
Puntos crΓ­ticos = {0,1}
a) 0 βˆ’ ∞, 0. β†’ | | = βˆ’
| βˆ’ 1| = βˆ’ βˆ’ 1
! = βˆ’ 1 = βˆ’
G .0, 1. β†’ | | =
| βˆ’ 1| = βˆ’ βˆ’ 1
! = βˆ’ βˆ’ 1 = βˆ’
' .1 , ∞. β†’ | | =
| βˆ’ 1| = βˆ’ 1
! = βˆ’ 1 = βˆ’
! = u
βˆ’ , < 0
βˆ’ , 0 ≀ < 1
βˆ’ , β‰₯ 1
D (f) = R
Para determinar el rango se puede realizar el grΓ‘fico:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
Ran (f) = [0, ∞ .
56)
L> +,= L2[,= L> +2 !*3'@Γ³3 2 [)2J,=, => [@>3>:
- ! = .βˆ’2, 10 s 01, 40
βˆ’2 ≀ ≀ 1
βˆ’4 ≀ 2 ≀ 2 β†’ βˆ’3 ≀ 2 + 1 ≀ 2 + 1
βˆ’3 ≀ ! ≀ 3
Ran(f1) = [-3, 3]
!2 = βˆ’ 3 = $ βˆ’ 3 +
6
%
& βˆ’
6
%
! = $ βˆ’ & βˆ’
6
%
De: 1< x ≀ 4
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
- - < x - ≀
N
0 ≀ $ βˆ’ & ≀
N
%
βˆ’
6
%
≀ βˆ’ 3 βˆ’
6
%
≀ 4
123 ! = 5βˆ’
6
%
, 48
Ran (f) = Ran (! + 123 !
= [-3, 3] U 5βˆ’
6
%
, 48
123 ! = .βˆ’3, 40
β†’ E2)Γ‘G,+2 L> tΓ©)[@'> $ , βˆ’
6
%
& K*> => 2G)>
β„Ž2'@2 2))@G2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
57)
Factorizando se tiene:
+ βˆ’ 2 βˆ’ 2 = + 1 βˆ’ 2 + 1
= + 1 βˆ’ 2
Ε“ O
=
~ O β€’
= βˆ’ 2 ; β‰  βˆ’1
! = P
βˆ’ 2 ; ∈ .βˆ’3,2.βˆ’ βˆ’1Q
8 βˆ’ 2 ; ∈ .2, 4 .
Sea:
! = βˆ’ 2 β†’
E2)2G,+2 K*> => 2G)> β„Ž2'@2 2))@G2
β„Ž = 0 ; 4 = βˆ’2
La grΓ‘fica serΓ‘:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
D(f) = [-3, 4 [-{-1|
Ran (f) = [-2, 7[
58)
Reescribir la funciΓ³n con valor absoluto
| + 3| = P
+ 3 ; β‰₯ βˆ’3
βˆ’ + 3 ; < βˆ’3
a) 0 βˆ’ 5, βˆ’3. β†’ | + 3| = βˆ’ βˆ’ 3
b) .βˆ’3, βˆ’10 β†’ | + 3| = + 3
! = β€’
βˆ’ βˆ’ 3 ; ∈0 βˆ’ 5, βˆ’3.
+ 3 ; ∈ . βˆ’3, βˆ’1 0
2 ; ∈ 0 βˆ’ 1, 20
12 βˆ’ 2 ; < 2
- ! = .βˆ’5, ∞ .
La grΓ‘fica es:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
123 ! = 0 βˆ’ ∞ , 8 0
59)
Sea: ! = √ βˆ’ 9
= βˆ’ 9 β†’ βˆ’ = 9
O
6
βˆ’
O
6
= 1 β†’ β„Ž@EΓ©)G,+2
! = √ βˆ’ 9 ; =>?@ β„Ž@EΓ©)G,+2 β„Ž,)@J,3[2+
Del valor absoluto:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! = | + 3| βˆ’ 2
0 βˆ’ 3, 50 β†’ | + 3| = + 3
! = + 3 βˆ’ 2 = + 1
Y: ! = βˆ’ 10 + 26
= βˆ’ 10 + 25 + 26 βˆ’ 25
! = βˆ’ 5 + 1 β†’ E2)Γ‘G,+2 K*> => 2G)>
Hacia arriba
β†’ - ! =0 βˆ’ 5, 70
La grΓ‘fica de f(x) es:
! = u
√ βˆ’ 9 ; βˆ’5 < ≀ βˆ’3
+ 1 ; βˆ’3 < ≀ 5
βˆ’ 5 + 1 ; 5 < ≀ 7
123 ! = 0 βˆ’ 2, 60
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
60)
swsa
123 ! = .0,90
61)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
Sean: ! = βˆ’ 2 β†’
E2)Γ‘G,+2 K*> => 2G)> β„Ž2'@2 2))@G2
β„Ž = 0, 4 = βˆ’2
! = βˆ’ | βˆ’ 2|
00, 2 . β†’ | βˆ’ 2| = βˆ’ + 2
! = + βˆ’ 2 = 2 βˆ’ 2
.2, 4 . β†’ | βˆ’ 2| = βˆ’ 2
! = βˆ’ + 2 = 2
! = 2 + √ βˆ’ 4
De: y= 4 + G√ βˆ’ β„Ž β†’ E2)Γ‘G,+2 K*> => 2G)> β„Ž2'@2
+2 L>)>'β„Ž2 ; β„Ž = 4 , 4 = 2
β„Ž = 2 ; 4 = 0
El dominio de f(x) es:
- ! = .βˆ’3,0. s .0,2 .s .2, 4.s .4,8 .
- ! = .βˆ’3, 8 .
La grΓ‘fica de f es:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
123 ! = [-2, 7]
62)
W = r
+ 10 + 21 ; ∈ .βˆ’7, βˆ’5. s.βˆ’2, βˆ’1.
√ + 1 + 1 ; ∈ 0 βˆ’ 1 , 3 0
Sea; W = + 10 + 21 = + 10 + 25 + 21 βˆ’ 25
W = + 5 βˆ’ 4
---------- parΓ‘bola que se abre hacia arriba: h=-5, k= -4
De:
βˆ’7 ≀ < βˆ’5 Γ³ βˆ’ 2 ≀ < βˆ’1
βˆ’2 ≀ + 5 < 0 Γ³ 3 ≀ + 5 < 4
0 ≀ + 5 ≀ 4 Γ³ 9 ≀ + 5 < 16
βˆ’4 ≀ + 5 βˆ’ 4 ≀ 0 Γ³ 5 ≀ + 5 βˆ’ 4 < 12
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
βˆ’4 ≀ f(x) ≀ 0 Γ³ 5 ≀ ! < 12
123 W = .βˆ’4,0 . s .5, 12 .
W = 1 + √ + 1
-1< x ≀ 3
0 < + 1 ≀ 4
0 < √ + 1 ≀ 2
1 < √ + 1 + 1 ≀ 3
123 W = ]1, 3 ]
123 W = = .βˆ’4,0 . s 01, 3 0s .5, 12 .
63)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
| βˆ’ 2| > 3 β†’ βˆ’ 2 > 3 Γ³ βˆ’ 2 < βˆ’3
β†’ > 5 Γ³ < βˆ’1
! =
N
=
7
= 1 +
7
; x β‰  2
De:
> 5 Γ³ < βˆ’1
βˆ’ 2 > 3 Γ³ βˆ’ 2 < βˆ’3
AdemΓ‘s: x-2 >0 β†’
`
> 0
βˆ’ 2 < βˆ’3 β†’ x-2 <0
β†’ < 0
< Γ³ > βˆ’
0 < < Γ³ βˆ’ < < 0
0 <
7
<
7
Γ³ βˆ’
7
<
7
< 0
1 < 1 +
7
<
7
+ 1 Γ³ 1 βˆ’
7
< 1 +
7
< 1
1< 1 +
7
<
`
Γ³ βˆ’
%
< 1 +
7
< 1
1 < ! <
`
Γ³ βˆ’
%
< ! < 1
123 ! =0 βˆ’
%
, 1. s 01,
`
.
! = : + 4 βˆ’ 1 = : + 4 + 4 βˆ’ 5
! = : + 2 βˆ’ 5
= + 2 βˆ’ 5
+ 2 βˆ’ = 5
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
O
N
βˆ’
O
N
= 1 β†’ β„Ž@EΓ©)G,+2
De: 0 < x < 1
2 < + 2 < 3
4 < + 2 < 9
βˆ’1 < + 2 βˆ’ 5 < 4
0 < : + 2 βˆ’ 5 < 2
123 ! = 00, 2 .
! = 2 + |2 βˆ’ 5|
.2, 5/2. β†’ |2 βˆ’ 5| = βˆ’2 + 5
! = 2 + 5 βˆ’ 2 = 7 βˆ’ 2
.
N
, 30 β†’ |2 βˆ’ 5| = 2 βˆ’ 5
! = 2 βˆ’ 5 + 2 = 2 βˆ’ 3
! = r
7 βˆ’ 2 ; 2 ≀ < 5/2
2 βˆ’ 3 ;
N
≀ ≀ 3
De: 2 ≀ <
N
4 ≀ 2 < 5
βˆ’5 < βˆ’2 ≀ βˆ’4
2 < 7 βˆ’ 2 ≀ 3
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
N
≀ ≀ 3
5 ≀ 2 ≀ 6
2 ≀ 2 βˆ’ 3 ≀ 3
123 ! = .2, 30
El rango se la funciΓ³n serΓ‘, la suma de los rangos de las funciones
f1, f2 y f3:
123 ! = ]-4/3 ,1[ U ]1, 10/3[U 00, 2 . s 02, 30
123 ! = 0 βˆ’
%
,
`
.
La grΓ‘fica de f, es:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
64)
L1:
[23W 45 = 1 = ?
ΕΈ
‰‰‰‰‰ = ‰‰‰‰‰ ; y = mx+b
P(0,0) β†’ 0 = G β†’ = ?
? = 1 β†’ = ; 0 ≀ ≀ 2.5
L1: y = ; 0 ≀ < 2.5
L2:
Entre A y B la recta es paralela al eje x, por tanto:
= 2.5
L2: y = 2.5 ; 2.5 ≀ < 4.5
L3:
1-
‰‰‰‰ = J + Β‘-
‰‰‰‰ = 3.5
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
J + 2.5 + J = 3,5 β†’ J = 0.5
y = mx+b
B(4.5;2.5) β†’ 2.5 = 4.5? + G
C(5,3) β†’ 3 = 5? + G
β†’ B
2.5 = 4.5? + G
βˆ’3 = βˆ’5? + G
Se obtiene β†’ ? = 1 ; b =2
= βˆ’ 2
L3: y = βˆ’ 2 ; 4.5 ≀ < 5
L4:
C(5,3) β†’ 3 = 5? + G
D(8,0) β†’ 0 = 8? + G
b = 8
m =-1
= 8 βˆ’
L4: y = 8 βˆ’ ; 5 ≀ ≀ 8
! = β€’
; 0 ≀ < 2,5
2.5 ; 2.5 ≀ < 4.5
βˆ’ 2 ; 4.5 ≀ < 5
8 βˆ’ ; 5 ≀ ≀ 8
65)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
a) ! = 2 βˆ’ 3 %
+ 5
Si:
! βˆ’ = βˆ’! βˆ’ βˆ’ βˆ’ βˆ’@?E2)
! βˆ’ = ! βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ E2)
! βˆ’ = 2 βˆ’ βˆ’ 3 βˆ’ %
+ 5
= 2 βˆ’ 3 %
+ 5
! βˆ’ = ! βˆ’ βˆ’ βˆ’ βˆ’E2)
b) ! = 5 βˆ’ 3 + 1
! βˆ’ = 5 βˆ’ βˆ’ 3 βˆ’ + 1
= βˆ’ 5 + 3 + 1
= βˆ’ 5 βˆ’ 3 βˆ’ 1
! βˆ’ β‰  βˆ’! βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 3, @?E2)
! βˆ’ β‰  ! ----------------- no par
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
c) β„Ž =
β„Ž βˆ’ = = . 0
= βˆ’ = βˆ’β„Ž
β„Ž βˆ’ = βˆ’β„Ž βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @?E2)
d) ! = √2 + 2 + βˆ’ √2 βˆ’ 2 +
! βˆ’ = :2 + 2 βˆ’ + βˆ’ βˆ’ :2 βˆ’ 2 βˆ’ + βˆ’
! βˆ’ = √2 βˆ’ 2 + βˆ’ √2 + 2 +
! βˆ’ = βˆ’Β’βˆš2 + 2 + βˆ’ √2 βˆ’ 2 + Β£
! βˆ’ = βˆ’! βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’Β€?E2)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
66)
! = βˆ’ + 8 βˆ’ 10
= βˆ’ βˆ’ 8 + 10
= βˆ’ βˆ’ 8 + 16 + 6
6 βˆ’ βˆ’ 4
! βˆ’ = 6βˆ’ βˆ’ βˆ’ 4
= 6 βˆ’ .βˆ’ + 4
= 6 βˆ’ + 4
! βˆ’ = βˆ’.6 +( + 4 0
De:
! = βˆ’ βˆ’ 8 βˆ’ 10
= βˆ’ + 8 + 10
= βˆ’ + 8 + 16 + 6
6 βˆ’ + 4
! βˆ’ = 6βˆ’ βˆ’ + 4
= 6 βˆ’ .βˆ’ βˆ’ 4
= 6 βˆ’ βˆ’ 4
! βˆ’ = βˆ’.6 + βˆ’ 4 0
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! = P
6 βˆ’ βˆ’ 4 ; 2 ≀ ≀ 6
6 βˆ’ + 4 ; βˆ’6 ≀ < 2
La funciΓ³n no es par ni impar
67)
- ! = 0,1,2Q
- W = 0,2,4Q
- ! ∩ - W = 0, 2Q
- ! + W = 0, 2Q
f+g = , ! 6W / ∈ 0, 2Q
a) ! + W 2 = $2, 0 + &Q = 2,
! + W 2 =
G
!. W 2 = , / = ! . W , ∈ - ! ∩ - W Q
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
- ! ∩ - W = 0, 2Q
!. W 2 = 0.
1
2
!. W 2 = 0
c.-
(! + 3W 2 = , / = ! + 3W , ∈ - ! ∩
- W QQ
(! + 3W 2 = 2, 0 + 3 $ &Q
(! + 3W 2 =
68)
a) ! = | | ; W =
| | = B
, β‰₯ 0
βˆ’ , < 0
! + W = ! + W s ! + W
- ! ∩ - W = β‰₯ 0 ∩ 1
- ! ∩ - W = β‰₯ 0
- ! ∩ - W = < 0 ∩ 1
- ! ∩ - W = < 0
! + W = B
2 ; β‰₯ 0
0 ; < 0
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
W βˆ’ ! = B
0 ; β‰₯ 0
2 ; < 0
b) ! = ; W = B βˆ’1,2 , $ ,
%
& , 2, βˆ’3 , ~4, √2β€’Β₯
! + W =?
- ! = 1 ; - W = Bβˆ’1, , 2, 4Β₯
- ! ∩ - W = Bβˆ’1, , 2, 4Β₯
! + W = , / = ! + W , ∈ - ! ∩ - W Q
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! + W = 1, βˆ’1 + 2 , $ , +
%
& , 2,2 βˆ’ 3 , ~4, √2 + 4β€’Q
! + W = 1, 1 , Β§
1
2
,
5
4
Β¨ , 2, βˆ’1 , ~4, √2 + 4β€’Q
W βˆ’ ! =?
- ! = 1 ; - W = Bβˆ’1, , 2, 4Β₯
- ! ∩ - W = Bβˆ’1, , 2, 4Β₯
W βˆ’ ! = , / = W βˆ’ ! , ∈ - ! ∩ - W Q
! + W = 1,2 + 1 , $ , %
βˆ’ & , 2, βˆ’3 βˆ’ 2 , ~4,4 βˆ’ √2β€’Q
! + W = 1, 3 , Β§
1
2
,
1
4
Β¨ , 2, βˆ’5 , ~4,4 βˆ’ √2β€’Q
69)
De:
0 ≀ ≀ 3 β†’ 0 ≀ 3 ≀ 9
3 < ≀ 6 β†’ 9 ≀ 3 ≀ 18
Se tiene entonces:
! 3 = P
2 , 0 ≀ 3 ≀ 9 β†’ !
3 , 9 < 3 ≀ 18 β†’ !
De:
0 ≀ ≀ 3 β†’ βˆ’2 ≀ βˆ’ 2 ≀ 1
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
3 < ≀ 6 β†’ 1 < βˆ’ 2 ≀ 4
! 3 = P
2 , βˆ’ 2 ≀ βˆ’ 2 ≀ 1 β†’ !
3 , βˆ’ 1 < βˆ’ 2 ≀ 4 β†’ !%
Sea: W = ! 3 + ! βˆ’ 2
W = ! + ! s ! + !% s ! + ! s + ! + !%
! + ! = 2 + 2 = 4 ; - ! ∩ - ! = .0,10
! + !% = 2 + 3 = 5 ; - ! ∩ - !% = .1.40
! + ! = βˆ… ; - ! ∩ - ! = βˆ…
! + !% = βˆ… ; - ! ∩ - !% = βˆ…
W = P
4 , ∈ .0,10
5 , ∈01,40
- W = .0,10s 01, 40
70)
Βͺ

+ ! =? ; g(x) β‰  0
! = Β’~0, √2β€’, ~1, √5β€’, 2,0 Β£
W = ~0, √8β€’, $2, & , ~4, √3β€’Q
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
- ! = 0,1,2Q ; - W = 0,2,4Q
- ! ∩ - W = 0,2Q
Βͺ

= $ ,
Βͺ

& / ∈ - ! ∩ - W Q
Βͺ

= r$0,
√_
√
& , Ζ’2,
β€”
OΜ€
β€žΒ« ; g(x) β‰  0
2 βˆ‰ - $
Βͺ

&
Βͺ

= 0, 2 Q
Βͺ

+ ! = $ ,
Βͺ

+ ! & / ∈ - ! ∩ - W Q
f(2) =0
Βͺ

+ ! = B$0,
√_
√
+ √2 &8
Βͺ

+ ! = 0,4 Q
71)
! + W = ?
Sea:
! = 3 + 4 ; ∈ .0,20
! = 1 βˆ’ ; ∈ 02, 50
W = ; ∈ .0,3 .
W = 4 ; ∈ .3, 60
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! + W = ! + W s ! + W s ! + W s ! + W
- ! ∩ - W = .0,20
- ! ∩ - W = βˆ… β†’ βˆ„ ! + W
- ! ∩ - W =02,3.
- ! ∩ - W = .3,50
! + W = 3 + 4 + = + 3 + 4
! + W = 1 βˆ’ + = βˆ’ + 1
! + W = 1 βˆ’ + 4 = 5 βˆ’
! + W = u
+ 3 + 4 , ∈ .0,20
βˆ’ + 1 , ∈ 02,30
5 βˆ’ , ∈ .3, 50
- ! = .0,20 s02,3.s.3,50
- ! = .0, 50
La grΓ‘fica es:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
72)
! = √9 βˆ’
De: 9 βˆ’ β‰₯ 0 β†’ ≀ 9
β†’ βˆ’3 ≀ ≀ 3
- ! = .βˆ’3, 30
W = 2 βˆ’ | βˆ’ 1| ; ∈ 0 βˆ’ 2, 50
| βˆ’ 1| = P
βˆ’ 1 ; β‰₯ 1
βˆ’ βˆ’ 1 ; < 1
a) 0 βˆ’ 2, βˆ’1. β†’ | βˆ’ 1| = 1 βˆ’
W = 2 + βˆ’ 1 = + 1
b.- .1,50 β†’ | βˆ’ 1| = βˆ’ 1
W = 2 βˆ’ + 1
W = 3 βˆ’
W = P
+ 1 , ∈0 βˆ’ 2,1.
3 βˆ’ , ∈ .1,50
! + W = ! + W s ! + W
- ! ∩ - W = 0 βˆ’ 2,1.
- ! ∩ - W = .1,3 0
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! + W = √9 βˆ’ + + 1
! + W = √9 βˆ’ βˆ’ + 3
! + W = r
√9 βˆ’ + + 1 , ∈ 0 βˆ’ 2,1.
√9 βˆ’ βˆ’ + 3 , ∈ .1,30
73)
! = | βˆ’ 2| βˆ’ 1 ; ∈ .βˆ’2,6.
W = P
βˆ’2 , ∈ .βˆ’3,2 .
2 , ∈ .2,6.
)>>=')@G@>3L, ! :
| βˆ’ 2| = P
βˆ’ 2 ; β‰₯ 2
βˆ’ βˆ’ 2 ; < 2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
a) 0 βˆ’ 2,2 . β†’ | βˆ’ 2| = βˆ’ βˆ’ 2
! = βˆ’ + 2 βˆ’ 1
! = 1 βˆ’
b) .2, 6 . β†’ | βˆ’ 2| = βˆ’ 2
! = βˆ’ 2 βˆ’ 1
! = βˆ’ 3
! = P
1 βˆ’ ; ∈ 0 βˆ’ 2, 2 .
βˆ’ 3 , ∈ .2, 6 .
W = P
βˆ’2 , ∈ .βˆ’3,2 .
2 , ∈ .2,6 .
! + W = ?
! + W = ! + W s ! + W s ! + W s ! + W
Realizar la intersecciΓ³n de dominios:
- ! ∩ - W = 0 βˆ’ 2,2. ∩ .βˆ’3, βˆ’3. = .βˆ’2.2 .
- ! ∩ - W = 0 βˆ’ 2,2. ∩ .2,6 . = βˆ… β†’ βˆ„ ! + W
- ! ∩ - W = .2,6. ∩ .βˆ’3,2 . = βˆ… β†’ βˆ„ ! + W
- ! ∩ - W = .2, 6. ∩ .βˆ’2,6. = .2, 6 .
! + W = ! + W s ! + W
! + W = 1 βˆ’ βˆ’ 2 = βˆ’ βˆ’ 1
! + W = βˆ’ 3 + 2 = βˆ’ 1
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! + W = P
βˆ’ βˆ’ 1 , ∈ .βˆ’2, 2 .
+ 1 , ∈ .2, 6 .
+2= W)Γ‘!@'2= L> !, W ! + W =,3:
!:
g:
f+g :
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
74)
Sean:
! = + 3 ; ! = 3 + 2
W = 2 βˆ’ 4 ; W = 2 βˆ’
! + W = ! + W s ! + W s ! + W s ! + W
Si las intersecciones de los dominios de las funciones indicadas
existen, las sumas de las funciones existen, caso contrario no
existen.
- ! ∩ - W = 0 βˆ’ 4,00 ∩ .βˆ’3, 2 0 = .βˆ’3,00
- ! ∩ - W = 0 βˆ’ 4,00 ∩ 02, 8 0 = βˆ… β†’ βˆ„ ! + W
- ! ∩ - W = 00, 50 ∩ .βˆ’3, 2 0 =00, 20
- ! ∩ - W = 00, 50 ∩02, 80 =02 , 5.
! + W = + 3 + 2 βˆ’ 4 = 3 βˆ’ 1
! + W = 3 + 2 + 2 βˆ’ 4 = 5 βˆ’ 2
! + W = 3 + 2 + 2 βˆ’ = 2 + 4
! + W = u
3 βˆ’ 1 , ∈ .βˆ’3, 00
5 βˆ’ 2 , ∈ 00, 20
2 + 4 , ∈ 02, 5 .
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
75)
W = βˆ’ 2 ; β‰₯ βˆ’2
>+ L,?@3@, >=:
D(f) = [-2, ∞ .
β„Ž = √ βˆ’ 9 ∢ - β„Ž =?
De: βˆ’ 9 β‰₯ 0
+ 3 βˆ’ 3 β‰₯ 0
β†’ ≀ βˆ’3 Γ³ β‰₯ 3
- β„Ž = ]-∞ , βˆ’30 s .3, ∞ .
! = βˆ’ | βˆ’ 1|
Punto crΓ­tico = {1}
a) X <1 β†’ | βˆ’ 1| = βˆ’ βˆ’ 1
! = + βˆ’ 1 = 2 βˆ’ 1
b) xβ‰₯ 1 β†’ | βˆ’ 1| = βˆ’ 1
! = βˆ’ + 1 = 1
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! = B
1 , β‰₯ 1
2 βˆ’ 1 , < 1
- ! + W = - ! ∩ - W
! + W = ! + W s ! + W
- ! ∩ - W = .1, ∞ . ∩ .βˆ’2, ∞ . = .1, ∞.
- ! ∩ - W =0 βˆ’ ∞, 1 . ∩ .βˆ’2, ∞ .βˆ’2,1 .
! + W = P βˆ’ 2 + 1
βˆ’ 2 + 2 βˆ’ 1
! + W = P
βˆ’ 1 , β‰₯ 1
+ 2 βˆ’ 3 , βˆ’2 ≀ < 1
- ! + W = .βˆ’2, 1 . s .1, ∞ .
= .βˆ’2, ∞ .
- ! + W . β„Ž0 = - ! + W ∩ - β„Ž
Como: - β„Ž = ]-∞ , βˆ’30 s .3, ∞ .
- ! + W . β„Ž0 = .βˆ’2, ∞ . ∩ ]-∞ , βˆ’30 s .3, ∞ .Q
- ! + W . β„Ž0 = [3, ∞ .
76)
! = ; W = |2 |
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
Como: |2 | = B
2 ; β‰₯ 0
βˆ’2 ; < 0
! + W = ! + W s ! + W
Analizar las intersecciones de los dominios:
- ! ∩ - W = 1 ∩ .0, ∞. = .0, ∞ .
- ! ∩ - W = 1 ∩ 0 βˆ’ ∞, ,. =0 βˆ’ ∞, 0 .
! + W = + 2 = + 2 + 1 βˆ’ 1 = + 1 βˆ’ 1
! + W = βˆ’ 2 = βˆ’ 2 + 1 + 1 = βˆ’ 1 + 1
! + W = P
+ 2 ; ∈ .0, ∞ .
βˆ’ 2 ; ∈ 0 βˆ’ ∞, 0 .
La grΓ‘fica de las parΓ‘bolas son:
- ! + W = 1
123 ! + W = .0, ∞ .
77)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
!: 0 βˆ’ 3,50 + .βˆ’5,30 / ! = βˆ’ + 2 + 3
βˆ’ + 2 + 3 = βˆ’ βˆ’ 2 + 1 + 4
= 4 βˆ’ βˆ’ 1
W = √9 βˆ’
Si: 9 βˆ’ β‰₯ 0
≀ 9 β†’ βˆ’3 ≀ ≀ 3
- W = .βˆ’3, 30
- ! ∩ - W = 0 βˆ’ 3,50 s .βˆ’5, 30 ∩ .βˆ’3,30 = .βˆ’3,30
β†’ βˆƒ

Βͺ

Βͺ
=
% O
√6 O
√9 βˆ’ > 0
9 βˆ’ > 0
< 9 β†’ βˆ’3 < < 3
- $

Βͺ
& = 0 βˆ’ 3,3.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
78)
! = βˆ’ 2 + 2 ; β‰₯ 5
W = 2| βˆ’ 1| + 1 ; ∈ .βˆ’3,4.
| βˆ’ 1| = P
βˆ’ 1 , β‰₯ 1
βˆ’ βˆ’ 1 , < 1
.βˆ’3, 1 . β†’ | βˆ’ 1| = βˆ’ βˆ’ 1
W = βˆ’2 βˆ’ 1 + 1
W = 3 βˆ’ 2
.1, 4. . β†’ | βˆ’ 1| = βˆ’ 1
W = 2 βˆ’ 1 + 1
W = 2 βˆ’ 1
W = P
3 βˆ’ 2 , ∈ .βˆ’3,1.
2 βˆ’ 1 , ∈ .1, 4.
! + W = ! + W s ! + W
Se debe determinar el dominio de f:
! = βˆ’ 2 + 2 ; β‰₯ 5
5= ( βˆ’ 2 + 1 + 1
5 = βˆ’ 1 + 1
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
4 = βˆ’ 1
βˆ’ 1 = β‰  2
= 3 ; = βˆ’1
- ! = 0 βˆ’ ∞, βˆ’10 s .3, ∞ .
! + W β†’ - ! ∩ - W = 0 βˆ’ ∞, βˆ’10s .3, ∞ .Q ∩ .βˆ’3,1.
- ! ∩ - W = .βˆ’3, βˆ’10
! + W = βˆ’ 2 + 2 + 3 βˆ’ 2
! + W = βˆ’ 4 + 5 = βˆ’ 4 + 4 + 1
! + W = βˆ’ 2 + 1
! + W β†’ - ! ∩ - W = 0 βˆ’ ∞, βˆ’1s.3, ∞ . Q ∩ .1, 4.
- ! ∩ - W = .3, 4.
! + W = βˆ’ 2 + 2 + 2 βˆ’ 1
! + W = + 1
! + W = P
βˆ’ 2 + 1, ∈ .3, βˆ’10
+ 1 , ∈ .3,4.
Su rango es:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
-3 ≀ x ≀ -1
βˆ’5 ≀ βˆ’ 2 ≀ βˆ’3
9 ≀ βˆ’ 2 ≀ 25
10 ≀ βˆ’ 2 + 1 ≀ 26
123 W = 010,260
3 ≀ < 4
9 ≀ < 16
10 ≀ + 1 < 17
123 W = .10, 17 .
123 ! + W = .10,260
79)
Β― + 4Β° = 4 ; β‰₯ 0
= 1 βˆ’
%
βˆ’
%
< 0 βˆ’ βˆ’ βˆ’ βˆ’E2)Γ‘G,+2 => 2G)> 2 +2 @JK*@>)L2
β„Ž = 1 ; 4 = 0
- ! = 0 βˆ’ ∞, 10
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
123 ! = .0, ∞ .
80)
4 βˆ’ = 144
O
^
βˆ’
O
%%
= 1 βˆ’ βˆ’ βˆ’ β„Ž@EΓ©)G,+2
2 = 6 ; G = 12
AsΓ­ntotas:
4 βˆ’ = 0
2 βˆ’ 2 + = 0
2=Γ­3[,[2=: P
= 2
= βˆ’2
- ! = 1
)23 ! = 0 βˆ’ ∞, 60 s .6, ∞ .
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
81)
! = + 2 ; ∈ .βˆ’1, 2.
βˆ’1 ≀ < 2
0 ≀ < 4
2 ≀ + 2 < 6
123 ! = .2, 6 .
82)
! = + 4 βˆ’ 1
! = + 4 + 4 βˆ’ 5
! = + 2 βˆ’ 5 ------parΓ‘bola que se
Abre hacia arriba.
β„Ž = βˆ’2 ; 4 = βˆ’5 ; Y βˆ’2, βˆ’5
De:
βˆ’2 < ≀ 3
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
0 < + 2 ≀ 5
0 < + 2 ≀ 25
βˆ’5 < + 2 βˆ’ 5 ≀ 20
123 ! = 0 βˆ’ 5, 20 0
83)
! = 3 + 2 βˆ’ ; ∈ .βˆ’2,2.
! = βˆ’ βˆ’ 2 + 1 + 4
! = 4 βˆ’ βˆ’ 1
βˆ’2 ≀ < 2
βˆ’3 ≀ βˆ’ 1 < 1
0 ≀ βˆ’ 1 ≀ 9
βˆ’9 ≀ βˆ’ βˆ’ 1 ≀ 0
βˆ’5 ≀ 4 βˆ’ βˆ’ 1 ≀ 4
Ran(f) = [-5, 4[
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
84)
! = βˆ’ 2 ; ! = + 5
! = 2 βˆ’ 4
W = ; W = 3
β„Ž = ! W + ! W + ! W + ! W + ! W + ! W
- ! ∩ - W = .βˆ’4,20 ∩ 00,2. = 00,20
- ! ∩ - W = .βˆ’4,20 ∩ .2,8. = βˆ…
- ! ∩ - W =02,60 ∩ 00,20 = βˆ…
- ! ∩ - W =02,60 ∩ .2,8. = .2,6 0
- ! ∩ - W =06, 90 ∩ 0, 20 = βˆ…
- ! ∩ - W =06, 90 ∩ .2,8 . =06,8.
β„Ž = ! W + ! W + ! W
! W = βˆ’ 2 . = βˆ’ 2 %
! W = ( + 5 . 3 = + 15
! W = 3 2 βˆ’ 4 = 6 βˆ’ 12
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
β„Ž = β€’
βˆ’ 2 %
, ∈ 00,2 0
3
2
+ 15 , ∈02,60
6 βˆ’ 12 , ∈06,8.
b)
Βͺβ€”
β€”
=
Ε“
O
ΒͺO
O
= Β±
O
N
=
^
`
ΒͺO
Ε“
=
%
β„Ž =
⎩
βŽͺ
⎨
βŽͺ
⎧
βˆ’ 2
, ∈ 00,2 0
6
+ 10
, ∈02,60
3
2 βˆ’ 4
, ∈06,8.
85)
! = P
| βˆ’ 2|| + 2| , ∈ .βˆ’6,00
2 , β‰₯ 2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
a) .βˆ’6, βˆ’2. β†’ | βˆ’ 2| = βˆ’ βˆ’ 2
| + 2| = βˆ’ + 2
! = βˆ’ 2 + 2 = βˆ’ 4
a) [-2,0] β†’ | βˆ’ 2| = βˆ’ βˆ’ 2
| + 2| = + 2
! = βˆ’ βˆ’ 2 + 2 = 4 βˆ’
! = u
βˆ’ 4 , ∈ .βˆ’6, βˆ’2.
4 βˆ’ , ∈ .βˆ’2,00
2 , β‰₯ 2
W = B
+ 2 , β‰₯ βˆ’2
1 , < βˆ’2

Βͺ
= ?

Βͺ
=
β€”
Βͺβ€”
+
β€”
ΒͺO
+
O
Βͺβ€”
+
O
ΒͺO
+
Ε“
Βͺβ€”
+
Ε“
ΒͺO
Determinar las intersecciones de los dominios para la
existencia de las funciones:
- ! ∩ - W = .βˆ’6, βˆ’2. ∩ .βˆ’2, ∞. = βˆ…
- ! ∩ - W = .βˆ’6, βˆ’2. ∩0 βˆ’ ∞, βˆ’2. =0 βˆ’ 6, βˆ’2.
- ! ∩ - W = .βˆ’2,00 ∩ .βˆ’2, ∞. = .βˆ’2,00
- ! ∩ - W = .βˆ’2, 00. ∩ 0 βˆ’ ∞, βˆ’2. = βˆ…
- ! ∩ - W = .2, ∞ . ∩ .βˆ’2, ∞. = .2, ∞.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
- ! ∩ - W = .2 , ∞ . ∩ .βˆ’ ∞, βˆ’3. = βˆ…
Se tiene que:

Βͺ
=
β€”
ΒͺO
+
O
Βͺβ€”
+
Ε“
Βͺβ€”
β€”
ΒͺO
=
O %
= βˆ’ 4
O
Βͺβ€”
=
% O
= 2 βˆ’
Ε“
Βͺβ€”
=

Βͺ
= β€’
βˆ’ 4 , ∈ .βˆ’6, βˆ’2.
2 βˆ’ , ∈ .βˆ’2,00
, ∈ .2, ∞ .
123 ! = .0, ∞ .
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
86)
! = ; β‰  2 ; W = ; β‰  0
!,W = !.W 0 = ! $ &
!.W 0 = Β±β€œΕ“
Β±
= ; β‰  βˆ’1
- !,W = 1 βˆ’ βˆ’1, βˆ’2,0Q
W,! = W.! 0 = W $ &
W.! 0 =
β€”
Β±β€œO
β€”
Β±β€œO
=
Ε“Β±β€œΒΆ
Β±β€œO
β€”
Β±β€œO
=
7
= 3 + 7
- W,! = 1-{-2,0}}
- !,W ∩ - W,! = R-{-1,-2,0}
87)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
gof =g[f(x)]
W = = 2 +
! = ; β‰₯ 3
- ! = .3, ∞.
SI: β‰₯ 3
βˆ’ 2 β‰₯ 1 β†’ βˆ’ 2 > 0
β†’ >0
βˆ’ 2 β‰₯ 1
≀ 1 β†’ 0 < ≀ 1
123 ! ∩ - W =00, 1. ∩ . , ∞.= , 1. β‰  βˆ… β†’ βˆƒ W,!
123 ! βŠ† - W = ?
123 ! ⊈ - W β†’ - W,! = / ∈ - ! ! ∈ - W Q
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
- W,! = β‰₯ 3 ∧ β‰₯
β†’ β‰₯ 3 ∧ βˆ’ β‰₯ 0
β†’ β‰₯ 3 ∧ β‰₯ 0
β†’ β‰₯ 3 ∧
%
β‰₯ 0
β†’ β‰₯ 3 ∧ 4 βˆ’ βˆ’ 2 β‰₯ 0
β†’ β†’ β‰₯ 3 ∧ 2 ≀ ≀ 4
∈ .3,40
- W,! = ∈ .3, 4 0
88)
! = 2 βˆ’ 3
W = + 1
- W = 1 ; 123 W = .1, ∞ .
- ! = 1 ; 123 ! = 1
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
!,W = !.W 0 = ! + 1
!.W 0 = 2 + 1 βˆ’ 3 = 2 βˆ’ 1
123 W ∩ - ! = .1, ∞. ∩ 1 = .1, ∞ .
β†’ βˆƒ !,W
W,! = W.! 0 = ! 2 βˆ’ 3
W.! 0 = 2 βˆ’ 3 + 1
W.! 0 = 4 βˆ’ 12 + 10
123 ! ∩ - W = 1 ∩ 1 = 1
β†’ βˆƒ W,!
De: W,! = !,W
2 βˆ’ 1 = 4 βˆ’ 12 + 10
2 βˆ’ 12 + 11 = 0
=
±√ %% __
%
=
±√N^
%
La suma de los valores de x:
S= 3 +
√N^
%
+ 3 βˆ’
√N^
%
w = 6
89)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
!,W = + + 1
W = + 1
!.W 0 = + + 1 β†’ ! + 1 = + + 1
[ = + 1 ; = √[ βˆ’ 1
Ε“
! [ = √[ βˆ’ 1
Ε“
+ [
! = √ βˆ’ 1
Ε“
+
W,! = W.! . = ~√ βˆ’ 1
Ε“
+ β€’ + 1
= βˆ’ 1 + 3 √ βˆ’ 1
Ε“
+ 3 ~√ βˆ’ 1
Ε“
β€’ + 1 +
= + 3 √ βˆ’ 1
Ε“
+ 3 ~√ βˆ’ 1
Ε“
β€’ +
W,! 9 = 9 + 243√9 βˆ’ 1
Ε“
+ 27 √9 βˆ’ 1
Ε“
+ 9
= 9 +729+243(2)+108
W,! 9 = 1332
90)
! βˆ’ 1 = 3 + 2 + 12
W + 1 = 5 + 7
Se halla las funciones f(x) y g(x):
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
[ = βˆ’ 1 ; = [ + 1
! [ = 3 [ + 1 + 2 [ + 1 + 12
! [ = 3[ + 6[ + 3 + 2[ + 2 + 12
! [ = 3[ + [ 6 + 2 + 2 + 15
! = 3 + 6 + 2 + 2 + 15
Sea: [ = + 1 ; = [ βˆ’ 1
W [ = 5 [ βˆ’ 1 + 7
W [ = 5[ + 2
W = 5 + 2
La funciΓ³n compuesta fog es:
!,W = !.W 0 = ! 5 + 2
!.W 0 = 3 5 + 2 + 5 + 2 6 + 2 + 2 + 15
= 75 + 60 + 12 + 52 + 30 + 22 + 12 + 2 + 15
= 75 + 90 + 52 + 39 + 32
Si: !,W βˆ’2 = βˆ’42
!,W βˆ’2 = 75 4 + 90 βˆ’2 βˆ’ 102 + 39 + 32 = βˆ’42
159 βˆ’ 72 = βˆ’42
159 = 32
2 = 53
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
91)
r
! = √2 βˆ’ 1
W = √2 βˆ’ 7
De: !,β„Ž = W
!,β„Ž = !~β„Ž β€’
!.β„Ž 0 = √2 βˆ’ 7
β„Ž = [
! [ = √2[ βˆ’ 1 = √2 βˆ’ 7
2[ βˆ’ 1 = 2 βˆ’ 7
[ = βˆ’ 3
β†’ β„Ž = βˆ’ 3
92)
De: ! βˆ’ 2 =
[ = βˆ’ 2 ; = [ + 2
! [ =
ΒΉ
=
ΒΉ
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! =
De: !,! $ & = 5, => [@>3>:
!,! = !.! 0 = ! $ &
!.! 0 = O
Β±ΒΊβ€”
= OΒΊΒ±β€œβ€”
Β±ΒΊβ€”
=
!,! $ & =
$
O
Β±
&
O
Β±
= 5
%
= 5 β†’ 4 βˆ’ 2 = 15 βˆ’ 10
17 = 14
=
%
7
93)
!,W = 2 +16x+25
! W 0 = 2 +16x+25
Sea: g(x) = u
! * = 2 +16x+25 ------(a)
De:
! = 2 βˆ’ 4 βˆ’ 5 β†’ ! * = 2* βˆ’ 4* βˆ’ 5 ---(b)
De (a) y (b):
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
2 +16x+25 = 2* βˆ’ 4* βˆ’ 5
2* βˆ’ 4* βˆ’ 2 + 16 +30) =0
* =
%Β± : ^ _ O ^ `
%
=
%±√ ^ O _ N^
%
* = 1 Β±
%
%
√ + 8 + 16
* = 1 Β± : + 4
* = 1 + | + 4|
u= g(x)
W = P
+ 5 , β‰₯ βˆ’4
βˆ’ βˆ’ 3 , < βˆ’4
94) Si, f(x)= + 2 + 2 , β„Ž2++2) W , =@:
!,W = βˆ’ 4 + 5
De:
!.W 0 = βˆ’ 4 + 5
!.W 0 = .W 0 + 2W + 2
.W 0 + 2W + 2 = βˆ’ 4 + 5
.W 0 + 2W βˆ’ βˆ’ 4 + 3 = 0
W =
Β±:% % O %
W = βˆ’1 Β± √ βˆ’ 4 + 4
W = βˆ’1 Β± : βˆ’ 2
W = βˆ’1 + | βˆ’ 2|
W = B
βˆ’ 3 , β‰₯ 2
βˆ’ + 1 . < 2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
94)
Sean: ! = ; ! = βˆ’
W = βˆ’ ; W = 2
W, ! = (W ,! + W ,! + W ,! + W ,!
El rango de la funciΓ³n β€œf”es:
sI; < 1
β‰₯ 0 βˆ’ βˆ’ βˆ’ βˆ’123 ! = .0, ∞.
Si: β‰₯ 2 β†’
βˆ’ ≀ 8 β†’ βˆ’ ≀ βˆ’8
123 ! =0 βˆ’ ∞, βˆ’8 0
W ,! :
123 ! ∩ - W = .0, ∞. ∩ 0 βˆ’ ∞, 2.= .0,2.
123 ! βŠ† - W = ?
123 ! ⊈ - W β†’ - W ,! = / ∈ - ! ∧ ! ∈
- W
- W ,! = < 1 ∧ < 2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
< 1 ∧ | | < 2
< 1 ∧ βˆ’ √2 < < √2
∈ 0 βˆ’ √2 , 1 .
- W ,! = 0 βˆ’ √2 , 1 .
W ,! :
123 ! ∩ - W =0 βˆ’ ∞, βˆ’80 ∩0 βˆ’ ∞, 2.= βˆ’βˆž, βˆ’80
123 ! βŠ† - W = ?
123 ! βŠ† - W β†’ - W ,! = - ! = .2, ∞ .
W ,! :
123 ! ∩ - W = .0, ∞ ∩ .4, ∞.= .4, ∞.
123 ! βŠ† - W = ?
123 ! ⊈ - W β†’ - W ,! = / ∈ - ! ∧ ! ∈
- W
- W ,! = < 1 ∧ β‰₯ 4
< 1 ∧ βˆ’ 2 + 2 β‰₯ 0
< 1 ∧ ≀ βˆ’2 Γ³ β‰₯ 2 Q
∈ 0 βˆ’ ∞ , βˆ’2 0
W ,! :
123 ! ∩ - W = .βˆ’ ∞, βˆ’8 ∩ .4, ∞.= βˆ…
β†’ βˆ„ W ,!
Finalmente:
- W,! = 0 βˆ’ √2 , 1 . s .2, ∞ .s 0 βˆ’ ∞ , βˆ’2[
- W,! = 0 βˆ’ ∞ , βˆ’2[ U0 βˆ’ √2 , 1 . s .2, ∞ .
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
95)
W,! = W.! 0
Sean: ! = + 1 ; ! = βˆ’
W = βˆ’ 1 ; W = 2
W, ! = (W ,! + W ,! + W ,! + W ,!
El rango de la funciΓ³n β€œf”es:
< 1 β†’ β‰₯ 0
+ 1 β‰₯ 1
! β‰₯ 1
123 ! = .1, ∞ .
β‰₯ 4 β†’ β‰₯ 16
βˆ’ ≀ βˆ’16
123 ! =0 βˆ’ ∞, βˆ’160
W ,! :
123 ! ∩ - W = .1, ∞. ∩ 0 βˆ’ ∞, 2.= .1,2.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
123 ! βŠ† - W = ?
123 ! ⊈ - W β†’ - W ,! = / ∈ - ! ∧ ! ∈
- W
- W ,! = < 1 ∧ + 1 < 2
< 1 ∧ | | < 1
< 1 ∧ βˆ’ 1 < < 1
∈ 0 βˆ’ 1 , 1 .
- W ,! = 0 βˆ’ 1 , 1 .
W ,! :
123 ! ∩ - W =0 βˆ’ ∞, βˆ’160 ∩0 βˆ’ ∞, 2.= βˆ’βˆž, βˆ’160
123 ! βŠ† - W = ?
123 ! βŠ† - W β†’ - W ,! = - ! = .4, ∞ .
W ,! :
123 ! ∩ - W = .1, ∞ ∩ .4, ∞.= .4, ∞.
123 ! βŠ† - W = ?
123 ! ⊈ - W β†’ - W ,! = / ∈ - ! ∧ ! ∈
- W
- W ,! = < 1 ∧ + 1 β‰₯ 4
< 1 ∧ βˆ’ √3 + √3 β‰₯ 0
< 1 ∧ Β’ ≀ βˆ’βˆš3 Γ³ β‰₯ √3 Β£
∈ 0 βˆ’ ∞ , βˆ’βˆš3 0
W ,! :
123 ! ∩ - W = .βˆ’ ∞, βˆ’16 ∩ .4, ∞.= βˆ…
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
β†’ βˆ„ W ,!
Finalmente:
- W,! = 0 βˆ’ 1 , 1 . s .4, ∞ .s 0 βˆ’ ∞ , βˆ’βˆš3[
- W,! = 0 βˆ’ ∞ , βˆ’βˆš3[ U0 βˆ’ 1 , 1 . s .4, ∞ .
96)
!,W = !.W 0
Sea: W = 1 βˆ’ ; W = 2
!,W = !,W + !,W
Se debe determinar el Rango de g:
Si: X <-2
βˆ’ > 2
1-x > 3 β†’ W > 3
123 W = .3, ∞.
Si: > 6
2 > 12 β†’ W > 2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
123 W =012, ∞.
!,W :
123 W ∩ - ! = ?
123 W ∩ - ! = .3, ∞. ∩ 0 βˆ’ 2,20.=03,20.
123 W βŠ† - ! = ?
123 W ⊈ - ! β†’ - !,W = / ∈ - W ∧ W ∈
- !
- !,W = < βˆ’2 ∧ βˆ’2 < 1 βˆ’ < 20
< βˆ’2 ∧ βˆ’3 < βˆ’ < 19
< βˆ’2 ∧ βˆ’19 < < 3
∈ 0 βˆ’ 19, βˆ’2.
- !,W = 0 βˆ’ 19, βˆ’2.
(!,W = !.W 0 = ! 1 βˆ’
!.W 0 = 2 1 βˆ’ + 1
= 2 βˆ’ 4 + 2 + 1
!.W 0 = 2 βˆ’ 4 + 3
!,W :
123 W ∩ - ! = ?
123 W ∩ - ! = .12, ∞. ∩ 0 βˆ’ 2,20.=012,20.
123 W βŠ† - ! = ?
123 W ⊈ - ! β†’ - !,W = / ∈ - W ∧ W ∈
- !
- !,W = > 6 ∧ βˆ’2 < 2 < 20
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
> 6 ∧ βˆ’1 < < 10
> 6 ∧ βˆ’1 < < 10
∈ 06, 10.
- !,W = 06,10.
(!,W = !.W 0 = ! 2
!.W 0 = 2 2 + 1
= 8 + 1
!.W 0 = 8 + 1
!,W = P
2 βˆ’ 4 + 3 , ∈0 βˆ’ 19, βˆ’2.
8 + 1 , ∈ 06,10 .
97)
!,W = !.W 0
Sea: W = 2 ; W = βˆ’3
! = 3 + 2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
!,W = !,W + !,W
Se debe determinar el Rango de g:
Si: x < 0
2 < 0
β†’ W < 0
123 W =0 βˆ’ ∞, 0.
Si: β‰₯ 1
3 β‰₯ 3 β†’ βˆ’3 ≀ βˆ’3
β†’ W ≀ βˆ’3
123 W =0 βˆ’ ∞, βˆ’30
!,W :
123 W ∩ - ! = ?
123 W ∩ - ! =0 βˆ’ ∞, 0. ∩ 0 βˆ’ ∞, βˆ’3.=0 βˆ’ ∞, βˆ’3.
123 W βŠ† - ! = ?
123 W ⊈ - ! β†’ - !,W = / ∈ - W ∧ W ∈
- !
- !,W = < 0 ∧ 2 < βˆ’3
< 0 ∧ < βˆ’
∈ 0 βˆ’ ∞, βˆ’ .
- !,W = 0 βˆ’ ∞, βˆ’ .
(!,W = !.W 0 = ! 2
!.W 0 = 3 2 + 2
= 6 + 2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
!.W 0 = 6 + 2
!,W :
123 W ∩ - ! = ?
123 W ∩ - ! = .βˆ’βˆž, βˆ’3. ∩ 0 βˆ’ ∞, βˆ’3.=0 βˆ’ ∞, βˆ’3.
123 W βŠ† - ! = ?
123 W βŠ† - ! β†’ - !,W = - W
- !,W = .1, ∞ .
- !,W = .1, ∞ .
(!,W = !.W 0 = ! βˆ’3
!.W 0 = 3 βˆ’3 + 2
= 2 βˆ’ 9
!.W 0 = 2 βˆ’ 9
!,W = r
6 + 2 , ∈ 0 βˆ’ ∞, βˆ’ .
2 βˆ’ 9 , ∈ .1, ∞ .
98)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
!,W = !.W 0
Sean: ! = + 2 ; ! = βˆ’ 1
W = ; W = 1 βˆ’
!, W = (! ,W + ! ,W + ! ,W + ! ,W
El rango de la funciΓ³n β€œg”es:
< 0 β†’ β‰₯ 0
W β‰₯ 0
123 W = .0, ∞ .
β‰₯ 0 β†’ β‰₯ 0
βˆ’ ≀ 0
1 βˆ’ ≀ 1
123 W =0 βˆ’ ∞, 10
! ,W :
123 W ∩ - ! = .0, ∞. ∩ 0 βˆ’ ∞, 10 = .0,1.
123 W βŠ† - ! = ?
123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈
- !
- ! ,W = < 0 ∧ ≀ 1
< 0 ∧ | | ≀ 1
< 0 ∧ βˆ’ 1 ≀ ≀ 1
∈ .βˆ’1 ,0 .
- ! ,W = .βˆ’1 , 0 .
! .W 0 = !
= + 2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! .W 0 = + 2
! ,W :
123 W ∩ - ! =0 βˆ’ ∞, 10 ∩0 βˆ’ ∞, 1.= βˆ’βˆž, 10
123 W βŠ† - ! = ?
123 W βŠ† - ! β†’ - ! ,W = - W = .0, ∞ .
! .W 0 = ! 1 βˆ’
= 1 βˆ’ + 2
! .W 0 = 3 βˆ’
! ,W :
123 W ∩ - ! =00, ∞ . ∩ .1, ∞.= .1, ∞.
123 W βŠ† - ! = ?
123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈
- !
- ! ,W = < 0 ∧ > 1
< 0 ∧ βˆ’ 1 + 1 > 0
< 0 ∧ > βˆ’1 Γ³ > 1 Q
∈ 0 βˆ’ ∞, βˆ’1.
! .W 0 = !
= βˆ’ 1
! .W 0 = βˆ’ 1
! ,W :
123 W ∩ - ! = .βˆ’ ∞, 10 ∩01, ∞.= βˆ…
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
β†’ βˆ„ ! ,W
Finalmente:
- !,W = .βˆ’1 , 0 . s .0, ∞ .s 0 βˆ’ ∞ , βˆ’1[
- W,! = 0 βˆ’ ∞ , βˆ’1[ U.βˆ’1 , 0 . s .0, ∞ .
!,W = u
βˆ’ 1 , ∈ 0 βˆ’ ∞ , βˆ’1 .
+ 2 , ∈ .βˆ’1,0.
3 βˆ’ , ∈ .0, ∞.
99)
!,W = !.W 0
Sean: ! = βˆ’ 3 ; ! = 3 βˆ’
W = 3 βˆ’ ; W = 5 βˆ’
!, W = (! ,W + ! ,W + ! ,W + ! ,W
El rango de la funciΓ³n β€œg”es:
≀ 1 β†’ βˆ’ β‰₯ βˆ’1
β†’ 3 βˆ’ β‰₯ 2
W β‰₯2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
123 W = .2, ∞ .
Si: > 1 β†’ βˆ’ < βˆ’1
5 βˆ’ < 4
W < 4
123 W =0 βˆ’ ∞, 4 .
! ,W :
123 W ∩ - ! = .2, ∞. ∩ 0 βˆ’ ∞, 30 = .2,30
123 W βŠ† - ! = ?
123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈
- !
- ! ,W = ≀ 1 ∧ 3 βˆ’ ≀ 3
≀ 1 ∧ βˆ’ ≀ 0
≀ 1 ∧ β‰₯ 0
∈ .0, 10
- ! ,W = . 0, 10
! .W 0 = ! 3 βˆ’
= 3 βˆ’ βˆ’ 3 3 βˆ’
! .W 0 = 9 βˆ’ 6 + βˆ’ 9 + 3
! .W 0 = βˆ’ 3
! ,W :
123 W ∩ - ! = .2, ∞ . ∩0 βˆ’ ∞, 3.= .2,3.
123 W βŠ† - ! = ?
123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈
- !
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
X > 1 ∧ 5 βˆ’ ≀ 3
> 1 ∧ βˆ’ ≀ βˆ’2
> 1 ∧ β‰₯ 2
∈ .2, ∞ .
- ! ,W = . 2, ∞ .
! .W 0 = ! 5 βˆ’
= 5 βˆ’ βˆ’ 3 5 βˆ’
= 25-10 + βˆ’ 15 + 3
! .W 0 = βˆ’ 7 + 10
! ,W :
123 W ∩ - ! =02, ∞ . ∩ .3, ∞.= .3, ∞.
123 W βŠ† - ! = ?
123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈
- !
- ! ,W = ≀ 1 ∧ 3 βˆ’ > 3
≀ 1 ∧ βˆ’ > 0
≀ 1 ∧ < 0
∈ 0 βˆ’ ∞, 0.
! .W 0 = ! 3 βˆ’
= 3 βˆ’ 3 βˆ’
= 3 βˆ’ 9 + 6 βˆ’
! .W 0 = βˆ’ + 6 βˆ’ 6
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! ,W :
123 W ∩ - ! = .βˆ’ ∞, 4. ∩03, ∞.=03,4.
123 W βŠ† - ! = ?
123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈
- !
- ! ,W = > 1 ∧ 5 βˆ’ > 3
> 1 ∧ βˆ’ > βˆ’2
> 1 ∧ < 2
∈ 01, 2.
! .W 0 = ! 5 βˆ’
= 3 βˆ’ 5 βˆ’
= 3 βˆ’ 25 + 10 βˆ’
! .W 0 = βˆ’ + 10 βˆ’ 22
Finalmente:
!,W =
⎩
βŽͺ
⎨
βŽͺ
⎧ βˆ’ 3 , ∈ .0,1 0
βˆ’ 7 + 10 , ∈ .2, ∞.
βˆ’ + 6 βˆ’ 6 , ∈0 βˆ’ ∞, 0.
βˆ’ + 10 βˆ’ 22 , ∈ 01,2.
100)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
!,W = !.W 0
Sean: ! = √1 βˆ’ ; ! =
W = βˆ’ 4 ; W = 0
!, W = (! ,W + ! ,W + ! ,W + ! ,W
El rango de la funciΓ³n β€œg”es:
0 ≀ ≀ 4 β†’ 0 ≀ ≀ 16
β†’ βˆ’4 ≀ βˆ’ 4 ≀ 12
βˆ’4 ≀ W ≀ 12
123 W = .βˆ’4,120
123 W = 0
! ,W :
123 W ∩ - ! = .βˆ’4,120 ∩0 βˆ’ 3,1.= .βˆ’3, βˆ’1.
123 W βŠ† - ! = ?
123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈
- !
- ! ,W = 0 ≀ ≀ 4 ∧ βˆ’3 < βˆ’ 4 < 1
0 ≀ ≀ 4 ∧ 1 < < 5
0 ≀ ≀ 4 ∧ 1 < < √5
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
∈01, √5.
- ! ,W =0 1, √5 .
! .W 0 = ! βˆ’ 4
= :1 βˆ’ βˆ’ 4
! .W 0 = √5 βˆ’
! ,W :
123 W ∩ - ! = 0 ∩0 βˆ’ 3,1. = 0Q
123 W βŠ† - ! = ?
123 W βŠ† - ! β†’ - ! ,W = - W
- ! ,W =04,7.
! .W 0 = ! 0
= √1 βˆ’ 0
= 1
! .W 0 = 1
! ,W :
123 W ∩ - ! = .βˆ’4,120 ∩ .3,80 = .3,80
123 W βŠ† - ! = ?
123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈
- !
- ! ,W = 0 ≀ ≀ 4 ∧ 3 ≀ βˆ’ 4 ≀ 8
0 ≀ ≀ 4 ∧ 7 ≀ ≀ 12
0 ≀ ≀ 4 ∧ √7 ≀ ≀ √12
∈ .√7, :120
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
- ! ,W = .√7 , 2√30
! .W 0 = ! βˆ’ 4
! .W 0 = O %
! ,W :
123 W ∩ - ! = 0 ∩ .3,80 = βˆ…
β†’ βˆ„ ! ,W
Finalmente:
!,W = β€’
√5 βˆ’ , ∈01, √5 .
1 , ∈ 04,7 .
O %
, ∈ .√7, 2√3 0
101)
!βˆ—
= !*3'@Γ³3 @3t>)=2
Determinar las inversas de f y de g:
! =
^
%
; β‰  4
βˆ’ 4 = 2 + 6 β†’ βˆ’ 4 = 2 + 6
βˆ’ 2 = 4 + 6
βˆ’ 2 = 4 + 6 β†’ =
% ^
Intercambiando las variables x e β€œy”:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
!βˆ—
=
% ^
; β‰  2
W = ; β‰  0
2 = + 2 β†’ 2 = + 2
2 βˆ’ = 2
β†’ =
Intercambiando las variables x e β€œy”:
Wβˆ—
= ; β‰ 
!βˆ—
,W = !βˆ—.W 0
!βˆ—.W 0 = !βˆ—
$ &
=
4 $
2
2 βˆ’ 1& + 6
2
2 βˆ’ 1
βˆ’ 2
!βˆ—.W 0 =
% %
=
^
De: (!βˆ—
,W 2 = 6
^]
]
= 6
18 a =11 β†’ 2 =
_
Si: 3 = Wβˆ—
,! 2 +
^
7
2 +
^
7
=
_
+
^
7
=
^N
N%
Wβˆ—
,!
^N
N%
= ?
Wβˆ—
,! = Wβˆ—.! 0
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
Wβˆ—.! 0 = Wβˆ—
$
^
%
&
=
$
OΒ±β€œΛœ
Β±ΒΊβ€˜
&
= β€˜Β±β€œβ€”O
Β±ΒΊβ€˜
=
%
% %
Wβˆ—.! 0 =
_
^
Wβˆ—
,! $
^N
N%
& =
βˆ—
Λœβ„’
β„’β€˜
_
βˆ—
Λœβ„’
β„’β€˜
^
=
ºœ’O
β„’β€˜
—’ℒ¼
β„’β€˜
= βˆ’
`
`N6
102)
! = ; β‰  2
W = ; β‰  2
Wβˆ—
,! * = 3
De; W =
βˆ’ 2 = + 3
βˆ’ = 2 + 3
βˆ’ 1 = 2 + 3
=
La inversa Wβˆ—
>=:
Wβˆ—
= ; β‰  1
De; ! =
βˆ’ 2 = 3
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
βˆ’ 3 = 2
βˆ’ 3 = 2
=
La inversa !βˆ—
>=:
!βˆ—
= ; β‰  3
(Wβˆ—
,! = Wβˆ—
$ &
(Wβˆ—
,! =
$
Ε“Β±
Β±ΒΊO
&
Ε“Β±
Β±ΒΊO
=
ΛœΒ±β€œΕ“Β±ΒΊΛœ
Β±ΒΊO
Ε“Β±ΒΊΒ±β€œO
Β±ΒΊO
(Wβˆ—
,! =
6 ^
Entonces: (Wβˆ—
,! * =
6Β½ ^
Β½
De: (Wβˆ—
,! * = 3
6Β½ ^
Β½
= 3 β†’ 9* βˆ’ 6 = 6* + 6
3* = 12 ; * = 4
Se calcula: !βˆ—
,W * + 2 = ?
* + 2 = 6
!βˆ—
,W 6 = !βˆ—.W 0 6
!βˆ—.W 0 = !βˆ—
$ & =
Β±β€œΕ“
Β±ΒΊO
Β±β€œΕ“
Β±ΒΊO
=
^
6
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
!βˆ—.W 0 =
^
6
!βˆ—.W 0 6 =
^ ^
6 ^
=
_
= βˆ’6
!βˆ—
,W * + 2 = βˆ’6
103)
! = 3 + 5
W = 2 + G
! W 0 = βˆ€ ∈ 1
De: y = 3x+5
=
N
La inversa de f, es:
!βˆ—
=
N
Si: W 0 = β†’ ! 2 + G =
3(ax+b)+5 =x
32 + 5 + 3G = β†’ B
32 = 1
5 + 3G = 0
2 = ; G = βˆ’
N
W = βˆ’
N
Se tiene que: !βˆ—
,W = !βˆ—.W 0 = !βˆ—
$ βˆ’
N
&
!βˆ—.W 0 =
β€”
Ε“
β„’
Ε“
N
=
Β±ΒΊβ„’ΒΊβ€”β„’
Ε“
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
!βˆ—.W 0 =
6
βˆ’ 20
]
+ 5 = + 5 =
^
(!βˆ—
,W $
^
& =
6
$
^
βˆ’ 20& =
^ ^`
7
!βˆ—
,W $
^
& = βˆ’
%%
7
104)
! =
%]
N
!βˆ—
3 = 22 βˆ’ 36
!βˆ—
5 = 32 + G
La inversa de f, es:
=
%]
N
β†’ 5 = 3 βˆ’ 42
=
N %]
!βˆ—
=
N %]
!βˆ—
3 =
N %]
= 22 βˆ’ 36
15 + 42 = 62 βˆ’ 108
22 = 123 ; 2 =
!βˆ—
5 =
N N %]
= 32 + G
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
25+4(a) =9 a+3b
25 βˆ’ 52 = 3G
3G = 25 βˆ’ 5 $ & =
N^N
Se tiene que:
2 βˆ’ 3G = +
N^N
= 344
3 = !βˆ—
2 βˆ’ 3G = ?
!βˆ—
=
N %]
=
N %^
3 = !βˆ—
344 =
N %% %^
3 =
6^^
105)
D(f) = [1, 4]
, ∈ - ! , ! = ! β†’ =
βˆ’ 2 + 3 = βˆ’ 2 + 3
βˆ’ 2 = βˆ’ 2
βˆ’ βˆ’ 2 + 2 = 0
βˆ’ + βˆ’ 2 βˆ’ = 0
βˆ’ + βˆ’ 2 = 0
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
Si: βˆ’ = 0 β†’ =
Si: + = 2
, ∈ .1,40: ∢ = 1 ∢ = 1
+ = 2 β†’ =
β†’ ! βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ >= @3 >'[@t2
! βˆ’ βˆ’ βˆ’ G@ >'[@t2 β†’ P
@3 >'[@t2
=,G)> >'[@t2
! = βˆ’ 2 + 3 = βˆ’ 1 + 2
Ran (f) = [a,b]
= .2, G0
De:
1 ≀ ≀ 4
0 ≀ βˆ’ 1 ≀ 3
0 ≀ βˆ’ 1 ≀ 9
2 ≀ βˆ’ 1 ≀ 11
123 ! = .2,110
= .2,110
!; .1,40 β†’ .2,110
106)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
a) ! = 2| | βˆ’
A1. β‰₯ 0 β†’ | | =
! = 2 βˆ’ =
A2. X< 0 β†’ | | = βˆ’
! βˆ’ 2 βˆ’ = βˆ’3
! = B
, β‰₯ 0
βˆ’3 , < 0
! =
, ∈ - ! , ! = ! β†’ =
=
β‰₯ 0 β†’ ! β‰₯ 0
123 ! = .0, ∞ .
! = βˆ’3
, ∈ - ! , ! = ! β†’ =
βˆ’3 = βˆ’3
βˆ’ = βˆ’
=
< 0 β†’ βˆ’ β‰₯ 0
βˆ’3 β‰₯ 0
123 ! = .0, ∞ .
Como: 123 ~! β€’ ∩ 123 ~! β€’ = .0, ∞. β‰  βˆ…
β†’ ! βˆ’ βˆ’ βˆ’ βˆ’3, >= @3 >'[@t2
a) ----------- (V)
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
b) W =
, ∈ - ! , ! = ! β†’ =
β€”
β€”
= O
O
β†’ βˆ’ 2 + βˆ’ 2 = + βˆ’ 2 βˆ’ 2
βˆ’2 + = βˆ’ 2
βˆ’ + 2 β€” 2 = 0
3 = 3
= -------------inyectiva
Sobreyectiva:
= β†’ βˆ’ 2 = + 1
= ; β‰  1
De: ! = ! $ &
! =
OΒΏβ€œβ€”
ΒΏΒΊβ€”
OΒΏβ€œβ€”
ΒΏΒΊβ€”
= =
! β‰ 
----------------no es sobreyectiva
c) β„Ž = 2 + 3 >= @3 >'[@t2
, ∈ - ! , ! = ! β†’ =
2 + 3 = 2 + 3
2 = 2
= βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
107)
Sean las funciones inyectivas:
! = 3 βˆ’ 6 + 4
W =
Se determina las funciones inversas de f y g:
= 3 βˆ’ 2 + 1 + 4 βˆ’ 3
= 3 βˆ’ 1 + 1
3 βˆ’ 1 = βˆ’ 1
βˆ’ 1 = βˆ’ 1
βˆ’ 1 = Β±M β†’ = 1 Β± M
De: x> 1
βˆ’ 1 > 0
3 βˆ’ 1 > 0
3 βˆ’ 1 + 1 > 1
123 ! = .1, ∞.
Y > 1 β†’ = 1 + M
!βˆ—
= 1 + M
De: =
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
+ = βˆ’ 2
1 βˆ’ = + 2
=
Intercambiando las variables:
= ; β‰  1
Ran (g) = R-{1}
Wβˆ—
=
Se conoce que: !βˆ—.Wβˆ—
2 0 = 2 ,
!βˆ—.Wβˆ— 0 = !βˆ—
!βˆ—.Wβˆ— 0 = 1 + M
Β±β€œO
β€”ΒΊΒ±
= 1+ M
!βˆ—.Wβˆ—
2 0 = 1 + M
]
]
= 2
M
]
]
= 1 β†’
]
]
= 1
22 + 1 = 3 βˆ’ 32 β†’ 2 =
N
De: 3 = ! 5W $2 +
_
N
&8 = ! 5W $N
+
_
N
&8 = !.W 2 0
3 = ! $ & = ! 0
3 = 3(0-1 + 1
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
3 = 4
! 5W $2 +
_
N
&8 = 4
108)
!: β†’ ! = , = .βˆ’1,40
! = P
5 βˆ’ 3 , ∈ .βˆ’1,2.
3 βˆ’ 6 + 12 , ∈ .2,40
a) f es biyectiva….?
21.
! = 5 βˆ’ 3
, ∈ .βˆ’1,2 .; ! = ! β†’ =
5 βˆ’ 3 = 5 βˆ’ 3
- = βˆ’
= βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @3 >'[@t2
22.
! = 3 βˆ’ 6 + 12
, ∈ .2,40; ! = ! β†’ =
3 βˆ’ 6 + 12 = 3 βˆ’ 6 + 12
3 βˆ’ 6 = 3 βˆ’ 6
βˆ’ 2 = βˆ’ 2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
βˆ’ βˆ’ 2 + 2 = 0
βˆ’ + βˆ’ 2 βˆ’ = 0
βˆ’ + βˆ’ 2 = 0
w@: ∈ .2,40 β†’ + βˆ’ 2 β‰  0
β†’ βˆ’ = 0 β†’ =
= βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @3 >'[@t2
De: ∈ .βˆ’1,2. β†’ βˆ’1 ≀ < 2
βˆ’3 ≀ 3 < 6
βˆ’6 < βˆ’3 ≀ 3
βˆ’1 < 5 βˆ’ 3 ≀ 8
123 ! =0 βˆ’ 1,80
Reescribiendo a : 3 βˆ’ 6 + 12
3 βˆ’ 6 + 12 = 3 βˆ’ 2 + 1 + 12 βˆ’ 3
= 3 βˆ’ 1 + 9
De: ∈ .2,4. β†’ 2 ≀ < 4
1 ≀ βˆ’ 1 < 3
1 ≀ βˆ’ 1 < 9
3 ≀ 3 βˆ’ 1 < 27
12 ≀ 3 βˆ’ 1 + 9 < 36
123 ! = .12, 36.
123 ! ∩ 123 ! = βˆ…
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
β†’ ! βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ >= @3 >'[@t2
b) B= ]-1, 36] …..?
Como: 123 ! = .! 2 , ! 4 . = .12,36.
]-1, 36] β‰  .12,36.
β‰  0 βˆ’ 1,360 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’!2+=,
c) !βˆ—
10 = 1 +
√
… . ?
! βˆ’ βˆ’ βˆ’ @3 >'[@t2 β†’ βˆƒ !βˆ—
! = 5 βˆ’ 3 β†’ = 5 βˆ’ 3
β†’ 3 = 5 βˆ’
=
N
β†’ =
N
!βˆ—
=
N
------
! = 3 βˆ’ 1 + 9 β†’ = 3 βˆ’ 1 + 9
3 βˆ’ 1 = βˆ’ 9
βˆ’ 1 =
6
= 1 Β±
6
≀ 36 β†’ = 1 + M
6
!βˆ—
= 1 + M
6
β†’ !βˆ—
10 =
N `
= βˆ’
N
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
!βˆ—
10 = 1 + M
` 6
= 1 +
√
β†’ !βˆ—
10 β‰  1 +
√
d) !βˆ—
4 + !βˆ—
21 =
`
… . ?
!βˆ—
= β€’
N
, ∈ .βˆ’1,8.
1 + M
6
, ∈ .12,36.
!βˆ—
4 =
N %
=
!βˆ—
21 = 1 + M
6
= 1 + 2 = 3
!βˆ—
4 + !βˆ—
21 = + 3
!βˆ—
4 + !βˆ—
21 =
`
βˆ’ βˆ’ βˆ’ βˆ’ Y
109)
! =
| |
; W =
Si; xβ‰₯ 0 β†’ | | =
! =
< 0 β†’ | | = βˆ’
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! =
! = u
, > 0
, < 0
, > 0; ! = ! β†’ =
! =
β€”
β€”
= O
O
+ = +
= βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @3 >'[@t2
! β†’ @3 >'[@t2
, < 0; ! = ! β†’ =
! =
β€”
β€”
= O
O
βˆ’ = βˆ’
= βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @3 >'[@t2
! β†’ @3 >'[@t2
De: ! = = 1 +
x>0 β†’ > 0
1 + > 1
123 ! = 01, ∞ .
! = = βˆ’ 1
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
X < 0 β†’ < 0
1 + < 1
123 ! = 0 βˆ’ ∞, 1 .
123 ! ∩ 123 ! = βˆ…
β†’ ! βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @3 >'[@t2
De: W =
, ∈ - W ; ! = ! β†’ =
β€”
=
O
= βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @3 >'[@t2
W βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
Si:
! = ; = 1 +
βˆ’ 1 = 1
= β†’ =
La inversa de ! , >=:
!βˆ—
= , β‰  1
! = ; = 1 βˆ’
+ 1 = 1
= β†’ =
La inversa de ! , >=:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
!βˆ—
= , β‰  βˆ’1
W = ; y= 1/x
=
Intercambiando las variables: =
Wβˆ—
= ; β‰  0
!βˆ—
= u
, ∈01, ∞ .
, ∈ 0 βˆ’ ∞, βˆ’1 .
- !βˆ—
,Wβˆ—
= ?
!βˆ—
,Wβˆ—
= !βˆ—
,Wβˆ—
+ !βˆ—
,Wβˆ—
!βˆ—
,W:
123 Wβˆ—
∩ - !βˆ—
= Β’1 βˆ’ 0QΒ£ ∩01, ∞.
01, ∞ .
123 Wβˆ—
⊈ - !βˆ—
β†’
- !βˆ—
,Wβˆ—
= ∈ - W ∧ W ∈ - !βˆ—
Q
= < 0 ó > 0Q ∧ > 1
< 0 ó > 0Q ∧ > 0
< 0 Γ³ > 0Q ∧ βˆ’ 1 < 0
< 0 ó > 0Q ∧ ∈ 00,1. Q
∈ 00,1 .
- !βˆ—
,Wβˆ—
= 00,1 .
!βˆ—
,W:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
123 Wβˆ—
∩ - !βˆ—
= Β’1 βˆ’ 0QΒ£ ∩0 βˆ’ ∞, βˆ’1.
∈ 0 βˆ’ ∞, βˆ’1 .
123 Wβˆ—
⊈ - !βˆ—
β†’
- !βˆ—
,Wβˆ—
= ∈ - W ∧ W ∈ - !βˆ—
Q
= < 0 Γ³ > 0Q ∧ < βˆ’1
< 0 ó > 0Q ∧ < 0
< 0 ó > 0Q ∧ + 1 < 0
< 0 Γ³ > 0Q ∧ ∈ 0 βˆ’ 1,0.Q
∈ 0 βˆ’ 1 0 .
- !βˆ—
,Wβˆ—
= 0 βˆ’ 1, 0.
- !βˆ—
,Wβˆ—
= - !βˆ—
,Wβˆ—
+ - !βˆ—
,Wβˆ—
- !βˆ—
,Wβˆ—
= 00,1 . s 0 βˆ’ 1, 0.
- !βˆ—
,Wβˆ—
= 0 βˆ’ 1,1 . βˆ’ 0Q
110)
! = 2 + G, ∈ .βˆ’3,30, 2 <
a) β„Ž = ! + !βˆ—
=
N
+
= 2 + G β†’ βˆ’ G = 2
=
Γ€
]
; @3[>)'2?G@23L, > :
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
=
Γ€
]
β†’ !βˆ—
=
Γ€
]
De: ! + !βˆ—
=
N
+
2 + G +
Γ€
]
=
N
+
2 + 2G + βˆ’ G =
N
2 + 2
2 + 1 + 2G βˆ’ G =
N
2 + 2
β†’ u
2 + 1 =
N
2
2G βˆ’ G = 2
2 + 1 =
N
2 β†’ 22 βˆ’ 52 + 2 = 0
2 =
N±√ N ^
%
=
NΒ±
%
2 = 2 ; 2 =
Como: 2 > β†’ 2 = 2
De; 2G βˆ’ G = 2
G 2 βˆ’ 1 = 2
G 2 βˆ’ 1 = 3
G = 3
β†’ 2 = 2 G = 3
! = 2 + 3
b) W = | + 3| βˆ’ | + 1| ; !,W = ?
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
< βˆ’3 ; | + 3| = βˆ’ + 3
| + 1| = βˆ’ + 1
W = βˆ’ βˆ’ 3 + + 1
W = βˆ’2
-3≀ < βˆ’1 ; | + 3| = + 3
| + 1| = βˆ’ + 1
W = + 3 + + 1
W = 2 + 4
> βˆ’1 ; | + 3| = + 3
| + 1| = + 1
W = + 3 βˆ’ βˆ’ 1
W = 2
W = u
βˆ’2 , ∈ 0 βˆ’ ∞, βˆ’3.
2 + 4 , ∈ .βˆ’3, βˆ’1.
2 , ∈ .βˆ’1, ∞ .
!,W = !,W + !,W + !,W
!, W :
123 W ∩ - f = βˆ’2Q ∩ 0 βˆ’ ∞, βˆ’3.
= βˆ…
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
β†’ βˆ„ !, W
!, W :
βˆ’3 ≀ < βˆ’1
βˆ’6 ≀ 2 < βˆ’2
βˆ’2 ≀ 2 + 4 < 2
123 W = .βˆ’2,2 .
123 W ∩ - f = .βˆ’2,2.∩ .βˆ’3,30
= .βˆ’2,2 .
123 W βŠ† - !βˆ—
β†’
- f, W = - W
- fÁ ÂÃ = .βˆ’3, βˆ’1.
f, W = !.W 0 = ! 2 + 4
!.W 0 = 2 2 + 4 + 3
!.W 0 = 4 + 11
!, W :
123 W ∩ - f = 2Q.∩ .βˆ’3,30
= 2Q
123 W βŠ† - !βˆ—
β†’
- f, W = - W
- fÁ ÂÄ = .βˆ’1, ∞.
f, W = !.W 0 = ! 2
!.W 0 = 2 2 + 3
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
!.W 0 = 7
!,W = P
4 + 11 , ∈ .βˆ’3, βˆ’1.
7 , ∈ .βˆ’1, ∞ .
111)
! = u
10 βˆ’ 2 , < 0
√ + 16 , 0 ≀ ≀ 3
O %
, > 3
; W = |
βˆ’ βˆ’ 10 βˆ’ 21 . ∈ .βˆ’5, βˆ’10
| |
| |
, ∈ 01, 20
! = 10 βˆ’ 2
De: , ∈ .βˆ’βˆž, 0 .; ! = ! β†’ =
10 βˆ’ 2 = 10 βˆ’ 2
βˆ’2 = βˆ’2
= βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
< 0 β†’ 2 < 0
βˆ’2 > 0
10 βˆ’ 2 > 10
123 ! = .10, ∞ .
De: , ∈ .0, 3 0; ! = ! β†’ =
: + 16 = : + 16
| + 16| = | + 16|
+ 16 = + 16
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
=
= βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
0 ≀ ≀ 3 β†’ 0 ≀ ≀ 9
16 ≀ + 16 ≀ 25
4 ≀ √ + 16 ≀ 5
123 ! = .4,50
De: , ∈ 03, ∞ .; ! = ! β†’ =
β€”
O %
=
O
O %
βˆ’ 4 = βˆ’ 4
=
= βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
> 3 β†’ > 9
βˆ’ 4 > 4
O %
< 4
123 ! = .βˆ’βˆž, 4.
Se tiene que: 123 ! ∩ 123 ! = βˆ…
123 ! ∩ 123 ! = βˆ…
123 ! ∩ 123 ! = βˆ…
β†’ ! >= @3 >'[@t2
b)
W = u
βˆ’ βˆ’ 10 βˆ’ 21 , ∈ .βˆ’5, βˆ’10
| βˆ’ 2| βˆ’ 1
| + 3|
, ∈ 01, 20
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
01, 2 . β†’ | βˆ’ 2| = βˆ’ βˆ’ 2
| + 3| = + 3
W =
| |
| |
= =
β‰₯ 2 β†’ | βˆ’ 2| = βˆ’ 2
| + 3| = + 3
W =
| |
| |
= =
W = β€’
βˆ’ 2
βˆ’ 10 βˆ’ 21 . ∈ .βˆ’5, βˆ’10
, ∈ 01,2 .
, = 2
W = βˆ’ βˆ’ 10 βˆ’ 21
, ∈ 0 βˆ’ 5, βˆ’10; ! = ! β†’ =
βˆ’ βˆ’ 10 βˆ’ 21 = βˆ’ βˆ’ 10 βˆ’ 21
βˆ’ βˆ’ 10 = βˆ’ βˆ’ 10
+ 10 = + 10
βˆ’ +10 ( βˆ’ = 0
βˆ’ + + + 10 βˆ’ = 0
βˆ’ + + 10 = 0
+ + 10 β‰  0
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
β†’ βˆ’ = 0
= βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
W =
, ∈ 01,2 .; ! = ! β†’ =
β€”
β€”
= O
O
+ 3 βˆ’ βˆ’ 3 = βˆ’ + 3 βˆ’ 3
4 = 4
= βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
W =
, = 2; ! = ! β†’ =
β€”ΒΊΕ“
β€”
= OΒΊΕ“
O
+ 3 βˆ’ 3 βˆ’ 9 = βˆ’ 3 + 3 βˆ’ 9
6 = 6
= βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
Los rangos con:
123 W = .βˆ’12,40
123 W =0 βˆ’
N
, 0 .
123 W = βˆ’
N
123 W ∩ 123 W = 0 βˆ’ 1/5 , 0 .
123 W ∩ 123 W β‰  βˆ…
----------------g (x) no es inyectiva
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
112) Probar que si f(x) = 4√ βˆ’ , 0 ≀ ≀ 1 E,=>> !βˆ—
,
calcule su inversa.
f(x) = 4√ βˆ’ , 0 ≀ ≀ 1
, ∈ - ! ; ! = ! β†’ =
4√ βˆ’ = 4√ βˆ’
4 √ βˆ’ √ βˆ’ βˆ’ = 0
4 √ βˆ’ √ √ βˆ’ √ √ + √ = 0
√ βˆ’ √ 4 + √ + √ = 0
Si: 0 ≀ ≀ 1 β†’ 4 + √ + √ β‰  0
β†’ √ βˆ’ √ = 0
√ = √
| | = | |
= βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
113)
De: 1 <
%
%
≀ 10
1 <
%
%
∧
%
%
≀ 10
%
%
βˆ’ 1 > 0 ∧
%
%
βˆ’ 10 ≀ 0
βˆ’
6
%
> 0 ∧
6 ^
%
≀ 0
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
6
%
< 0 ∧
6 ^
%
≀ 0
4 βˆ’ 2 < 0 ∧ 4 βˆ’ 2 9 βˆ’ 36 ≀ 0
Resolviendo las inecuaciones, se tiene:
β†’ < 0 Γ³ > 2 ∧ ≀ 2 Γ³ β‰₯ 4
∈ 0 βˆ’ ∞, 0 0 s .4, ∞ .
= 0 βˆ’ ∞, 0 0 s .4, ∞ .
114)
! = 2 + '
! ' = 2!βˆ—
'
a) = 2 + ' β†’ =
Ε‘
Intercambiando las variables: =
Ε‘
!βˆ—
=
Ε‘
! ' = 2' + ' = 3'
2!βˆ—
' = 2 $
Ε‘O Ε‘
&
β†’ 3' = 2 $
Ε‘O Ε‘
&
3' = 2'
Ε‘
)
3 = ' βˆ’ 1
' = 4
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
β†’ ! = 2 + 4
!βˆ—
=
%
! 0 . !βˆ—
0 = 2.0 + 4 . $
` %
&
= 4 βˆ’2 = βˆ’8
! 0 . !βˆ—
0 = βˆ’8
b)

βˆ— = ?

βˆ— =
. %
β€”ΒΊβ€˜
O
=
^
ΒΊΕ“
O
= βˆ’4

βˆ— = -4
115)
a) ! = ; β‰  2
! = 2 +
N
- ! = 1 βˆ’ 2Q
= 0 βˆ’ ∞, 2 . s 02, ∞ .
De: < 2 Γ³ > 2
βˆ’ 2 < 0 Γ³ βˆ’ 2 > 0
< 0 Γ³ > 0
N
< 0 Γ³
N
> 0
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
2+
N
< 2 Γ³ 2 +
N
> 2
! < 2 Γ³ ! > 2
123 ! = 0 βˆ’ ∞, 2 . s 02, ∞ .
b) ! =
, ∈ - ! ; ! = ! β†’ =
β€”
β€”
= O
O
2 βˆ’ 4 + βˆ’ 2 = 2 + βˆ’ 4 βˆ’ 2
βˆ’4 + = βˆ’ 4
5 = 5
= ---------------inyectiva
De; =
βˆ’ 2 = 2 + 1
βˆ’ 2 = 2 + 1
= ;
@3[>)'2?G@23L, +2= t2)@2G+>=: =
2 + 1
βˆ’ 2
!βˆ—
=
116
a)
Si, < β†’ ! > !
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
< β†’ ! > !
β„Ž βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ L>')>'@>3[>
Si: x >0
< β†’ ! > !
β„Ž βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ L>')>'@>3[>
β†’ β„Ž βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’L>')>'@>3[>
G de las grΓ‘ficas se aprecia que la funciΓ³n es inyectiva, por
tanto existe la inversa:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
β„Ž = βˆ’ 2 + 2
β„Ž = βˆ’ 2 + 1 + 1
β„Ž = βˆ’ 1 + 1
= βˆ’ 1 + 1
123 ~β„Ž β€’ = . ! 0 , ∞ .
123 ~β„Ž β€’ = .2, ∞ .
βˆ’ 1 = βˆ’ 1
x-1 = Β± : βˆ’ 1
= 1 Β± : βˆ’ 1
= 1 + √ βˆ’ 1
β„Žβˆ—
= 1 βˆ’ √ βˆ’ 1
β„Ž = βˆ’3 βˆ’ 6 + 2
β„Ž = βˆ’3 + 2 + 1 + 5
β„Ž = 5 βˆ’ 3 + 1
= 5 βˆ’ 3 + 1
123 ~β„Ž β€’ =0 βˆ’ ∞ , ! 0 .
123 ~β„Ž β€’ =0 βˆ’ ∞, 2 .
3 + 1 = 5 βˆ’
+ 1 =
N
β†’ + 1 = Β± M
N
= Β± M
N
βˆ’ 1
Intercambiando la variable:
= Β± M
N
βˆ’ 1
Y < 2 β†’ = M
N
βˆ’ 1
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
β„Žβˆ—
= u
1 βˆ’ √ βˆ’ 1 , ∈ .2, ∞ .
M
N
βˆ’ 1 , ∈ 0 βˆ’ ∞, 2 .
117
! = | |
| | = B
, β‰₯ 0
βˆ’ , < 0
Si, xβ‰₯ 0 ∢ | | =
! =
< 0 | | = βˆ’
! =
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! = u
, .0,1 .
, 0 βˆ’ 1,0 .
! =
, ∈ - ! ; ! = ! β†’ =
β€”
=
O
β†’ 1 βˆ’ = 1 βˆ’
= βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
! =
, ∈ - ! ; ! = ! β†’ =
β€”
=
O
β†’ 1 + = 1 +
= βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
Se analiza los rangos de ! ! ,Γ…Γ† {ÇÅÇ ΓˆΒ½Γ† ÉÆ] βˆ…
0 ≀ < 1
βˆ’1 ≀ βˆ’ < 0
0 ≀ 1 βˆ’ < 1
> 1
123 (! = 01, ∞ .
DE; βˆ’1 < < 0
0 ≀ + 1 < 1
1 <
123 (! = 01, ∞ .
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
123 (! ∩ 123 (! β‰  βˆ…
β†’ 3, => [@>3> @3t>)=2
118)
Se debe demostrar que son inyectivas cada una
de las funciones que forman parte de f(x);
Graficar las funciones y analizar sus rangos, se verΓ‘ que es
inyectiva,
! = βˆ’ βˆ’ 2
! = 2 + √3 + 2 βˆ’
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
123 ! ∩ 123 ! = βˆ…
! βˆ’ βˆ’ βˆ’ @3 >'[@t2
! βˆ’3 = βˆ’9 + 6 = βˆ’3
! βˆ’1 = βˆ’1 + 2 = 1
123 ! = .βˆ’3, 1.
! βˆ’1 = 2 + √3 βˆ’ 2 βˆ’ 1 = 2
! βˆ’1 = 2 + √3 + 2 βˆ’ 1 = 4
123 ! = .2, 40
! = βˆ’ βˆ’ 2
= βˆ’ + 2 + 1 + 1
1 βˆ’ = + 1 ; x∈ .βˆ’3, βˆ’1. , se toma
+2 )2@J2 3>W2[@t2 L> 1βˆ’y)
+ 1 = Β± :1 βˆ’
= Β± :1 βˆ’ βˆ’ 1
Intercambiando variables:
= Β± √1 βˆ’ βˆ’ 1
!βˆ—
= βˆ’βˆš1 βˆ’ βˆ’ 1
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! = 2 + :3 + 2 βˆ’
= 2 + :βˆ’ βˆ’ 2 + 1 + 4
βˆ’ 2 = :4 βˆ’ βˆ’ 1
βˆ’ 2 = 4 βˆ’ βˆ’ 1
βˆ’ 1 = 4 βˆ’ βˆ’ 2
βˆ’ 1 = Β±:4 βˆ’ βˆ’ 2 ; x∈ .βˆ’1,10, se
toma la raΓ­z negativa de (4 βˆ’ βˆ’ 2 :
= 1 Β± :4 βˆ’ βˆ’ 2
Intercambiando variables:
= 1 Β± :4 βˆ’ βˆ’ 2
!βˆ—
= 1 βˆ’ :4 βˆ’ βˆ’ 2
!βˆ—
= r
βˆ’βˆš1 βˆ’ βˆ’ 1 , ∈ .βˆ’3, 1.
1 βˆ’ :4 βˆ’ βˆ’ 2 , ∈ .2,40
w> L>G> ',3=@L>)2) K*>:
!: β†’
!βˆ—
: β†’
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
119
!: β†’ .βˆ’9, βˆ’1. ; ! =
%
2 =?
βˆ’9 ≀
%
< βˆ’1
β†’ βˆ’9 ≀
%
∧
%
< βˆ’1
β†’ 0 ≀ 9 +
%
∧
%
+ 1 < 0
7 6 %
β‰₯ 0 ∧
%
< 0
` N
β‰₯ 0 ∧
^
< 0
^
β‰₯ 0 ∧ < 0
6 βˆ’ 3 βˆ’ β‰₯ 0 ∧ 2 + 3 βˆ’ < 0
≀ 3 Γ³ β‰₯ 6Q ∧ { x <-2 Γ³ x > 3 }
∈ 0 βˆ’ ∞, βˆ’20 s .6, ∞ .
G
, ∈ - ! ; ! = ! β†’ =
% β€”
β€”
=
% O
O
9 βˆ’ 3 + 12 βˆ’ 4 = 9 + 12 βˆ’ 3 βˆ’ 4
3 βˆ’ 3 + 12 βˆ’ 12 = 0
= βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
c)
Sobreyectiva:
=
%
β†’ 3 βˆ’ = 3 + 4
3 βˆ’ 3 = 4 +
=
%
De: ! = !
%
)
! =
%$
Ε“ΒΏΒΊΕ“
ΒΏβ€œβ€˜
&
Ε“ΒΏΒΊΕ“
ΒΏβ€œβ€˜
%
=
% _
=
N
7 N
! β‰ 
----------------no es sobreyectiva
120)
Univalente β†’ @3 >'[@t2
! = 12 βˆ’ 4 +
= βˆ’ 4 + 4 + 6 βˆ’ 2
! = βˆ’ 2 + 4
El rango de f es:
0≀ < 1 Γ³ 2 ≀ ≀ 3
βˆ’2 ≀ βˆ’ 2 < βˆ’1 Γ³ 0 ≀ βˆ’ 2 ≀ 1
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
1 < βˆ’ 2 ≀ 4 Γ³ 0 ≀ βˆ’ 2 ≀ 1
< βˆ’ 2 ≀ 2 Γ³ 0 ≀ βˆ’ 2 ≀
4+ < 4 + βˆ’ 2 ≀ 6 Γ³ 4 ≀ 4 + βˆ’ 2 ≀ + 4
6
< 4 + βˆ’ 2 ≀ 6 Γ³ 4 ≀ 4 + βˆ’ 2 ≀
6
Ran (f) = 0
6
, 60 s .4,
6
0
123 ! = .4,60
De:
, ∈ - ! ; ! = ! β†’ =
βˆ’ 2 + 4 = βˆ’ 2 + 4
βˆ’ 2 = βˆ’ 2
: βˆ’ 2 = : βˆ’ 2
| βˆ’ 2| = | βˆ’ 2|
βˆ’ 2 = βˆ’ 2
= βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
De: = βˆ’ 2 + 4
2 = βˆ’ 2 + 8
2y-8 = βˆ’ 2
βˆ’ 2 = Β±:2 βˆ’ 8
= 2 Β± :2 βˆ’ 8
Intercambiando las variables:
= 2 Β± √2 βˆ’ 8
Si: ∈ 0
6
, 60
!βˆ—
= 2 βˆ’ √2 βˆ’ 8
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
Si : ∈ .4,
6
.
!βˆ—
= 2 + √2 βˆ’ 8
! = u
2 + √2 βˆ’ 8 , ∈ .4,
6
.
2 βˆ’ √2 βˆ’ 8 , ∈ 0
6
, 60
121
! = + 1
! = √ + 2
! = + 1
De:
, ∈ - ! ; ! = ! β†’ =
+ 1 = + 1
=
= βˆ’ βˆ’ βˆ’ @3 >'[@t2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! = √ + 2
De:
, ∈ - ! ; ! = ! β†’ =
: + 2 = : + 2
| + 2| = | + 2|
+ 2 = + 2
= βˆ’ βˆ’ βˆ’ @3 >'[@t2
123 ! =03,90
123 ! = .0,20
123 ! ∩ 123 ! = βˆ…
β†’ ! βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @3 >'[@t2
De: = + 1 β†’ 2 = + 2
= 2 βˆ’ 2 ; ∈ .βˆ’4, βˆ’2.
< 0 β†’ = βˆ’:2 βˆ’ 2
Intercambiando las variables:
= βˆ’ √2 βˆ’ 2
!βˆ—
= βˆ’βˆš2 βˆ’ 2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! = √ + 2
= √ + 2 ; + 2 =
= βˆ’ 2
Intercambiando variables:
= βˆ’ 2
!βˆ—
= βˆ’ 2
!βˆ—
= r
βˆ’βˆš2 βˆ’ 2 , ∈ 03,90
βˆ’ 2 , ∈ .0,20
122)
! = 4 βˆ’
! =
O
De:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
, ∈ - ! ; ! = ! β†’ =
4 βˆ’ = 4 βˆ’
βˆ’ βˆ’ 4 βˆ’ = 0
( βˆ’ + βˆ’ 4 βˆ’ = 0
( βˆ’ + βˆ’ 4 = 0
∈ 0 βˆ’ ∞, 2. β†’ + βˆ’ 4 β‰  0
( βˆ’ = 0
= βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
, ∈ - ! ; ! = ! β†’ =
β€”
O
β€”
= O
O
O
βˆ’ 2 = βˆ’ 2
βˆ’ βˆ’ 2 βˆ’ = 0
βˆ’ βˆ’ 2 βˆ’ + = 0
βˆ’ βˆ’ 2 βˆ’ 2 = 0
∈ 02, 4 . β†’ β‰  2 +
βˆ’ = 0
= βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
Los rangos de f1 y f2 son:
123 ! = 0 βˆ’ ∞, 4.
123 ! = 0 8, ∞.
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
123 ! ∩ 123 ! = βˆ…
β†’ ! βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
! = 4 βˆ’
= βˆ’ βˆ’ 4 + 4 + 4
= 4 βˆ’ βˆ’ 2
βˆ’ 2 = 4 βˆ’
x-2 < 0 β†’ [,?2) +2 )2Γ­J 3>W2[@t2 L> 4 βˆ’
βˆ’ 2 = βˆ’:4 βˆ’
= 2 βˆ’ :4 βˆ’
Intercambiando las variables:
= 2 βˆ’ √4 βˆ’
!βˆ—
= 2 βˆ’ √4 βˆ’
! =
βˆ’ 2
=
O
βˆ’ 2 =
βˆ’ +
%
=
%
βˆ’ 2
βˆ’ =
%
βˆ’ 2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
βˆ’ = Β±M
%
βˆ’ 2
= Β± M
%
βˆ’ 2
Intercambiando las variables:
= βˆ’ M
%
βˆ’ 2
!βˆ—
= βˆ’ M
%
βˆ’ 2
!βˆ—
= u
2 βˆ’ √4 βˆ’ , < 4
βˆ’ M
%
βˆ’ 2 , > 8
123)
! = + 2 + 2
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
! = + 4
Realizando las grΓ‘ficas de f1 y f2 y al trazar respectivamente una
recta paralela al eje x, se observa que se corta en un solo punto,
esto implica que son inyectivas
123 ! ∩ 123 ! = βˆ…
! = + 2 + 2
= + 2 + 1 + 1
βˆ’ 1 = + 1
+ 1 = βˆ’ 1
β‰₯ 1 β†’ + 1 > 0 βˆ’ βˆ’ βˆ’ [,?2) +2 )2Γ­J E,=@[@t2 L>
y-1
+ 1 = : βˆ’ 1
= : βˆ’ 1 βˆ’ 1
Intercambiando las variables:
= √ βˆ’ 1 βˆ’ 1
!βˆ—
= √ βˆ’ 1 βˆ’ 1
! = + 4
= + 4
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
= βˆ’ 4
= : βˆ’ 4
Ε“
Intercambiando las variables:
= √ βˆ’ 4
Ε“
!βˆ—
= √ βˆ’ 4
Ε“
!βˆ—
= r
√ βˆ’ 1 βˆ’ 1 , β‰₯ 5
√ βˆ’ 4
Ε“
, < 5
124)
! = βˆ’ 1
! = + 1
W = 2 βˆ’ 1
W = √
Verificar si g(x) es inyectiva:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
, ∈ - W ; W = W β†’ =
2 βˆ’ 1 = 2 βˆ’ 1
2 = 2
= βˆ’ βˆ’ βˆ’ @3 >'[@t2
, ∈ - W ; W = W β†’ =
√ = √
√ = √
| | = | |
= βˆ’ βˆ’ βˆ’ @3 >'[@t2
Los rangos de las funciones g, son:
123 W = 0 βˆ’ ∞, βˆ’1.
123 W = 00, ∞.
123 W ∩ 123 W = βˆ…
β†’ W βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
W = 2 βˆ’ 1 β†’ = 2 βˆ’ 1
=
Cambiando las variables:
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
=
Wβˆ—
= + 1
W = √ β†’ = √
=
Cambiando variables: =
Wβˆ—
=
Wβˆ—
= r
, < βˆ’1
, β‰₯ 0
Grafica de g y g*
!,Wβˆ—
= ! ,Wβˆ—
+ ! ,Wβˆ—
+ ! ,Wβˆ—
+ ! ,Wβˆ—
123 Wβˆ—
=0 βˆ’ ∞, 0 .
123 Wβˆ—
= .0, ∞ .
! ,Wβˆ—
:
123 Wβˆ—
∩ - ! =[- ∞, 0 .∩ 0 βˆ’ ∞, βˆ’1. =0 βˆ’ ∞, βˆ’1.
123 Wβˆ—
β‹’ - ! β†’ - ! ,Wβˆ—
=
= / ∈ - Wβˆ—
∧ Wβˆ—
Γ‹ - ! }
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
< 0 ∧ < βˆ’1
< 0 ∧ + 1 < βˆ’2
< 0 ∧ < βˆ’3
∈ 0 βˆ’ ∞, βˆ’3.
- ! ,Wβˆ—
= 0 βˆ’ ∞, βˆ’3.
! .Wβˆ— 0 = ! $ &
= $ & βˆ’ 1 =
%
+ βˆ’
%
! .Wβˆ— 0 = $ + βˆ’ &
! ,Wβˆ—
:
123 Wβˆ—
∩ - ! =[ 0, ∞ .∩ 0 βˆ’ ∞, βˆ’1.= βˆ…
β†’ βˆ„ ! ,Wβˆ—
! ,Wβˆ—
:
123 Wβˆ—
∩ - ! =] βˆ’βˆž, 0 . ∩ .βˆ’1, ∞.= .βˆ’1,0.
123 Wβˆ—
β‹’ - ! β†’ - ! ,Wβˆ—
=
= / ∈ - Wβˆ—
∧ Wβˆ—
Γ‹ - ! }
< 0 ∧ β‰₯ βˆ’1
< 0 ∧ + 1 β‰₯ βˆ’2
< 0 ∧ β‰₯ βˆ’3
∈ .βˆ’3,0.
- ! ,Wβˆ—
= . βˆ’3,0.
! .Wβˆ— 0 = ! $ &
ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
= + 1 =
! .Wβˆ— 0 =
! ,Wβˆ—
:
123 Wβˆ—
∩ - ! =[0, ∞ . ∩ .βˆ’1, ∞.=[0,∞.
123 Wβˆ—
β‹’ - ! β†’ - ! ,Wβˆ—
=
= / ∈ - Wβˆ—
∧ Wβˆ—
Γ‹ - ! }
β‰₯ 0 ∧ β‰₯ βˆ’1
β‰₯ 0 ∧ + 1 β‰₯ 0
β‰₯ 0 ∧ ∈ 1
∈ .0, ∞ .
- ! ,Wβˆ—
= .0, ∞.
! .Wβˆ— 0 = !
= + 1
! .Wβˆ— 0 = + 1
!,Wβˆ—
=
⎩
⎨
⎧ $ + βˆ’ & , < βˆ’3
, ∈ .βˆ’3,0.
+ 1 , ∈ .0, ∞ .

More Related Content

Similar to Algebra de funciones

8305805 respuestas-algebra-de-baldor
8305805 respuestas-algebra-de-baldor8305805 respuestas-algebra-de-baldor
8305805 respuestas-algebra-de-baldor
Lupiitha MΓ©nCΓ³r
Β 
Algebra de baldor
Algebra de baldorAlgebra de baldor
Algebra de baldor
angel05az
Β 
Ejercicios resueltos de el algebra de baldor
Ejercicios resueltos de el algebra de baldorEjercicios resueltos de el algebra de baldor
Ejercicios resueltos de el algebra de baldor
DiegoMendoz
Β 
Algebra de baldor (solucionario, recomiendo descargarlo junto al libro para v...
Algebra de baldor (solucionario, recomiendo descargarlo junto al libro para v...Algebra de baldor (solucionario, recomiendo descargarlo junto al libro para v...
Algebra de baldor (solucionario, recomiendo descargarlo junto al libro para v...
Jonathan Rios
Β 

Similar to Algebra de funciones (20)

Ejercicios de inecuaciones
Ejercicios de inecuacionesEjercicios de inecuaciones
Ejercicios de inecuaciones
Β 
Maurimar matematica.pptx
Maurimar matematica.pptxMaurimar matematica.pptx
Maurimar matematica.pptx
Β 
8305805 respuestas-algebra-de-baldor
8305805 respuestas-algebra-de-baldor8305805 respuestas-algebra-de-baldor
8305805 respuestas-algebra-de-baldor
Β 
Algebra de baldor respuestas
Algebra de baldor respuestasAlgebra de baldor respuestas
Algebra de baldor respuestas
Β 
Baldor
BaldorBaldor
Baldor
Β 
Ejercicios resueltos del algebra
Ejercicios resueltos del algebraEjercicios resueltos del algebra
Ejercicios resueltos del algebra
Β 
Algebra de baldor
Algebra de baldorAlgebra de baldor
Algebra de baldor
Β 
Algebra de baldor
Algebra de baldorAlgebra de baldor
Algebra de baldor
Β 
Solucionario algebra
Solucionario algebraSolucionario algebra
Solucionario algebra
Β 
Solucionario de baldor
Solucionario de baldorSolucionario de baldor
Solucionario de baldor
Β 
Baldor
BaldorBaldor
Baldor
Β 
Ejercicios resueltos de el algebra de baldor
Ejercicios resueltos de el algebra de baldorEjercicios resueltos de el algebra de baldor
Ejercicios resueltos de el algebra de baldor
Β 
Algebra de baldor
Algebra de baldorAlgebra de baldor
Algebra de baldor
Β 
Algebra de baldor solucionario
Algebra de baldor solucionarioAlgebra de baldor solucionario
Algebra de baldor solucionario
Β 
Algebra de baldor (solucionario, recomiendo descargarlo junto al libro para v...
Algebra de baldor (solucionario, recomiendo descargarlo junto al libro para v...Algebra de baldor (solucionario, recomiendo descargarlo junto al libro para v...
Algebra de baldor (solucionario, recomiendo descargarlo junto al libro para v...
Β 
Algebra de baldor
Algebra de baldorAlgebra de baldor
Algebra de baldor
Β 
Baldor
BaldorBaldor
Baldor
Β 
Baldor 121221160940-phpapp02
Baldor 121221160940-phpapp02Baldor 121221160940-phpapp02
Baldor 121221160940-phpapp02
Β 
Baldor
BaldorBaldor
Baldor
Β 
Algebra
AlgebraAlgebra
Algebra
Β 

More from Widmar Aguilar Gonzalez

More from Widmar Aguilar Gonzalez (20)

CONSERVACION_ENERGIA_RESNICK.pdf
CONSERVACION_ENERGIA_RESNICK.pdfCONSERVACION_ENERGIA_RESNICK.pdf
CONSERVACION_ENERGIA_RESNICK.pdf
Β 
LEYES_NEWTON_RESNICK.pdf
LEYES_NEWTON_RESNICK.pdfLEYES_NEWTON_RESNICK.pdf
LEYES_NEWTON_RESNICK.pdf
Β 
APLICACIONES_LEYES_NEWTON_ZEMANSKY.pdf
APLICACIONES_LEYES_NEWTON_ZEMANSKY.pdfAPLICACIONES_LEYES_NEWTON_ZEMANSKY.pdf
APLICACIONES_LEYES_NEWTON_ZEMANSKY.pdf
Β 
conservacion_ENERGIA__SERWAY.pdf
conservacion_ENERGIA__SERWAY.pdfconservacion_ENERGIA__SERWAY.pdf
conservacion_ENERGIA__SERWAY.pdf
Β 
APLICACIONES_NEWTON_CIRCULAR_SERWAY.pdf
APLICACIONES_NEWTON_CIRCULAR_SERWAY.pdfAPLICACIONES_NEWTON_CIRCULAR_SERWAY.pdf
APLICACIONES_NEWTON_CIRCULAR_SERWAY.pdf
Β 
CINEMATICA_CURVILINEO_RUSEEL.pdf
CINEMATICA_CURVILINEO_RUSEEL.pdfCINEMATICA_CURVILINEO_RUSEEL.pdf
CINEMATICA_CURVILINEO_RUSEEL.pdf
Β 
LEYES NEWTON_HIBBERLEL.pdf
LEYES NEWTON_HIBBERLEL.pdfLEYES NEWTON_HIBBERLEL.pdf
LEYES NEWTON_HIBBERLEL.pdf
Β 
transistor_saturacion.pdf
transistor_saturacion.pdftransistor_saturacion.pdf
transistor_saturacion.pdf
Β 
EJERCICIOS_transistor_zona_activa.docx
EJERCICIOS_transistor_zona_activa.docxEJERCICIOS_transistor_zona_activa.docx
EJERCICIOS_transistor_zona_activa.docx
Β 
DINAMIICA_PARTICULA_RESNICK.pdf
DINAMIICA_PARTICULA_RESNICK.pdfDINAMIICA_PARTICULA_RESNICK.pdf
DINAMIICA_PARTICULA_RESNICK.pdf
Β 
MOVIMIENTO_CURVILINEO_SEMANSKY.pdf
MOVIMIENTO_CURVILINEO_SEMANSKY.pdfMOVIMIENTO_CURVILINEO_SEMANSKY.pdf
MOVIMIENTO_CURVILINEO_SEMANSKY.pdf
Β 
MOVIMIENTO_COMPUESTO_CIRCULAR+MAIZTEGUI_SABATO.pdf
MOVIMIENTO_COMPUESTO_CIRCULAR+MAIZTEGUI_SABATO.pdfMOVIMIENTO_COMPUESTO_CIRCULAR+MAIZTEGUI_SABATO.pdf
MOVIMIENTO_COMPUESTO_CIRCULAR+MAIZTEGUI_SABATO.pdf
Β 
HIDROSTATICA_problemas_alonso.pdf
HIDROSTATICA_problemas_alonso.pdfHIDROSTATICA_problemas_alonso.pdf
HIDROSTATICA_problemas_alonso.pdf
Β 
VELOCIDAD_RELATIVA_SERWAY.pdf
VELOCIDAD_RELATIVA_SERWAY.pdfVELOCIDAD_RELATIVA_SERWAY.pdf
VELOCIDAD_RELATIVA_SERWAY.pdf
Β 
VECTORES_RESNICK.pdf
VECTORES_RESNICK.pdfVECTORES_RESNICK.pdf
VECTORES_RESNICK.pdf
Β 
TEMPERATURA_CALOR_alonso_acosta.pdf
TEMPERATURA_CALOR_alonso_acosta.pdfTEMPERATURA_CALOR_alonso_acosta.pdf
TEMPERATURA_CALOR_alonso_acosta.pdf
Β 
TEMPERATURA_CALOR_MAIZTEGUI.pdf
TEMPERATURA_CALOR_MAIZTEGUI.pdfTEMPERATURA_CALOR_MAIZTEGUI.pdf
TEMPERATURA_CALOR_MAIZTEGUI.pdf
Β 
MOVIMIENTO_RECTILINEO_SEMANSKY.pdf
MOVIMIENTO_RECTILINEO_SEMANSKY.pdfMOVIMIENTO_RECTILINEO_SEMANSKY.pdf
MOVIMIENTO_RECTILINEO_SEMANSKY.pdf
Β 
MOVIMIENTO_CURVILINEO_RESNICK.pdf
MOVIMIENTO_CURVILINEO_RESNICK.pdfMOVIMIENTO_CURVILINEO_RESNICK.pdf
MOVIMIENTO_CURVILINEO_RESNICK.pdf
Β 
MOVIMIENTO_CURVILINEO_ALVARENGA.pdf
MOVIMIENTO_CURVILINEO_ALVARENGA.pdfMOVIMIENTO_CURVILINEO_ALVARENGA.pdf
MOVIMIENTO_CURVILINEO_ALVARENGA.pdf
Β 

Algebra de funciones

  • 1. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. EJERCICIOS RESUELTOS DE MATEMATICA BASICA Temas: - AXIOMAS DE ORDEN - DOMINIO DE FUNCIONES - ALGEBRA DE FUNCIONES - COMPOSICION DE FUNCIONES - FUNCIONES: INYECTIVAS - FUNCIONES: INVERSAS Ing. WIDMAR AGUILAR, Msc julio 2021
  • 2. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 3. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 4. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 5. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 6. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 7. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 8. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 9. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 10. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 11. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 12. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 13. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 14. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 15. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 16. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 17. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 18. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 19. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 20. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc.
  • 21. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 1) 2 βˆ’ 3 +6=0 β†’ = 2 + 6 Encontremos dos puntos y trazar la recta que pase por ellos X= 0 β†’ = 2 ---------A(0,2) = 3 β†’ = 4 βˆ’ βˆ’ βˆ’ βˆ’ 3,4 De la grΓ‘fica se puede determinar dominio y rango de la funciΓ³n: D(f) = R Ran (f) = R 2) βˆ’ 2 + βˆ’ 1 = 0 + 1 =1+2x = ; β‰  βˆ’1
  • 22. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. Realizando su grΓ‘fica, se puede observar el dominio y rango de la funciΓ³n: D (f) = R-{-1} De: βˆ’ 2 + βˆ’ 1 = 0 βˆ’ 2 = 1 βˆ’ = ; y β‰  2 Ran (f) = R –{2} 3) Del dato se define: Ran (f) = ]2, 6] 3y= 2x+8
  • 23. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. = 2 + 8 Si: = 2 β†’ = βˆ’1 ; βˆ’1,2 βˆ‰βˆ‹ ! = 6 β†’ = 5 ; 5,6 La grΓ‘fica de la funciΓ³n es una recta: D(f) = ]-1, 5] 4) 4 + 4 βˆ’ 16 + 4 βˆ’ 47 = 0 4 βˆ’ 16 + 4 + 4 βˆ’ 47 = 0 4 βˆ’ 16 + 16 + 4 + 4 + 1 βˆ’ 47 βˆ’ 17 = 0 4 βˆ’ 4 + 4 + 4 $ + + % & = 64 4 βˆ’ 2 + 4 $ + & = 64 βˆ’ 2 + $ + & = 16 βˆ’ βˆ’ βˆ’ 'Γ­)'*+,
  • 24. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. C(h,k) = C(2, -1/2) ; r = 4 - ! = .β„Ž βˆ’ ), β„Ž + )0 = .βˆ’2,60 123 ! = .4 βˆ’ ), 4 + )0 = 5βˆ’ 6 , 7 8 5) = 1 βˆ’ √15 βˆ’ 2 βˆ’ = 1 βˆ’ :βˆ’ + 2 + 1 + 16 = 1 βˆ’ :16 βˆ’ + 1 ---------semicirculo (hacia abajo) 16 βˆ’ + 1 = βˆ’ 1 + 1 + βˆ’ 1 = 16 ; β„Ž, 4 = ; βˆ’1,1 ; ) = 4
  • 25. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. - ! = .β„Ž βˆ’ ), β„Ž + )0 = .βˆ’5,30 123 ! = .4 βˆ’ ), 40 = .βˆ’3,10 6) = βˆ’3 + √4 βˆ’ ---semicircunferencia + 3 = :βˆ’ βˆ’ 4 + 4 + 4 + 3 = :4 βˆ’ βˆ’ 2 + 3 = 4 βˆ’ βˆ’ 2 βˆ’ 2 + + 3 = 4 ) = 2 ; ; β„Ž, 4 = ' 2, βˆ’3
  • 26. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. - ! = .β„Ž βˆ’ ), β„Ž + )0 = .0,40 123 ! = .4, 4 + )0 = .βˆ’3, βˆ’10 7) = 2 + :6 βˆ’ βˆ’ 2 = :βˆ’ βˆ’ 6 + 9 + 9 βˆ’ 2 = :9 βˆ’ βˆ’ 3 βˆ’ 2 = 9 βˆ’ βˆ’ 3 βˆ’ 2 + βˆ’ 3 = 9 β†’ = 2 + :6 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’=>?@'@)'*3!>)>3'@2 ; β„Ž, 4 = ; 2,3 ; ) = 3 - ! = .β„Ž, β„Ž + )0 = .2,50
  • 27. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 123 ! = .4 βˆ’ ), 4 + )0 = .0,60 8) + βˆ’ 2| | βˆ’ 6 + 1 = 0 | | = B , β‰₯ 0 βˆ’ , < 0 a) X <0 ; + + 2 βˆ’ 6 + 1 = 0 + 2 + 1 + βˆ’ 6 + 9 + 1 βˆ’ 1 βˆ’ 9 = 0 + 1 + βˆ’ 3 = 9------circunferencia ; β„Ž, 4 = ; βˆ’1,3 ; ) = 3 b) X >0 ; + βˆ’ 2 βˆ’ 6 + 1 = 0 βˆ’ 2 + 1 + βˆ’ 6 + 9 + 1 βˆ’ 1 βˆ’ 9 = 0 βˆ’ 1 + βˆ’ 3 = 9------circunferencia ; β„Ž, 4 = ; 1,3 ; ) = 3 - ! = .βˆ’4,40 123 ! = .0,60
  • 28. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 9) + 2 βˆ’ 2 + 7 = 0 2 = + 2 + 7 2 = + 2 + 1 + 6 = + 1 + 3 βˆ’ βˆ’ βˆ’ βˆ’E2)Γ‘G,+2 Que se abre hacia arriba β„Ž = βˆ’1, 4 = 3 V(h.k) = V(-1,3) - ! = 1 123 ! = .3, ∞ . 10) 2 βˆ’ 4 + + 3 = 0 = 4 βˆ’ 2 βˆ’ 3
  • 29. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. = βˆ’ 2 βˆ’ 4 βˆ’ 3 = βˆ’2 βˆ’ 2 + 1 βˆ’ 3 + 2 = βˆ’1 βˆ’ 2 βˆ’ 1 βˆ’ βˆ’ βˆ’ βˆ’E2)Γ‘G,+2 V(h, k) = V(1,-1) 2 < 0 β†’ => 2G)> β„Ž2'@2 2G2I, - ! = 1 123 ! = 0 βˆ’ ∞ , βˆ’10 11) + 4 + 3 βˆ’ 8 = 0 + 4 + 4 + 3 βˆ’ 8 βˆ’ 4 = 0 3 = βˆ’ + 2 + 12 = βˆ’4 βˆ’ + 2
  • 30. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. β†’ βˆ’ < 0 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ => 2G)> β„Ž2'@2 +2 @JK*@>)L2 V(h,k )= V(-2, -4) - ! = 0 βˆ’ ∞ , 40 123 ! = 1 12) = 1 + √2 βˆ’ De: y= k+:βˆ’ βˆ’ β„Ž βˆ’ βˆ’ βˆ’ =>?@E2)Γ‘G,+2 Que se abre hacia la izquierda. = 1 + :βˆ’ βˆ’ 2 h = 2 ; k=1
  • 31. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. - ! = 0 βˆ’ ∞ , 20 123 ! = .1, ∞ . 13) = βˆ’βˆš6 βˆ’ 2 = βˆ’ :βˆ’2 βˆ’ 3 = βˆ’βˆš2 :βˆ’ βˆ’ 3 Se sabe: y = 4 βˆ’ G:βˆ’ βˆ’ β„Ž βˆ’ βˆ’=>?@E2)Γ‘G,+2 -√2 < 0 β†’ => 2G)> β„Ž2'@2 +2 @JK*@>)L2 = βˆ’βˆš2 :βˆ’ βˆ’ 3 h = 3 ; k = 0 - ! = 0 βˆ’ ∞ , 30 123 ! = 0 βˆ’ ∞, 0 0 14)
  • 32. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. + 1 = √3 + 5 = βˆ’1 + M3 + N = βˆ’1 + √3 M + N Si: y = k+b √ βˆ’ β„Ž βˆ’ βˆ’ βˆ’ βˆ’=>?@E2)Γ‘G,+2 Que se abre a la derecha h = -5/3 ; k = -1 V(-5/3, -1) - ! = .βˆ’ N , ∞ . 123 ! = .βˆ’1, ∞. 15) = 5 + :βˆ’3 βˆ’ 2 = 5 + √3 :βˆ’ βˆ’ 2 -----semiparΓ‘bola que se abre a la izquierda h = 2 ; k =5 V (2,5)
  • 33. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. - ! = 0 βˆ’ ∞, 20 123 ! = .5, ∞ . 16) 4 + 9 βˆ’ 16 + 18 = 11 4 βˆ’ 4 + 9 + 2 = 11 4 βˆ’ 4 + 4 + 9 + 2 + 1 = 11 + 25 4 βˆ’ 4 + 4 + 9 + 2 + 1 = 36 O 6 + O % = 1 βˆ’ βˆ’ βˆ’ >+@E=> B 2 = 3 G = 2 ; β„Ž, 4 = ; 2, βˆ’1 - ! = .β„Ž βˆ’ 2, β„Ž + 20 = .βˆ’1,50
  • 34. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. )23 ! = .4 βˆ’ G, 4 + G0 = .βˆ’3, 10 17) 9 + 4 + 18 βˆ’ 32 = βˆ’37 9 + 2 + 1 + 4 βˆ’ 8 + 16 = βˆ’37 + 73 9 + 1 + 4 βˆ’ 4 = 36 O % + % O 6 = 1 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ >+@E=> 2 = 2 ; G = 3 C(h, k) = C (-1, 4) La grΓ‘fica es: - ! = .β„Ž βˆ’ 2, β„Ž + 20 = .βˆ’3,10 123 ! = 4 βˆ’ G, 4 + G0 = 1,70 18)
  • 35. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. = + | βˆ’ 1| | βˆ’ 1| = P βˆ’ 1 ; β‰₯ 1 βˆ’ βˆ’ 1 ; < 1 a) X < 1 ; = βˆ’ + 1 = 1 b) X β‰₯ 1 = + βˆ’ 1 = 2 βˆ’ 1 ! = B 2 βˆ’ 1 ; β‰₯ 1 1 ; < 1 La grΓ‘fica es: - ! = 1 123 ! = .1, ∞ . 19) = | | +
  • 36. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. | βˆ’ 1| = P βˆ’ 1 ; β‰₯ 1 βˆ’ βˆ’ 1 ; < 1 a) X < 1 ; = + = 1 + b) X β‰₯ 1 = + = = βˆ’ + = βˆ’ 1 ! = B βˆ’ 1 ; β‰₯ 1 1 + ; < 1 Su grΓ‘fica es: - ! = 1 βˆ’ 1Q 123 ! = 1 20) | | + | | = 4 | | = 4 βˆ’ | |
  • 37. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. a) X β‰₯ 0 ; | | = | | = 4 βˆ’ ↔ 4 βˆ’ β‰₯ 0 ∧ 4 βˆ’ = Γ³ 4 βˆ’ = βˆ’ Q X β‰₯ 0 β†’ ≀ 4 ∧ = 4 βˆ’ Γ³ = βˆ’ 4 Q X β‰₯ 0 ∧ ≀ 4 β†’ 0 ≀ ≀ 4 ↔ = 4 βˆ’ Γ³ = βˆ’ 4Q b) X <0 ; | | = βˆ’ | | = 4 + ↔ 4 + β‰₯ 0 ∧ 4 + = Γ³ 4 + = βˆ’ Q X < 0 ∧ β‰₯ βˆ’4 β†’ βˆ’4 ≀ < 0 ↔ = 4 + Γ³ = βˆ’ βˆ’ 4 Q βˆ’4 ≀ ≀ 0 ↔ = 4 + Γ³ = βˆ’ βˆ’ 4Q 0 ≀ ≀ 4 β†’ ! = B 4 βˆ’ βˆ’ 4 βˆ’4 ≀ ≀ 0 β†’ ! = B 4 + βˆ’ βˆ’ 4 V2 W)Γ‘!@'2 >=: - ! = .βˆ’4,40 123 ! = .βˆ’4,40
  • 38. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 21) | + 2| + | βˆ’ 3| = 4 | βˆ’ 3| = 4 βˆ’ | + 2| | + 2| = P + 2 ; β‰₯ βˆ’2 βˆ’ + 2 ; < 2 a) β‰₯ βˆ’2 β†’ | + 2| = + 2 β†’ | βˆ’ 3| = 2 βˆ’ ↔ 2 βˆ’ β‰₯ 0 ∧ { y-3=2-x Γ³ y-3 = x-2 } β‰₯ βˆ’2 ∧ ≀ 2 β†’ βˆ’2 ≀ ≀ 2 ↔ βˆ’2 ≀ ≀ 2 ∧ = 5 βˆ’ Γ³ = + 1Q b) < βˆ’2 β†’ | + 2| = βˆ’ βˆ’ 2 β†’ | βˆ’ 3| = 6 + ↔ 6 + β‰₯ 0 ∧ { y-3=6+x Γ³ y-3 = -x-6 } < βˆ’2 ∧ ≀ βˆ’6 β†’ βˆ’6 ≀ ≀ βˆ’2 ↔ βˆ’6 ≀ ≀ βˆ’2 ∧ = 9 + Γ³ = βˆ’3 βˆ’ Q -2≀ ≀ 2 β†’ ! = B 5 βˆ’ + 1 βˆ’6 ≀ ≀ βˆ’2 β†’ ! = B 9 + βˆ’ βˆ’ 3 V2 W)Γ‘!@'2 >=:
  • 39. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. - ! = .βˆ’6, 20 123 ! = .βˆ’1, 70 22) = | + 4 + 1| = | + 4 + 4 βˆ’ 3| = | + 2 βˆ’ 3| β†’ β‰₯ 0 ∧ = + 2 βˆ’ 3 Γ³ = βˆ’ + 2 + 3 Q De: = + 2 βˆ’ 3 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ E2)Γ‘G,+2 β„Ž = βˆ’2 ; 4 = βˆ’3 ; Y βˆ’2,3 = βˆ’ + 2 + 3 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ E2)Γ‘G,+2 β„Ž = βˆ’2 ; 4 = 3 ; Y βˆ’2,3
  • 40. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. - ! = 1 123 ! = .0, ∞ . 23) ! + 2 = Con x = 1 β†’ ! 3 = 1 β†’ 3,1 ∈ ! Con x =-1 β†’ ! 1 = βˆ’1 β†’ 1,1 ∈ ! De; (x,y ) ∈ ! ∧ , J ∈ ! β†’ = J 3,1 ∧ 1, βˆ’1 ∈ ! Luego --------------- f es una funciΓ³n 24)
  • 41. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! + 2 = Con x = 1 β†’ ! 3 = 1 β†’ 3,1 ∈ ! Con x =-1 β†’ ! 3 = βˆ’1 β†’ 3, βˆ’1 ∈ ! De; (x,y ) ∈ ! ∧ , J ∈ ! β†’ = J 3,1 ∧ 3, βˆ’1 ∈ ! 1 β‰  βˆ’1 Luego --------------- f no es una funciΓ³n 25) Sea t = x+3 ; x = t-3 ! [ = ([ βˆ’ 3 βˆ’ 1 ! [ = [ βˆ’ 6[ + 9 βˆ’ 1 = [ βˆ’ 6[ + 8 β†’ ! = βˆ’ 6 + 8 Calculando: ] ] = ] O ^ ] _ ] = ]O %] % ^] _ % _ ] = ]O ] ] = ] ] ] = 2 ] ] = 2 26)
  • 42. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. Calculando f(x). Sea: x+1 = t ! [ = [ βˆ’ 1 + 3 = [ βˆ’ 2[ + 1 + 3 = [ βˆ’ 2[ + 4 ! = βˆ’ 2 + 4 ] ] ] = ] O ] % . ] O ] %0 ] = ]O %] % ] % % ]O %] % ] % % ] = _] _ ] = _ ] ] = 8 ] ] ] = 8 27) La grΓ‘fica es:
  • 43. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. Sea: 0<x ≀1 1< < ` β†’ 1 < 1/ > 1 1 + > 2 ! > 2 β†’ ! ∈ 01,2. βˆ’ βˆ’ βˆ’ βˆ’ βˆ’!2+=, 28) = βˆ’ 1 Su grΓ‘fica es:
  • 44. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. - ! = ℝ Si: X= 1 β†’ ! 1 = 0 β†’ 1,0 ∈ ! = βˆ’1 β†’ ! βˆ’1 = 0 β†’ βˆ’1,0 ∈ ! (x,y ) ∈ ! ∧ , J ∈ ! β†’ = J 1,0 ∈ ! ∧ βˆ’1,0 ∈ ! ! >= *32 !*3'@Γ³3 Despejando x: = + 1 = Β± : + 1 + 1 β‰₯ 0 β‰₯ βˆ’1 Rang(f) = [1, ∞ . 29)
  • 45. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. βˆ’ 4 βˆ’ 2 + 10 = 0 2 = βˆ’ 4 + 10 = βˆ’ 4 + 10 Como es polinomio β†’ - ! = ℝ = βˆ’ 4 + 4 + 5 βˆ’ 2 = βˆ’ 2 + 3 β†’ E2)Γ‘G,+2 Y β„Ž, 4 = 2, 3 Si x =1 β†’ ! 1 = 7 β†’ $1, 7 & ∈ ! = βˆ’1 β†’ ! βˆ’1 = N β†’ $βˆ’1, N & ∈ ! $1, 7 & ∈ ! ∧ $βˆ’1, N & ∈ ! f es una funciΓ³n 2( y-3) = ( βˆ’ 2 :2 βˆ’ 6 = + 2 = :2 βˆ’ 6 + 2 Escriba aquΓ­ la ecuaciΓ³n. 2 βˆ’ 6 β‰₯ 0 β†’ βˆ’ 3 β‰₯ 0 β‰₯ 3 Luego el rango es: Rang(f) = [3, ∞ .
  • 46. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 30) = 3 + 2 βˆ’ = βˆ’ βˆ’ 2 + 1 + 3 + 1 = 4 βˆ’ βˆ’ 1 Si: βˆ’2 ≀ < 2 -3 ≀ βˆ’ 1 < 1 0≀ βˆ’ 1 < 9 βˆ’9 < βˆ’ βˆ’ 1 ≀ 0 4 βˆ’ 9 < 4 βˆ’ βˆ’ 1 ≀ 4 βˆ’5 < ! ≀ 4 Rang (f) = ]-5, 4 ]
  • 47. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 31) = 1 + √3 + 2 βˆ’ = 1 + :βˆ’ βˆ’ 2 + 1 + 4 = 1 + :4 βˆ’ βˆ’ 1 Partiendo del dominio: βˆ’1 < ≀ 2 -2 < x-1 ≀ 1 0 ≀ βˆ’ 1 < 4 βˆ’4 < βˆ’ βˆ’ 1 ≀ 0 0 < 4 βˆ’ βˆ’ 1 ≀ 4 0 < :4 βˆ’ βˆ’ 1 ≀ 2 1 < 1+ :4 βˆ’ βˆ’ 1 ≀ 3 Rang (f)= ]1, 3 ]
  • 48. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 32) Se traza la cuadrΓ­cula con los datos del dominio y rango y en Γ©l la curva f(x) Y= 0 β†’ 0 = + 4 + 4 βˆ’ 1 0 = + 2 βˆ’ 1 β†’ + 2 = 1 β†’ = βˆ’2 Β± 1 β†’ P = βˆ’3 = βˆ’1
  • 49. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. = 5 β†’ 5 = + 4 + 4 βˆ’ 1 5 = + 2 βˆ’ 1 β†’ + 2 = 6 β†’ = βˆ’2 Β± √6 β†’ r = βˆ’2 βˆ’ √6 = βˆ’2 + √6 β‰  βˆ’4 β†’ β‰  16 βˆ’ 16 + 3 = 3 (-4, 3) βˆ‰ ) ! β‰  1 β†’ β‰  1 βˆ’ 4 + 3 = 0 (1, 0) βˆ‰ ) ! Luego: D= D(g) = ]-4, 3[ U ]-1, √6 βˆ’ 2. Rang(g) = f(D) = [0, 5] 33) Se traza la cuadrΓ­cula con los datos del dominio y rango y en Γ©l la curva f(x)
  • 50. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. Si: = 3 β†’ 3 = √9 βˆ’ 9 = 9 βˆ’ x= 0 = 1 β†’ 1 = √9 βˆ’ 1 = 9 βˆ’ = 8 β†’ = Β±2√2 = 2 β†’ = √9 βˆ’ 4 y = √5 Luego: D= D(g) = [-2, 2] Rang(g) = f(D) = [√5, 3] 34) Se traza la cuadrΓ­cula con los datos del dominio y rango y en Γ©l la curva f(x)
  • 51. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. Y= 7 β†’ 7 = 3 βˆ’ 2 2 = βˆ’4 β†’ = βˆ’2 Y= -1 β†’ βˆ’1 = 3 βˆ’ 2 2 = 4 β†’ = 2 D= D(g) = [-2,2[ Rang(g) = f(D) = ]-1,7] 35) Se traza la cuadrΓ­cula con los datos del dominio y rango y en Γ©l la curva f(x)
  • 52. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. A= [-2,3[ B= [-1,2] f (x) = x2 -2 W: - β†’ / ! = W Si; Y= -1 β†’ βˆ’1 = βˆ’ 2 = 1 β†’ = Β±1 Y= 2 β†’ 2 = βˆ’ 2 = 4 β†’ = Β±2 D = D(g) = .βˆ’2, βˆ’10s .1,2] Rang(g) =f(D) = [-1,2] 36)
  • 53. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. A = [-2,3[ ; B = [-2, 6[ Trazar Ax B y dentro del rectΓ‘ngulo la funciΓ³n f( x) β‰  6 β†’ 6 β‰  βˆ’ 9 β‰  15 β†’ β‰  Β± √15 ---fuera de Ax B = βˆ’2 β†’ βˆ’2 = βˆ’ 9 = 7 β†’ = Β± √7 = √7 βˆ’ βˆ’ βˆ’ => L>='2)[2 >+ t2+,) 3>W2[@t, Se tiene: D = D(g) = [√7 , 3. Rang(g) = [-2,0[
  • 54. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 37) ! = | | + | βˆ’ 1| De la definiciΓ³n de valor absoluto: | | = B , β‰₯ 0 βˆ’ , < 0 | βˆ’ 1| = P βˆ’ 1 , β‰₯ 1 βˆ’ βˆ’ 1 , < 1 D(f) = A = [-3,3] Redefiniendo la funciΓ³n f(x): ]-3, 0[ β†’ | | = βˆ’ ; | βˆ’ 1| = βˆ’ βˆ’ 1 ! = βˆ’ βˆ’ βˆ’ 1 = 1 βˆ’ 2 [0, 1[ β†’ | | = ; | βˆ’ 1| = βˆ’ βˆ’ 1 ! = βˆ’ βˆ’ 1 = 1 [1, 3] β†’ | | = ; | βˆ’ 1| = βˆ’ 1 ! = βˆ’ 1 = 2 βˆ’ 1 ! = u 1 βˆ’ 2 ; ∈ 0 βˆ’ 3,0. 1 ; ∈ .0,1 . 2 βˆ’ 1 ; ∈ .1, 30 Traza A x B y dentro de este perΓ­metro a funciΓ³n f(x);
  • 55. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. Si: Y= 2 β†’ 2 = 2 βˆ’ 1 β†’ = = 5 β†’ 5 = 2 βˆ’ 1 = 3 Y= 2 β†’ 2 = 1 βˆ’ 2 β†’ = βˆ’ Y= 5 β†’ 5 = 1 βˆ’ 2 β†’ = βˆ’2 D= D(g) = ]-2,-βˆ’ s 0 , 30 Rang (g) = ]2,5] 38) D(f) = [-2,-3[ Trazar la cuadricula A x B y dentro de ella dibujar la curva f( x):
  • 56. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. La funciΓ³n f( x ) es una parΓ‘bola con vΓ©rtice: V(0,-9) = βˆ’2 β†’ βˆ’2 = βˆ’ 9 β†’ = 7 β†’ = Β± √7 = √7 Se tiene: D= D(f) = . :7, 30 Rang (g) = [-2,6[ 39) D(f) = ? ! = M O | N| De: O | N| β‰₯ 0
  • 57. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. % | N| β‰₯ 0 ; |2 βˆ’ 5| = u 2 βˆ’ 5 , β‰₯ N βˆ’ 2 βˆ’ 5 . < N a) 0 βˆ’ ∞, N . β†’ |2 βˆ’ 5| = 5 βˆ’ 2 f(x) = % N β‰₯ 0 β†’ + 3 4 βˆ’ 5 βˆ’ 2 β‰₯ 0 S1 = ∈ .βˆ’3, N . s β‰₯ 4 De: .βˆ’ ∞, N . ∩ ∈ .βˆ’3, N . s β‰₯ 4 S1 = ∈ .βˆ’3, N . B ) . N , ∞ . β†’ |2 βˆ’ 5| = 2 βˆ’ 5 f(x) = % N β‰₯ 0 β†’ + 3 4 βˆ’ 2 βˆ’ 5 β‰₯ 0
  • 58. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. De: . N , ∞ . ∩ x ≀ βˆ’3 s 0 5/2, 40 S2 = 0 5/2, 40 La soluciΓ³n serΓ‘: w1 s w2 S = [ 3,4] –{5/2} 40) Sea: ! = 3 βˆ’ √2 βˆ’ = 3 βˆ’ √2 βˆ’ β†’ 2 βˆ’ = 3 βˆ’ X = 2 βˆ’ 3 βˆ’ β†’ = 2 βˆ’ βˆ’ 3
  • 59. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. β†’ E2)Γ‘G,+2 L> tΓ©)[@'> = Y 2,3 => 2G)> β„Ž2'@2 +2 L>)>'β„Ž2 Se tiene que: Rang(f) = ]- ∞ , 30 Sea: g(x) = x2 +14x +50 W = + 14 + 49 + 1 W = + 7 + 1 β†’ E2)Γ‘G,+2 K*> => 2G)> β„Ž2'@2 2))@G2 V(h,k) = (-7, 1)
  • 60. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. En rango es: Ran (g) = [1, ∞ . Luego; Rang(f) ∩ 123 W Rang(f) ∩ 123 W = .1, 30 41) De: βˆ’1 < ! < 3; βˆ€ ∈ 1 βˆ’1 < O ] O < 3 Se tiene que: + 2 + 2 > 0 E,) =>) βˆ† < 0 βˆ† = L@=')@?@323[> -( + 2 + 2 < 2 βˆ’ 2 + 1 < 3 + 2 + 2 β†’ -( + 2 + 2 < 2 βˆ’ 2 + 1 ∧ 2 βˆ’ 2 + 1 < 3 + 2 + 2 a) -( + 2 + 2 < 2 βˆ’ 2 + 1 β†’ 0 < 3 + 2 βˆ’ 2 + 3 β†’ 3 + 2 βˆ’ 2 + 3 > 0 Debe cumplirse que el discriminante sea menor que cero: βˆ† < 0
  • 61. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. β†’ 2 βˆ’ 2 βˆ’ 36 < 0 β†’ 2 βˆ’ 2 < 36 β†’ . 2 βˆ’ 2 βˆ’ 60.2 βˆ’ 2 + 60 < 0 β†’ βˆ’ 2 + 4 8-a) < 0 β†’ 2 + 4 8 βˆ’ 2 > 0 2 ∈ 0 βˆ’ 4, 8 . b) 2 βˆ’ 2 + 1 < 3 + 2 + 2 β†’ 0 < + 2 + 6 + 5 > 0 Debe cumplirse que el discriminante sea menor que cero: βˆ† < 0 2 + 6 βˆ’ 20 < 0 β†’ 2 + 6 < 20 β†’ βˆ’ √20 < 2 + 6 < √20 β†’ βˆ’βˆš20 βˆ’ 6 < 2 < √20 βˆ’ 6 2 ∈0 βˆ’ √20 βˆ’ 6, √20 βˆ’ 6 . Finalmente se tiene: 2 ∈ 0 βˆ’ 4, 8. ∧ 2 ∈0 βˆ’ √20 βˆ’ 6, √20 + 6 . 2 ∈ 0 βˆ’ 4, √20 βˆ’ 6.
  • 62. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 42) ! > 1 ^ O { ` |N O | > 1 5 βˆ’ 3 + 1 β†’ βˆ† < , Como el discriminante es menor que cero, la expresiΓ³n siempre serΓ‘ positiva. 5 βˆ’ 3 + 1 > 0 β†’ 6 + 2 ? + 10 > 5 βˆ’ 3 + 1 β†’ + 2 ? + 3 + 9 > 0 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 2 Se tiene que (a) es positivo β†’ βˆ† < 0 2? + 3 βˆ’ 36 < 0 β†’ 2? + 3 < 36 β†’ βˆ’6 < 2? + 3 < 6 β†’ βˆ’9 < 2? < 3 β†’ βˆ’ 6 < ? < ? ∈ 0 βˆ’ 6 , . 43) Si f……. es cuadrΓ‘tica β†’ ! = 2 + G + '
  • 63. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! $ βˆ’ 1& βˆ’ ! $ + 1& = βˆ’8 + 1 ------(1) Si: ! 0 = 1 β†’ 1 = 2 0 + G 0 + ' ' = 1 ! = 2 + G + 1 De la expresiΓ³n (1), 2 βˆ’ 1 + G $ + 1& + 1 βˆ’ .2 $ + 1 + G $ + 1& + 18 = βˆ’8 + 1 2 $ O % βˆ’ + 1& + G. + G + 1 βˆ’ .2 $ O % + + 1& + G. + G + 10 = βˆ’8 βˆ’ 8 βˆ’22 βˆ’ 2G = βˆ’8 βˆ’ 8 2 + G = 4 + 4 β†’ B 2 = 4 G = 4 La ecuaciΓ³n f(x) serΓ‘: ! = 4 + 4 + 1 ! = 2 + 1 β†’ E2)Γ‘G,+2 K*> => 2G)> β„Ž2'@2 2))@G2 ',3 tΓ©)[@'> Y β„Ž, 4 Y β„Ž, 4 = β„Ž = βˆ’ ; 4 = 0
  • 64. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. De la grΓ‘fica β†’ >+ ?Γ­3@?, L> ! >=: 0 Min. f = 0 44) Sea: ! = 2 + G + ' | 2 = 2 G = 2√5 βˆ’ 1 ' = βˆ’βˆš5 ! = 2 } + √N + ~ √N β€’ O ^ € βˆ’ √5 βˆ’ ~ √N β€’ O _ ! = 2 + √N % βˆ’ √5 + ~ √N β€’ O _ ! = 2 + √N % βˆ’ _√N ` %√N _ ! = 2 + √N % βˆ’ %√N _ β†’ E2)Γ‘G,+2 K*> => β„Ž2G)> β„Ž2'@2 2))@G2. β†’ u β„Ž = βˆ’ √N % 4 = βˆ’ %√N _ La grΓ‘fica de f(x) es:
  • 65. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. El mΓ­nimo de f es: βˆ’ %√N _ 45) P = + 2 + β€’ = 2 β†’ 2 + 4 + β€š = 4 2 + β€š + 4 = 4 = % .4 βˆ’ 2 + β€š 0
  • 66. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. El Γ‘rea de la ventana es: A= xy + β€’ = % .4 βˆ’ 2 + β€š 0+ β€’ _ = βˆ’ O % 2 + β€š + β€’ _ = βˆ’ O βˆ’ β€’ % + β€’ _ = βˆ’ O βˆ’ β€’ _ = βˆ’ O βˆ’ β€’ _ A(x) = βˆ’ + β€’ _ βˆ’ βˆ’ βˆ’ βˆ’ E2)Γ‘G,+2 Se abre hacia abajo A(x) = βˆ’ $ % β€’ _ & = βˆ’. $ % β€’ _ & βˆ’ 0 = βˆ’. $ % β€’ _ & βˆ’ + $ _ β€’ % & 0+ $ _ β€’ % & = βˆ’. . M % β€’ _ βˆ’ M _ % β€’ 0 + $ _ β€’ % & Y β„Ž, 4 = Ζ’M _ % β€’ , $ _ β€’ % & β€ž
  • 67. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. Derivando la funciΓ³n A(X) e igualando a cero para tener un mΓ‘ximo: … = 0 0 = 1 βˆ’ 2 $ % β€’ _ & 2 $ % β€’ _ & = 1 = % β€’ % 46) Del triΓ‘ngulo ;- †;1: ‑ˆ ‰‰‰‰ Ε β€Ή ‰‰‰‰ = Ε’β€’ ‰‰‰‰‰ Ε’Ε½ ‰‰‰‰ β†’ ` = Ε’β€’ ‰‰‰‰‰ ^ β€’
  • 68. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 20 6 βˆ’ β„Ž = 6 β„Ž = 6 βˆ’ ` El Γ‘rea del rectΓ‘ngulo es: A= x.h = . $6 βˆ’ ` & = βˆ’ ` + 6 = βˆ’ ` βˆ’ 20 = βˆ’ ` βˆ’ 20 + 100 + 30 = 30 βˆ’ ` βˆ’ 10 //// β†’ E2)Γ‘G,+2 K*> => 2G)>2 β„Ž2'@2 2G2I, … V(h,k) = ( 10, 30) El mΓ‘ximo se tiene cuando X = 10 X= 10 β†’ = 30 30 = . β„Ž = 10. β„Ž β„Ž = 3 B = 10 β„Ž = 3
  • 69. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 47) = β€š1 ; ',?,: 10 βˆ’ = 2β€š1 1 = ` β€’ = β€š ` β€’ = ` O %β€’ = $% & = ^ = + = ` O %β€’ + ^ = `` ` O %β€’ + ^ = %`` _` % O β€’ O ^β€’ = O ^ + O %β€’ βˆ’ N β€’ + N β€’
  • 70. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. A= $ ^ + %β€’ & βˆ’ N β€’ + N β€’ = $ β€’ % ^β€’ & βˆ’ N β€’ + N β€’ = ^β€’ . 4 + β€š βˆ’ 80 + ^`` % β€’ 0 + %`` ^β€’ βˆ’ ^`` ^β€’ % β€’ = ^β€’ . √4 + β€š βˆ’ %` √% β€’ 0 + N β€’ βˆ’ `` %β€’ β€’O β†’ E2)Γ‘G,+2 K*> => 2G)> β„Ž2'@2 2))@G2 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ El mΓ­nimo de f…. se tiene para x = %` % β€’ El perΓ­metro del cuadrado serΓ‘: P1 = 4(x/4) =x P1= %` % β€’ La longitud de la circunferencia: L2= 2β€š1 = 2β€š $ ` β€’ &= 10 βˆ’ V2 = 10 βˆ’ %` % β€’ = `β€’ % β€’ El Γ‘rea del cuadrado es: = $ 4 & = 1 16 = ^ %` % β€’
  • 71. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. El Γ‘rea total es: A = ` O %β€’ + ^ = ^ %` % β€’ + ` β€˜β€™ β€˜β€œβ€ O %β€’ A = N % β€’ ‒– β€’ = β€” β€”Λœ β€˜β€™ β€˜β€œβ€ O Oβ„’ β€˜β€œβ€ = % % β€’ Ε‘ = % % β€’ . N % β€’ = `` % β€’ O 48) De; ! = % = % % % = 1 + % % √ βˆ’ 4 β‰₯ 0 √ > 0 β†’ β‰₯ 0 β†’ β‰₯ 0 ∧ βˆ’ 4 β‰₯ 0 β‰₯ 0 ∧ (x+2)(x-2) β‰₯ 0 β‰₯ 0 ∧ { ≀ βˆ’2 Γ³ β‰₯ 2 Q ∈ .2, ∞ . βˆ’ 4Q D (f) = .2, 4 . s 04, ∞ . El rango serΓ‘: 2 ≀ < 4 Γ³ > 4 βˆ’2 ≀ βˆ’ 4 < 0 Γ³ βˆ’ 4 > 0 % ≀ βˆ’ Γ³ % > 0
  • 72. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. % % ≀ βˆ’2 Γ³ % % > 0 1+ % % ≀ βˆ’1 Γ³ % % > 0 + 1 1+ % % ≀ βˆ’1 Γ³ % % > 1 Ran (f) = 0 βˆ’ ∞, βˆ’1 0 s 01, ∞. 49) Se tiene: ! = 4 βˆ’ √ + 12 + 27 ; ∈0 βˆ’ ∞, βˆ’110 W = + 6 + 6 ; ∈ 00, ∞ . + 12 + 27 = + 12 + 36 + 27 βˆ’ 36 = + 6 βˆ’ 9 ! = 4 βˆ’ : + 6 βˆ’ 9 W = + 6 + 9 + 6 βˆ’ 9 W = + 3 βˆ’ 3 Se determina el rango a partir del dominio de f. < βˆ’11 + 6 < βˆ’5 + 6 β‰₯ 25 β†’ + 6 βˆ’ 9 β‰₯ 16 : + 6 βˆ’ 9 β‰₯ 4 βˆ’: + 6 βˆ’ 9 ≀ βˆ’4 4 βˆ’ : + 6 βˆ’ 9 ≀ 0
  • 73. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! ≀ 0 Ran (f) = ] βˆ’βˆž, 0 0 De: x >0 + 3 > 3 + 3 > 9 + 3 βˆ’ 3 > 6 W > 6 123 W = 06, ∞ . 50) De: βˆ’1 < ! < 3; βˆ€ ∈ 1 βˆ’1 < O β€Ί O < 3 Se tiene que: + 2 + 2 > 0 E,) =>) βˆ† < 0 βˆ† = L@=')@?@323[> -( + 2 + 2 < 2 βˆ’ 4 + 1 < 3 + 2 + 2 β†’ -( + 2 + 2 < 2 βˆ’ 4 + 1 ∧ 2 βˆ’ 4 + 1 < 3 + 2 + 2 a) -( + 2 + 2 < 2 βˆ’ 4 + 1 β†’ 0 < 3 + 2 βˆ’ 4 + 3 β†’ 3 + 2 βˆ’ 4 + 3 > 0 Debe cumplirse que el discriminante sea menor que cero:
  • 74. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. βˆ† < 0 β†’ 2 βˆ’ 4 βˆ’ 36 < 0 β†’ 2 βˆ’ 4 < 36 β†’ . 2 βˆ’ 4 βˆ’ 60.2 βˆ’ 4 + 60 < 0 β†’ βˆ’ 4 + 4 8-k) < 0 β†’ 4 + 4 8 βˆ’ 4 > 0 4 ∈ 0 βˆ’ 4, 8 . b) 2 βˆ’ 4 + 1 < 3 + 2 + 2 β†’ 0 < + 4 + 6 + 5 > 0 Debe cumplirse que el discriminante sea menor que cero: βˆ† < 0 4 + 6 βˆ’ 20 < 0 β†’ 4 + 6 < 20 β†’ βˆ’ √20 < 4 + 6 < √20 β†’ βˆ’βˆš20 βˆ’ 6 < 4 < √20 βˆ’ 6 4 ∈0 βˆ’ √20 βˆ’ 6, √20 βˆ’ 6 . Finalmente se tiene: 4 ∈ 0 βˆ’ 4, 8. ∧ 4 ∈0 βˆ’ √20 βˆ’ 6, √20 + 6 . 4 ∈ 0 βˆ’ 4, √20 βˆ’ 6.
  • 75. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 51) ! = | βˆ’ 1| + | + 1| Puntos crΓ­ticos = { 1, -1} 2 0 βˆ’ ∞, βˆ’1. β†’ | βˆ’ 1| = βˆ’ βˆ’ 1 | + 1| = βˆ’ + 1 ! = βˆ’ βˆ’ 1 βˆ’ + 1 = βˆ’ + 1 βˆ’ βˆ’ 1 ! = βˆ’2 b.- .βˆ’1,1. β†’ | βˆ’ 1| = βˆ’ βˆ’ 1 | + 1| = + 1 ! = βˆ’ βˆ’ 1 + + 1 = βˆ’ + 1 + + 1 ! = 2 c.- .1, ∞. β†’ | βˆ’ 1| = βˆ’ 1 | + 1| = + 1 ! = βˆ’ 1 + + 1 = βˆ’ 1 + + 1 ! = 2x Redefiniendo a f: ! = | βˆ’2 , < βˆ’1 2 , ∈ βˆ’1,1 . 2 , β‰₯ 1 La grΓ‘fica es:
  • 76. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. De la grΓ‘fica se aprecia que el rango es: 123 ! = .2, ∞ . 52) De: βˆ’ 3 βˆ’ 4 β‰₯ 0 βˆ’ 4 + 1 β‰₯ 0 ≀ βˆ’1 Γ³ β‰₯ 4 β†’ - ! = 0 βˆ’ ∞, βˆ’10 s .4, ∞ . βˆ’ 3 βˆ’ 4 = βˆ’ 3 + 9/4 βˆ’ 4 βˆ’ 9/4 = βˆ’ βˆ’ N % De: ≀ βˆ’1 Γ³ β‰₯ 4 βˆ’ ≀ βˆ’ N Γ³ βˆ’ β‰₯ N βˆ’ β‰₯ N % Γ³ βˆ’ β‰₯ N %
  • 77. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. βˆ’ βˆ’ N % β‰₯ 0 Γ³ $ βˆ’ & βˆ’ N % β‰₯ 0 βˆ’ βˆ’ N % β‰₯ 0 ! β‰₯ 0 123 ! = .0, ∞ . Para graficar, se parte de la ecuaciΓ³n dada: ! = √ βˆ’ 3 βˆ’ 4 ! = M βˆ’ βˆ’ N % = M βˆ’ βˆ’ N % β†’ = βˆ’ βˆ’ N % + N % = βˆ’ $ βˆ’ & βˆ’ = N % $ Ε“ O & O Oβ„’ β€˜ βˆ’ O Oβ„’ β€˜ = 1 β†’ β„Ž@EΓ©)G,+2 u 2 = N G = N Pero como se tiene la raΓ­z cuadrada -----la mitad de la hipΓ©rbola
  • 78. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 53) ! = O % ; β‰  βˆ’3 ! = βˆ’ 4 βˆ’ 1 Como f(x) es polinomio β†’ - ! = 1 βˆ’ 3Q ! = βˆ’ 4 + 4 βˆ’ 5 ! = βˆ’ 2 βˆ’ 5 La grΓ‘fica f…es una parΓ‘bola que se abre hacia arriba y de vΓ©rtice V(h,k) Y β„Ž, 4 = 2, βˆ’5 Ran (f) = .5, ∞ .
  • 79. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 54) Factorizando: ! = O ` N ; β‰  βˆ’1, β‰  βˆ’5 ! = N N ; β‰  βˆ’1, β‰  βˆ’5 ! = βˆ’ 2 - ! = 1 βˆ’ βˆ’1, βˆ’5Q = βˆ’ 2 β†’ = + 2 123 ! = 1 βˆ’ βˆ’3, βˆ’7Q
  • 80. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 55) ! = | |. | βˆ’ 1| Puntos crΓ­ticos = {0,1} a) 0 βˆ’ ∞, 0. β†’ | | = βˆ’ | βˆ’ 1| = βˆ’ βˆ’ 1 ! = βˆ’ 1 = βˆ’ G .0, 1. β†’ | | = | βˆ’ 1| = βˆ’ βˆ’ 1 ! = βˆ’ βˆ’ 1 = βˆ’ ' .1 , ∞. β†’ | | = | βˆ’ 1| = βˆ’ 1 ! = βˆ’ 1 = βˆ’ ! = u βˆ’ , < 0 βˆ’ , 0 ≀ < 1 βˆ’ , β‰₯ 1 D (f) = R Para determinar el rango se puede realizar el grΓ‘fico:
  • 81. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. Ran (f) = [0, ∞ . 56) L> +,= L2[,= L> +2 !*3'@Γ³3 2 [)2J,=, => [@>3>: - ! = .βˆ’2, 10 s 01, 40 βˆ’2 ≀ ≀ 1 βˆ’4 ≀ 2 ≀ 2 β†’ βˆ’3 ≀ 2 + 1 ≀ 2 + 1 βˆ’3 ≀ ! ≀ 3 Ran(f1) = [-3, 3] !2 = βˆ’ 3 = $ βˆ’ 3 + 6 % & βˆ’ 6 % ! = $ βˆ’ & βˆ’ 6 % De: 1< x ≀ 4
  • 82. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. - - < x - ≀ N 0 ≀ $ βˆ’ & ≀ N % βˆ’ 6 % ≀ βˆ’ 3 βˆ’ 6 % ≀ 4 123 ! = 5βˆ’ 6 % , 48 Ran (f) = Ran (! + 123 ! = [-3, 3] U 5βˆ’ 6 % , 48 123 ! = .βˆ’3, 40 β†’ E2)Γ‘G,+2 L> tΓ©)[@'> $ , βˆ’ 6 % & K*> => 2G)> β„Ž2'@2 2))@G2
  • 83. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 57) Factorizando se tiene: + βˆ’ 2 βˆ’ 2 = + 1 βˆ’ 2 + 1 = + 1 βˆ’ 2 Ε“ O = ~ O β€’ = βˆ’ 2 ; β‰  βˆ’1 ! = P βˆ’ 2 ; ∈ .βˆ’3,2.βˆ’ βˆ’1Q 8 βˆ’ 2 ; ∈ .2, 4 . Sea: ! = βˆ’ 2 β†’ E2)2G,+2 K*> => 2G)> β„Ž2'@2 2))@G2 β„Ž = 0 ; 4 = βˆ’2 La grΓ‘fica serΓ‘:
  • 84. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. D(f) = [-3, 4 [-{-1| Ran (f) = [-2, 7[ 58) Reescribir la funciΓ³n con valor absoluto | + 3| = P + 3 ; β‰₯ βˆ’3 βˆ’ + 3 ; < βˆ’3 a) 0 βˆ’ 5, βˆ’3. β†’ | + 3| = βˆ’ βˆ’ 3 b) .βˆ’3, βˆ’10 β†’ | + 3| = + 3 ! = β€’ βˆ’ βˆ’ 3 ; ∈0 βˆ’ 5, βˆ’3. + 3 ; ∈ . βˆ’3, βˆ’1 0 2 ; ∈ 0 βˆ’ 1, 20 12 βˆ’ 2 ; < 2 - ! = .βˆ’5, ∞ . La grΓ‘fica es:
  • 85. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 123 ! = 0 βˆ’ ∞ , 8 0 59) Sea: ! = √ βˆ’ 9 = βˆ’ 9 β†’ βˆ’ = 9 O 6 βˆ’ O 6 = 1 β†’ β„Ž@EΓ©)G,+2 ! = √ βˆ’ 9 ; =>?@ β„Ž@EΓ©)G,+2 β„Ž,)@J,3[2+ Del valor absoluto:
  • 86. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! = | + 3| βˆ’ 2 0 βˆ’ 3, 50 β†’ | + 3| = + 3 ! = + 3 βˆ’ 2 = + 1 Y: ! = βˆ’ 10 + 26 = βˆ’ 10 + 25 + 26 βˆ’ 25 ! = βˆ’ 5 + 1 β†’ E2)Γ‘G,+2 K*> => 2G)> Hacia arriba β†’ - ! =0 βˆ’ 5, 70 La grΓ‘fica de f(x) es: ! = u √ βˆ’ 9 ; βˆ’5 < ≀ βˆ’3 + 1 ; βˆ’3 < ≀ 5 βˆ’ 5 + 1 ; 5 < ≀ 7 123 ! = 0 βˆ’ 2, 60
  • 87. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 60) swsa 123 ! = .0,90 61)
  • 88. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. Sean: ! = βˆ’ 2 β†’ E2)Γ‘G,+2 K*> => 2G)> β„Ž2'@2 2))@G2 β„Ž = 0, 4 = βˆ’2 ! = βˆ’ | βˆ’ 2| 00, 2 . β†’ | βˆ’ 2| = βˆ’ + 2 ! = + βˆ’ 2 = 2 βˆ’ 2 .2, 4 . β†’ | βˆ’ 2| = βˆ’ 2 ! = βˆ’ + 2 = 2 ! = 2 + √ βˆ’ 4 De: y= 4 + G√ βˆ’ β„Ž β†’ E2)Γ‘G,+2 K*> => 2G)> β„Ž2'@2 +2 L>)>'β„Ž2 ; β„Ž = 4 , 4 = 2 β„Ž = 2 ; 4 = 0 El dominio de f(x) es: - ! = .βˆ’3,0. s .0,2 .s .2, 4.s .4,8 . - ! = .βˆ’3, 8 . La grΓ‘fica de f es:
  • 89. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 123 ! = [-2, 7] 62) W = r + 10 + 21 ; ∈ .βˆ’7, βˆ’5. s.βˆ’2, βˆ’1. √ + 1 + 1 ; ∈ 0 βˆ’ 1 , 3 0 Sea; W = + 10 + 21 = + 10 + 25 + 21 βˆ’ 25 W = + 5 βˆ’ 4 ---------- parΓ‘bola que se abre hacia arriba: h=-5, k= -4 De: βˆ’7 ≀ < βˆ’5 Γ³ βˆ’ 2 ≀ < βˆ’1 βˆ’2 ≀ + 5 < 0 Γ³ 3 ≀ + 5 < 4 0 ≀ + 5 ≀ 4 Γ³ 9 ≀ + 5 < 16 βˆ’4 ≀ + 5 βˆ’ 4 ≀ 0 Γ³ 5 ≀ + 5 βˆ’ 4 < 12
  • 90. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. βˆ’4 ≀ f(x) ≀ 0 Γ³ 5 ≀ ! < 12 123 W = .βˆ’4,0 . s .5, 12 . W = 1 + √ + 1 -1< x ≀ 3 0 < + 1 ≀ 4 0 < √ + 1 ≀ 2 1 < √ + 1 + 1 ≀ 3 123 W = ]1, 3 ] 123 W = = .βˆ’4,0 . s 01, 3 0s .5, 12 . 63)
  • 91. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. | βˆ’ 2| > 3 β†’ βˆ’ 2 > 3 Γ³ βˆ’ 2 < βˆ’3 β†’ > 5 Γ³ < βˆ’1 ! = N = 7 = 1 + 7 ; x β‰  2 De: > 5 Γ³ < βˆ’1 βˆ’ 2 > 3 Γ³ βˆ’ 2 < βˆ’3 AdemΓ‘s: x-2 >0 β†’ ` > 0 βˆ’ 2 < βˆ’3 β†’ x-2 <0 β†’ < 0 < Γ³ > βˆ’ 0 < < Γ³ βˆ’ < < 0 0 < 7 < 7 Γ³ βˆ’ 7 < 7 < 0 1 < 1 + 7 < 7 + 1 Γ³ 1 βˆ’ 7 < 1 + 7 < 1 1< 1 + 7 < ` Γ³ βˆ’ % < 1 + 7 < 1 1 < ! < ` Γ³ βˆ’ % < ! < 1 123 ! =0 βˆ’ % , 1. s 01, ` . ! = : + 4 βˆ’ 1 = : + 4 + 4 βˆ’ 5 ! = : + 2 βˆ’ 5 = + 2 βˆ’ 5 + 2 βˆ’ = 5
  • 92. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. O N βˆ’ O N = 1 β†’ β„Ž@EΓ©)G,+2 De: 0 < x < 1 2 < + 2 < 3 4 < + 2 < 9 βˆ’1 < + 2 βˆ’ 5 < 4 0 < : + 2 βˆ’ 5 < 2 123 ! = 00, 2 . ! = 2 + |2 βˆ’ 5| .2, 5/2. β†’ |2 βˆ’ 5| = βˆ’2 + 5 ! = 2 + 5 βˆ’ 2 = 7 βˆ’ 2 . N , 30 β†’ |2 βˆ’ 5| = 2 βˆ’ 5 ! = 2 βˆ’ 5 + 2 = 2 βˆ’ 3 ! = r 7 βˆ’ 2 ; 2 ≀ < 5/2 2 βˆ’ 3 ; N ≀ ≀ 3 De: 2 ≀ < N 4 ≀ 2 < 5 βˆ’5 < βˆ’2 ≀ βˆ’4 2 < 7 βˆ’ 2 ≀ 3
  • 93. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. N ≀ ≀ 3 5 ≀ 2 ≀ 6 2 ≀ 2 βˆ’ 3 ≀ 3 123 ! = .2, 30 El rango se la funciΓ³n serΓ‘, la suma de los rangos de las funciones f1, f2 y f3: 123 ! = ]-4/3 ,1[ U ]1, 10/3[U 00, 2 . s 02, 30 123 ! = 0 βˆ’ % , ` . La grΓ‘fica de f, es:
  • 94. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 64) L1: [23W 45 = 1 = ? ΕΈ ‰‰‰‰‰ = ‰‰‰‰‰ ; y = mx+b P(0,0) β†’ 0 = G β†’ = ? ? = 1 β†’ = ; 0 ≀ ≀ 2.5 L1: y = ; 0 ≀ < 2.5 L2: Entre A y B la recta es paralela al eje x, por tanto: = 2.5 L2: y = 2.5 ; 2.5 ≀ < 4.5 L3: 1- ‰‰‰‰ = J + Β‘- ‰‰‰‰ = 3.5
  • 95. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. J + 2.5 + J = 3,5 β†’ J = 0.5 y = mx+b B(4.5;2.5) β†’ 2.5 = 4.5? + G C(5,3) β†’ 3 = 5? + G β†’ B 2.5 = 4.5? + G βˆ’3 = βˆ’5? + G Se obtiene β†’ ? = 1 ; b =2 = βˆ’ 2 L3: y = βˆ’ 2 ; 4.5 ≀ < 5 L4: C(5,3) β†’ 3 = 5? + G D(8,0) β†’ 0 = 8? + G b = 8 m =-1 = 8 βˆ’ L4: y = 8 βˆ’ ; 5 ≀ ≀ 8 ! = β€’ ; 0 ≀ < 2,5 2.5 ; 2.5 ≀ < 4.5 βˆ’ 2 ; 4.5 ≀ < 5 8 βˆ’ ; 5 ≀ ≀ 8 65)
  • 96. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. a) ! = 2 βˆ’ 3 % + 5 Si: ! βˆ’ = βˆ’! βˆ’ βˆ’ βˆ’ βˆ’@?E2) ! βˆ’ = ! βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ E2) ! βˆ’ = 2 βˆ’ βˆ’ 3 βˆ’ % + 5 = 2 βˆ’ 3 % + 5 ! βˆ’ = ! βˆ’ βˆ’ βˆ’ βˆ’E2) b) ! = 5 βˆ’ 3 + 1 ! βˆ’ = 5 βˆ’ βˆ’ 3 βˆ’ + 1 = βˆ’ 5 + 3 + 1 = βˆ’ 5 βˆ’ 3 βˆ’ 1 ! βˆ’ β‰  βˆ’! βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 3, @?E2) ! βˆ’ β‰  ! ----------------- no par
  • 97. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. c) β„Ž = β„Ž βˆ’ = = . 0 = βˆ’ = βˆ’β„Ž β„Ž βˆ’ = βˆ’β„Ž βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @?E2) d) ! = √2 + 2 + βˆ’ √2 βˆ’ 2 + ! βˆ’ = :2 + 2 βˆ’ + βˆ’ βˆ’ :2 βˆ’ 2 βˆ’ + βˆ’ ! βˆ’ = √2 βˆ’ 2 + βˆ’ √2 + 2 + ! βˆ’ = βˆ’Β’βˆš2 + 2 + βˆ’ √2 βˆ’ 2 + Β£ ! βˆ’ = βˆ’! βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’Β€?E2)
  • 98. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 66) ! = βˆ’ + 8 βˆ’ 10 = βˆ’ βˆ’ 8 + 10 = βˆ’ βˆ’ 8 + 16 + 6 6 βˆ’ βˆ’ 4 ! βˆ’ = 6βˆ’ βˆ’ βˆ’ 4 = 6 βˆ’ .βˆ’ + 4 = 6 βˆ’ + 4 ! βˆ’ = βˆ’.6 +( + 4 0 De: ! = βˆ’ βˆ’ 8 βˆ’ 10 = βˆ’ + 8 + 10 = βˆ’ + 8 + 16 + 6 6 βˆ’ + 4 ! βˆ’ = 6βˆ’ βˆ’ + 4 = 6 βˆ’ .βˆ’ βˆ’ 4 = 6 βˆ’ βˆ’ 4 ! βˆ’ = βˆ’.6 + βˆ’ 4 0
  • 99. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! = P 6 βˆ’ βˆ’ 4 ; 2 ≀ ≀ 6 6 βˆ’ + 4 ; βˆ’6 ≀ < 2 La funciΓ³n no es par ni impar 67) - ! = 0,1,2Q - W = 0,2,4Q - ! ∩ - W = 0, 2Q - ! + W = 0, 2Q f+g = , ! 6W / ∈ 0, 2Q a) ! + W 2 = $2, 0 + &Q = 2, ! + W 2 = G !. W 2 = , / = ! . W , ∈ - ! ∩ - W Q
  • 100. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. - ! ∩ - W = 0, 2Q !. W 2 = 0. 1 2 !. W 2 = 0 c.- (! + 3W 2 = , / = ! + 3W , ∈ - ! ∩ - W QQ (! + 3W 2 = 2, 0 + 3 $ &Q (! + 3W 2 = 68) a) ! = | | ; W = | | = B , β‰₯ 0 βˆ’ , < 0 ! + W = ! + W s ! + W - ! ∩ - W = β‰₯ 0 ∩ 1 - ! ∩ - W = β‰₯ 0 - ! ∩ - W = < 0 ∩ 1 - ! ∩ - W = < 0 ! + W = B 2 ; β‰₯ 0 0 ; < 0
  • 101. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. W βˆ’ ! = B 0 ; β‰₯ 0 2 ; < 0 b) ! = ; W = B βˆ’1,2 , $ , % & , 2, βˆ’3 , ~4, √2β€’Β₯ ! + W =? - ! = 1 ; - W = Bβˆ’1, , 2, 4Β₯ - ! ∩ - W = Bβˆ’1, , 2, 4Β₯ ! + W = , / = ! + W , ∈ - ! ∩ - W Q
  • 102. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! + W = 1, βˆ’1 + 2 , $ , + % & , 2,2 βˆ’ 3 , ~4, √2 + 4β€’Q ! + W = 1, 1 , Β§ 1 2 , 5 4 Β¨ , 2, βˆ’1 , ~4, √2 + 4β€’Q W βˆ’ ! =? - ! = 1 ; - W = Bβˆ’1, , 2, 4Β₯ - ! ∩ - W = Bβˆ’1, , 2, 4Β₯ W βˆ’ ! = , / = W βˆ’ ! , ∈ - ! ∩ - W Q ! + W = 1,2 + 1 , $ , % βˆ’ & , 2, βˆ’3 βˆ’ 2 , ~4,4 βˆ’ √2β€’Q ! + W = 1, 3 , Β§ 1 2 , 1 4 Β¨ , 2, βˆ’5 , ~4,4 βˆ’ √2β€’Q 69) De: 0 ≀ ≀ 3 β†’ 0 ≀ 3 ≀ 9 3 < ≀ 6 β†’ 9 ≀ 3 ≀ 18 Se tiene entonces: ! 3 = P 2 , 0 ≀ 3 ≀ 9 β†’ ! 3 , 9 < 3 ≀ 18 β†’ ! De: 0 ≀ ≀ 3 β†’ βˆ’2 ≀ βˆ’ 2 ≀ 1
  • 103. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 3 < ≀ 6 β†’ 1 < βˆ’ 2 ≀ 4 ! 3 = P 2 , βˆ’ 2 ≀ βˆ’ 2 ≀ 1 β†’ ! 3 , βˆ’ 1 < βˆ’ 2 ≀ 4 β†’ !% Sea: W = ! 3 + ! βˆ’ 2 W = ! + ! s ! + !% s ! + ! s + ! + !% ! + ! = 2 + 2 = 4 ; - ! ∩ - ! = .0,10 ! + !% = 2 + 3 = 5 ; - ! ∩ - !% = .1.40 ! + ! = βˆ… ; - ! ∩ - ! = βˆ… ! + !% = βˆ… ; - ! ∩ - !% = βˆ… W = P 4 , ∈ .0,10 5 , ∈01,40 - W = .0,10s 01, 40 70) Βͺ + ! =? ; g(x) β‰  0 ! = Β’~0, √2β€’, ~1, √5β€’, 2,0 Β£ W = ~0, √8β€’, $2, & , ~4, √3β€’Q
  • 104. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. - ! = 0,1,2Q ; - W = 0,2,4Q - ! ∩ - W = 0,2Q Βͺ = $ , Βͺ & / ∈ - ! ∩ - W Q Βͺ = r$0, √_ √ & , Ζ’2, β€” OΜ€ β€žΒ« ; g(x) β‰  0 2 βˆ‰ - $ Βͺ & Βͺ = 0, 2 Q Βͺ + ! = $ , Βͺ + ! & / ∈ - ! ∩ - W Q f(2) =0 Βͺ + ! = B$0, √_ √ + √2 &8 Βͺ + ! = 0,4 Q 71) ! + W = ? Sea: ! = 3 + 4 ; ∈ .0,20 ! = 1 βˆ’ ; ∈ 02, 50 W = ; ∈ .0,3 . W = 4 ; ∈ .3, 60
  • 105. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! + W = ! + W s ! + W s ! + W s ! + W - ! ∩ - W = .0,20 - ! ∩ - W = βˆ… β†’ βˆ„ ! + W - ! ∩ - W =02,3. - ! ∩ - W = .3,50 ! + W = 3 + 4 + = + 3 + 4 ! + W = 1 βˆ’ + = βˆ’ + 1 ! + W = 1 βˆ’ + 4 = 5 βˆ’ ! + W = u + 3 + 4 , ∈ .0,20 βˆ’ + 1 , ∈ 02,30 5 βˆ’ , ∈ .3, 50 - ! = .0,20 s02,3.s.3,50 - ! = .0, 50 La grΓ‘fica es:
  • 106. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 72) ! = √9 βˆ’ De: 9 βˆ’ β‰₯ 0 β†’ ≀ 9 β†’ βˆ’3 ≀ ≀ 3 - ! = .βˆ’3, 30 W = 2 βˆ’ | βˆ’ 1| ; ∈ 0 βˆ’ 2, 50 | βˆ’ 1| = P βˆ’ 1 ; β‰₯ 1 βˆ’ βˆ’ 1 ; < 1 a) 0 βˆ’ 2, βˆ’1. β†’ | βˆ’ 1| = 1 βˆ’ W = 2 + βˆ’ 1 = + 1 b.- .1,50 β†’ | βˆ’ 1| = βˆ’ 1 W = 2 βˆ’ + 1 W = 3 βˆ’ W = P + 1 , ∈0 βˆ’ 2,1. 3 βˆ’ , ∈ .1,50 ! + W = ! + W s ! + W - ! ∩ - W = 0 βˆ’ 2,1. - ! ∩ - W = .1,3 0
  • 107. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! + W = √9 βˆ’ + + 1 ! + W = √9 βˆ’ βˆ’ + 3 ! + W = r √9 βˆ’ + + 1 , ∈ 0 βˆ’ 2,1. √9 βˆ’ βˆ’ + 3 , ∈ .1,30 73) ! = | βˆ’ 2| βˆ’ 1 ; ∈ .βˆ’2,6. W = P βˆ’2 , ∈ .βˆ’3,2 . 2 , ∈ .2,6. )>>=')@G@>3L, ! : | βˆ’ 2| = P βˆ’ 2 ; β‰₯ 2 βˆ’ βˆ’ 2 ; < 2
  • 108. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. a) 0 βˆ’ 2,2 . β†’ | βˆ’ 2| = βˆ’ βˆ’ 2 ! = βˆ’ + 2 βˆ’ 1 ! = 1 βˆ’ b) .2, 6 . β†’ | βˆ’ 2| = βˆ’ 2 ! = βˆ’ 2 βˆ’ 1 ! = βˆ’ 3 ! = P 1 βˆ’ ; ∈ 0 βˆ’ 2, 2 . βˆ’ 3 , ∈ .2, 6 . W = P βˆ’2 , ∈ .βˆ’3,2 . 2 , ∈ .2,6 . ! + W = ? ! + W = ! + W s ! + W s ! + W s ! + W Realizar la intersecciΓ³n de dominios: - ! ∩ - W = 0 βˆ’ 2,2. ∩ .βˆ’3, βˆ’3. = .βˆ’2.2 . - ! ∩ - W = 0 βˆ’ 2,2. ∩ .2,6 . = βˆ… β†’ βˆ„ ! + W - ! ∩ - W = .2,6. ∩ .βˆ’3,2 . = βˆ… β†’ βˆ„ ! + W - ! ∩ - W = .2, 6. ∩ .βˆ’2,6. = .2, 6 . ! + W = ! + W s ! + W ! + W = 1 βˆ’ βˆ’ 2 = βˆ’ βˆ’ 1 ! + W = βˆ’ 3 + 2 = βˆ’ 1
  • 109. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! + W = P βˆ’ βˆ’ 1 , ∈ .βˆ’2, 2 . + 1 , ∈ .2, 6 . +2= W)Γ‘!@'2= L> !, W ! + W =,3: !: g: f+g :
  • 110. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 74) Sean: ! = + 3 ; ! = 3 + 2 W = 2 βˆ’ 4 ; W = 2 βˆ’ ! + W = ! + W s ! + W s ! + W s ! + W Si las intersecciones de los dominios de las funciones indicadas existen, las sumas de las funciones existen, caso contrario no existen. - ! ∩ - W = 0 βˆ’ 4,00 ∩ .βˆ’3, 2 0 = .βˆ’3,00 - ! ∩ - W = 0 βˆ’ 4,00 ∩ 02, 8 0 = βˆ… β†’ βˆ„ ! + W - ! ∩ - W = 00, 50 ∩ .βˆ’3, 2 0 =00, 20 - ! ∩ - W = 00, 50 ∩02, 80 =02 , 5. ! + W = + 3 + 2 βˆ’ 4 = 3 βˆ’ 1 ! + W = 3 + 2 + 2 βˆ’ 4 = 5 βˆ’ 2 ! + W = 3 + 2 + 2 βˆ’ = 2 + 4 ! + W = u 3 βˆ’ 1 , ∈ .βˆ’3, 00 5 βˆ’ 2 , ∈ 00, 20 2 + 4 , ∈ 02, 5 .
  • 111. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 75) W = βˆ’ 2 ; β‰₯ βˆ’2 >+ L,?@3@, >=: D(f) = [-2, ∞ . β„Ž = √ βˆ’ 9 ∢ - β„Ž =? De: βˆ’ 9 β‰₯ 0 + 3 βˆ’ 3 β‰₯ 0 β†’ ≀ βˆ’3 Γ³ β‰₯ 3 - β„Ž = ]-∞ , βˆ’30 s .3, ∞ . ! = βˆ’ | βˆ’ 1| Punto crΓ­tico = {1} a) X <1 β†’ | βˆ’ 1| = βˆ’ βˆ’ 1 ! = + βˆ’ 1 = 2 βˆ’ 1 b) xβ‰₯ 1 β†’ | βˆ’ 1| = βˆ’ 1 ! = βˆ’ + 1 = 1
  • 112. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! = B 1 , β‰₯ 1 2 βˆ’ 1 , < 1 - ! + W = - ! ∩ - W ! + W = ! + W s ! + W - ! ∩ - W = .1, ∞ . ∩ .βˆ’2, ∞ . = .1, ∞. - ! ∩ - W =0 βˆ’ ∞, 1 . ∩ .βˆ’2, ∞ .βˆ’2,1 . ! + W = P βˆ’ 2 + 1 βˆ’ 2 + 2 βˆ’ 1 ! + W = P βˆ’ 1 , β‰₯ 1 + 2 βˆ’ 3 , βˆ’2 ≀ < 1 - ! + W = .βˆ’2, 1 . s .1, ∞ . = .βˆ’2, ∞ . - ! + W . β„Ž0 = - ! + W ∩ - β„Ž Como: - β„Ž = ]-∞ , βˆ’30 s .3, ∞ . - ! + W . β„Ž0 = .βˆ’2, ∞ . ∩ ]-∞ , βˆ’30 s .3, ∞ .Q - ! + W . β„Ž0 = [3, ∞ . 76) ! = ; W = |2 |
  • 113. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. Como: |2 | = B 2 ; β‰₯ 0 βˆ’2 ; < 0 ! + W = ! + W s ! + W Analizar las intersecciones de los dominios: - ! ∩ - W = 1 ∩ .0, ∞. = .0, ∞ . - ! ∩ - W = 1 ∩ 0 βˆ’ ∞, ,. =0 βˆ’ ∞, 0 . ! + W = + 2 = + 2 + 1 βˆ’ 1 = + 1 βˆ’ 1 ! + W = βˆ’ 2 = βˆ’ 2 + 1 + 1 = βˆ’ 1 + 1 ! + W = P + 2 ; ∈ .0, ∞ . βˆ’ 2 ; ∈ 0 βˆ’ ∞, 0 . La grΓ‘fica de las parΓ‘bolas son: - ! + W = 1 123 ! + W = .0, ∞ . 77)
  • 114. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. !: 0 βˆ’ 3,50 + .βˆ’5,30 / ! = βˆ’ + 2 + 3 βˆ’ + 2 + 3 = βˆ’ βˆ’ 2 + 1 + 4 = 4 βˆ’ βˆ’ 1 W = √9 βˆ’ Si: 9 βˆ’ β‰₯ 0 ≀ 9 β†’ βˆ’3 ≀ ≀ 3 - W = .βˆ’3, 30 - ! ∩ - W = 0 βˆ’ 3,50 s .βˆ’5, 30 ∩ .βˆ’3,30 = .βˆ’3,30 β†’ βˆƒ Βͺ Βͺ = % O √6 O √9 βˆ’ > 0 9 βˆ’ > 0 < 9 β†’ βˆ’3 < < 3 - $ Βͺ & = 0 βˆ’ 3,3.
  • 115. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 78) ! = βˆ’ 2 + 2 ; β‰₯ 5 W = 2| βˆ’ 1| + 1 ; ∈ .βˆ’3,4. | βˆ’ 1| = P βˆ’ 1 , β‰₯ 1 βˆ’ βˆ’ 1 , < 1 .βˆ’3, 1 . β†’ | βˆ’ 1| = βˆ’ βˆ’ 1 W = βˆ’2 βˆ’ 1 + 1 W = 3 βˆ’ 2 .1, 4. . β†’ | βˆ’ 1| = βˆ’ 1 W = 2 βˆ’ 1 + 1 W = 2 βˆ’ 1 W = P 3 βˆ’ 2 , ∈ .βˆ’3,1. 2 βˆ’ 1 , ∈ .1, 4. ! + W = ! + W s ! + W Se debe determinar el dominio de f: ! = βˆ’ 2 + 2 ; β‰₯ 5 5= ( βˆ’ 2 + 1 + 1 5 = βˆ’ 1 + 1
  • 116. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 4 = βˆ’ 1 βˆ’ 1 = β‰  2 = 3 ; = βˆ’1 - ! = 0 βˆ’ ∞, βˆ’10 s .3, ∞ . ! + W β†’ - ! ∩ - W = 0 βˆ’ ∞, βˆ’10s .3, ∞ .Q ∩ .βˆ’3,1. - ! ∩ - W = .βˆ’3, βˆ’10 ! + W = βˆ’ 2 + 2 + 3 βˆ’ 2 ! + W = βˆ’ 4 + 5 = βˆ’ 4 + 4 + 1 ! + W = βˆ’ 2 + 1 ! + W β†’ - ! ∩ - W = 0 βˆ’ ∞, βˆ’1s.3, ∞ . Q ∩ .1, 4. - ! ∩ - W = .3, 4. ! + W = βˆ’ 2 + 2 + 2 βˆ’ 1 ! + W = + 1 ! + W = P βˆ’ 2 + 1, ∈ .3, βˆ’10 + 1 , ∈ .3,4. Su rango es:
  • 117. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. -3 ≀ x ≀ -1 βˆ’5 ≀ βˆ’ 2 ≀ βˆ’3 9 ≀ βˆ’ 2 ≀ 25 10 ≀ βˆ’ 2 + 1 ≀ 26 123 W = 010,260 3 ≀ < 4 9 ≀ < 16 10 ≀ + 1 < 17 123 W = .10, 17 . 123 ! + W = .10,260 79) Β― + 4Β° = 4 ; β‰₯ 0 = 1 βˆ’ % βˆ’ % < 0 βˆ’ βˆ’ βˆ’ βˆ’E2)Γ‘G,+2 => 2G)> 2 +2 @JK*@>)L2 β„Ž = 1 ; 4 = 0 - ! = 0 βˆ’ ∞, 10
  • 118. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 123 ! = .0, ∞ . 80) 4 βˆ’ = 144 O ^ βˆ’ O %% = 1 βˆ’ βˆ’ βˆ’ β„Ž@EΓ©)G,+2 2 = 6 ; G = 12 AsΓ­ntotas: 4 βˆ’ = 0 2 βˆ’ 2 + = 0 2=Γ­3[,[2=: P = 2 = βˆ’2 - ! = 1 )23 ! = 0 βˆ’ ∞, 60 s .6, ∞ .
  • 119. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 81) ! = + 2 ; ∈ .βˆ’1, 2. βˆ’1 ≀ < 2 0 ≀ < 4 2 ≀ + 2 < 6 123 ! = .2, 6 . 82) ! = + 4 βˆ’ 1 ! = + 4 + 4 βˆ’ 5 ! = + 2 βˆ’ 5 ------parΓ‘bola que se Abre hacia arriba. β„Ž = βˆ’2 ; 4 = βˆ’5 ; Y βˆ’2, βˆ’5 De: βˆ’2 < ≀ 3
  • 120. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 0 < + 2 ≀ 5 0 < + 2 ≀ 25 βˆ’5 < + 2 βˆ’ 5 ≀ 20 123 ! = 0 βˆ’ 5, 20 0 83) ! = 3 + 2 βˆ’ ; ∈ .βˆ’2,2. ! = βˆ’ βˆ’ 2 + 1 + 4 ! = 4 βˆ’ βˆ’ 1 βˆ’2 ≀ < 2 βˆ’3 ≀ βˆ’ 1 < 1 0 ≀ βˆ’ 1 ≀ 9 βˆ’9 ≀ βˆ’ βˆ’ 1 ≀ 0 βˆ’5 ≀ 4 βˆ’ βˆ’ 1 ≀ 4 Ran(f) = [-5, 4[
  • 121. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 84) ! = βˆ’ 2 ; ! = + 5 ! = 2 βˆ’ 4 W = ; W = 3 β„Ž = ! W + ! W + ! W + ! W + ! W + ! W - ! ∩ - W = .βˆ’4,20 ∩ 00,2. = 00,20 - ! ∩ - W = .βˆ’4,20 ∩ .2,8. = βˆ… - ! ∩ - W =02,60 ∩ 00,20 = βˆ… - ! ∩ - W =02,60 ∩ .2,8. = .2,6 0 - ! ∩ - W =06, 90 ∩ 0, 20 = βˆ… - ! ∩ - W =06, 90 ∩ .2,8 . =06,8. β„Ž = ! W + ! W + ! W ! W = βˆ’ 2 . = βˆ’ 2 % ! W = ( + 5 . 3 = + 15 ! W = 3 2 βˆ’ 4 = 6 βˆ’ 12
  • 122. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. β„Ž = β€’ βˆ’ 2 % , ∈ 00,2 0 3 2 + 15 , ∈02,60 6 βˆ’ 12 , ∈06,8. b) Βͺβ€” β€” = Ε“ O ΒͺO O = Β± O N = ^ ` ΒͺO Ε“ = % β„Ž = ⎩ βŽͺ ⎨ βŽͺ ⎧ βˆ’ 2 , ∈ 00,2 0 6 + 10 , ∈02,60 3 2 βˆ’ 4 , ∈06,8. 85) ! = P | βˆ’ 2|| + 2| , ∈ .βˆ’6,00 2 , β‰₯ 2
  • 123. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. a) .βˆ’6, βˆ’2. β†’ | βˆ’ 2| = βˆ’ βˆ’ 2 | + 2| = βˆ’ + 2 ! = βˆ’ 2 + 2 = βˆ’ 4 a) [-2,0] β†’ | βˆ’ 2| = βˆ’ βˆ’ 2 | + 2| = + 2 ! = βˆ’ βˆ’ 2 + 2 = 4 βˆ’ ! = u βˆ’ 4 , ∈ .βˆ’6, βˆ’2. 4 βˆ’ , ∈ .βˆ’2,00 2 , β‰₯ 2 W = B + 2 , β‰₯ βˆ’2 1 , < βˆ’2 Βͺ = ? Βͺ = β€” Βͺβ€” + β€” ΒͺO + O Βͺβ€” + O ΒͺO + Ε“ Βͺβ€” + Ε“ ΒͺO Determinar las intersecciones de los dominios para la existencia de las funciones: - ! ∩ - W = .βˆ’6, βˆ’2. ∩ .βˆ’2, ∞. = βˆ… - ! ∩ - W = .βˆ’6, βˆ’2. ∩0 βˆ’ ∞, βˆ’2. =0 βˆ’ 6, βˆ’2. - ! ∩ - W = .βˆ’2,00 ∩ .βˆ’2, ∞. = .βˆ’2,00 - ! ∩ - W = .βˆ’2, 00. ∩ 0 βˆ’ ∞, βˆ’2. = βˆ… - ! ∩ - W = .2, ∞ . ∩ .βˆ’2, ∞. = .2, ∞.
  • 124. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. - ! ∩ - W = .2 , ∞ . ∩ .βˆ’ ∞, βˆ’3. = βˆ… Se tiene que: Βͺ = β€” ΒͺO + O Βͺβ€” + Ε“ Βͺβ€” β€” ΒͺO = O % = βˆ’ 4 O Βͺβ€” = % O = 2 βˆ’ Ε“ Βͺβ€” = Βͺ = β€’ βˆ’ 4 , ∈ .βˆ’6, βˆ’2. 2 βˆ’ , ∈ .βˆ’2,00 , ∈ .2, ∞ . 123 ! = .0, ∞ .
  • 125. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 86) ! = ; β‰  2 ; W = ; β‰  0 !,W = !.W 0 = ! $ & !.W 0 = Β±β€œΕ“ Β± = ; β‰  βˆ’1 - !,W = 1 βˆ’ βˆ’1, βˆ’2,0Q W,! = W.! 0 = W $ & W.! 0 = β€” Β±β€œO β€” Β±β€œO = Ε“Β±β€œΒΆ Β±β€œO β€” Β±β€œO = 7 = 3 + 7 - W,! = 1-{-2,0}} - !,W ∩ - W,! = R-{-1,-2,0} 87)
  • 126. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. gof =g[f(x)] W = = 2 + ! = ; β‰₯ 3 - ! = .3, ∞. SI: β‰₯ 3 βˆ’ 2 β‰₯ 1 β†’ βˆ’ 2 > 0 β†’ >0 βˆ’ 2 β‰₯ 1 ≀ 1 β†’ 0 < ≀ 1 123 ! ∩ - W =00, 1. ∩ . , ∞.= , 1. β‰  βˆ… β†’ βˆƒ W,! 123 ! βŠ† - W = ? 123 ! ⊈ - W β†’ - W,! = / ∈ - ! ! ∈ - W Q
  • 127. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. - W,! = β‰₯ 3 ∧ β‰₯ β†’ β‰₯ 3 ∧ βˆ’ β‰₯ 0 β†’ β‰₯ 3 ∧ β‰₯ 0 β†’ β‰₯ 3 ∧ % β‰₯ 0 β†’ β‰₯ 3 ∧ 4 βˆ’ βˆ’ 2 β‰₯ 0 β†’ β†’ β‰₯ 3 ∧ 2 ≀ ≀ 4 ∈ .3,40 - W,! = ∈ .3, 4 0 88) ! = 2 βˆ’ 3 W = + 1 - W = 1 ; 123 W = .1, ∞ . - ! = 1 ; 123 ! = 1
  • 128. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. !,W = !.W 0 = ! + 1 !.W 0 = 2 + 1 βˆ’ 3 = 2 βˆ’ 1 123 W ∩ - ! = .1, ∞. ∩ 1 = .1, ∞ . β†’ βˆƒ !,W W,! = W.! 0 = ! 2 βˆ’ 3 W.! 0 = 2 βˆ’ 3 + 1 W.! 0 = 4 βˆ’ 12 + 10 123 ! ∩ - W = 1 ∩ 1 = 1 β†’ βˆƒ W,! De: W,! = !,W 2 βˆ’ 1 = 4 βˆ’ 12 + 10 2 βˆ’ 12 + 11 = 0 = ±√ %% __ % = ±√N^ % La suma de los valores de x: S= 3 + √N^ % + 3 βˆ’ √N^ % w = 6 89)
  • 129. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. !,W = + + 1 W = + 1 !.W 0 = + + 1 β†’ ! + 1 = + + 1 [ = + 1 ; = √[ βˆ’ 1 Ε“ ! [ = √[ βˆ’ 1 Ε“ + [ ! = √ βˆ’ 1 Ε“ + W,! = W.! . = ~√ βˆ’ 1 Ε“ + β€’ + 1 = βˆ’ 1 + 3 √ βˆ’ 1 Ε“ + 3 ~√ βˆ’ 1 Ε“ β€’ + 1 + = + 3 √ βˆ’ 1 Ε“ + 3 ~√ βˆ’ 1 Ε“ β€’ + W,! 9 = 9 + 243√9 βˆ’ 1 Ε“ + 27 √9 βˆ’ 1 Ε“ + 9 = 9 +729+243(2)+108 W,! 9 = 1332 90) ! βˆ’ 1 = 3 + 2 + 12 W + 1 = 5 + 7 Se halla las funciones f(x) y g(x):
  • 130. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. [ = βˆ’ 1 ; = [ + 1 ! [ = 3 [ + 1 + 2 [ + 1 + 12 ! [ = 3[ + 6[ + 3 + 2[ + 2 + 12 ! [ = 3[ + [ 6 + 2 + 2 + 15 ! = 3 + 6 + 2 + 2 + 15 Sea: [ = + 1 ; = [ βˆ’ 1 W [ = 5 [ βˆ’ 1 + 7 W [ = 5[ + 2 W = 5 + 2 La funciΓ³n compuesta fog es: !,W = !.W 0 = ! 5 + 2 !.W 0 = 3 5 + 2 + 5 + 2 6 + 2 + 2 + 15 = 75 + 60 + 12 + 52 + 30 + 22 + 12 + 2 + 15 = 75 + 90 + 52 + 39 + 32 Si: !,W βˆ’2 = βˆ’42 !,W βˆ’2 = 75 4 + 90 βˆ’2 βˆ’ 102 + 39 + 32 = βˆ’42 159 βˆ’ 72 = βˆ’42 159 = 32 2 = 53
  • 131. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 91) r ! = √2 βˆ’ 1 W = √2 βˆ’ 7 De: !,β„Ž = W !,β„Ž = !~β„Ž β€’ !.β„Ž 0 = √2 βˆ’ 7 β„Ž = [ ! [ = √2[ βˆ’ 1 = √2 βˆ’ 7 2[ βˆ’ 1 = 2 βˆ’ 7 [ = βˆ’ 3 β†’ β„Ž = βˆ’ 3 92) De: ! βˆ’ 2 = [ = βˆ’ 2 ; = [ + 2 ! [ = ΒΉ = ΒΉ
  • 132. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! = De: !,! $ & = 5, => [@>3>: !,! = !.! 0 = ! $ & !.! 0 = O Β±ΒΊβ€” = OΒΊΒ±β€œβ€” Β±ΒΊβ€” = !,! $ & = $ O Β± & O Β± = 5 % = 5 β†’ 4 βˆ’ 2 = 15 βˆ’ 10 17 = 14 = % 7 93) !,W = 2 +16x+25 ! W 0 = 2 +16x+25 Sea: g(x) = u ! * = 2 +16x+25 ------(a) De: ! = 2 βˆ’ 4 βˆ’ 5 β†’ ! * = 2* βˆ’ 4* βˆ’ 5 ---(b) De (a) y (b):
  • 133. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 2 +16x+25 = 2* βˆ’ 4* βˆ’ 5 2* βˆ’ 4* βˆ’ 2 + 16 +30) =0 * = %Β± : ^ _ O ^ ` % = %±√ ^ O _ N^ % * = 1 Β± % % √ + 8 + 16 * = 1 Β± : + 4 * = 1 + | + 4| u= g(x) W = P + 5 , β‰₯ βˆ’4 βˆ’ βˆ’ 3 , < βˆ’4 94) Si, f(x)= + 2 + 2 , β„Ž2++2) W , =@: !,W = βˆ’ 4 + 5 De: !.W 0 = βˆ’ 4 + 5 !.W 0 = .W 0 + 2W + 2 .W 0 + 2W + 2 = βˆ’ 4 + 5 .W 0 + 2W βˆ’ βˆ’ 4 + 3 = 0 W = Β±:% % O % W = βˆ’1 Β± √ βˆ’ 4 + 4 W = βˆ’1 Β± : βˆ’ 2 W = βˆ’1 + | βˆ’ 2| W = B βˆ’ 3 , β‰₯ 2 βˆ’ + 1 . < 2
  • 134. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 94) Sean: ! = ; ! = βˆ’ W = βˆ’ ; W = 2 W, ! = (W ,! + W ,! + W ,! + W ,! El rango de la funciΓ³n β€œf”es: sI; < 1 β‰₯ 0 βˆ’ βˆ’ βˆ’ βˆ’123 ! = .0, ∞. Si: β‰₯ 2 β†’ βˆ’ ≀ 8 β†’ βˆ’ ≀ βˆ’8 123 ! =0 βˆ’ ∞, βˆ’8 0 W ,! : 123 ! ∩ - W = .0, ∞. ∩ 0 βˆ’ ∞, 2.= .0,2. 123 ! βŠ† - W = ? 123 ! ⊈ - W β†’ - W ,! = / ∈ - ! ∧ ! ∈ - W - W ,! = < 1 ∧ < 2
  • 135. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. < 1 ∧ | | < 2 < 1 ∧ βˆ’ √2 < < √2 ∈ 0 βˆ’ √2 , 1 . - W ,! = 0 βˆ’ √2 , 1 . W ,! : 123 ! ∩ - W =0 βˆ’ ∞, βˆ’80 ∩0 βˆ’ ∞, 2.= βˆ’βˆž, βˆ’80 123 ! βŠ† - W = ? 123 ! βŠ† - W β†’ - W ,! = - ! = .2, ∞ . W ,! : 123 ! ∩ - W = .0, ∞ ∩ .4, ∞.= .4, ∞. 123 ! βŠ† - W = ? 123 ! ⊈ - W β†’ - W ,! = / ∈ - ! ∧ ! ∈ - W - W ,! = < 1 ∧ β‰₯ 4 < 1 ∧ βˆ’ 2 + 2 β‰₯ 0 < 1 ∧ ≀ βˆ’2 Γ³ β‰₯ 2 Q ∈ 0 βˆ’ ∞ , βˆ’2 0 W ,! : 123 ! ∩ - W = .βˆ’ ∞, βˆ’8 ∩ .4, ∞.= βˆ… β†’ βˆ„ W ,! Finalmente: - W,! = 0 βˆ’ √2 , 1 . s .2, ∞ .s 0 βˆ’ ∞ , βˆ’2[ - W,! = 0 βˆ’ ∞ , βˆ’2[ U0 βˆ’ √2 , 1 . s .2, ∞ .
  • 136. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 95) W,! = W.! 0 Sean: ! = + 1 ; ! = βˆ’ W = βˆ’ 1 ; W = 2 W, ! = (W ,! + W ,! + W ,! + W ,! El rango de la funciΓ³n β€œf”es: < 1 β†’ β‰₯ 0 + 1 β‰₯ 1 ! β‰₯ 1 123 ! = .1, ∞ . β‰₯ 4 β†’ β‰₯ 16 βˆ’ ≀ βˆ’16 123 ! =0 βˆ’ ∞, βˆ’160 W ,! : 123 ! ∩ - W = .1, ∞. ∩ 0 βˆ’ ∞, 2.= .1,2.
  • 137. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 123 ! βŠ† - W = ? 123 ! ⊈ - W β†’ - W ,! = / ∈ - ! ∧ ! ∈ - W - W ,! = < 1 ∧ + 1 < 2 < 1 ∧ | | < 1 < 1 ∧ βˆ’ 1 < < 1 ∈ 0 βˆ’ 1 , 1 . - W ,! = 0 βˆ’ 1 , 1 . W ,! : 123 ! ∩ - W =0 βˆ’ ∞, βˆ’160 ∩0 βˆ’ ∞, 2.= βˆ’βˆž, βˆ’160 123 ! βŠ† - W = ? 123 ! βŠ† - W β†’ - W ,! = - ! = .4, ∞ . W ,! : 123 ! ∩ - W = .1, ∞ ∩ .4, ∞.= .4, ∞. 123 ! βŠ† - W = ? 123 ! ⊈ - W β†’ - W ,! = / ∈ - ! ∧ ! ∈ - W - W ,! = < 1 ∧ + 1 β‰₯ 4 < 1 ∧ βˆ’ √3 + √3 β‰₯ 0 < 1 ∧ Β’ ≀ βˆ’βˆš3 Γ³ β‰₯ √3 Β£ ∈ 0 βˆ’ ∞ , βˆ’βˆš3 0 W ,! : 123 ! ∩ - W = .βˆ’ ∞, βˆ’16 ∩ .4, ∞.= βˆ…
  • 138. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. β†’ βˆ„ W ,! Finalmente: - W,! = 0 βˆ’ 1 , 1 . s .4, ∞ .s 0 βˆ’ ∞ , βˆ’βˆš3[ - W,! = 0 βˆ’ ∞ , βˆ’βˆš3[ U0 βˆ’ 1 , 1 . s .4, ∞ . 96) !,W = !.W 0 Sea: W = 1 βˆ’ ; W = 2 !,W = !,W + !,W Se debe determinar el Rango de g: Si: X <-2 βˆ’ > 2 1-x > 3 β†’ W > 3 123 W = .3, ∞. Si: > 6 2 > 12 β†’ W > 2
  • 139. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 123 W =012, ∞. !,W : 123 W ∩ - ! = ? 123 W ∩ - ! = .3, ∞. ∩ 0 βˆ’ 2,20.=03,20. 123 W βŠ† - ! = ? 123 W ⊈ - ! β†’ - !,W = / ∈ - W ∧ W ∈ - ! - !,W = < βˆ’2 ∧ βˆ’2 < 1 βˆ’ < 20 < βˆ’2 ∧ βˆ’3 < βˆ’ < 19 < βˆ’2 ∧ βˆ’19 < < 3 ∈ 0 βˆ’ 19, βˆ’2. - !,W = 0 βˆ’ 19, βˆ’2. (!,W = !.W 0 = ! 1 βˆ’ !.W 0 = 2 1 βˆ’ + 1 = 2 βˆ’ 4 + 2 + 1 !.W 0 = 2 βˆ’ 4 + 3 !,W : 123 W ∩ - ! = ? 123 W ∩ - ! = .12, ∞. ∩ 0 βˆ’ 2,20.=012,20. 123 W βŠ† - ! = ? 123 W ⊈ - ! β†’ - !,W = / ∈ - W ∧ W ∈ - ! - !,W = > 6 ∧ βˆ’2 < 2 < 20
  • 140. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. > 6 ∧ βˆ’1 < < 10 > 6 ∧ βˆ’1 < < 10 ∈ 06, 10. - !,W = 06,10. (!,W = !.W 0 = ! 2 !.W 0 = 2 2 + 1 = 8 + 1 !.W 0 = 8 + 1 !,W = P 2 βˆ’ 4 + 3 , ∈0 βˆ’ 19, βˆ’2. 8 + 1 , ∈ 06,10 . 97) !,W = !.W 0 Sea: W = 2 ; W = βˆ’3 ! = 3 + 2
  • 141. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. !,W = !,W + !,W Se debe determinar el Rango de g: Si: x < 0 2 < 0 β†’ W < 0 123 W =0 βˆ’ ∞, 0. Si: β‰₯ 1 3 β‰₯ 3 β†’ βˆ’3 ≀ βˆ’3 β†’ W ≀ βˆ’3 123 W =0 βˆ’ ∞, βˆ’30 !,W : 123 W ∩ - ! = ? 123 W ∩ - ! =0 βˆ’ ∞, 0. ∩ 0 βˆ’ ∞, βˆ’3.=0 βˆ’ ∞, βˆ’3. 123 W βŠ† - ! = ? 123 W ⊈ - ! β†’ - !,W = / ∈ - W ∧ W ∈ - ! - !,W = < 0 ∧ 2 < βˆ’3 < 0 ∧ < βˆ’ ∈ 0 βˆ’ ∞, βˆ’ . - !,W = 0 βˆ’ ∞, βˆ’ . (!,W = !.W 0 = ! 2 !.W 0 = 3 2 + 2 = 6 + 2
  • 142. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. !.W 0 = 6 + 2 !,W : 123 W ∩ - ! = ? 123 W ∩ - ! = .βˆ’βˆž, βˆ’3. ∩ 0 βˆ’ ∞, βˆ’3.=0 βˆ’ ∞, βˆ’3. 123 W βŠ† - ! = ? 123 W βŠ† - ! β†’ - !,W = - W - !,W = .1, ∞ . - !,W = .1, ∞ . (!,W = !.W 0 = ! βˆ’3 !.W 0 = 3 βˆ’3 + 2 = 2 βˆ’ 9 !.W 0 = 2 βˆ’ 9 !,W = r 6 + 2 , ∈ 0 βˆ’ ∞, βˆ’ . 2 βˆ’ 9 , ∈ .1, ∞ . 98)
  • 143. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. !,W = !.W 0 Sean: ! = + 2 ; ! = βˆ’ 1 W = ; W = 1 βˆ’ !, W = (! ,W + ! ,W + ! ,W + ! ,W El rango de la funciΓ³n β€œg”es: < 0 β†’ β‰₯ 0 W β‰₯ 0 123 W = .0, ∞ . β‰₯ 0 β†’ β‰₯ 0 βˆ’ ≀ 0 1 βˆ’ ≀ 1 123 W =0 βˆ’ ∞, 10 ! ,W : 123 W ∩ - ! = .0, ∞. ∩ 0 βˆ’ ∞, 10 = .0,1. 123 W βŠ† - ! = ? 123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈ - ! - ! ,W = < 0 ∧ ≀ 1 < 0 ∧ | | ≀ 1 < 0 ∧ βˆ’ 1 ≀ ≀ 1 ∈ .βˆ’1 ,0 . - ! ,W = .βˆ’1 , 0 . ! .W 0 = ! = + 2
  • 144. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! .W 0 = + 2 ! ,W : 123 W ∩ - ! =0 βˆ’ ∞, 10 ∩0 βˆ’ ∞, 1.= βˆ’βˆž, 10 123 W βŠ† - ! = ? 123 W βŠ† - ! β†’ - ! ,W = - W = .0, ∞ . ! .W 0 = ! 1 βˆ’ = 1 βˆ’ + 2 ! .W 0 = 3 βˆ’ ! ,W : 123 W ∩ - ! =00, ∞ . ∩ .1, ∞.= .1, ∞. 123 W βŠ† - ! = ? 123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈ - ! - ! ,W = < 0 ∧ > 1 < 0 ∧ βˆ’ 1 + 1 > 0 < 0 ∧ > βˆ’1 Γ³ > 1 Q ∈ 0 βˆ’ ∞, βˆ’1. ! .W 0 = ! = βˆ’ 1 ! .W 0 = βˆ’ 1 ! ,W : 123 W ∩ - ! = .βˆ’ ∞, 10 ∩01, ∞.= βˆ…
  • 145. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. β†’ βˆ„ ! ,W Finalmente: - !,W = .βˆ’1 , 0 . s .0, ∞ .s 0 βˆ’ ∞ , βˆ’1[ - W,! = 0 βˆ’ ∞ , βˆ’1[ U.βˆ’1 , 0 . s .0, ∞ . !,W = u βˆ’ 1 , ∈ 0 βˆ’ ∞ , βˆ’1 . + 2 , ∈ .βˆ’1,0. 3 βˆ’ , ∈ .0, ∞. 99) !,W = !.W 0 Sean: ! = βˆ’ 3 ; ! = 3 βˆ’ W = 3 βˆ’ ; W = 5 βˆ’ !, W = (! ,W + ! ,W + ! ,W + ! ,W El rango de la funciΓ³n β€œg”es: ≀ 1 β†’ βˆ’ β‰₯ βˆ’1 β†’ 3 βˆ’ β‰₯ 2 W β‰₯2
  • 146. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 123 W = .2, ∞ . Si: > 1 β†’ βˆ’ < βˆ’1 5 βˆ’ < 4 W < 4 123 W =0 βˆ’ ∞, 4 . ! ,W : 123 W ∩ - ! = .2, ∞. ∩ 0 βˆ’ ∞, 30 = .2,30 123 W βŠ† - ! = ? 123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈ - ! - ! ,W = ≀ 1 ∧ 3 βˆ’ ≀ 3 ≀ 1 ∧ βˆ’ ≀ 0 ≀ 1 ∧ β‰₯ 0 ∈ .0, 10 - ! ,W = . 0, 10 ! .W 0 = ! 3 βˆ’ = 3 βˆ’ βˆ’ 3 3 βˆ’ ! .W 0 = 9 βˆ’ 6 + βˆ’ 9 + 3 ! .W 0 = βˆ’ 3 ! ,W : 123 W ∩ - ! = .2, ∞ . ∩0 βˆ’ ∞, 3.= .2,3. 123 W βŠ† - ! = ? 123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈ - !
  • 147. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. X > 1 ∧ 5 βˆ’ ≀ 3 > 1 ∧ βˆ’ ≀ βˆ’2 > 1 ∧ β‰₯ 2 ∈ .2, ∞ . - ! ,W = . 2, ∞ . ! .W 0 = ! 5 βˆ’ = 5 βˆ’ βˆ’ 3 5 βˆ’ = 25-10 + βˆ’ 15 + 3 ! .W 0 = βˆ’ 7 + 10 ! ,W : 123 W ∩ - ! =02, ∞ . ∩ .3, ∞.= .3, ∞. 123 W βŠ† - ! = ? 123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈ - ! - ! ,W = ≀ 1 ∧ 3 βˆ’ > 3 ≀ 1 ∧ βˆ’ > 0 ≀ 1 ∧ < 0 ∈ 0 βˆ’ ∞, 0. ! .W 0 = ! 3 βˆ’ = 3 βˆ’ 3 βˆ’ = 3 βˆ’ 9 + 6 βˆ’ ! .W 0 = βˆ’ + 6 βˆ’ 6
  • 148. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! ,W : 123 W ∩ - ! = .βˆ’ ∞, 4. ∩03, ∞.=03,4. 123 W βŠ† - ! = ? 123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈ - ! - ! ,W = > 1 ∧ 5 βˆ’ > 3 > 1 ∧ βˆ’ > βˆ’2 > 1 ∧ < 2 ∈ 01, 2. ! .W 0 = ! 5 βˆ’ = 3 βˆ’ 5 βˆ’ = 3 βˆ’ 25 + 10 βˆ’ ! .W 0 = βˆ’ + 10 βˆ’ 22 Finalmente: !,W = ⎩ βŽͺ ⎨ βŽͺ ⎧ βˆ’ 3 , ∈ .0,1 0 βˆ’ 7 + 10 , ∈ .2, ∞. βˆ’ + 6 βˆ’ 6 , ∈0 βˆ’ ∞, 0. βˆ’ + 10 βˆ’ 22 , ∈ 01,2. 100)
  • 149. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. !,W = !.W 0 Sean: ! = √1 βˆ’ ; ! = W = βˆ’ 4 ; W = 0 !, W = (! ,W + ! ,W + ! ,W + ! ,W El rango de la funciΓ³n β€œg”es: 0 ≀ ≀ 4 β†’ 0 ≀ ≀ 16 β†’ βˆ’4 ≀ βˆ’ 4 ≀ 12 βˆ’4 ≀ W ≀ 12 123 W = .βˆ’4,120 123 W = 0 ! ,W : 123 W ∩ - ! = .βˆ’4,120 ∩0 βˆ’ 3,1.= .βˆ’3, βˆ’1. 123 W βŠ† - ! = ? 123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈ - ! - ! ,W = 0 ≀ ≀ 4 ∧ βˆ’3 < βˆ’ 4 < 1 0 ≀ ≀ 4 ∧ 1 < < 5 0 ≀ ≀ 4 ∧ 1 < < √5
  • 150. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ∈01, √5. - ! ,W =0 1, √5 . ! .W 0 = ! βˆ’ 4 = :1 βˆ’ βˆ’ 4 ! .W 0 = √5 βˆ’ ! ,W : 123 W ∩ - ! = 0 ∩0 βˆ’ 3,1. = 0Q 123 W βŠ† - ! = ? 123 W βŠ† - ! β†’ - ! ,W = - W - ! ,W =04,7. ! .W 0 = ! 0 = √1 βˆ’ 0 = 1 ! .W 0 = 1 ! ,W : 123 W ∩ - ! = .βˆ’4,120 ∩ .3,80 = .3,80 123 W βŠ† - ! = ? 123 W ⊈ - ! β†’ - ! ,W = / ∈ - W ∧ W ∈ - ! - ! ,W = 0 ≀ ≀ 4 ∧ 3 ≀ βˆ’ 4 ≀ 8 0 ≀ ≀ 4 ∧ 7 ≀ ≀ 12 0 ≀ ≀ 4 ∧ √7 ≀ ≀ √12 ∈ .√7, :120
  • 151. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. - ! ,W = .√7 , 2√30 ! .W 0 = ! βˆ’ 4 ! .W 0 = O % ! ,W : 123 W ∩ - ! = 0 ∩ .3,80 = βˆ… β†’ βˆ„ ! ,W Finalmente: !,W = β€’ √5 βˆ’ , ∈01, √5 . 1 , ∈ 04,7 . O % , ∈ .√7, 2√3 0 101) !βˆ— = !*3'@Γ³3 @3t>)=2 Determinar las inversas de f y de g: ! = ^ % ; β‰  4 βˆ’ 4 = 2 + 6 β†’ βˆ’ 4 = 2 + 6 βˆ’ 2 = 4 + 6 βˆ’ 2 = 4 + 6 β†’ = % ^ Intercambiando las variables x e β€œy”:
  • 152. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. !βˆ— = % ^ ; β‰  2 W = ; β‰  0 2 = + 2 β†’ 2 = + 2 2 βˆ’ = 2 β†’ = Intercambiando las variables x e β€œy”: Wβˆ— = ; β‰  !βˆ— ,W = !βˆ—.W 0 !βˆ—.W 0 = !βˆ— $ & = 4 $ 2 2 βˆ’ 1& + 6 2 2 βˆ’ 1 βˆ’ 2 !βˆ—.W 0 = % % = ^ De: (!βˆ— ,W 2 = 6 ^] ] = 6 18 a =11 β†’ 2 = _ Si: 3 = Wβˆ— ,! 2 + ^ 7 2 + ^ 7 = _ + ^ 7 = ^N N% Wβˆ— ,! ^N N% = ? Wβˆ— ,! = Wβˆ—.! 0
  • 153. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. Wβˆ—.! 0 = Wβˆ— $ ^ % & = $ OΒ±β€œΛœ Β±ΒΊβ€˜ & = β€˜Β±β€œβ€”O Β±ΒΊβ€˜ = % % % Wβˆ—.! 0 = _ ^ Wβˆ— ,! $ ^N N% & = βˆ— Λœβ„’ β„’β€˜ _ βˆ— Λœβ„’ β„’β€˜ ^ = ºœ’O β„’β€˜ —’ℒ¼ β„’β€˜ = βˆ’ ` `N6 102) ! = ; β‰  2 W = ; β‰  2 Wβˆ— ,! * = 3 De; W = βˆ’ 2 = + 3 βˆ’ = 2 + 3 βˆ’ 1 = 2 + 3 = La inversa Wβˆ— >=: Wβˆ— = ; β‰  1 De; ! = βˆ’ 2 = 3
  • 154. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. βˆ’ 3 = 2 βˆ’ 3 = 2 = La inversa !βˆ— >=: !βˆ— = ; β‰  3 (Wβˆ— ,! = Wβˆ— $ & (Wβˆ— ,! = $ Ε“Β± Β±ΒΊO & Ε“Β± Β±ΒΊO = ΛœΒ±β€œΕ“Β±ΒΊΛœ Β±ΒΊO Ε“Β±ΒΊΒ±β€œO Β±ΒΊO (Wβˆ— ,! = 6 ^ Entonces: (Wβˆ— ,! * = 6Β½ ^ Β½ De: (Wβˆ— ,! * = 3 6Β½ ^ Β½ = 3 β†’ 9* βˆ’ 6 = 6* + 6 3* = 12 ; * = 4 Se calcula: !βˆ— ,W * + 2 = ? * + 2 = 6 !βˆ— ,W 6 = !βˆ—.W 0 6 !βˆ—.W 0 = !βˆ— $ & = Β±β€œΕ“ Β±ΒΊO Β±β€œΕ“ Β±ΒΊO = ^ 6
  • 155. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. !βˆ—.W 0 = ^ 6 !βˆ—.W 0 6 = ^ ^ 6 ^ = _ = βˆ’6 !βˆ— ,W * + 2 = βˆ’6 103) ! = 3 + 5 W = 2 + G ! W 0 = βˆ€ ∈ 1 De: y = 3x+5 = N La inversa de f, es: !βˆ— = N Si: W 0 = β†’ ! 2 + G = 3(ax+b)+5 =x 32 + 5 + 3G = β†’ B 32 = 1 5 + 3G = 0 2 = ; G = βˆ’ N W = βˆ’ N Se tiene que: !βˆ— ,W = !βˆ—.W 0 = !βˆ— $ βˆ’ N & !βˆ—.W 0 = β€” Ε“ β„’ Ε“ N = Β±ΒΊβ„’ΒΊβ€”β„’ Ε“
  • 156. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. !βˆ—.W 0 = 6 βˆ’ 20 ] + 5 = + 5 = ^ (!βˆ— ,W $ ^ & = 6 $ ^ βˆ’ 20& = ^ ^` 7 !βˆ— ,W $ ^ & = βˆ’ %% 7 104) ! = %] N !βˆ— 3 = 22 βˆ’ 36 !βˆ— 5 = 32 + G La inversa de f, es: = %] N β†’ 5 = 3 βˆ’ 42 = N %] !βˆ— = N %] !βˆ— 3 = N %] = 22 βˆ’ 36 15 + 42 = 62 βˆ’ 108 22 = 123 ; 2 = !βˆ— 5 = N N %] = 32 + G
  • 157. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 25+4(a) =9 a+3b 25 βˆ’ 52 = 3G 3G = 25 βˆ’ 5 $ & = N^N Se tiene que: 2 βˆ’ 3G = + N^N = 344 3 = !βˆ— 2 βˆ’ 3G = ? !βˆ— = N %] = N %^ 3 = !βˆ— 344 = N %% %^ 3 = 6^^ 105) D(f) = [1, 4] , ∈ - ! , ! = ! β†’ = βˆ’ 2 + 3 = βˆ’ 2 + 3 βˆ’ 2 = βˆ’ 2 βˆ’ βˆ’ 2 + 2 = 0 βˆ’ + βˆ’ 2 βˆ’ = 0 βˆ’ + βˆ’ 2 = 0
  • 158. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. Si: βˆ’ = 0 β†’ = Si: + = 2 , ∈ .1,40: ∢ = 1 ∢ = 1 + = 2 β†’ = β†’ ! βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ >= @3 >'[@t2 ! βˆ’ βˆ’ βˆ’ G@ >'[@t2 β†’ P @3 >'[@t2 =,G)> >'[@t2 ! = βˆ’ 2 + 3 = βˆ’ 1 + 2 Ran (f) = [a,b] = .2, G0 De: 1 ≀ ≀ 4 0 ≀ βˆ’ 1 ≀ 3 0 ≀ βˆ’ 1 ≀ 9 2 ≀ βˆ’ 1 ≀ 11 123 ! = .2,110 = .2,110 !; .1,40 β†’ .2,110 106)
  • 159. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. a) ! = 2| | βˆ’ A1. β‰₯ 0 β†’ | | = ! = 2 βˆ’ = A2. X< 0 β†’ | | = βˆ’ ! βˆ’ 2 βˆ’ = βˆ’3 ! = B , β‰₯ 0 βˆ’3 , < 0 ! = , ∈ - ! , ! = ! β†’ = = β‰₯ 0 β†’ ! β‰₯ 0 123 ! = .0, ∞ . ! = βˆ’3 , ∈ - ! , ! = ! β†’ = βˆ’3 = βˆ’3 βˆ’ = βˆ’ = < 0 β†’ βˆ’ β‰₯ 0 βˆ’3 β‰₯ 0 123 ! = .0, ∞ . Como: 123 ~! β€’ ∩ 123 ~! β€’ = .0, ∞. β‰  βˆ… β†’ ! βˆ’ βˆ’ βˆ’ βˆ’3, >= @3 >'[@t2 a) ----------- (V)
  • 160. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. b) W = , ∈ - ! , ! = ! β†’ = β€” β€” = O O β†’ βˆ’ 2 + βˆ’ 2 = + βˆ’ 2 βˆ’ 2 βˆ’2 + = βˆ’ 2 βˆ’ + 2 β€” 2 = 0 3 = 3 = -------------inyectiva Sobreyectiva: = β†’ βˆ’ 2 = + 1 = ; β‰  1 De: ! = ! $ & ! = OΒΏβ€œβ€” ΒΏΒΊβ€” OΒΏβ€œβ€” ΒΏΒΊβ€” = = ! β‰  ----------------no es sobreyectiva c) β„Ž = 2 + 3 >= @3 >'[@t2 , ∈ - ! , ! = ! β†’ = 2 + 3 = 2 + 3 2 = 2 = βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
  • 161. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 107) Sean las funciones inyectivas: ! = 3 βˆ’ 6 + 4 W = Se determina las funciones inversas de f y g: = 3 βˆ’ 2 + 1 + 4 βˆ’ 3 = 3 βˆ’ 1 + 1 3 βˆ’ 1 = βˆ’ 1 βˆ’ 1 = βˆ’ 1 βˆ’ 1 = Β±M β†’ = 1 Β± M De: x> 1 βˆ’ 1 > 0 3 βˆ’ 1 > 0 3 βˆ’ 1 + 1 > 1 123 ! = .1, ∞. Y > 1 β†’ = 1 + M !βˆ— = 1 + M De: =
  • 162. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. + = βˆ’ 2 1 βˆ’ = + 2 = Intercambiando las variables: = ; β‰  1 Ran (g) = R-{1} Wβˆ— = Se conoce que: !βˆ—.Wβˆ— 2 0 = 2 , !βˆ—.Wβˆ— 0 = !βˆ— !βˆ—.Wβˆ— 0 = 1 + M Β±β€œO β€”ΒΊΒ± = 1+ M !βˆ—.Wβˆ— 2 0 = 1 + M ] ] = 2 M ] ] = 1 β†’ ] ] = 1 22 + 1 = 3 βˆ’ 32 β†’ 2 = N De: 3 = ! 5W $2 + _ N &8 = ! 5W $N + _ N &8 = !.W 2 0 3 = ! $ & = ! 0 3 = 3(0-1 + 1
  • 163. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 3 = 4 ! 5W $2 + _ N &8 = 4 108) !: β†’ ! = , = .βˆ’1,40 ! = P 5 βˆ’ 3 , ∈ .βˆ’1,2. 3 βˆ’ 6 + 12 , ∈ .2,40 a) f es biyectiva….? 21. ! = 5 βˆ’ 3 , ∈ .βˆ’1,2 .; ! = ! β†’ = 5 βˆ’ 3 = 5 βˆ’ 3 - = βˆ’ = βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @3 >'[@t2 22. ! = 3 βˆ’ 6 + 12 , ∈ .2,40; ! = ! β†’ = 3 βˆ’ 6 + 12 = 3 βˆ’ 6 + 12 3 βˆ’ 6 = 3 βˆ’ 6 βˆ’ 2 = βˆ’ 2
  • 164. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. βˆ’ βˆ’ 2 + 2 = 0 βˆ’ + βˆ’ 2 βˆ’ = 0 βˆ’ + βˆ’ 2 = 0 w@: ∈ .2,40 β†’ + βˆ’ 2 β‰  0 β†’ βˆ’ = 0 β†’ = = βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @3 >'[@t2 De: ∈ .βˆ’1,2. β†’ βˆ’1 ≀ < 2 βˆ’3 ≀ 3 < 6 βˆ’6 < βˆ’3 ≀ 3 βˆ’1 < 5 βˆ’ 3 ≀ 8 123 ! =0 βˆ’ 1,80 Reescribiendo a : 3 βˆ’ 6 + 12 3 βˆ’ 6 + 12 = 3 βˆ’ 2 + 1 + 12 βˆ’ 3 = 3 βˆ’ 1 + 9 De: ∈ .2,4. β†’ 2 ≀ < 4 1 ≀ βˆ’ 1 < 3 1 ≀ βˆ’ 1 < 9 3 ≀ 3 βˆ’ 1 < 27 12 ≀ 3 βˆ’ 1 + 9 < 36 123 ! = .12, 36. 123 ! ∩ 123 ! = βˆ…
  • 165. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. β†’ ! βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ >= @3 >'[@t2 b) B= ]-1, 36] …..? Como: 123 ! = .! 2 , ! 4 . = .12,36. ]-1, 36] β‰  .12,36. β‰  0 βˆ’ 1,360 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’!2+=, c) !βˆ— 10 = 1 + √ … . ? ! βˆ’ βˆ’ βˆ’ @3 >'[@t2 β†’ βˆƒ !βˆ— ! = 5 βˆ’ 3 β†’ = 5 βˆ’ 3 β†’ 3 = 5 βˆ’ = N β†’ = N !βˆ— = N ------ ! = 3 βˆ’ 1 + 9 β†’ = 3 βˆ’ 1 + 9 3 βˆ’ 1 = βˆ’ 9 βˆ’ 1 = 6 = 1 Β± 6 ≀ 36 β†’ = 1 + M 6 !βˆ— = 1 + M 6 β†’ !βˆ— 10 = N ` = βˆ’ N
  • 166. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. !βˆ— 10 = 1 + M ` 6 = 1 + √ β†’ !βˆ— 10 β‰  1 + √ d) !βˆ— 4 + !βˆ— 21 = ` … . ? !βˆ— = β€’ N , ∈ .βˆ’1,8. 1 + M 6 , ∈ .12,36. !βˆ— 4 = N % = !βˆ— 21 = 1 + M 6 = 1 + 2 = 3 !βˆ— 4 + !βˆ— 21 = + 3 !βˆ— 4 + !βˆ— 21 = ` βˆ’ βˆ’ βˆ’ βˆ’ Y 109) ! = | | ; W = Si; xβ‰₯ 0 β†’ | | = ! = < 0 β†’ | | = βˆ’
  • 167. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! = ! = u , > 0 , < 0 , > 0; ! = ! β†’ = ! = β€” β€” = O O + = + = βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @3 >'[@t2 ! β†’ @3 >'[@t2 , < 0; ! = ! β†’ = ! = β€” β€” = O O βˆ’ = βˆ’ = βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @3 >'[@t2 ! β†’ @3 >'[@t2 De: ! = = 1 + x>0 β†’ > 0 1 + > 1 123 ! = 01, ∞ . ! = = βˆ’ 1
  • 168. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. X < 0 β†’ < 0 1 + < 1 123 ! = 0 βˆ’ ∞, 1 . 123 ! ∩ 123 ! = βˆ… β†’ ! βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @3 >'[@t2 De: W = , ∈ - W ; ! = ! β†’ = β€” = O = βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @3 >'[@t2 W βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2 Si: ! = ; = 1 + βˆ’ 1 = 1 = β†’ = La inversa de ! , >=: !βˆ— = , β‰  1 ! = ; = 1 βˆ’ + 1 = 1 = β†’ = La inversa de ! , >=:
  • 169. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. !βˆ— = , β‰  βˆ’1 W = ; y= 1/x = Intercambiando las variables: = Wβˆ— = ; β‰  0 !βˆ— = u , ∈01, ∞ . , ∈ 0 βˆ’ ∞, βˆ’1 . - !βˆ— ,Wβˆ— = ? !βˆ— ,Wβˆ— = !βˆ— ,Wβˆ— + !βˆ— ,Wβˆ— !βˆ— ,W: 123 Wβˆ— ∩ - !βˆ— = Β’1 βˆ’ 0QΒ£ ∩01, ∞. 01, ∞ . 123 Wβˆ— ⊈ - !βˆ— β†’ - !βˆ— ,Wβˆ— = ∈ - W ∧ W ∈ - !βˆ— Q = < 0 Γ³ > 0Q ∧ > 1 < 0 Γ³ > 0Q ∧ > 0 < 0 Γ³ > 0Q ∧ βˆ’ 1 < 0 < 0 Γ³ > 0Q ∧ ∈ 00,1. Q ∈ 00,1 . - !βˆ— ,Wβˆ— = 00,1 . !βˆ— ,W:
  • 170. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 123 Wβˆ— ∩ - !βˆ— = Β’1 βˆ’ 0QΒ£ ∩0 βˆ’ ∞, βˆ’1. ∈ 0 βˆ’ ∞, βˆ’1 . 123 Wβˆ— ⊈ - !βˆ— β†’ - !βˆ— ,Wβˆ— = ∈ - W ∧ W ∈ - !βˆ— Q = < 0 Γ³ > 0Q ∧ < βˆ’1 < 0 Γ³ > 0Q ∧ < 0 < 0 Γ³ > 0Q ∧ + 1 < 0 < 0 Γ³ > 0Q ∧ ∈ 0 βˆ’ 1,0.Q ∈ 0 βˆ’ 1 0 . - !βˆ— ,Wβˆ— = 0 βˆ’ 1, 0. - !βˆ— ,Wβˆ— = - !βˆ— ,Wβˆ— + - !βˆ— ,Wβˆ— - !βˆ— ,Wβˆ— = 00,1 . s 0 βˆ’ 1, 0. - !βˆ— ,Wβˆ— = 0 βˆ’ 1,1 . βˆ’ 0Q 110) ! = 2 + G, ∈ .βˆ’3,30, 2 < a) β„Ž = ! + !βˆ— = N + = 2 + G β†’ βˆ’ G = 2 = Γ€ ] ; @3[>)'2?G@23L, > :
  • 171. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. = Γ€ ] β†’ !βˆ— = Γ€ ] De: ! + !βˆ— = N + 2 + G + Γ€ ] = N + 2 + 2G + βˆ’ G = N 2 + 2 2 + 1 + 2G βˆ’ G = N 2 + 2 β†’ u 2 + 1 = N 2 2G βˆ’ G = 2 2 + 1 = N 2 β†’ 22 βˆ’ 52 + 2 = 0 2 = N±√ N ^ % = NΒ± % 2 = 2 ; 2 = Como: 2 > β†’ 2 = 2 De; 2G βˆ’ G = 2 G 2 βˆ’ 1 = 2 G 2 βˆ’ 1 = 3 G = 3 β†’ 2 = 2 G = 3 ! = 2 + 3 b) W = | + 3| βˆ’ | + 1| ; !,W = ?
  • 172. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. < βˆ’3 ; | + 3| = βˆ’ + 3 | + 1| = βˆ’ + 1 W = βˆ’ βˆ’ 3 + + 1 W = βˆ’2 -3≀ < βˆ’1 ; | + 3| = + 3 | + 1| = βˆ’ + 1 W = + 3 + + 1 W = 2 + 4 > βˆ’1 ; | + 3| = + 3 | + 1| = + 1 W = + 3 βˆ’ βˆ’ 1 W = 2 W = u βˆ’2 , ∈ 0 βˆ’ ∞, βˆ’3. 2 + 4 , ∈ .βˆ’3, βˆ’1. 2 , ∈ .βˆ’1, ∞ . !,W = !,W + !,W + !,W !, W : 123 W ∩ - f = βˆ’2Q ∩ 0 βˆ’ ∞, βˆ’3. = βˆ…
  • 173. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. β†’ βˆ„ !, W !, W : βˆ’3 ≀ < βˆ’1 βˆ’6 ≀ 2 < βˆ’2 βˆ’2 ≀ 2 + 4 < 2 123 W = .βˆ’2,2 . 123 W ∩ - f = .βˆ’2,2.∩ .βˆ’3,30 = .βˆ’2,2 . 123 W βŠ† - !βˆ— β†’ - f, W = - W - fÁ Âà = .βˆ’3, βˆ’1. f, W = !.W 0 = ! 2 + 4 !.W 0 = 2 2 + 4 + 3 !.W 0 = 4 + 11 !, W : 123 W ∩ - f = 2Q.∩ .βˆ’3,30 = 2Q 123 W βŠ† - !βˆ— β†’ - f, W = - W - fÁ ÂÄ = .βˆ’1, ∞. f, W = !.W 0 = ! 2 !.W 0 = 2 2 + 3
  • 174. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. !.W 0 = 7 !,W = P 4 + 11 , ∈ .βˆ’3, βˆ’1. 7 , ∈ .βˆ’1, ∞ . 111) ! = u 10 βˆ’ 2 , < 0 √ + 16 , 0 ≀ ≀ 3 O % , > 3 ; W = | βˆ’ βˆ’ 10 βˆ’ 21 . ∈ .βˆ’5, βˆ’10 | | | | , ∈ 01, 20 ! = 10 βˆ’ 2 De: , ∈ .βˆ’βˆž, 0 .; ! = ! β†’ = 10 βˆ’ 2 = 10 βˆ’ 2 βˆ’2 = βˆ’2 = βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2 < 0 β†’ 2 < 0 βˆ’2 > 0 10 βˆ’ 2 > 10 123 ! = .10, ∞ . De: , ∈ .0, 3 0; ! = ! β†’ = : + 16 = : + 16 | + 16| = | + 16| + 16 = + 16
  • 175. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. = = βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2 0 ≀ ≀ 3 β†’ 0 ≀ ≀ 9 16 ≀ + 16 ≀ 25 4 ≀ √ + 16 ≀ 5 123 ! = .4,50 De: , ∈ 03, ∞ .; ! = ! β†’ = β€” O % = O O % βˆ’ 4 = βˆ’ 4 = = βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2 > 3 β†’ > 9 βˆ’ 4 > 4 O % < 4 123 ! = .βˆ’βˆž, 4. Se tiene que: 123 ! ∩ 123 ! = βˆ… 123 ! ∩ 123 ! = βˆ… 123 ! ∩ 123 ! = βˆ… β†’ ! >= @3 >'[@t2 b) W = u βˆ’ βˆ’ 10 βˆ’ 21 , ∈ .βˆ’5, βˆ’10 | βˆ’ 2| βˆ’ 1 | + 3| , ∈ 01, 20
  • 176. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 01, 2 . β†’ | βˆ’ 2| = βˆ’ βˆ’ 2 | + 3| = + 3 W = | | | | = = β‰₯ 2 β†’ | βˆ’ 2| = βˆ’ 2 | + 3| = + 3 W = | | | | = = W = β€’ βˆ’ 2 βˆ’ 10 βˆ’ 21 . ∈ .βˆ’5, βˆ’10 , ∈ 01,2 . , = 2 W = βˆ’ βˆ’ 10 βˆ’ 21 , ∈ 0 βˆ’ 5, βˆ’10; ! = ! β†’ = βˆ’ βˆ’ 10 βˆ’ 21 = βˆ’ βˆ’ 10 βˆ’ 21 βˆ’ βˆ’ 10 = βˆ’ βˆ’ 10 + 10 = + 10 βˆ’ +10 ( βˆ’ = 0 βˆ’ + + + 10 βˆ’ = 0 βˆ’ + + 10 = 0 + + 10 β‰  0
  • 177. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. β†’ βˆ’ = 0 = βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2 W = , ∈ 01,2 .; ! = ! β†’ = β€” β€” = O O + 3 βˆ’ βˆ’ 3 = βˆ’ + 3 βˆ’ 3 4 = 4 = βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2 W = , = 2; ! = ! β†’ = β€”ΒΊΕ“ β€” = OΒΊΕ“ O + 3 βˆ’ 3 βˆ’ 9 = βˆ’ 3 + 3 βˆ’ 9 6 = 6 = βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2 Los rangos con: 123 W = .βˆ’12,40 123 W =0 βˆ’ N , 0 . 123 W = βˆ’ N 123 W ∩ 123 W = 0 βˆ’ 1/5 , 0 . 123 W ∩ 123 W β‰  βˆ… ----------------g (x) no es inyectiva
  • 178. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 112) Probar que si f(x) = 4√ βˆ’ , 0 ≀ ≀ 1 E,=>> !βˆ— , calcule su inversa. f(x) = 4√ βˆ’ , 0 ≀ ≀ 1 , ∈ - ! ; ! = ! β†’ = 4√ βˆ’ = 4√ βˆ’ 4 √ βˆ’ √ βˆ’ βˆ’ = 0 4 √ βˆ’ √ √ βˆ’ √ √ + √ = 0 √ βˆ’ √ 4 + √ + √ = 0 Si: 0 ≀ ≀ 1 β†’ 4 + √ + √ β‰  0 β†’ √ βˆ’ √ = 0 √ = √ | | = | | = βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2 113) De: 1 < % % ≀ 10 1 < % % ∧ % % ≀ 10 % % βˆ’ 1 > 0 ∧ % % βˆ’ 10 ≀ 0 βˆ’ 6 % > 0 ∧ 6 ^ % ≀ 0
  • 179. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 6 % < 0 ∧ 6 ^ % ≀ 0 4 βˆ’ 2 < 0 ∧ 4 βˆ’ 2 9 βˆ’ 36 ≀ 0 Resolviendo las inecuaciones, se tiene: β†’ < 0 Γ³ > 2 ∧ ≀ 2 Γ³ β‰₯ 4 ∈ 0 βˆ’ ∞, 0 0 s .4, ∞ . = 0 βˆ’ ∞, 0 0 s .4, ∞ . 114) ! = 2 + ' ! ' = 2!βˆ— ' a) = 2 + ' β†’ = Ε‘ Intercambiando las variables: = Ε‘ !βˆ— = Ε‘ ! ' = 2' + ' = 3' 2!βˆ— ' = 2 $ Ε‘O Ε‘ & β†’ 3' = 2 $ Ε‘O Ε‘ & 3' = 2' Ε‘ ) 3 = ' βˆ’ 1 ' = 4
  • 180. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. β†’ ! = 2 + 4 !βˆ— = % ! 0 . !βˆ— 0 = 2.0 + 4 . $ ` % & = 4 βˆ’2 = βˆ’8 ! 0 . !βˆ— 0 = βˆ’8 b) βˆ— = ? βˆ— = . % β€”ΒΊβ€˜ O = ^ ΒΊΕ“ O = βˆ’4 βˆ— = -4 115) a) ! = ; β‰  2 ! = 2 + N - ! = 1 βˆ’ 2Q = 0 βˆ’ ∞, 2 . s 02, ∞ . De: < 2 Γ³ > 2 βˆ’ 2 < 0 Γ³ βˆ’ 2 > 0 < 0 Γ³ > 0 N < 0 Γ³ N > 0
  • 181. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 2+ N < 2 Γ³ 2 + N > 2 ! < 2 Γ³ ! > 2 123 ! = 0 βˆ’ ∞, 2 . s 02, ∞ . b) ! = , ∈ - ! ; ! = ! β†’ = β€” β€” = O O 2 βˆ’ 4 + βˆ’ 2 = 2 + βˆ’ 4 βˆ’ 2 βˆ’4 + = βˆ’ 4 5 = 5 = ---------------inyectiva De; = βˆ’ 2 = 2 + 1 βˆ’ 2 = 2 + 1 = ; @3[>)'2?G@23L, +2= t2)@2G+>=: = 2 + 1 βˆ’ 2 !βˆ— = 116 a) Si, < β†’ ! > !
  • 182. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. < β†’ ! > ! β„Ž βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ L>')>'@>3[> Si: x >0 < β†’ ! > ! β„Ž βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ L>')>'@>3[> β†’ β„Ž βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’L>')>'@>3[> G de las grΓ‘ficas se aprecia que la funciΓ³n es inyectiva, por tanto existe la inversa:
  • 183. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. β„Ž = βˆ’ 2 + 2 β„Ž = βˆ’ 2 + 1 + 1 β„Ž = βˆ’ 1 + 1 = βˆ’ 1 + 1 123 ~β„Ž β€’ = . ! 0 , ∞ . 123 ~β„Ž β€’ = .2, ∞ . βˆ’ 1 = βˆ’ 1 x-1 = Β± : βˆ’ 1 = 1 Β± : βˆ’ 1 = 1 + √ βˆ’ 1 β„Žβˆ— = 1 βˆ’ √ βˆ’ 1 β„Ž = βˆ’3 βˆ’ 6 + 2 β„Ž = βˆ’3 + 2 + 1 + 5 β„Ž = 5 βˆ’ 3 + 1 = 5 βˆ’ 3 + 1 123 ~β„Ž β€’ =0 βˆ’ ∞ , ! 0 . 123 ~β„Ž β€’ =0 βˆ’ ∞, 2 . 3 + 1 = 5 βˆ’ + 1 = N β†’ + 1 = Β± M N = Β± M N βˆ’ 1 Intercambiando la variable: = Β± M N βˆ’ 1 Y < 2 β†’ = M N βˆ’ 1
  • 184. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. β„Žβˆ— = u 1 βˆ’ √ βˆ’ 1 , ∈ .2, ∞ . M N βˆ’ 1 , ∈ 0 βˆ’ ∞, 2 . 117 ! = | | | | = B , β‰₯ 0 βˆ’ , < 0 Si, xβ‰₯ 0 ∢ | | = ! = < 0 | | = βˆ’ ! =
  • 185. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! = u , .0,1 . , 0 βˆ’ 1,0 . ! = , ∈ - ! ; ! = ! β†’ = β€” = O β†’ 1 βˆ’ = 1 βˆ’ = βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2 ! = , ∈ - ! ; ! = ! β†’ = β€” = O β†’ 1 + = 1 + = βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2 Se analiza los rangos de ! ! ,Γ…Γ† {ÇÅÇ ΓˆΒ½Γ† ÉÆ] βˆ… 0 ≀ < 1 βˆ’1 ≀ βˆ’ < 0 0 ≀ 1 βˆ’ < 1 > 1 123 (! = 01, ∞ . DE; βˆ’1 < < 0 0 ≀ + 1 < 1 1 < 123 (! = 01, ∞ .
  • 186. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 123 (! ∩ 123 (! β‰  βˆ… β†’ 3, => [@>3> @3t>)=2 118) Se debe demostrar que son inyectivas cada una de las funciones que forman parte de f(x); Graficar las funciones y analizar sus rangos, se verΓ‘ que es inyectiva, ! = βˆ’ βˆ’ 2 ! = 2 + √3 + 2 βˆ’
  • 187. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 123 ! ∩ 123 ! = βˆ… ! βˆ’ βˆ’ βˆ’ @3 >'[@t2 ! βˆ’3 = βˆ’9 + 6 = βˆ’3 ! βˆ’1 = βˆ’1 + 2 = 1 123 ! = .βˆ’3, 1. ! βˆ’1 = 2 + √3 βˆ’ 2 βˆ’ 1 = 2 ! βˆ’1 = 2 + √3 + 2 βˆ’ 1 = 4 123 ! = .2, 40 ! = βˆ’ βˆ’ 2 = βˆ’ + 2 + 1 + 1 1 βˆ’ = + 1 ; x∈ .βˆ’3, βˆ’1. , se toma +2 )2@J2 3>W2[@t2 L> 1βˆ’y) + 1 = Β± :1 βˆ’ = Β± :1 βˆ’ βˆ’ 1 Intercambiando variables: = Β± √1 βˆ’ βˆ’ 1 !βˆ— = βˆ’βˆš1 βˆ’ βˆ’ 1
  • 188. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! = 2 + :3 + 2 βˆ’ = 2 + :βˆ’ βˆ’ 2 + 1 + 4 βˆ’ 2 = :4 βˆ’ βˆ’ 1 βˆ’ 2 = 4 βˆ’ βˆ’ 1 βˆ’ 1 = 4 βˆ’ βˆ’ 2 βˆ’ 1 = Β±:4 βˆ’ βˆ’ 2 ; x∈ .βˆ’1,10, se toma la raΓ­z negativa de (4 βˆ’ βˆ’ 2 : = 1 Β± :4 βˆ’ βˆ’ 2 Intercambiando variables: = 1 Β± :4 βˆ’ βˆ’ 2 !βˆ— = 1 βˆ’ :4 βˆ’ βˆ’ 2 !βˆ— = r βˆ’βˆš1 βˆ’ βˆ’ 1 , ∈ .βˆ’3, 1. 1 βˆ’ :4 βˆ’ βˆ’ 2 , ∈ .2,40 w> L>G> ',3=@L>)2) K*>: !: β†’ !βˆ— : β†’
  • 189. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 119 !: β†’ .βˆ’9, βˆ’1. ; ! = % 2 =? βˆ’9 ≀ % < βˆ’1 β†’ βˆ’9 ≀ % ∧ % < βˆ’1 β†’ 0 ≀ 9 + % ∧ % + 1 < 0 7 6 % β‰₯ 0 ∧ % < 0 ` N β‰₯ 0 ∧ ^ < 0 ^ β‰₯ 0 ∧ < 0 6 βˆ’ 3 βˆ’ β‰₯ 0 ∧ 2 + 3 βˆ’ < 0 ≀ 3 Γ³ β‰₯ 6Q ∧ { x <-2 Γ³ x > 3 } ∈ 0 βˆ’ ∞, βˆ’20 s .6, ∞ . G , ∈ - ! ; ! = ! β†’ = % β€” β€” = % O O 9 βˆ’ 3 + 12 βˆ’ 4 = 9 + 12 βˆ’ 3 βˆ’ 4 3 βˆ’ 3 + 12 βˆ’ 12 = 0 = βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2
  • 190. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. c) Sobreyectiva: = % β†’ 3 βˆ’ = 3 + 4 3 βˆ’ 3 = 4 + = % De: ! = ! % ) ! = %$ Ε“ΒΏΒΊΕ“ ΒΏβ€œβ€˜ & Ε“ΒΏΒΊΕ“ ΒΏβ€œβ€˜ % = % _ = N 7 N ! β‰  ----------------no es sobreyectiva 120) Univalente β†’ @3 >'[@t2 ! = 12 βˆ’ 4 + = βˆ’ 4 + 4 + 6 βˆ’ 2 ! = βˆ’ 2 + 4 El rango de f es: 0≀ < 1 Γ³ 2 ≀ ≀ 3 βˆ’2 ≀ βˆ’ 2 < βˆ’1 Γ³ 0 ≀ βˆ’ 2 ≀ 1
  • 191. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 1 < βˆ’ 2 ≀ 4 Γ³ 0 ≀ βˆ’ 2 ≀ 1 < βˆ’ 2 ≀ 2 Γ³ 0 ≀ βˆ’ 2 ≀ 4+ < 4 + βˆ’ 2 ≀ 6 Γ³ 4 ≀ 4 + βˆ’ 2 ≀ + 4 6 < 4 + βˆ’ 2 ≀ 6 Γ³ 4 ≀ 4 + βˆ’ 2 ≀ 6 Ran (f) = 0 6 , 60 s .4, 6 0 123 ! = .4,60 De: , ∈ - ! ; ! = ! β†’ = βˆ’ 2 + 4 = βˆ’ 2 + 4 βˆ’ 2 = βˆ’ 2 : βˆ’ 2 = : βˆ’ 2 | βˆ’ 2| = | βˆ’ 2| βˆ’ 2 = βˆ’ 2 = βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2 De: = βˆ’ 2 + 4 2 = βˆ’ 2 + 8 2y-8 = βˆ’ 2 βˆ’ 2 = Β±:2 βˆ’ 8 = 2 Β± :2 βˆ’ 8 Intercambiando las variables: = 2 Β± √2 βˆ’ 8 Si: ∈ 0 6 , 60 !βˆ— = 2 βˆ’ √2 βˆ’ 8
  • 192. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. Si : ∈ .4, 6 . !βˆ— = 2 + √2 βˆ’ 8 ! = u 2 + √2 βˆ’ 8 , ∈ .4, 6 . 2 βˆ’ √2 βˆ’ 8 , ∈ 0 6 , 60 121 ! = + 1 ! = √ + 2 ! = + 1 De: , ∈ - ! ; ! = ! β†’ = + 1 = + 1 = = βˆ’ βˆ’ βˆ’ @3 >'[@t2
  • 193. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! = √ + 2 De: , ∈ - ! ; ! = ! β†’ = : + 2 = : + 2 | + 2| = | + 2| + 2 = + 2 = βˆ’ βˆ’ βˆ’ @3 >'[@t2 123 ! =03,90 123 ! = .0,20 123 ! ∩ 123 ! = βˆ… β†’ ! βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ @3 >'[@t2 De: = + 1 β†’ 2 = + 2 = 2 βˆ’ 2 ; ∈ .βˆ’4, βˆ’2. < 0 β†’ = βˆ’:2 βˆ’ 2 Intercambiando las variables: = βˆ’ √2 βˆ’ 2 !βˆ— = βˆ’βˆš2 βˆ’ 2
  • 194. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! = √ + 2 = √ + 2 ; + 2 = = βˆ’ 2 Intercambiando variables: = βˆ’ 2 !βˆ— = βˆ’ 2 !βˆ— = r βˆ’βˆš2 βˆ’ 2 , ∈ 03,90 βˆ’ 2 , ∈ .0,20 122) ! = 4 βˆ’ ! = O De:
  • 195. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. , ∈ - ! ; ! = ! β†’ = 4 βˆ’ = 4 βˆ’ βˆ’ βˆ’ 4 βˆ’ = 0 ( βˆ’ + βˆ’ 4 βˆ’ = 0 ( βˆ’ + βˆ’ 4 = 0 ∈ 0 βˆ’ ∞, 2. β†’ + βˆ’ 4 β‰  0 ( βˆ’ = 0 = βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2 , ∈ - ! ; ! = ! β†’ = β€” O β€” = O O O βˆ’ 2 = βˆ’ 2 βˆ’ βˆ’ 2 βˆ’ = 0 βˆ’ βˆ’ 2 βˆ’ + = 0 βˆ’ βˆ’ 2 βˆ’ 2 = 0 ∈ 02, 4 . β†’ β‰  2 + βˆ’ = 0 = βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2 Los rangos de f1 y f2 son: 123 ! = 0 βˆ’ ∞, 4. 123 ! = 0 8, ∞.
  • 196. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. 123 ! ∩ 123 ! = βˆ… β†’ ! βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2 ! = 4 βˆ’ = βˆ’ βˆ’ 4 + 4 + 4 = 4 βˆ’ βˆ’ 2 βˆ’ 2 = 4 βˆ’ x-2 < 0 β†’ [,?2) +2 )2Γ­J 3>W2[@t2 L> 4 βˆ’ βˆ’ 2 = βˆ’:4 βˆ’ = 2 βˆ’ :4 βˆ’ Intercambiando las variables: = 2 βˆ’ √4 βˆ’ !βˆ— = 2 βˆ’ √4 βˆ’ ! = βˆ’ 2 = O βˆ’ 2 = βˆ’ + % = % βˆ’ 2 βˆ’ = % βˆ’ 2
  • 197. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. βˆ’ = Β±M % βˆ’ 2 = Β± M % βˆ’ 2 Intercambiando las variables: = βˆ’ M % βˆ’ 2 !βˆ— = βˆ’ M % βˆ’ 2 !βˆ— = u 2 βˆ’ √4 βˆ’ , < 4 βˆ’ M % βˆ’ 2 , > 8 123) ! = + 2 + 2
  • 198. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. ! = + 4 Realizando las grΓ‘ficas de f1 y f2 y al trazar respectivamente una recta paralela al eje x, se observa que se corta en un solo punto, esto implica que son inyectivas 123 ! ∩ 123 ! = βˆ… ! = + 2 + 2 = + 2 + 1 + 1 βˆ’ 1 = + 1 + 1 = βˆ’ 1 β‰₯ 1 β†’ + 1 > 0 βˆ’ βˆ’ βˆ’ [,?2) +2 )2Γ­J E,=@[@t2 L> y-1 + 1 = : βˆ’ 1 = : βˆ’ 1 βˆ’ 1 Intercambiando las variables: = √ βˆ’ 1 βˆ’ 1 !βˆ— = √ βˆ’ 1 βˆ’ 1 ! = + 4 = + 4
  • 199. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. = βˆ’ 4 = : βˆ’ 4 Ε“ Intercambiando las variables: = √ βˆ’ 4 Ε“ !βˆ— = √ βˆ’ 4 Ε“ !βˆ— = r √ βˆ’ 1 βˆ’ 1 , β‰₯ 5 √ βˆ’ 4 Ε“ , < 5 124) ! = βˆ’ 1 ! = + 1 W = 2 βˆ’ 1 W = √ Verificar si g(x) es inyectiva:
  • 200. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. , ∈ - W ; W = W β†’ = 2 βˆ’ 1 = 2 βˆ’ 1 2 = 2 = βˆ’ βˆ’ βˆ’ @3 >'[@t2 , ∈ - W ; W = W β†’ = √ = √ √ = √ | | = | | = βˆ’ βˆ’ βˆ’ @3 >'[@t2 Los rangos de las funciones g, son: 123 W = 0 βˆ’ ∞, βˆ’1. 123 W = 00, ∞. 123 W ∩ 123 W = βˆ… β†’ W βˆ’ βˆ’ βˆ’ βˆ’@3 >'[@t2 W = 2 βˆ’ 1 β†’ = 2 βˆ’ 1 = Cambiando las variables:
  • 201. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. = Wβˆ— = + 1 W = √ β†’ = √ = Cambiando variables: = Wβˆ— = Wβˆ— = r , < βˆ’1 , β‰₯ 0 Grafica de g y g* !,Wβˆ— = ! ,Wβˆ— + ! ,Wβˆ— + ! ,Wβˆ— + ! ,Wβˆ— 123 Wβˆ— =0 βˆ’ ∞, 0 . 123 Wβˆ— = .0, ∞ . ! ,Wβˆ— : 123 Wβˆ— ∩ - ! =[- ∞, 0 .∩ 0 βˆ’ ∞, βˆ’1. =0 βˆ’ ∞, βˆ’1. 123 Wβˆ— β‹’ - ! β†’ - ! ,Wβˆ— = = / ∈ - Wβˆ— ∧ Wβˆ— Γ‹ - ! }
  • 202. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. < 0 ∧ < βˆ’1 < 0 ∧ + 1 < βˆ’2 < 0 ∧ < βˆ’3 ∈ 0 βˆ’ ∞, βˆ’3. - ! ,Wβˆ— = 0 βˆ’ ∞, βˆ’3. ! .Wβˆ— 0 = ! $ & = $ & βˆ’ 1 = % + βˆ’ % ! .Wβˆ— 0 = $ + βˆ’ & ! ,Wβˆ— : 123 Wβˆ— ∩ - ! =[ 0, ∞ .∩ 0 βˆ’ ∞, βˆ’1.= βˆ… β†’ βˆ„ ! ,Wβˆ— ! ,Wβˆ— : 123 Wβˆ— ∩ - ! =] βˆ’βˆž, 0 . ∩ .βˆ’1, ∞.= .βˆ’1,0. 123 Wβˆ— β‹’ - ! β†’ - ! ,Wβˆ— = = / ∈ - Wβˆ— ∧ Wβˆ— Γ‹ - ! } < 0 ∧ β‰₯ βˆ’1 < 0 ∧ + 1 β‰₯ βˆ’2 < 0 ∧ β‰₯ βˆ’3 ∈ .βˆ’3,0. - ! ,Wβˆ— = . βˆ’3,0. ! .Wβˆ— 0 = ! $ &
  • 203. ALGEBRA PREUNIVERSITARIA Ing. Widmar Aguilar, Msc. = + 1 = ! .Wβˆ— 0 = ! ,Wβˆ— : 123 Wβˆ— ∩ - ! =[0, ∞ . ∩ .βˆ’1, ∞.=[0,∞. 123 Wβˆ— β‹’ - ! β†’ - ! ,Wβˆ— = = / ∈ - Wβˆ— ∧ Wβˆ— Γ‹ - ! } β‰₯ 0 ∧ β‰₯ βˆ’1 β‰₯ 0 ∧ + 1 β‰₯ 0 β‰₯ 0 ∧ ∈ 1 ∈ .0, ∞ . - ! ,Wβˆ— = .0, ∞. ! .Wβˆ— 0 = ! = + 1 ! .Wβˆ— 0 = + 1 !,Wβˆ— = ⎩ ⎨ ⎧ $ + βˆ’ & , < βˆ’3 , ∈ .βˆ’3,0. + 1 , ∈ .0, ∞ .