SlideShare a Scribd company logo
1 of 43
Analysis of Elastic Behaviour of Honeycombs and
Auxetic Materials with Variation in its Cell Geometry
MS THESIS PRESENTED BY
VISHWATEJ MANE
ADVISOR- PROF. MAEN ALKHADER
DEPARTMENT OF MECHANICAL ENGINEERING
STONY BROOK UNIVERSITY
Introduction
Honeycombs used as core in sandwich panels of lightweight structure
Progressive collapse with retaining functionality
Auxetic materials exhibits NPR
Auxetic material has improved Shear, indentation resistance and fracture toughness
Potential applications in defense and aerospace
Relative density
Outline of the study
Deformation mechanism and Theory
Flexure, stretching and hinging mechanism
Cell Geometry and General Mathematical model
“ I.G. Masters and K E Evans, ”Models for the elastic deformation of honeycombs”, composite
strucutres,0263-8223/96
Models for FEA analysis
Sr. no. cell angle Wall thickness (in mm) Relative density (ρ*/ρs)
1. 30 0.15 0.178748
0.2 0.237965
0.25 0.297182
0.3 0.357496
2. 20 0.15 0.184136
0.2 0.2462415
0.25 0.307257
0.3 0.3693623
3. 10 0.15 0.1915415
0.2 0.281822
0.25 0.3525827
0.3 0.4233433
4. 5 0.15 0.2157475
0.2 0.28728
0.25 0.358822
0.3 0.431495
Sr. no. cell angle Wall thickness (in mm) Relative density (ρ*/ρs)
5. -5 0.15 0.255294
0.2 0.34
0.25 0.425
0.3 0.510589
6. -10 0.15 0.28385
0.2 0.379219
0.25 0.473463
0.3 0.568828
7. -20 0.15 0.369647
0.2 0.49368
0.25 0.616489
0.3 0.740524
FEA Model development
Development of Geometry for different cellular models
In Property module used Al 6061 as material
ρ=2700 kg/m3, E= 68950 MPa, ν= 0.3, plastic strain
Static, general analysis type
meshing - structured Quad shell elements (S4R)
Node Sets- TOP, BOTTOM, LEFT, RIGHT
BCs for Poisson’s ratio ν21
Hex30 model
U3=0
Bottom, U2=UR1=UR2=UR3=0
Top, UR1=UR2=UR3=0
U2= -2.5
BCs for Poisson’s ratio ν12
Hex30 model
U3= 0
LEFT, U1=UR1=UR2=UR3=0
RIGHT, UR1=UR2=UR3=0
U1= -2.5
FEA results and Trends for Honeycombs
Hex 30, t= 0.25mm Hex 10, t=0.3mm
Stress 22, Young’s Modulus E22 and Poisson’s ratio ν21 vs. Strain 22 for Hex05 model and Hex10 model
Stress 22, Young’s Modulus E22 and Poisson’s ratio ν21 vs. Strain 22 for Hex20 model and Hex30 model
FEA Results and Trends for Auxetics
Hex -05, t= 0.2mm Hex -10, t= 0.15mm
Stress 22, Young’s Modulus E22, Poisson’s ratio ν21 vs. Strain 22 for Hex-05 model and Hex-10 model
Stress 22, Young’s Modulus E22 and Poisson’s ratio ν21 vs. Strain 22 curve for Hex -20 model
FEA Results and Trends in honeycombs 11 direction
Hex30, t=0.3mm Hex20, t=0.25mm
Stress 11, Young’s Modulus E11 and Poisson’s ratio ν12 vs. Strain 11 for Hex 05 model and Hex10
model
Stress 11, Young’s Modulus E11 and Poisson’s ratio ν12 vs. Strain 11 for Hex20 model and Hex30
model
FEA Results and Trends in Auxetics
Hex-05, t=0.2mm Hex-10, t=0.15mm
Stress 11, Young’s Modulus E11 Poisson’s ratio ν12 vs. Strain 11 for Hex -05 model and Hex-10 model
Stress 11, Young’s Modulus E11 and Poisson’s ratio ν12 vs. Strain for Hex-20 model
Specifications of 3D printed models
MakerBot Replicator 2.0 3D printer
Sr No. Model by cell angle geometry
(wall thickness= 0.8mm)
Constant width= 15mm
Length
in mm
Height
in mm
1 -20 28.33 27.85
2 -10 24.94 25.45
3 -5 24.12 24.35
4 5 24.15 26.02
5 10 29.63 28.69
6 20 28.02 25.94
7 30 26.38 27.54
3D printed Honeycombs test results
Stress vs Strain curves over entire period of compression test on MTS machine
0
5
10
15
20
25
0 0.1 0.2 0.3
StressY
Strain Y
Hex 05
0
2
4
6
8
10
12
14
16
18
0 0.05 0.1 0.15 0.2 0.25
StressY
Strain Y
Hex 10
0
1
2
3
4
5
6
7
0 0.1 0.2 0.3
StressY
Strain Y
Hex 20
0
1
2
3
4
5
6
7
8
0 0.1 0.2 0.3
StressY
Strain Y
Hex 30
Compression Test
3D printed Auxetic test results
0
5
10
15
20
25
30
0 0.05 0.1 0.15 0.2 0.25 0.3
StressY
Strain Y
Hex-05
0
2
4
6
8
10
12
14
16
18
0 0.05 0.1 0.15 0.2 0.25 0.3
StressY
Strain Y
Hex-10
0
2
4
6
8
10
12
14
16
18
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
StressY
Strain Y
Hex-20
Compression Test
Elastic Region for honeycombs
Constant Modulus over these sections in elastic region
y = 480.47x - 3
R² = 0.9879
-5
0
5
10
15
20
25
0 0.02 0.04 0.06
StressY
Strain
Hex 05
y = 387.22x - 1
R² = 0.9957
-2
0
2
4
6
8
10
12
14
16
18
0 0.01 0.02 0.03 0.04 0.05
StressY
Strain Y
Hex 10
y = 198.42x - 0.25
R² = 0.9975
-1
0
1
2
3
4
5
6
0 0.01 0.02 0.03 0.04
StressY
Strain Y
Hex 20
y = 193.2x - 0.5
R² = 0.9968
-1
0
1
2
3
4
5
6
7
8
0 0.01 0.02 0.03 0.04
StressY
Strain Y
Hex 30
Elastic region for Auxetic
Constant Modulus over these sections in elastic region
y = 514.62x - 4
R² = 0.9838
-10
-5
0
5
10
15
20
25
30
0 0.01 0.02 0.03 0.04 0.05 0.06
StressY
Strain Y
Hex-05
y = 407.26x - 1.5
R² = 0.9946
-5
0
5
10
15
20
0 0.01 0.02 0.03 0.04 0.05
StressY
Strain Y
Hex-10
y = 422.82x - 2
R² = 0.9898
-4
-2
0
2
4
6
8
10
12
14
16
0 0.01 0.02 0.03 0.04 0.05
StressY
Strain Y
Hex-20
Poisson’s ratio ν21 for honeycombs
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.1 0.15 0.2 0.25 0.3 0.35
ν21
longitudnal strain
hex30
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.05 0.1 0.15 0.2 0.25 0.3
ν21
longitudnal strain
hex20
0
0.2
0.4
0.6
0.8
1
1.2
0.05 0.1 0.15 0.2 0.25
ν21
longitudnal strain
hex10
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
0.1 0.15 0.2 0.25 0.3
ν21
longitudnal strain
hex05
Poisson’s ratio ν21 for Auxetic
-2.5
-2
-1.5
-1
-0.5
0
0.05 0.1 0.15 0.2 0.25 0.3
ν21
longitudnal strain
hex-05
-1.4
-1.2
-1
-0.8
-0.6
-0.4
-0.2
0
0.05 0.1 0.15 0.2 0.25 0.3
ν21
longitudnal strain
hex-10
-1.2
-1
-0.8
-0.6
-0.4
-0.2
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35
ν21
longitudnal strain
hex-20
3D printed Honeycombs test results
Stress vs. strain curve for compression in 11-direction on MTS
0
1
2
3
4
5
6
7
0 0.05 0.1 0.15 0.2 0.25 0.3
Stress11
strain 11
Hex 05
0
1
2
3
4
5
6
0 0.1 0.2 0.3
stress11
Strain 11
Hex 10
0
0.5
1
1.5
2
2.5
3
3.5
4
0 0.05 0.1 0.15 0.2
Stress11
Strain 11
Hex 20
0
1
2
3
4
5
6
7
0 0.1 0.2 0.3 0.4
Stress11
Strain 11
Hex 30
3D printed Auxetic test results
Stress vs. strain curve for compression in 11-direction on MTS
0
1
2
3
4
5
6
7
8
9
0 0.05 0.1 0.15 0.2 0.25 0.3
Stress11
Strain 11
Hex -05
0
1
2
3
4
5
6
7
8
9
10
0 0.1 0.2 0.3 0.4
Stress11
Strain 11
Hex -10
0
2
4
6
8
10
12
14
16
18
0 0.05 0.1 0.15 0.2 0.25 0.3
Stress11
Strain 11
Hex -20
Compression Test
Compression Test
Elastic region for honeycombs
Constant modulus over these sections for compression 11-direction
y = 146.79x - 0.25
R² = 0.9986
-1
0
1
2
3
4
5
6
0 0.01 0.02 0.03 0.04 0.05
Stress
Strain
Hex 05
y = 107.61x - 0.2
R² = 0.9964
-1
0
1
2
3
4
5
0 0.01 0.02 0.03 0.04 0.05
Stress
strain
Hex 10
y = 79.143x - 0.1
R² = 0.9961
-0.5
0
0.5
1
1.5
2
2.5
3
3.5
0 0.01 0.02 0.03 0.04 0.05
Stress
Strain
Hex 20
y = 181.33x - 0.5
R² = 0.9941
-1
0
1
2
3
4
5
6
0 0.01 0.02 0.03 0.04
Stress
Strain
Hex 30
Elastic region for Auxetics
Constant modulus over these sections for compression 11-direction
y = 161.12x - 1
R² = 0.9804
-2
-1
0
1
2
3
4
5
6
7
0 0.01 0.02 0.03 0.04 0.05
Stress
Strain
Hex -05
y = 70.312x - 0.1
R² = 0.9935
-0.5
0
0.5
1
1.5
2
2.5
3
3.5
4
0 0.01 0.02 0.03 0.04 0.05 0.06
Stress
Strain
Hex -10
y = 132.51x - 0.5
R² = 0.9954
-1
0
1
2
3
4
5
6
0 0.01 0.02 0.03 0.04 0.05
stress
Strain
Hex -20
Poisson’s ratio ν12 for honeycombs
0
0.1
0.2
0.3
0.4
0.5
0.6
0.1 0.2 0.3 0.4 0.5
ν12
longitudnal strain
hex30
0
0.05
0.1
0.15
0.2
0.25
0.3
0.1 0.15 0.2 0.25 0.3 0.35
ν12
longitudnal strain
hex20
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.1 0.15 0.2 0.25
ν12 longitudnal strain
hex10
0
0.1
0.2
0.3
0.4
0.5
0.6
0.05 0.1 0.15 0.2 0.25 0.3
ν12
longitudnal strain
hex05
Poisson ratio ν12 for Auxetic
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.05 0.1 0.15 0.2 0.25 0.3 0.35
ν12
longitudnal strain
hex-10
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.05 0.1 0.15 0.2 0.25 0.3
ν12
longitudnal strain
hex-20
Conclusions for honeycomb samples
FEA methods can be used to predict trends in elastic constants
E22 and E11 increases with increase in relative density
E22 increases with decrease in cell angle closer to zero
E11 increases with increase in angle closer to 30 degrees
Trends of ν21 and ν12 are linear and independent of relative density in elastic region
ν21 increase with decrease in cell angle closer to 0
ν12 increases with increase in cell angle closer to 30
Waviness in stress vs. strain trend in plastic region represents cell arrays collapse
Conclusions for Auxetic samples
E22 and E11 increases with relative density
Exhibits Negative Poisson’s ratio (NPR) property
Trends ν21 and ν12 independent of relative density in elastic region
ν21 increases with decrease in cell angle
ν12 decreases with increase in cell angle
Waviness in stress, Poisson’s ratio vs. strain trends represents cell arrays collapse
Young’s modulus 22 vs. cell angle
0
5000
10000
15000
20000
25000
30000
5 10 20 30 -5 -10 -20
Young'sModulusE22
Cell angle in degrees
t=0.15 mm t= 0.2 mm t= 0.25 mm t=0.3 mm
Poisson’s ratio 21 vs. cell angle
-6
-4
-2
0
2
4
6
5 10 20 30 -5 -10 -20
Poisson'sratioν21
Cell angle in degrees
t=0.15 mm t=0.2 mm t=0.25 mm t=0.3 mm
Young’s modulus 11 vs cell angle
0
500
1000
1500
2000
2500
3000
3500
5 10 20 30 -5 -10 -20
Young'sModulusE11
cell angles in degrees
t=0.15 mm t=0.2 mm t=0.25 mm t=0.3 mm
Poisson’s ratio12 vs cell angle
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
5 10 20 30 -5 -10 -20
Poisson'sratioν12
Cell angles in degrees
t=0.15 mm t=0.2 mm t=0.25 mm t=0.3 mm
Bibliography
I.G. Masters and K E Evans, “ Models for the elastic deformation of honeycombs”
composite structures,0263-8223/96
Q.Liu,” Literature Review: Material with Negative Poisson’s ratio and potential
applications to aerospace and defence” DSTO-GD-0472, August 2006
Yanping Liu and Hong Hu, “ A Review on Auxetic structures and polymeric materials”,
ISSN 1992-2248, May 2010
M. Bianchi, S. Frontoni, F. Scarpa, and C.W.Smith, “Density change during the
manufacturing process of PU-PE open cell Auxetic foams”, pssb.201083966, May 2010
Kim Alderson, Andrew Alderson, Naveen Ravirala, Virginia Simkins, and Philip Davies,
“Manufacture and characterization of thin flat and curved Auxetic foam sheets”,
pssb.201084215, March 2012

More Related Content

Similar to Thesis presentation

Summer internship @ IISc Bangalore
Summer internship @ IISc BangaloreSummer internship @ IISc Bangalore
Summer internship @ IISc BangaloreSreyas Sriram
 
Finite Element Analysis of Magnesium Alloys using OOF2
Finite Element Analysis of Magnesium Alloys using OOF2Finite Element Analysis of Magnesium Alloys using OOF2
Finite Element Analysis of Magnesium Alloys using OOF2jitin_22
 
Monitoring of strain and seismic vibrations in structures
Monitoring of strain and seismic vibrations in structuresMonitoring of strain and seismic vibrations in structures
Monitoring of strain and seismic vibrations in structureskalyanabooshnam
 
Thesis Presentation presentation
Thesis Presentation presentationThesis Presentation presentation
Thesis Presentation presentationTausif Patel
 
tensile test - stress strain curve
tensile test - stress strain curvetensile test - stress strain curve
tensile test - stress strain curveVijay Kumar Jadon
 
Spectroscopy
Spectroscopy Spectroscopy
Spectroscopy Ndede .
 
Sprittles presentation
Sprittles presentationSprittles presentation
Sprittles presentationJamesSprittles
 
3D - Structural Analysis and Optimization
3D - Structural Analysis and Optimization3D - Structural Analysis and Optimization
3D - Structural Analysis and OptimizationSuresh Daravath
 
Five-Year Results of Refractive Lenticule Extraction ReLEx SMILE compared to ...
Five-Year Results of Refractive Lenticule Extraction ReLEx SMILE compared to ...Five-Year Results of Refractive Lenticule Extraction ReLEx SMILE compared to ...
Five-Year Results of Refractive Lenticule Extraction ReLEx SMILE compared to ...Breyer, Kaymak & Klabe Augenchirurgie
 
2012-TFM1 Economic Gas-like Models
2012-TFM1 Economic Gas-like Models2012-TFM1 Economic Gas-like Models
2012-TFM1 Economic Gas-like ModelsRicardo Lopez-Ruiz
 
Commissioning of Truebeam LINAC
Commissioning of Truebeam LINACCommissioning of Truebeam LINAC
Commissioning of Truebeam LINACVIneeth C
 
Computation of a gearbox for a wind power plant
Computation of a gearbox for a wind power plantComputation of a gearbox for a wind power plant
Computation of a gearbox for a wind power plantPietro Galli
 
Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3SHAMJITH KM
 
Buckling of laminated beam higher order discrete model-main
Buckling of laminated beam  higher order discrete model-mainBuckling of laminated beam  higher order discrete model-main
Buckling of laminated beam higher order discrete model-mainAbdul Khader Shahadaf
 

Similar to Thesis presentation (20)

Summer internship @ IISc Bangalore
Summer internship @ IISc BangaloreSummer internship @ IISc Bangalore
Summer internship @ IISc Bangalore
 
Finite Element Analysis of Magnesium Alloys using OOF2
Finite Element Analysis of Magnesium Alloys using OOF2Finite Element Analysis of Magnesium Alloys using OOF2
Finite Element Analysis of Magnesium Alloys using OOF2
 
Monitoring of strain and seismic vibrations in structures
Monitoring of strain and seismic vibrations in structuresMonitoring of strain and seismic vibrations in structures
Monitoring of strain and seismic vibrations in structures
 
Thesis Presentation presentation
Thesis Presentation presentationThesis Presentation presentation
Thesis Presentation presentation
 
Tensile test
Tensile testTensile test
Tensile test
 
tensile test - stress strain curve
tensile test - stress strain curvetensile test - stress strain curve
tensile test - stress strain curve
 
Spectroscopy
Spectroscopy Spectroscopy
Spectroscopy
 
Chaouadi1994
Chaouadi1994Chaouadi1994
Chaouadi1994
 
Sprittles presentation
Sprittles presentationSprittles presentation
Sprittles presentation
 
3D - Structural Analysis and Optimization
3D - Structural Analysis and Optimization3D - Structural Analysis and Optimization
3D - Structural Analysis and Optimization
 
Five-Year Results of Refractive Lenticule Extraction ReLEx SMILE compared to ...
Five-Year Results of Refractive Lenticule Extraction ReLEx SMILE compared to ...Five-Year Results of Refractive Lenticule Extraction ReLEx SMILE compared to ...
Five-Year Results of Refractive Lenticule Extraction ReLEx SMILE compared to ...
 
1 tension
1  tension1  tension
1 tension
 
G012334650
G012334650G012334650
G012334650
 
2012-TFM1 Economic Gas-like Models
2012-TFM1 Economic Gas-like Models2012-TFM1 Economic Gas-like Models
2012-TFM1 Economic Gas-like Models
 
Commissioning of Truebeam LINAC
Commissioning of Truebeam LINACCommissioning of Truebeam LINAC
Commissioning of Truebeam LINAC
 
Computation of a gearbox for a wind power plant
Computation of a gearbox for a wind power plantComputation of a gearbox for a wind power plant
Computation of a gearbox for a wind power plant
 
GOMD_2016_poster
GOMD_2016_posterGOMD_2016_poster
GOMD_2016_poster
 
Scaling laws
Scaling lawsScaling laws
Scaling laws
 
Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3
 
Buckling of laminated beam higher order discrete model-main
Buckling of laminated beam  higher order discrete model-mainBuckling of laminated beam  higher order discrete model-main
Buckling of laminated beam higher order discrete model-main
 

Thesis presentation

  • 1. Analysis of Elastic Behaviour of Honeycombs and Auxetic Materials with Variation in its Cell Geometry MS THESIS PRESENTED BY VISHWATEJ MANE ADVISOR- PROF. MAEN ALKHADER DEPARTMENT OF MECHANICAL ENGINEERING STONY BROOK UNIVERSITY
  • 2. Introduction Honeycombs used as core in sandwich panels of lightweight structure Progressive collapse with retaining functionality Auxetic materials exhibits NPR Auxetic material has improved Shear, indentation resistance and fracture toughness Potential applications in defense and aerospace Relative density Outline of the study
  • 3. Deformation mechanism and Theory Flexure, stretching and hinging mechanism Cell Geometry and General Mathematical model “ I.G. Masters and K E Evans, ”Models for the elastic deformation of honeycombs”, composite strucutres,0263-8223/96
  • 4. Models for FEA analysis Sr. no. cell angle Wall thickness (in mm) Relative density (ρ*/ρs) 1. 30 0.15 0.178748 0.2 0.237965 0.25 0.297182 0.3 0.357496 2. 20 0.15 0.184136 0.2 0.2462415 0.25 0.307257 0.3 0.3693623 3. 10 0.15 0.1915415 0.2 0.281822 0.25 0.3525827 0.3 0.4233433 4. 5 0.15 0.2157475 0.2 0.28728 0.25 0.358822 0.3 0.431495 Sr. no. cell angle Wall thickness (in mm) Relative density (ρ*/ρs) 5. -5 0.15 0.255294 0.2 0.34 0.25 0.425 0.3 0.510589 6. -10 0.15 0.28385 0.2 0.379219 0.25 0.473463 0.3 0.568828 7. -20 0.15 0.369647 0.2 0.49368 0.25 0.616489 0.3 0.740524
  • 5. FEA Model development Development of Geometry for different cellular models In Property module used Al 6061 as material ρ=2700 kg/m3, E= 68950 MPa, ν= 0.3, plastic strain Static, general analysis type meshing - structured Quad shell elements (S4R) Node Sets- TOP, BOTTOM, LEFT, RIGHT
  • 6. BCs for Poisson’s ratio ν21 Hex30 model U3=0 Bottom, U2=UR1=UR2=UR3=0 Top, UR1=UR2=UR3=0 U2= -2.5
  • 7. BCs for Poisson’s ratio ν12 Hex30 model U3= 0 LEFT, U1=UR1=UR2=UR3=0 RIGHT, UR1=UR2=UR3=0 U1= -2.5
  • 8. FEA results and Trends for Honeycombs Hex 30, t= 0.25mm Hex 10, t=0.3mm
  • 9. Stress 22, Young’s Modulus E22 and Poisson’s ratio ν21 vs. Strain 22 for Hex05 model and Hex10 model
  • 10. Stress 22, Young’s Modulus E22 and Poisson’s ratio ν21 vs. Strain 22 for Hex20 model and Hex30 model
  • 11. FEA Results and Trends for Auxetics Hex -05, t= 0.2mm Hex -10, t= 0.15mm
  • 12. Stress 22, Young’s Modulus E22, Poisson’s ratio ν21 vs. Strain 22 for Hex-05 model and Hex-10 model
  • 13. Stress 22, Young’s Modulus E22 and Poisson’s ratio ν21 vs. Strain 22 curve for Hex -20 model
  • 14. FEA Results and Trends in honeycombs 11 direction Hex30, t=0.3mm Hex20, t=0.25mm
  • 15. Stress 11, Young’s Modulus E11 and Poisson’s ratio ν12 vs. Strain 11 for Hex 05 model and Hex10 model
  • 16. Stress 11, Young’s Modulus E11 and Poisson’s ratio ν12 vs. Strain 11 for Hex20 model and Hex30 model
  • 17. FEA Results and Trends in Auxetics Hex-05, t=0.2mm Hex-10, t=0.15mm
  • 18. Stress 11, Young’s Modulus E11 Poisson’s ratio ν12 vs. Strain 11 for Hex -05 model and Hex-10 model
  • 19. Stress 11, Young’s Modulus E11 and Poisson’s ratio ν12 vs. Strain for Hex-20 model
  • 20. Specifications of 3D printed models MakerBot Replicator 2.0 3D printer Sr No. Model by cell angle geometry (wall thickness= 0.8mm) Constant width= 15mm Length in mm Height in mm 1 -20 28.33 27.85 2 -10 24.94 25.45 3 -5 24.12 24.35 4 5 24.15 26.02 5 10 29.63 28.69 6 20 28.02 25.94 7 30 26.38 27.54
  • 21. 3D printed Honeycombs test results Stress vs Strain curves over entire period of compression test on MTS machine 0 5 10 15 20 25 0 0.1 0.2 0.3 StressY Strain Y Hex 05 0 2 4 6 8 10 12 14 16 18 0 0.05 0.1 0.15 0.2 0.25 StressY Strain Y Hex 10 0 1 2 3 4 5 6 7 0 0.1 0.2 0.3 StressY Strain Y Hex 20 0 1 2 3 4 5 6 7 8 0 0.1 0.2 0.3 StressY Strain Y Hex 30
  • 23. 3D printed Auxetic test results 0 5 10 15 20 25 30 0 0.05 0.1 0.15 0.2 0.25 0.3 StressY Strain Y Hex-05 0 2 4 6 8 10 12 14 16 18 0 0.05 0.1 0.15 0.2 0.25 0.3 StressY Strain Y Hex-10 0 2 4 6 8 10 12 14 16 18 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 StressY Strain Y Hex-20
  • 25. Elastic Region for honeycombs Constant Modulus over these sections in elastic region y = 480.47x - 3 R² = 0.9879 -5 0 5 10 15 20 25 0 0.02 0.04 0.06 StressY Strain Hex 05 y = 387.22x - 1 R² = 0.9957 -2 0 2 4 6 8 10 12 14 16 18 0 0.01 0.02 0.03 0.04 0.05 StressY Strain Y Hex 10 y = 198.42x - 0.25 R² = 0.9975 -1 0 1 2 3 4 5 6 0 0.01 0.02 0.03 0.04 StressY Strain Y Hex 20 y = 193.2x - 0.5 R² = 0.9968 -1 0 1 2 3 4 5 6 7 8 0 0.01 0.02 0.03 0.04 StressY Strain Y Hex 30
  • 26. Elastic region for Auxetic Constant Modulus over these sections in elastic region y = 514.62x - 4 R² = 0.9838 -10 -5 0 5 10 15 20 25 30 0 0.01 0.02 0.03 0.04 0.05 0.06 StressY Strain Y Hex-05 y = 407.26x - 1.5 R² = 0.9946 -5 0 5 10 15 20 0 0.01 0.02 0.03 0.04 0.05 StressY Strain Y Hex-10 y = 422.82x - 2 R² = 0.9898 -4 -2 0 2 4 6 8 10 12 14 16 0 0.01 0.02 0.03 0.04 0.05 StressY Strain Y Hex-20
  • 27. Poisson’s ratio ν21 for honeycombs 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.1 0.15 0.2 0.25 0.3 0.35 ν21 longitudnal strain hex30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.05 0.1 0.15 0.2 0.25 0.3 ν21 longitudnal strain hex20 0 0.2 0.4 0.6 0.8 1 1.2 0.05 0.1 0.15 0.2 0.25 ν21 longitudnal strain hex10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0.1 0.15 0.2 0.25 0.3 ν21 longitudnal strain hex05
  • 28. Poisson’s ratio ν21 for Auxetic -2.5 -2 -1.5 -1 -0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 ν21 longitudnal strain hex-05 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.05 0.1 0.15 0.2 0.25 0.3 ν21 longitudnal strain hex-10 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 ν21 longitudnal strain hex-20
  • 29. 3D printed Honeycombs test results Stress vs. strain curve for compression in 11-direction on MTS 0 1 2 3 4 5 6 7 0 0.05 0.1 0.15 0.2 0.25 0.3 Stress11 strain 11 Hex 05 0 1 2 3 4 5 6 0 0.1 0.2 0.3 stress11 Strain 11 Hex 10 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.05 0.1 0.15 0.2 Stress11 Strain 11 Hex 20 0 1 2 3 4 5 6 7 0 0.1 0.2 0.3 0.4 Stress11 Strain 11 Hex 30
  • 30. 3D printed Auxetic test results Stress vs. strain curve for compression in 11-direction on MTS 0 1 2 3 4 5 6 7 8 9 0 0.05 0.1 0.15 0.2 0.25 0.3 Stress11 Strain 11 Hex -05 0 1 2 3 4 5 6 7 8 9 10 0 0.1 0.2 0.3 0.4 Stress11 Strain 11 Hex -10 0 2 4 6 8 10 12 14 16 18 0 0.05 0.1 0.15 0.2 0.25 0.3 Stress11 Strain 11 Hex -20
  • 33. Elastic region for honeycombs Constant modulus over these sections for compression 11-direction y = 146.79x - 0.25 R² = 0.9986 -1 0 1 2 3 4 5 6 0 0.01 0.02 0.03 0.04 0.05 Stress Strain Hex 05 y = 107.61x - 0.2 R² = 0.9964 -1 0 1 2 3 4 5 0 0.01 0.02 0.03 0.04 0.05 Stress strain Hex 10 y = 79.143x - 0.1 R² = 0.9961 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 0 0.01 0.02 0.03 0.04 0.05 Stress Strain Hex 20 y = 181.33x - 0.5 R² = 0.9941 -1 0 1 2 3 4 5 6 0 0.01 0.02 0.03 0.04 Stress Strain Hex 30
  • 34. Elastic region for Auxetics Constant modulus over these sections for compression 11-direction y = 161.12x - 1 R² = 0.9804 -2 -1 0 1 2 3 4 5 6 7 0 0.01 0.02 0.03 0.04 0.05 Stress Strain Hex -05 y = 70.312x - 0.1 R² = 0.9935 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.01 0.02 0.03 0.04 0.05 0.06 Stress Strain Hex -10 y = 132.51x - 0.5 R² = 0.9954 -1 0 1 2 3 4 5 6 0 0.01 0.02 0.03 0.04 0.05 stress Strain Hex -20
  • 35. Poisson’s ratio ν12 for honeycombs 0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 ν12 longitudnal strain hex30 0 0.05 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.35 ν12 longitudnal strain hex20 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.1 0.15 0.2 0.25 ν12 longitudnal strain hex10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.05 0.1 0.15 0.2 0.25 0.3 ν12 longitudnal strain hex05
  • 36. Poisson ratio ν12 for Auxetic 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.05 0.1 0.15 0.2 0.25 0.3 0.35 ν12 longitudnal strain hex-10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.05 0.1 0.15 0.2 0.25 0.3 ν12 longitudnal strain hex-20
  • 37. Conclusions for honeycomb samples FEA methods can be used to predict trends in elastic constants E22 and E11 increases with increase in relative density E22 increases with decrease in cell angle closer to zero E11 increases with increase in angle closer to 30 degrees Trends of ν21 and ν12 are linear and independent of relative density in elastic region ν21 increase with decrease in cell angle closer to 0 ν12 increases with increase in cell angle closer to 30 Waviness in stress vs. strain trend in plastic region represents cell arrays collapse
  • 38. Conclusions for Auxetic samples E22 and E11 increases with relative density Exhibits Negative Poisson’s ratio (NPR) property Trends ν21 and ν12 independent of relative density in elastic region ν21 increases with decrease in cell angle ν12 decreases with increase in cell angle Waviness in stress, Poisson’s ratio vs. strain trends represents cell arrays collapse
  • 39. Young’s modulus 22 vs. cell angle 0 5000 10000 15000 20000 25000 30000 5 10 20 30 -5 -10 -20 Young'sModulusE22 Cell angle in degrees t=0.15 mm t= 0.2 mm t= 0.25 mm t=0.3 mm
  • 40. Poisson’s ratio 21 vs. cell angle -6 -4 -2 0 2 4 6 5 10 20 30 -5 -10 -20 Poisson'sratioν21 Cell angle in degrees t=0.15 mm t=0.2 mm t=0.25 mm t=0.3 mm
  • 41. Young’s modulus 11 vs cell angle 0 500 1000 1500 2000 2500 3000 3500 5 10 20 30 -5 -10 -20 Young'sModulusE11 cell angles in degrees t=0.15 mm t=0.2 mm t=0.25 mm t=0.3 mm
  • 42. Poisson’s ratio12 vs cell angle -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 5 10 20 30 -5 -10 -20 Poisson'sratioν12 Cell angles in degrees t=0.15 mm t=0.2 mm t=0.25 mm t=0.3 mm
  • 43. Bibliography I.G. Masters and K E Evans, “ Models for the elastic deformation of honeycombs” composite structures,0263-8223/96 Q.Liu,” Literature Review: Material with Negative Poisson’s ratio and potential applications to aerospace and defence” DSTO-GD-0472, August 2006 Yanping Liu and Hong Hu, “ A Review on Auxetic structures and polymeric materials”, ISSN 1992-2248, May 2010 M. Bianchi, S. Frontoni, F. Scarpa, and C.W.Smith, “Density change during the manufacturing process of PU-PE open cell Auxetic foams”, pssb.201083966, May 2010 Kim Alderson, Andrew Alderson, Naveen Ravirala, Virginia Simkins, and Philip Davies, “Manufacture and characterization of thin flat and curved Auxetic foam sheets”, pssb.201084215, March 2012