SlideShare a Scribd company logo
1 of 45
Download to read offline
CHERN-SIMONS DECOMPOSITION
OF 3D GAUGE THEORIES AT LARGE
DISTANCES
Tuna Yıldırım
(UIOWA, ASU)
Arizona State University
March 27, 2015
• Int.J.Mod.Phys.A, 30(7):1550034, 2015, arXiv:1311.1853
• arXiv:1410.8593 (preprint)
Outline
Wilson Loops and Knot Theory
Geometric Quantization of Chern-Simons Theory
Quantization of Topologically Massive Yang-Mills Theory

- Chern-Simons Splitting
Quantization of PureYang-Mills Theory

- Chern-Simons Splitting
Wilson Loops and Chern-Simons Splitting
Wilson Loops and
Knot Theory
Wilson Loops
Area Law
hW(C)i / e AC
(Mass gap, confined)
Perimeter Law
hW(C)i / e mLC
(Mass gap, not confined)
Ex: Yang-Mills in 2+1 D
(and hopefully 3+1 D)
Ex: Yang-Mills +
Chern-Simons
Ex: Chern-Simons
Link Invariants
hW(C)i !
(No mass gap, not confined)
. . .
Knot Theory
A knot is a smooth
embedding of a
circle in a 3 or higher
dimensional space.
6 l. Introduction
that 5o does not depend on the metric at all. In fact, SQ can be understood as the
integral of a three-form on a three-manifold.
Gauge invariance and general covariance are the real reasons for the properties
of the expectation value (1.17) that we have observed. Gauge invariance forced us
to choose the external source to be expressed in terms of closed paths (conserved
external currents), since only gauge-invariant quantities have an intrinsic mean-
ing in gauge theories. Because of general covariance, the final result (1.17) only
depends on the topological structure of the closed contours. This is why there is
invariance under smooth deformations of the paths in E3
.
In the previous section, the source term was represented by the simple two-
component link shown in Fig. 1.1. But one can consider more complicated links,
of course; an example is shown in Fig. 1.2.
Figure 1.2.
A link is a union of
non-intersecting
knots.
A 3D Knot
Jones Polynomial and Skein Relations
t 1
VL+
(t) t VL (t) = (t1/2
t 1/2
) VL0
(t)
Skein relation of Jones Polynomials
The normalization condition is
(the polynomial for the unknot)
V0(t) = 1
VL+
(t) VL (t) VL0
(t)
Jones Polynomial of the Trefoil Knot
We start with two unknots
t 1 t = (t1/2
t 1/2
)
= t1/2
t 1/2= 1 = 1
t 1 t = (t1/2
t 1/2
)
= t1/2
t 1/2
= 1= t5/2
t1/2
Now we can calculate the Jones polynomial of the trefoil knot
t 1 t = (t1/2
t 1/2
)
= 1 = t5/2
t1/2
= t + t3
t4
Jones Polynomial of the Trefoil Knot
The Wilson loop integral is
WR(C) = TrR
✓
Pexp i
I
c
Aµdxµ
◆
A link L is a union of non-intersecting knots Ci
< WR1
(C1) . . . WRn
(Cn) >⌘< W(L) >
[1] E.Witten, Quantum Field Theory and the Jones Polynomial, Comm. Math. Phys.,121:351, 1989.
[2] P. Cotta-Ramussino, E. Guadagnini, M. Martellini, M. Mintchev, "Quantum Field Theory and Link Invariants", Nucl. Phys. B330 (1990) 557-574
Wilson Loops and Skein Relations[1,2]
SL+
1
SL = zSL0
Generalized Skein Relation
[1] E.Witten, Quantum Field Theory and the Jones Polynomial, Comm. Math. Phys.,121:351, 1989.
[2] P. Cotta-Ramussino, E. Guadagnini, M. Martellini, M. Mintchev, "Quantum Field Theory and Link Invariants", Nucl. Phys. B330 (1990) 557-574
Wilson Loops and Skein Relations[1,2]
(HOMFLY polynomial)
1 = z
= 1
2⇡
k
1
2N
+ O
✓
1
k2
◆
z = i
2⇡
k
+ O
✓
1
k2
◆
Where
Here, SL is a polynomial of β and z=z(β). 

For CS theory (in fundamental representation)
hWL+
i 1
hWL i = z( )hWL0
i
k: level number of CS
Topologically Massive

AdS Gravity
Topologically Massive AdS Gravity[3,4]
The action is
S =
Z
d3
x

p
(R 2⇤) +
1
2µ
✏µ⌫⇢
✓
↵
µ @⌫ ⇢↵ +
2
3
↵
µ ⌫ ⇢↵
◆
can be written as
S[e] =
1
2
✓
1
1
µ
◆
SCS
⇥
A+
[e]
⇤
+
1
2
✓
1 +
1
µ
◆
SCS
⇥
A [e]
⇤
A±
µ
a
b[e] = !µ
a
b[e] ± ✏a
bceµ
c
SCS[A] =
1
2
Z
✏µ⌫⇢
✓
Aµ
a
b@⌫A⇢
b
a +
2
3
Aµ
a
cA⌫
c
bA⇢
b
a
◆
where
and
[3] S. Deser, R. Jackiw, and S. Templeton, 1982.
[4] A. Achúcarro and P.K. Townsend, 1986.
Topologically Massive AdS Gravity
For small values of μ (near CS limit)
S[e] ⇡
1
2µ
SCS
⇥
A+
[e]
⇤
+
1
2µ
SCS
⇥
A [e]
⇤
We will see that this is analogous to TMYM
at large distances (near CS limit)
For infinite μ
Analogous to YM at large distances
S[e] =
1
2
SCS
⇥
A [e]
⇤ 1
2
SCS
⇥
A+
[e]
⇤
Geometric Quantization of
Chern-Simons Theory
Chern-Simons Theory
SCS =
k
4⇡
Z
⌃⇥[ti,tf ]
d3
x ✏µ⌫↵
Tr
✓
Aµ@⌫A↵ +
2
3
AµA⌫A↵
◆
SCS(A) ! SCS(Ag
) = SCS(A) + 2⇡k!(g)
Under Aµ ! Ag
µ = gAµg 1
(@µg)g 1
!(g) =
1
24⇡2
Z
d3
x ✏µ⌫↵
Tr(g 1
@µgg 1
@⌫gg 1
@↵g)
is an integer, called the winding number.
k has to be an integer
eiSCS (A)
= eiSCS (Ag
)
Field equations:
We choose the temporal gauge and ,z = x iy ¯z = x + iy
Chern-Simons Theory
is the Gauss’ law of CS theory
Ga
=
ik
2⇡
Fa
z¯z
is the generator of infinitesimal
gauge transformations
SCS =
k
4⇡
Z
⌃⇥[ti,tf ]
d3
x ✏µ⌫↵
Tr
✓
Aµ@⌫A↵ +
2
3
AµA⌫A↵
◆
The conjugate momenta are
and ⇧a¯z
=
ik
4⇡
Aa
z⇧az
=
ik
4⇡
Aa
¯z
Chern-Simons Theory
Then the inner product is
h1|2i =
Z
d (M) ⇤
1 2 !
Z
d (M)e K ⇤
1 2
⌦ =
ik
2⇡
Z
⌃
Aa
¯z Aa
z
K =
k
2⇡
Z
⌃
Aa
¯zAa
z
The phase space is Kähler with
and Kähler potential
We choose the Kähler polarization
[Az, A¯z] = e
1
2 K
[A¯z]
The Wave Functional for CS[3,4]
Aa
z [Aa
¯z] =
2⇡
k Aa
¯z
[Aa
¯z]
[3] M. Bos and V.P. Nair, "Coherent State Quantization of Chern-Simons Theory", Int. J. Mod. Phys. A5, 959 (1990).
[4] V.P.Nair, "Quantum Field Theory - A Modern Perspective", Springer, (2005).
The quantum wave-functional must
satisfy the Gauss’ law constraint
Fa
z¯z [Aa
¯z] = 0
If Σ is simply connected we can parametrize the gauge fields as
A¯z = @¯zUU 1 Az = (U† 1
)@zU† U 2 SL(N, C)
U(x, 0, C) = Pexp
0
@
Z x
0
C
(A¯zd¯z + Azdz)
1
A
@zA¯z @¯zAz + [Az, A¯z] = 0
where
and
U ! gU
An infinitesimal gauge transformation on the wave functional
=
Z
d2
z✏a
✓
@¯z
Aa
¯z
+ fabc
Ab
¯z
Ac
¯z
◆
✏ [A¯z] =
k
2⇡
Z
d2
z✏a
(Fa
z¯z @zAa
¯z)
=
k
2⇡
Z
d2
z✏a
(@zAa
¯z)
✏ [A¯z] =
Z
d2
z ✏Aa
¯z
Aa
¯z
then using , we getAa
z [Aa
¯z] =
2⇡
k Aa
¯z
[Aa
¯z]
The Wave Functional for CS
✏Aa
¯z = D¯z✏a
✏ =
k
2⇡
Z
d2
z✏a
(@zAa
¯z)
[A¯z] = exp(kSW ZW (U))
This is a well known condition and it is solved by
A¯z = @¯zUU 1
The Wave Functional for CS
=
Generally the wave-functional is in the form
satisfies the Gauss’ law
(gauge invariant)
required to satisfy the
Schrödinger’s equation
= 1
H = 0
we take
is where the scale
dependence would be hidden( )
The Measure (CS)
The metric of the space of gauge potentials
ds2
SL(N,C) = 8
Z
Tr[( UU 1
)(U† 1
U†
)]
The metric of SL(N,C)
Then the measure is
dµ(A ) = det(D¯zDz)dµ(U, U†
)<latexit sha1_base64="KiYftcdnHd6FKoetbaYQhBMFEZg=">AAACr3icbVHLbtQwFPWEVymvKSzZRIyQZiQ0SipUuqnUli5YFonQkZI03Dg3Gau2E9kOdGrlT/o1bOEH+Bs86SCYKVeydHTOub6vvOFMmyD4NfDu3L13/8HWw+1Hj588fTbcef5Z162iGNGa12qWg0bOJEaGGY6zRiGInONZfvF+qZ99RaVZLT+ZRYOpgEqyklEwjsqGe0Ui2nEiwMw1VfaomxwUaMYnmU1yUPaq606yq0lvit5E50kBVYVqkg1HwTTow78NwhUYkVWcZjuDPClq2gqUhnLQOg6DxqQWlGGUY7edtBoboBdQYeygBIE6tf2Anf/aMYVf1so9afye/TfDgtB6IXLn7CfZ1Jbk/7S4NeV+aplsWoOS3hQqW+6b2l9uyy+YQmr4wgGgirlefToHBdS4na5VWf6tdKnXJrEcDF66zhwr8RuthQBZ2ETQzvY7p8A3pAa6OExtwrE041GYKFbNzWTTlP81xX9MaeeuEm7e4DaIdqd70+Dj29Hh8eo8W+QleUXGJCTvyCH5QE5JRCi5Jt/JD/LT2/Vm3rn35cbqDVY5L8haeOw3ApPYcg==</latexit><latexit sha1_base64="KiYftcdnHd6FKoetbaYQhBMFEZg=">AAACr3icbVHLbtQwFPWEVymvKSzZRIyQZiQ0SipUuqnUli5YFonQkZI03Dg3Gau2E9kOdGrlT/o1bOEH+Bs86SCYKVeydHTOub6vvOFMmyD4NfDu3L13/8HWw+1Hj588fTbcef5Z162iGNGa12qWg0bOJEaGGY6zRiGInONZfvF+qZ99RaVZLT+ZRYOpgEqyklEwjsqGe0Ui2nEiwMw1VfaomxwUaMYnmU1yUPaq606yq0lvit5E50kBVYVqkg1HwTTow78NwhUYkVWcZjuDPClq2gqUhnLQOg6DxqQWlGGUY7edtBoboBdQYeygBIE6tf2Anf/aMYVf1so9afye/TfDgtB6IXLn7CfZ1Jbk/7S4NeV+aplsWoOS3hQqW+6b2l9uyy+YQmr4wgGgirlefToHBdS4na5VWf6tdKnXJrEcDF66zhwr8RuthQBZ2ETQzvY7p8A3pAa6OExtwrE041GYKFbNzWTTlP81xX9MaeeuEm7e4DaIdqd70+Dj29Hh8eo8W+QleUXGJCTvyCH5QE5JRCi5Jt/JD/LT2/Vm3rn35cbqDVY5L8haeOw3ApPYcg==</latexit>
dµ(A ) = det(D¯zDz)dµ(H)<latexit sha1_base64="HD3wGYWslVZIGU02gp2WbVZ8HbY=">AAACpXicbVFda9RAFJ2NX7V+bfXRl+Ai7IIsSRH1Rajahz5JhW5bSEK4mdzsDp2ZhJkbdTvkT/hrfNV/4b9xNl3R3Xph4HDOuXO/ikYKS1H0axDcuHnr9p2du7v37j94+Gi49/jU1q3hOOO1rM15ARal0DgjQRLPG4OgColnxcWHlX72GY0VtT6hZYOZgrkWleBAnsqHL8pUteNUAS0sN+5dN3lbIo0Pc5cWYNxl1x3ml5PedDTJh6NoGvURXgfxGozYOo7zvUGRljVvFWriEqxN4qihzIEhwSV2u2lrsQF+AXNMPNSg0GauH6sLn3umDKva+Kcp7Nl/Mxwoa5eq8M6+/21tRf5PS1qq3mRO6KYl1PyqUNXKkOpwtaOwFAY5yaUHwI3wvYZ8AQY4+U1uVFn9bWxlNyZxEgi/+s48q/ELr5UCXbpU8c71m+Ygt6QGuiTOXCqxovEoTo2YL2iybSr+mpI/pqzzV4m3b3AdzPanr6bRp5ejg/fr8+ywp+wZG7OYvWYH7Igdsxnj7Bv7zn6wn8E4+BicBKdX1mCwznnCNiLIfwMk69Rc</latexit><latexit sha1_base64="HD3wGYWslVZIGU02gp2WbVZ8HbY=">AAACpXicbVFda9RAFJ2NX7V+bfXRl+Ai7IIsSRH1Rajahz5JhW5bSEK4mdzsDp2ZhJkbdTvkT/hrfNV/4b9xNl3R3Xph4HDOuXO/ikYKS1H0axDcuHnr9p2du7v37j94+Gi49/jU1q3hOOO1rM15ARal0DgjQRLPG4OgColnxcWHlX72GY0VtT6hZYOZgrkWleBAnsqHL8pUteNUAS0sN+5dN3lbIo0Pc5cWYNxl1x3ml5PedDTJh6NoGvURXgfxGozYOo7zvUGRljVvFWriEqxN4qihzIEhwSV2u2lrsQF+AXNMPNSg0GauH6sLn3umDKva+Kcp7Nl/Mxwoa5eq8M6+/21tRf5PS1qq3mRO6KYl1PyqUNXKkOpwtaOwFAY5yaUHwI3wvYZ8AQY4+U1uVFn9bWxlNyZxEgi/+s48q/ELr5UCXbpU8c71m+Ygt6QGuiTOXCqxovEoTo2YL2iybSr+mpI/pqzzV4m3b3AdzPanr6bRp5ejg/fr8+ywp+wZG7OYvWYH7Igdsxnj7Bv7zn6wn8E4+BicBKdX1mCwznnCNiLIfwMk69Rc</latexit>
A<latexit sha1_base64="ogCDyQ1nIIIz/VJofZm/sC+SkCU=">AAACgnicbVFNb9QwEPWGFkr5aEuPXKKukIqQVkmLoAcO/bhwLBJLKyVRNfFOdq36I7In0JWVn8G1/C7+TZ10EeyWkSw9vffseZ4paykcJcnvQfRobf3xk42nm8+ev3i5tb3z6pszjeU45kYae1mCQyk0jkmQxMvaIqhS4kV5fdbpF9/ROmH0V5rXWCiYalEJDhSoLFdAM8etP2mvtofJKOkrfgjSBRiyRZ1f7QzKfGJ4o1ATl+BcliY1FR4sCS6x3cwbhzXwa5hiFqAGha7wfeY2fhOYSVwZG46muGf/veFBOTdXZXD2GVe1jvyfljVUHRVe6Loh1Py+UdXImEzcDSCeCIuc5DwA4FaErDGfgQVOYUxLXbq3ravc0k+8BMKbkCywGn9woxToic8Vb30/TQ5yRaqhzdLC5xIr2h+muRXTGb1dNZV/TdkfU9FtJV3dwUMwPhh9GCVf3g+PTxfr2WCv2R7bZyn7yI7ZZ3bOxowzw36yW/YrWo/eRWl0eG+NBos7u2ypok93GuPHLQ==</latexit><latexit sha1_base64="ogCDyQ1nIIIz/VJofZm/sC+SkCU=">AAACgnicbVFNb9QwEPWGFkr5aEuPXKKukIqQVkmLoAcO/bhwLBJLKyVRNfFOdq36I7In0JWVn8G1/C7+TZ10EeyWkSw9vffseZ4paykcJcnvQfRobf3xk42nm8+ev3i5tb3z6pszjeU45kYae1mCQyk0jkmQxMvaIqhS4kV5fdbpF9/ROmH0V5rXWCiYalEJDhSoLFdAM8etP2mvtofJKOkrfgjSBRiyRZ1f7QzKfGJ4o1ATl+BcliY1FR4sCS6x3cwbhzXwa5hiFqAGha7wfeY2fhOYSVwZG46muGf/veFBOTdXZXD2GVe1jvyfljVUHRVe6Loh1Py+UdXImEzcDSCeCIuc5DwA4FaErDGfgQVOYUxLXbq3ravc0k+8BMKbkCywGn9woxToic8Vb30/TQ5yRaqhzdLC5xIr2h+muRXTGb1dNZV/TdkfU9FtJV3dwUMwPhh9GCVf3g+PTxfr2WCv2R7bZyn7yI7ZZ3bOxowzw36yW/YrWo/eRWl0eG+NBos7u2ypok93GuPHLQ==</latexit>
ds2
A =
Z
d2
x Aa
i Aa
i = 8
Z
Tr( A¯z Az)
=8
Z
Tr[D¯z( UU 1
)Dz(U† 1
U†
)]
<latexit sha1_base64="ap6Vlt+VXvOTe+JnMZs+QXH1DAM=">AAADJnicbZHLbtNAFIbH5lbCpSldshkRUSWLRnGEoCwi9bZgWaSaVvI41vF4nIw6vmhmDE1GfiAWPAsrhNjxKEzchJKUI1n6/Z/vzO2PS8GVHgx+Oe69+w8ePtp63Hry9Nnz7fbOi0+qqCRlPi1EIS9jUEzwnPmaa8EuS8kgiwW7iK9OFv2Lz0wqXuTnelayMINJzlNOQVsran9L1HgYkQz0VFFpjurRHuG5xsl4eE0wSZjQgI/GEPG1n9H+QYOdy+7KjgyJQZp5Xf915j1CWqM9vGKD01toNedjf2z2vbp3Gs27VpIEJhMmrbMCxkurF7aidmfQHzSF7wpvKTpoWWfRjhOTpKBVxnJNBSgVeINShwak5lSwukUqxUqgVzBhgZU5ZEyFpnnXGr+2ToLTQtrPXqBx/50wkCk1y2JLNg+42VuY/+sFlU4PQsPzstIspzcbpZXAusCLkHDCJaNazKwAKrk9K6ZTkEC1jXJtl8XaUqVq7SZGgGbX9mTWzdkXWmQZ5IkhGa1NEzUFsdEqoQ680BDBUt3teETyyVT3NqH4FgpWUFjbVLzNDO4Kf9h/2x98fNM5PF7Gs4Veoleoizz0Dh2iD+gM+Yg6u85759g5cb+6390f7s8b1HWWM7tordzffwCD6wGV</latexit><latexit sha1_base64="ap6Vlt+VXvOTe+JnMZs+QXH1DAM=">AAADJnicbZHLbtNAFIbH5lbCpSldshkRUSWLRnGEoCwi9bZgWaSaVvI41vF4nIw6vmhmDE1GfiAWPAsrhNjxKEzchJKUI1n6/Z/vzO2PS8GVHgx+Oe69+w8ePtp63Hry9Nnz7fbOi0+qqCRlPi1EIS9jUEzwnPmaa8EuS8kgiwW7iK9OFv2Lz0wqXuTnelayMINJzlNOQVsran9L1HgYkQz0VFFpjurRHuG5xsl4eE0wSZjQgI/GEPG1n9H+QYOdy+7KjgyJQZp5Xf915j1CWqM9vGKD01toNedjf2z2vbp3Gs27VpIEJhMmrbMCxkurF7aidmfQHzSF7wpvKTpoWWfRjhOTpKBVxnJNBSgVeINShwak5lSwukUqxUqgVzBhgZU5ZEyFpnnXGr+2ToLTQtrPXqBx/50wkCk1y2JLNg+42VuY/+sFlU4PQsPzstIspzcbpZXAusCLkHDCJaNazKwAKrk9K6ZTkEC1jXJtl8XaUqVq7SZGgGbX9mTWzdkXWmQZ5IkhGa1NEzUFsdEqoQ680BDBUt3teETyyVT3NqH4FgpWUFjbVLzNDO4Kf9h/2x98fNM5PF7Gs4Veoleoizz0Dh2iD+gM+Yg6u85759g5cb+6390f7s8b1HWWM7tordzffwCD6wGV</latexit>
where and
det(D¯zDz) = constant ⇥ e2cASW ZW (H)
H = U†
U H 2 SL(N, C)/SU(N)
The Inner Product for CS Theory
The inner product is given by
h1|2i =
Z
d (M) ⇤
1 2 !
Z
d (M)e K ⇤
1 2
h | iCS =
Z
dµ(H)e(2ca+k)SW ZW (H)
<latexit sha1_base64="P8z68TnDjPOmAGjqM42fHT3vpfE=">AAACunicbVFbb9MwFHbDZWPcOnjkxaJCaoVUJROCvUwa7GWPRaN0Ig7RiXPSWrWdyHaAKuT38Gt4BfFvcLoiaMeRfPTpO9/xuWWVFNaF4a9ecOPmrdt7+3cO7t67/+Bh//DRe1vWhuOUl7I0lxlYlELj1Akn8bIyCCqTOMuWZ1189gmNFaV+51YVJgrmWhSCg/NU2n/NJOi5RMomVnztHGVmzaTN2UV7woR2NGeqHp6P8GMzPOIpPF+OLtJm9mHWerJN+4NwHK6NXgfRBgzIxibpYS9jeclrhdpxCdbGUVi5pAHjBJfYHrDaYgV8CXOMPdSg0CbNetaWPvNMTovS+OdbW7P/ZjSgrF2pzCsVuIXdjXXk/2Jx7YrjpBG6qh1qflWoqCV1Je0WR3NhkDu58gC4Eb5XyhdggDu/3q0q3d/GFnZrkkaCwy++M89q/MxLpUDnDVO89c5ncJA7oQraOEoaJrFww0HEjJgv3GhXlP0VxX9ESXeVaPcG18H0aPxyHL59MTh9sznPPnlCnpIhicgrckrOyYRMCSffyHfyg/wMTgIeiGB5JQ16m5zHZMsC9xufmdvR</latexit><latexit sha1_base64="P8z68TnDjPOmAGjqM42fHT3vpfE=">AAACunicbVFbb9MwFHbDZWPcOnjkxaJCaoVUJROCvUwa7GWPRaN0Ig7RiXPSWrWdyHaAKuT38Gt4BfFvcLoiaMeRfPTpO9/xuWWVFNaF4a9ecOPmrdt7+3cO7t67/+Bh//DRe1vWhuOUl7I0lxlYlELj1Akn8bIyCCqTOMuWZ1189gmNFaV+51YVJgrmWhSCg/NU2n/NJOi5RMomVnztHGVmzaTN2UV7woR2NGeqHp6P8GMzPOIpPF+OLtJm9mHWerJN+4NwHK6NXgfRBgzIxibpYS9jeclrhdpxCdbGUVi5pAHjBJfYHrDaYgV8CXOMPdSg0CbNetaWPvNMTovS+OdbW7P/ZjSgrF2pzCsVuIXdjXXk/2Jx7YrjpBG6qh1qflWoqCV1Je0WR3NhkDu58gC4Eb5XyhdggDu/3q0q3d/GFnZrkkaCwy++M89q/MxLpUDnDVO89c5ncJA7oQraOEoaJrFww0HEjJgv3GhXlP0VxX9ESXeVaPcG18H0aPxyHL59MTh9sznPPnlCnpIhicgrckrOyYRMCSffyHfyg/wMTgIeiGB5JQ16m5zHZMsC9xufmdvR</latexit>
CS inner product
Quantization of Topologically
Massive Yang-Mills Theory
Topologically Massive Yang-Mills Theory
The action is given by
Here m is called the topological mass.
The field equations of this theory are,
✏µ↵
F↵ +
1
m
D⌫Fµ⌫
= 0
ST MY M =SCS + SY M
=
k
4⇡
Z
⌃⇥[ti,tf ]
d3
x ✏µ⌫↵
Tr
✓
Aµ@⌫A↵ +
2
3
AµA⌫A↵
◆
k
4⇡
1
4m
Z
⌃⇥[ti,tf ]
d3
x Tr Fµ⌫Fµ⌫
Topologically Massive Yang-Mills Theory
To simplify the notation, we define,
where˜Az = Az + Ez
˜A¯z = A¯z + E¯z
Ez =
i
2m
F0¯z
E¯z =
i
2m
F0z
then the momenta are
⇧az
=
ik
4⇡
˜Aa
¯z
<latexit sha1_base64="TesU9nwYU3Zk+nzxUBkamcnVdso=">AAACpnicbVFNj9MwEHXD17J8deHIJaJC2j1QJWgFXJAWuHCjSISuFGfLxHFaq7YT2ROga/lX8Gu4wq/g3+B0i6BdRrL19N4bz3imbKWwmCS/BtGVq9eu39i7uX/r9p2794YH9z/apjOMZ6yRjTktwXIpNM9QoOSnreGgSsmn5fJNr08/c2NFoz/gquWFgrkWtWCAgZoNn9CJOHNw7l/S2gBzYundMW2Fpyhkxd0rfwYzR0sw7tz72XCUjJN1xJdBugEjsonJ7GBQ0qphneIamQRr8zRpsXBgUDDJ/T7tLG+BLWHO8wA1KG4Lt/6Xjx8HporrxoSjMV6z/2Y4UNauVBmcCnBhd7We/J+Wd1i/KJzQbYdcs4tCdSdjbOJ+SHElDGcoVwEAMyL0GrMFhPlgGOVWlf5tY2u79RMnAfnX0FlgNf/CGqVAV44q5sMVMhjIHakFn6eFo5LXeDhKqRHzBR7tmsq/pvyPqei3ku7u4DLIno6fjZP3x6OT15v17JGH5BE5JCl5Tk7IWzIhGWHkG/lOfpCf0VH0Lsqi6YU1GmxyHpCtiD79BvgQ1pM=</latexit><latexit sha1_base64="TesU9nwYU3Zk+nzxUBkamcnVdso=">AAACpnicbVFNj9MwEHXD17J8deHIJaJC2j1QJWgFXJAWuHCjSISuFGfLxHFaq7YT2ROga/lX8Gu4wq/g3+B0i6BdRrL19N4bz3imbKWwmCS/BtGVq9eu39i7uX/r9p2794YH9z/apjOMZ6yRjTktwXIpNM9QoOSnreGgSsmn5fJNr08/c2NFoz/gquWFgrkWtWCAgZoNn9CJOHNw7l/S2gBzYundMW2Fpyhkxd0rfwYzR0sw7tz72XCUjJN1xJdBugEjsonJ7GBQ0qphneIamQRr8zRpsXBgUDDJ/T7tLG+BLWHO8wA1KG4Lt/6Xjx8HporrxoSjMV6z/2Y4UNauVBmcCnBhd7We/J+Wd1i/KJzQbYdcs4tCdSdjbOJ+SHElDGcoVwEAMyL0GrMFhPlgGOVWlf5tY2u79RMnAfnX0FlgNf/CGqVAV44q5sMVMhjIHakFn6eFo5LXeDhKqRHzBR7tmsq/pvyPqei3ku7u4DLIno6fjZP3x6OT15v17JGH5BE5JCl5Tk7IWzIhGWHkG/lOfpCf0VH0Lsqi6YU1GmxyHpCtiD79BvgQ1pM=</latexit>
⇧a¯z
=
ik
4⇡
˜Aa
z
<latexit sha1_base64="D9et4XQC+Z1dn+ac3xsyaup2yho=">AAACpXicbVHbbhMxEHWWWym3FB55WREhBQmi3aqCviAVeOEJBalpK623q1nvbGLF9q5sbyG1/BN8Da/wF/wNThoESRnJ1tE5ZzzjmbIV3Ngk+dWLbty8dfvOzt3de/cfPHzU33t8YppOM5ywRjT6rASDgiucWG4FnrUaQZYCT8v5h6V+eoHa8EYd20WLuYSp4jVnYANV9F/SMT93QEvQ7tL7t69orYE5PvfugLbcU8tFhe6dP4fisugPklGyivg6SNdgQNYxLvZ6Ja0a1klUlgkwJkuT1uYOtOVMoN+lncEW2BymmAWoQKLJ3epbPn4emCquGx2OsvGK/TfDgTRmIcvglGBnZltbkv/Tss7Wh7njqu0sKnZVqO5EbJt4OaO44hqZFYsAgGkeeo3ZDMJcbJjkRpXl29rUZuMnToDFr6GzwCr8whopQVWOSubDFTIYiC2pBZ+luaMCazscpFTz6cy+2DaVf03ZH1Puw1bS7R1cB5P90etR8vlgcPR+vZ4d8pQ8I0OSkjfkiHwkYzIhjHwj38kP8jMaRp+i4+jkyhr11jlPyEZExW8W2dW+</latexit><latexit sha1_base64="D9et4XQC+Z1dn+ac3xsyaup2yho=">AAACpXicbVHbbhMxEHWWWym3FB55WREhBQmi3aqCviAVeOEJBalpK623q1nvbGLF9q5sbyG1/BN8Da/wF/wNThoESRnJ1tE5ZzzjmbIV3Ngk+dWLbty8dfvOzt3de/cfPHzU33t8YppOM5ywRjT6rASDgiucWG4FnrUaQZYCT8v5h6V+eoHa8EYd20WLuYSp4jVnYANV9F/SMT93QEvQ7tL7t69orYE5PvfugLbcU8tFhe6dP4fisugPklGyivg6SNdgQNYxLvZ6Ja0a1klUlgkwJkuT1uYOtOVMoN+lncEW2BymmAWoQKLJ3epbPn4emCquGx2OsvGK/TfDgTRmIcvglGBnZltbkv/Tss7Wh7njqu0sKnZVqO5EbJt4OaO44hqZFYsAgGkeeo3ZDMJcbJjkRpXl29rUZuMnToDFr6GzwCr8whopQVWOSubDFTIYiC2pBZ+luaMCazscpFTz6cy+2DaVf03ZH1Puw1bS7R1cB5P90etR8vlgcPR+vZ4d8pQ8I0OSkjfkiHwkYzIhjHwj38kP8jMaRp+i4+jkyhr11jlPyEZExW8W2dW+</latexit>
(transform like
gauge fields)
The Kähler potential is K =
k
4⇡
Z
⌃
( ˜Aa
¯zAa
z + Aa
¯z
˜Aa
z)
⌦ =
ik
4⇡
Z
⌃
( ˜Aa
¯z Aa
z + Aa
¯z
˜Aa
z)The symplectic two-form is
Topologically Massive Yang-Mills Theory
˜Aµ = Aµ +
1
2m
✏µ↵ F↵
Bz =
1
2
( ˜A1 + iA2)
B¯z =
1
2
( ˜A1 iA2)
Cz =
1
2
(A1 + i ˜A2)
C¯z =
1
2
(A1 i ˜A2)
Using the mixed gauge fields
⌦ =
ik
4⇡
Z
⌃
( Ba
¯z Ba
z + Ca
¯z Ca
z )
TMYM phase space
consists of two
Chern-Simons phase
spaces with levels k/2
We choose the Kähler polarization
[Az, A¯z, ˜Az, ˜A¯z] = e
1
2 K
[A¯z, ˜A¯z]
Topologically Massive Yang-Mills Theory
An infinitesimal gauge transformation on the wave-functional
✏ [A¯z, ˜A¯z] =
Z
d2
z
✓
Aa
¯z
✏Aa
¯z +
˜Aa
¯z
✏
˜Aa
¯z
◆
=
k
4⇡
Z
d2
z✏a
⇣
@z
˜A¯z + @zA¯z 2Fz¯z DzE¯z + D¯zEz
⌘a
The Gauss law [2Fz¯z + DzE¯z D¯zEz] = 0
then the infinitesimal gauge transformation becomes
✏ =
k
4⇡
Z
d2
z✏a
(@¯z
˜Aa
z + @¯zAa
z)
Topologically Massive Yang-Mills Theory
same solution, using ˜A¯z = @¯z
˜U ˜U 1
[A¯z, ˜A¯z] = exp

k
2
(SW ZW ( ˜U) + SW ZW (U))
Here is a gauge invariant functional. It is
required to satisfy the Schrödinger’s equation.
The Hamiltonian
[Ea
z (x), Eb
¯z(y)] =
8⇡
k
ab (2)
(x y)
Ez
E¯z is the creation and
is the annihilation
operator
H =
m
2↵
(Ea
¯z Ea
z + Ea
z Ea
¯z )
| {z }
+
↵
m
Ba
Ba
| {z }
T V
To get rid of the infinite energy term,
Hamiltonian needs to be normal ordered as
H =
m
↵
Ea
¯z Ea
z +
↵
m
Ba
Ba
<latexit sha1_base64="vTuclAzsq8uECJqikuYr39STqTA=">AAACLXicbVDLSgMxFM34rPVVdelmsAiCUKYi6kYolUKXFRxb6LTlTpppQzMPkozQhvkiN/6KLgQfuPU3TKez0NZLAifnnMvNPW7EqJCW9WYsLa+srq3nNvKbW9s7u4W9/XsRxhwTG4cs5C0XBGE0ILakkpFWxAn4LiNNd3Qz1ZsPhAsaBndyHJGOD4OAehSD1FSvUHN8kEMMTNWTa8fjgJWfKAdYNISk1oWeclzgapKkj8npzJLp2lrtgj69QtEqWWmZi6CcgSLKqtErvDj9EMc+CSRmIES7bEWyo4BLihlJ8k4sSAR4BAPS1jAAn4iOStdNzGPN9E0v5PoG0kzZ3x0KfCHGvqud0+XEvDYl/9PasfSuOooGUSxJgGeDvJiZMjSn2Zl9ygmWbKwBYE71X008BB2I1AnndQjl+ZUXgX1WuihZt+fFSjVLI4cO0RE6QWV0iSqojhrIRhg9omf0jj6MJ+PV+DS+ZtYlI+s5QH/K+P4BTD6qtg==</latexit><latexit sha1_base64="vTuclAzsq8uECJqikuYr39STqTA=">AAACLXicbVDLSgMxFM34rPVVdelmsAiCUKYi6kYolUKXFRxb6LTlTpppQzMPkozQhvkiN/6KLgQfuPU3TKez0NZLAifnnMvNPW7EqJCW9WYsLa+srq3nNvKbW9s7u4W9/XsRxhwTG4cs5C0XBGE0ILakkpFWxAn4LiNNd3Qz1ZsPhAsaBndyHJGOD4OAehSD1FSvUHN8kEMMTNWTa8fjgJWfKAdYNISk1oWeclzgapKkj8npzJLp2lrtgj69QtEqWWmZi6CcgSLKqtErvDj9EMc+CSRmIES7bEWyo4BLihlJ8k4sSAR4BAPS1jAAn4iOStdNzGPN9E0v5PoG0kzZ3x0KfCHGvqud0+XEvDYl/9PasfSuOooGUSxJgGeDvJiZMjSn2Zl9ygmWbKwBYE71X008BB2I1AnndQjl+ZUXgX1WuihZt+fFSjVLI4cO0RE6QWV0iSqojhrIRhg9omf0jj6MJ+PV+DS+ZtYlI+s5QH/K+P4BTD6qtg==</latexit>
The vacuum wave-functional is given by H = 0<latexit sha1_base64="NIE2dL+DdcZa3wGnsRsnufnQwms=">AAAB+XicbVBNS8NAFHypX7V+pXr0slgETyUVUS9C0UuPFYwtNKFstpt26WYTdjdKif0pXjyoePWfePPfuGlz0NaBhWHmPd7sBAlnSjvOt1VaWV1b3yhvVra2d3b37Or+vYpTSahLYh7LboAV5UxQVzPNaTeRFEcBp51gfJP7nQcqFYvFnZ4k1I/wULCQEayN1LerXoT1iGCetaZeW7Erp2/XnLozA1omjYLUoEC7b395g5ikERWacKxUr+Ek2s+w1IxwOq14qaIJJmM8pD1DBY6o8rNZ9Ck6NsoAhbE0T2g0U39vZDhSahIFZjIPqha9XPzP66U6vPQzJpJUU0Hmh8KUIx2jvAc0YJISzSeGYCKZyYrICEtMtGmrYkpoLH55mbin9fO6c3tWa14XbZThEI7gBBpwAU1oQRtcIPAIz/AKb9aT9WK9Wx/z0ZJV7BzAH1ifP0+Qk5A=</latexit><latexit sha1_base64="NIE2dL+DdcZa3wGnsRsnufnQwms=">AAAB+XicbVBNS8NAFHypX7V+pXr0slgETyUVUS9C0UuPFYwtNKFstpt26WYTdjdKif0pXjyoePWfePPfuGlz0NaBhWHmPd7sBAlnSjvOt1VaWV1b3yhvVra2d3b37Or+vYpTSahLYh7LboAV5UxQVzPNaTeRFEcBp51gfJP7nQcqFYvFnZ4k1I/wULCQEayN1LerXoT1iGCetaZeW7Erp2/XnLozA1omjYLUoEC7b395g5ikERWacKxUr+Ek2s+w1IxwOq14qaIJJmM8pD1DBY6o8rNZ9Ck6NsoAhbE0T2g0U39vZDhSahIFZjIPqha9XPzP66U6vPQzJpJUU0Hmh8KUIx2jvAc0YJISzSeGYCKZyYrICEtMtGmrYkpoLH55mbin9fO6c3tWa14XbZThEI7gBBpwAU1oQRtcIPAIz/AKb9aT9WK9Wx/z0ZJV7BzAH1ifP0+Qk5A=</latexit>
↵ =
4⇡
k
The Hamiltonian
In the strong coupling limit(large m),
we can ignore the potential energy term
To find the vacuum wave-functional
Ez 0 = 0
= exp
✓
k
8⇡
Z
Ea
¯z Ea
z
◆
= 1 + O(1/m2
)
Ea
z = Ea
z
8⇡
k
ln
Ea
¯z
˜Az = Az + Ezwhere
The Measure(TMYM)
The metric of the space of gauge potentials
ds2
A = 4
Z
Tr( ˜A¯z Az + A¯z
˜Az)
=4
Z
Tr[ ˜D¯z( ˜U ˜U 1
)Dz(U† 1
U†
) + D¯z( UU 1
) ˜Dz( ˜U† 1 ˜U†
)]
<latexit sha1_base64="mlaaSOkPPnrOSBjxUb/NC+gdpzc=">AAADqHicbVJbb9MwGHUWLqPcNnjkxaJialWtSqYK9jJpgz7wuEkLHUrSynGc1ppzke0MWss/g1/DK/wI/g1OG9ZLsBTp6Jzznc/x90UFo0I6zh9rz37w8NHj/Setp8+ev3h5cPjqi8hLjomHc5bzmwgJwmhGPEklIzcFJyiNGBlFt58qfXRHuKB5di3nBQlTNM1oQjGShpocWv1YjE8mKkiRnAnM1YXWZ0fHg4BmEl7zThATJhEMJGUxMaJxRoirhdawli4mi949vFcbdYtuELTOjuAA1tF+rQ03MnfaeXqNxurY1d3hZNHxxiqI0XRKODRUXbEmdbc3bCZ6laNKWHdddDbCm4lNUXfD1uSg7fSd5YFN4NagDepzaV44CuIclynJJGZICN91ChkqxCXFjOhWUApSIHyLpsQ3MEMpEaFaTlbDd4aJYZJz85lXW7KbFQqlQszTyDiXA9zVKvJ/ml/K5DRUNCtKSTK8apSUDMocVmsCY8oJlmxuAMKcmrtCPEMcYWmWaatLlc1FIrb+RDEkyXdzM8Nm5BvO0xRlsdkyrFerhhHbkQqkfTdUASOJ7LTdgNPpTHZ3TdHa5P8zhdpMxd2dQRN4J/33fedq0D7/WI9nH7wBb0EHuOADOAefwSXwALZ+WD+tX9Zvu2df2SP768q6Z9U1r8HWsaO/UvIz3Q==</latexit><latexit sha1_base64="mlaaSOkPPnrOSBjxUb/NC+gdpzc=">AAADqHicbVJbb9MwGHUWLqPcNnjkxaJialWtSqYK9jJpgz7wuEkLHUrSynGc1ppzke0MWss/g1/DK/wI/g1OG9ZLsBTp6Jzznc/x90UFo0I6zh9rz37w8NHj/Setp8+ev3h5cPjqi8hLjomHc5bzmwgJwmhGPEklIzcFJyiNGBlFt58qfXRHuKB5di3nBQlTNM1oQjGShpocWv1YjE8mKkiRnAnM1YXWZ0fHg4BmEl7zThATJhEMJGUxMaJxRoirhdawli4mi949vFcbdYtuELTOjuAA1tF+rQ03MnfaeXqNxurY1d3hZNHxxiqI0XRKODRUXbEmdbc3bCZ6laNKWHdddDbCm4lNUXfD1uSg7fSd5YFN4NagDepzaV44CuIclynJJGZICN91ChkqxCXFjOhWUApSIHyLpsQ3MEMpEaFaTlbDd4aJYZJz85lXW7KbFQqlQszTyDiXA9zVKvJ/ml/K5DRUNCtKSTK8apSUDMocVmsCY8oJlmxuAMKcmrtCPEMcYWmWaatLlc1FIrb+RDEkyXdzM8Nm5BvO0xRlsdkyrFerhhHbkQqkfTdUASOJ7LTdgNPpTHZ3TdHa5P8zhdpMxd2dQRN4J/33fedq0D7/WI9nH7wBb0EHuOADOAefwSXwALZ+WD+tX9Zvu2df2SP768q6Z9U1r8HWsaO/UvIz3Q==</latexit>
The measure
dµ(A ) = det( ˜D¯zDz)det(D¯z
˜Dz)dµ( ˜U†
U)dµ(U† ˜U)<latexit sha1_base64="kGffsJZLXqNjyYN9nSQj9Y0Pfvs=">AAAC93icbVHLjtMwFHXCayivDsOOTUSF1GyqZISADdIAXbAcJMKM1ITIcW5Sa+wksh2gtcy3sEJs+Rz2fAhOUijtcCVLR+eca1/fkzWMShUEPx33ytVr128c3Bzdun3n7r3x4f33sm4FgYjUrBbnGZbAaAWRoorBeSMA84zBWXbxutPPPoKQtK7eqVUDCcdlRQtKsLJUOv6Sx7ydxhyrpSRCvzT+ixzUNFaU5aDnJtVxhoVeGzNP177XafMtt7Wt/eGigYjMBx3nuCxBmGhQoi3z1+SP0vEkmAV9eZdBuAETtKnT9NDJ4rwmLYdKEYalXIRBoxKNhaKEgRnFrYQGkwtcwsLCCnOQie4XZbzHlsm9ohb2VMrr2X87NOZSrnhmnf1G9rWO/J+2aFXxPNG0aloFFRkeKlrmqdrrtu7lVABRbGUBJoLaWT2yxAITZbPZeaW7W8hC7vxEM6zgs53MshV8IjXnuMp1zInRfXYEsz2pwWYRJjpmUKjpJIwFLZfK3zdlW9PijykxNpVwP4PLIDqePZ0Fb59MTl5t4jlAD9EjNEUheoZO0Bt0iiJE0C9n5Bw5D9y1+9X95n4frK6z6TlCO+X++A1qdfTV</latexit><latexit sha1_base64="kGffsJZLXqNjyYN9nSQj9Y0Pfvs=">AAAC93icbVHLjtMwFHXCayivDsOOTUSF1GyqZISADdIAXbAcJMKM1ITIcW5Sa+wksh2gtcy3sEJs+Rz2fAhOUijtcCVLR+eca1/fkzWMShUEPx33ytVr128c3Bzdun3n7r3x4f33sm4FgYjUrBbnGZbAaAWRoorBeSMA84zBWXbxutPPPoKQtK7eqVUDCcdlRQtKsLJUOv6Sx7ydxhyrpSRCvzT+ixzUNFaU5aDnJtVxhoVeGzNP177XafMtt7Wt/eGigYjMBx3nuCxBmGhQoi3z1+SP0vEkmAV9eZdBuAETtKnT9NDJ4rwmLYdKEYalXIRBoxKNhaKEgRnFrYQGkwtcwsLCCnOQie4XZbzHlsm9ohb2VMrr2X87NOZSrnhmnf1G9rWO/J+2aFXxPNG0aloFFRkeKlrmqdrrtu7lVABRbGUBJoLaWT2yxAITZbPZeaW7W8hC7vxEM6zgs53MshV8IjXnuMp1zInRfXYEsz2pwWYRJjpmUKjpJIwFLZfK3zdlW9PijykxNpVwP4PLIDqePZ0Fb59MTl5t4jlAD9EjNEUheoZO0Bt0iiJE0C9n5Bw5D9y1+9X95n4frK6z6TlCO+X++A1qdfTV</latexit>
A<latexit sha1_base64="ogCDyQ1nIIIz/VJofZm/sC+SkCU=">AAACgnicbVFNb9QwEPWGFkr5aEuPXKKukIqQVkmLoAcO/bhwLBJLKyVRNfFOdq36I7In0JWVn8G1/C7+TZ10EeyWkSw9vffseZ4paykcJcnvQfRobf3xk42nm8+ev3i5tb3z6pszjeU45kYae1mCQyk0jkmQxMvaIqhS4kV5fdbpF9/ROmH0V5rXWCiYalEJDhSoLFdAM8etP2mvtofJKOkrfgjSBRiyRZ1f7QzKfGJ4o1ATl+BcliY1FR4sCS6x3cwbhzXwa5hiFqAGha7wfeY2fhOYSVwZG46muGf/veFBOTdXZXD2GVe1jvyfljVUHRVe6Loh1Py+UdXImEzcDSCeCIuc5DwA4FaErDGfgQVOYUxLXbq3ravc0k+8BMKbkCywGn9woxToic8Vb30/TQ5yRaqhzdLC5xIr2h+muRXTGb1dNZV/TdkfU9FtJV3dwUMwPhh9GCVf3g+PTxfr2WCv2R7bZyn7yI7ZZ3bOxowzw36yW/YrWo/eRWl0eG+NBos7u2ypok93GuPHLQ==</latexit><latexit sha1_base64="ogCDyQ1nIIIz/VJofZm/sC+SkCU=">AAACgnicbVFNb9QwEPWGFkr5aEuPXKKukIqQVkmLoAcO/bhwLBJLKyVRNfFOdq36I7In0JWVn8G1/C7+TZ10EeyWkSw9vffseZ4paykcJcnvQfRobf3xk42nm8+ev3i5tb3z6pszjeU45kYae1mCQyk0jkmQxMvaIqhS4kV5fdbpF9/ROmH0V5rXWCiYalEJDhSoLFdAM8etP2mvtofJKOkrfgjSBRiyRZ1f7QzKfGJ4o1ATl+BcliY1FR4sCS6x3cwbhzXwa5hiFqAGha7wfeY2fhOYSVwZG46muGf/veFBOTdXZXD2GVe1jvyfljVUHRVe6Loh1Py+UdXImEzcDSCeCIuc5DwA4FaErDGfgQVOYUxLXbq3ravc0k+8BMKbkCywGn9woxToic8Vb30/TQ5yRaqhzdLC5xIr2h+muRXTGb1dNZV/TdkfU9FtJV3dwUMwPhh9GCVf3g+PTxfr2WCv2R7bZyn7yI7ZZ3bOxowzw36yW/YrWo/eRWl0eG+NBos7u2ypok93GuPHLQ==</latexit>
|{z} |{z}
N N†
= =
where
det( ˜D¯zDz)det(D¯z
˜Dz) = constant ⇥ e2cA SW ZW (N)+SW ZW (N†
)
TMYM and CS
⇤
0 0 = e
k
8⇡
R
(Ea
z Ea
¯z +Ea
¯z Ea
z )
= 1 + O(1/m2
)<latexit sha1_base64="bJkbdw5nQFpUnET3dE94NRMeQCc=">AAAC7XicbVHdbtMwGHXC31b+OrjkxqJCapnokgnBbiZNoErcMSTKJsVJ5LhOa9V2ItsBWsuvwRXilmeCp8HpOlg7PsnyyTnH8efzFTVn2kTRryC8cfPW7Ts7u5279+4/eNjde/RJV40idEwqXqnzAmvKmaRjwwyn57WiWBScnhXzt61+9pkqzSr50Sxqmgo8laxkBBtP5V2DyIzlUfa83TMLXR4d08y+QKXCxM6dPUI1c4hJA/ujDOdLiASxI+ehRQVWdunc/ujq1199CQfuON5HApsZwdy+d/34QGSHg07e7UXDaFXwOojXoAfWdZrvBQWaVKQRVBrCsdZJHNUmtVgZRjh1HdRoWmMyx1OaeCixoDq1q3gcfOaZCSwr5Zd/x4q9esJiofVCFN7Z9qq3tZb8n5Y0pjxKLZN1Y6gkFxeVDYemgm3WcMIUJYYvPMBEMd8rJDPsgzV+Ihu3tP9WutQbL7EcG/rVd+ZZSb+QSggsJ9YH7OxlqltSjV0SpxZxWpp+L0aKTWdmsG0q/pmSS1Pq/FTi7RlcB+PD4ath9OFl7+TNejw74Al4CvogBq/BCXgHTsEYEPA7AMFu0Anr8Fv4PfxxYQ2D9ZnHYKPCn38Ak0vuJA==</latexit><latexit sha1_base64="bJkbdw5nQFpUnET3dE94NRMeQCc=">AAAC7XicbVHdbtMwGHXC31b+OrjkxqJCapnokgnBbiZNoErcMSTKJsVJ5LhOa9V2ItsBWsuvwRXilmeCp8HpOlg7PsnyyTnH8efzFTVn2kTRryC8cfPW7Ts7u5279+4/eNjde/RJV40idEwqXqnzAmvKmaRjwwyn57WiWBScnhXzt61+9pkqzSr50Sxqmgo8laxkBBtP5V2DyIzlUfa83TMLXR4d08y+QKXCxM6dPUI1c4hJA/ujDOdLiASxI+ehRQVWdunc/ujq1199CQfuON5HApsZwdy+d/34QGSHg07e7UXDaFXwOojXoAfWdZrvBQWaVKQRVBrCsdZJHNUmtVgZRjh1HdRoWmMyx1OaeCixoDq1q3gcfOaZCSwr5Zd/x4q9esJiofVCFN7Z9qq3tZb8n5Y0pjxKLZN1Y6gkFxeVDYemgm3WcMIUJYYvPMBEMd8rJDPsgzV+Ihu3tP9WutQbL7EcG/rVd+ZZSb+QSggsJ9YH7OxlqltSjV0SpxZxWpp+L0aKTWdmsG0q/pmSS1Pq/FTi7RlcB+PD4ath9OFl7+TNejw74Al4CvogBq/BCXgHTsEYEPA7AMFu0Anr8Fv4PfxxYQ2D9ZnHYKPCn38Ak0vuJA==</latexit>
h | iCS =
Z
dµ(H)e(2ca+k)SW ZW (H)
<latexit sha1_base64="P8z68TnDjPOmAGjqM42fHT3vpfE=">AAACunicbVFbb9MwFHbDZWPcOnjkxaJCaoVUJROCvUwa7GWPRaN0Ig7RiXPSWrWdyHaAKuT38Gt4BfFvcLoiaMeRfPTpO9/xuWWVFNaF4a9ecOPmrdt7+3cO7t67/+Bh//DRe1vWhuOUl7I0lxlYlELj1Akn8bIyCCqTOMuWZ1189gmNFaV+51YVJgrmWhSCg/NU2n/NJOi5RMomVnztHGVmzaTN2UV7woR2NGeqHp6P8GMzPOIpPF+OLtJm9mHWerJN+4NwHK6NXgfRBgzIxibpYS9jeclrhdpxCdbGUVi5pAHjBJfYHrDaYgV8CXOMPdSg0CbNetaWPvNMTovS+OdbW7P/ZjSgrF2pzCsVuIXdjXXk/2Jx7YrjpBG6qh1qflWoqCV1Je0WR3NhkDu58gC4Eb5XyhdggDu/3q0q3d/GFnZrkkaCwy++M89q/MxLpUDnDVO89c5ncJA7oQraOEoaJrFww0HEjJgv3GhXlP0VxX9ESXeVaPcG18H0aPxyHL59MTh9sznPPnlCnpIhicgrckrOyYRMCSffyHfyg/wMTgIeiGB5JQ16m5zHZMsC9xufmdvR</latexit><latexit sha1_base64="P8z68TnDjPOmAGjqM42fHT3vpfE=">AAACunicbVFbb9MwFHbDZWPcOnjkxaJCaoVUJROCvUwa7GWPRaN0Ig7RiXPSWrWdyHaAKuT38Gt4BfFvcLoiaMeRfPTpO9/xuWWVFNaF4a9ecOPmrdt7+3cO7t67/+Bh//DRe1vWhuOUl7I0lxlYlELj1Akn8bIyCCqTOMuWZ1189gmNFaV+51YVJgrmWhSCg/NU2n/NJOi5RMomVnztHGVmzaTN2UV7woR2NGeqHp6P8GMzPOIpPF+OLtJm9mHWerJN+4NwHK6NXgfRBgzIxibpYS9jeclrhdpxCdbGUVi5pAHjBJfYHrDaYgV8CXOMPdSg0CbNetaWPvNMTovS+OdbW7P/ZjSgrF2pzCsVuIXdjXXk/2Jx7YrjpBG6qh1qflWoqCV1Je0WR3NhkDu58gC4Eb5XyhdggDu/3q0q3d/GFnZrkkaCwy++M89q/MxLpUDnDVO89c5ncJA7oQraOEoaJrFww0HEjJgv3GhXlP0VxX9ESXeVaPcG18H0aPxyHL59MTh9sznPPnlCnpIhicgrckrOyYRMCSffyHfyg/wMTgIeiGB5JQ16m5zHZMsC9xufmdvR</latexit>
CS inner product
Two CS parts!
h 0| 0iT MY Mk
⇡
Z
dµ(N)dµ(N†
)e(2cA+ k
2 ) SW ZW (N)+SW ZW (N†
)
= h | i2
CSk/2
TMYM inner product
h 0| 0i =
Z
dµ(N)dµ(N†
)e(2cA+ k
2 ) SW ZW (N)+SW ZW (N†
)
e
k
8⇡
R
(Ea
z Ea
¯z +Ea
¯z Ea
z )
CS Splitting and Gauge Invariance
h 0| 0iT MY Mk
= h | iCSk/2
h | iCSk/2
+ O(1/m2
)
1
2
SCS(B) +
1
2
SCS(C) !
1
2
SCS(B) +
1
2
SCS(C) + 2⇡k!
Gauge invariance:
Quantization of Pure 

Yang-Mills Theory
Pure Yang-Mills Theory
The action is given by
SY M =
k
4⇡
1
4m
Z
⌃⇥[ti,tf ]
d3
x Tr (Fµ⌫Fµ⌫
)
The symplectic two-form is
⌦ =
Z
⌃
( Ea
¯z Aa
z + Aa
¯z Ea
z )
Gauss’ law is
DzEa
¯z D¯zEa
z = 0
Phase Space Geometry of YM
⌦ =
Z
⌃
( ˜Aa
¯z Aa
z Aa
¯z
ˆAa
z)
Symplectic two-form can be written as
˜A¯z = A¯z + E¯z
ˆAz = Az Ez
where
⌦ =
ik
4⇡
Z
⌃
( Ba
¯z Ba
z Ca
¯z Ca
z )
Bz =
1
2
( ˜A1 + iA2)
Using the mixed gauge fields
Cz =
1
2
(A1 + i ˆA2)
YM phase space consists
of two CS phase spaces
with levels k/2 and -k/2
YM Wave-functional
Once again, we choose the holomorphic polarization
[Az, A¯z, ˆAz, ˜A¯z] = e
1
2 K
[A¯z, ˜A¯z]
✏ =
k
4⇡
Z
d2
z✏a
(@zEa
¯z DzEa
¯z + D¯zEa
z )
Infinitesimal gauge transformation on wave-functional
✏ =
k
4⇡
Z
d2
z ✏a
(@zEa
¯z )
=
k
4⇡
Z
d2
z ✏a
⇣
@z
˜Aa
¯z @zAa
¯z
⌘
=
k
4⇡
Z
d2
z ✏a
⇣
@zAa
¯z @z
ˆAa
¯z
⌘
After forcing Gauss’ law
YM Wave-functional
Solution is
[A¯z, ˜A¯z] = exp

k
2
SW ZW ( ˜U) SW ZW (U)
[A¯z, ˆA¯z] = exp

k
2
SW ZW (U) SW ZW ( ˆU)
or equally
In temporal gauge TMYM and YM Hamiltonians are the same.
Similarly, Schrödinger’s equation leads to
= 1 + O(1/m2
)
Measure
ds2
A = 4
Z
Tr( ˜A¯z Az A¯z
ˆAz)
= 4
Z
Tr[ ˜D¯z( ˜U ˜U 1
)Dz(U† 1
U†
) D¯z( UU 1
) ˆDz( ˆU† 1 ˆU†
)]
The metric of the space of gauge potentials A<latexit sha1_base64="ogCDyQ1nIIIz/VJofZm/sC+SkCU=">AAACgnicbVFNb9QwEPWGFkr5aEuPXKKukIqQVkmLoAcO/bhwLBJLKyVRNfFOdq36I7In0JWVn8G1/C7+TZ10EeyWkSw9vffseZ4paykcJcnvQfRobf3xk42nm8+ev3i5tb3z6pszjeU45kYae1mCQyk0jkmQxMvaIqhS4kV5fdbpF9/ROmH0V5rXWCiYalEJDhSoLFdAM8etP2mvtofJKOkrfgjSBRiyRZ1f7QzKfGJ4o1ATl+BcliY1FR4sCS6x3cwbhzXwa5hiFqAGha7wfeY2fhOYSVwZG46muGf/veFBOTdXZXD2GVe1jvyfljVUHRVe6Loh1Py+UdXImEzcDSCeCIuc5DwA4FaErDGfgQVOYUxLXbq3ravc0k+8BMKbkCywGn9woxToic8Vb30/TQ5yRaqhzdLC5xIr2h+muRXTGb1dNZV/TdkfU9FtJV3dwUMwPhh9GCVf3g+PTxfr2WCv2R7bZyn7yI7ZZ3bOxowzw36yW/YrWo/eRWl0eG+NBos7u2ypok93GuPHLQ==</latexit><latexit sha1_base64="ogCDyQ1nIIIz/VJofZm/sC+SkCU=">AAACgnicbVFNb9QwEPWGFkr5aEuPXKKukIqQVkmLoAcO/bhwLBJLKyVRNfFOdq36I7In0JWVn8G1/C7+TZ10EeyWkSw9vffseZ4paykcJcnvQfRobf3xk42nm8+ev3i5tb3z6pszjeU45kYae1mCQyk0jkmQxMvaIqhS4kV5fdbpF9/ROmH0V5rXWCiYalEJDhSoLFdAM8etP2mvtofJKOkrfgjSBRiyRZ1f7QzKfGJ4o1ATl+BcliY1FR4sCS6x3cwbhzXwa5hiFqAGha7wfeY2fhOYSVwZG46muGf/veFBOTdXZXD2GVe1jvyfljVUHRVe6Loh1Py+UdXImEzcDSCeCIuc5DwA4FaErDGfgQVOYUxLXbq3ravc0k+8BMKbkCywGn9woxToic8Vb30/TQ5yRaqhzdLC5xIr2h+muRXTGb1dNZV/TdkfU9FtJV3dwUMwPhh9GCVf3g+PTxfr2WCv2R7bZyn7yI7ZZ3bOxowzw36yW/YrWo/eRWl0eG+NBos7u2ypok93GuPHLQ==</latexit>
dµ(A ) = det( ˜D¯zDz)det(D¯z
ˆDz)dµ( ˆU†
U)dµ(U† ˜U)|{z} |{z}
H2H1
dµ(A ) = e2cA SW ZW (H1)+SW ZW (H2)
dµ(H1)dµ(H2)
Then the gauge invariant measure is
YM and CS
h | iCS =
Z
dµ(H)e(2ca+k)SW ZW (H)
<latexit sha1_base64="P8z68TnDjPOmAGjqM42fHT3vpfE=">AAACunicbVFbb9MwFHbDZWPcOnjkxaJCaoVUJROCvUwa7GWPRaN0Ig7RiXPSWrWdyHaAKuT38Gt4BfFvcLoiaMeRfPTpO9/xuWWVFNaF4a9ecOPmrdt7+3cO7t67/+Bh//DRe1vWhuOUl7I0lxlYlELj1Akn8bIyCCqTOMuWZ1189gmNFaV+51YVJgrmWhSCg/NU2n/NJOi5RMomVnztHGVmzaTN2UV7woR2NGeqHp6P8GMzPOIpPF+OLtJm9mHWerJN+4NwHK6NXgfRBgzIxibpYS9jeclrhdpxCdbGUVi5pAHjBJfYHrDaYgV8CXOMPdSg0CbNetaWPvNMTovS+OdbW7P/ZjSgrF2pzCsVuIXdjXXk/2Jx7YrjpBG6qh1qflWoqCV1Je0WR3NhkDu58gC4Eb5XyhdggDu/3q0q3d/GFnZrkkaCwy++M89q/MxLpUDnDVO89c5ncJA7oQraOEoaJrFww0HEjJgv3GhXlP0VxX9ESXeVaPcG18H0aPxyHL59MTh9sznPPnlCnpIhicgrckrOyYRMCSffyHfyg/wMTgIeiGB5JQ16m5zHZMsC9xufmdvR</latexit><latexit sha1_base64="P8z68TnDjPOmAGjqM42fHT3vpfE=">AAACunicbVFbb9MwFHbDZWPcOnjkxaJCaoVUJROCvUwa7GWPRaN0Ig7RiXPSWrWdyHaAKuT38Gt4BfFvcLoiaMeRfPTpO9/xuWWVFNaF4a9ecOPmrdt7+3cO7t67/+Bh//DRe1vWhuOUl7I0lxlYlELj1Akn8bIyCCqTOMuWZ1189gmNFaV+51YVJgrmWhSCg/NU2n/NJOi5RMomVnztHGVmzaTN2UV7woR2NGeqHp6P8GMzPOIpPF+OLtJm9mHWerJN+4NwHK6NXgfRBgzIxibpYS9jeclrhdpxCdbGUVi5pAHjBJfYHrDaYgV8CXOMPdSg0CbNetaWPvNMTovS+OdbW7P/ZjSgrF2pzCsVuIXdjXXk/2Jx7YrjpBG6qh1qflWoqCV1Je0WR3NhkDu58gC4Eb5XyhdggDu/3q0q3d/GFnZrkkaCwy++M89q/MxLpUDnDVO89c5ncJA7oQraOEoaJrFww0HEjJgv3GhXlP0VxX9ESXeVaPcG18H0aPxyHL59MTh9sznPPnlCnpIhicgrckrOyYRMCSffyHfyg/wMTgIeiGB5JQ16m5zHZMsC9xufmdvR</latexit>
CS inner product
YM inner product
h 0| 0i =
Z
dµ(H1)dµ(H2)e(2cA+ k
2 )SW ZW (H1)+(2cA
k
2 )SW ZW (H2)
+ O(1/m2
)
h 0| 0iY Mk
= h | iCSk/2
h | iCS k/2
+ O(1/m2
)
Gauge invariance:
1
2
SCS(B)
1
2
SCS(C) !
1
2
SCS(B)
1
2
SCS(C) + ⇡k! ⇡k!
Wilson Loops and
Chern-Simons Splitting
Wilson Loops
Let us define TR(C) = TrR P e
H
C
˜Aµdxµ
<latexit sha1_base64="OX+KCxgBjNK7iVaJwJwJW5JjNBU=">AAACsHicbVHLbhMxFHWGVwmvFJZsLCKkdEE0A4iyQSpkwzJUCS2KpyOP505iantG9h1oZM2n8DVs4QP4G5w0CJJyJdtH557r+8prJR3G8a9OdO36jZu39m5379y9d/9Bb//hR1c1VsBUVKqypzl3oKSBKUpUcFpb4DpXcJKfj1b+ky9gnazMBJc1pJrPjSyl4BiorHc4yY4Ho4M3E5sdM8q08OOWUTjzz1glDWYjylCqAvzbNmO6ocXFWXjabtbrx8N4bfQqSDagTzY2zvY7OSsq0WgwKBR3bpbENaaeW5RCQdtljYOai3M+h1mAhmtwqV932NKngSloWdlwDNI1+2+E59q5pc6DUnNcuF3fivyfb9Zg+Tr10tQNghGXicpGUazoaly0kBYEqmUAXFgZaqViwS0XGIa6lWX1t3Wl2+rEK45wESoLrIGvotKam8KHObfhChGCqx1XzdtZknqmoMRBP2FWzhd4sCvK/4pmf0RpG7aS7O7gKpg+H74axh9e9o/ebdazRx6TJ2RAEnJIjsh7MiZTIsg38p38ID+jF9GnKIv4pTTqbGIekS2LPv8G31bX7g==</latexit><latexit sha1_base64="OX+KCxgBjNK7iVaJwJwJW5JjNBU=">AAACsHicbVHLbhMxFHWGVwmvFJZsLCKkdEE0A4iyQSpkwzJUCS2KpyOP505iantG9h1oZM2n8DVs4QP4G5w0CJJyJdtH557r+8prJR3G8a9OdO36jZu39m5379y9d/9Bb//hR1c1VsBUVKqypzl3oKSBKUpUcFpb4DpXcJKfj1b+ky9gnazMBJc1pJrPjSyl4BiorHc4yY4Ho4M3E5sdM8q08OOWUTjzz1glDWYjylCqAvzbNmO6ocXFWXjabtbrx8N4bfQqSDagTzY2zvY7OSsq0WgwKBR3bpbENaaeW5RCQdtljYOai3M+h1mAhmtwqV932NKngSloWdlwDNI1+2+E59q5pc6DUnNcuF3fivyfb9Zg+Tr10tQNghGXicpGUazoaly0kBYEqmUAXFgZaqViwS0XGIa6lWX1t3Wl2+rEK45wESoLrIGvotKam8KHObfhChGCqx1XzdtZknqmoMRBP2FWzhd4sCvK/4pmf0RpG7aS7O7gKpg+H74axh9e9o/ebdazRx6TJ2RAEnJIjsh7MiZTIsg38p38ID+jF9GnKIv4pTTqbGIekS2LPv8G31bX7g==</latexit>
WR(C) = TrR P e
H
C
Aµdxµ
<latexit sha1_base64="d7Xpib2RqZ0P9Dxh53mJGODTQQg=">AAACqHicbVHdbtMwFHYzfkb567ZLbiwqpE6IkiAE3CBt9IbLblrpUJJFjnPSWrOdyD6BVVYeg6fhFh6Ct8HtiqAdR7L96Tvf8fnLaykshuGvTrBz6/adu7v3uvcfPHz0uLe3/8lWjeEw4ZWszHnOLEihYYICJZzXBpjKJUzzy9HSP/0CxopKn+GihlSxmRal4Aw9lfVeTrPTwejw/ZnJThOaKO7GbULhwr1IKqExG9HjLFENLa4u/NN2s14/HIYrozdBtAZ9srZxttfJk6LijQKNXDJr4yisMXXMoOAS2m7SWKgZv2QziD3UTIFN3aqzlj7zTEHLyvijka7YfyMcU9YuVO6ViuHcbvuW5P98cYPlu9QJXTcIml8nKhtJsaLLMdFCGOAoFx4wboSvlfI5M4yjH+ZGluXfxpZ2oxMnGcKVr8yzGr7ySimmC+fn2/rLR3Amt1w1a+ModYmEEgf9KDFiNsfDbVH+VxT/EaWt30q0vYObYPJq+GYYnrzuH31Yr2eXPCFPyYBE5C05Ih/JmEwIJ9/Id/KD/AyeByfBNPh8LQ0665gDsmFB/hsTWtQ7</latexit><latexit sha1_base64="d7Xpib2RqZ0P9Dxh53mJGODTQQg=">AAACqHicbVHdbtMwFHYzfkb567ZLbiwqpE6IkiAE3CBt9IbLblrpUJJFjnPSWrOdyD6BVVYeg6fhFh6Ct8HtiqAdR7L96Tvf8fnLaykshuGvTrBz6/adu7v3uvcfPHz0uLe3/8lWjeEw4ZWszHnOLEihYYICJZzXBpjKJUzzy9HSP/0CxopKn+GihlSxmRal4Aw9lfVeTrPTwejw/ZnJThOaKO7GbULhwr1IKqExG9HjLFENLa4u/NN2s14/HIYrozdBtAZ9srZxttfJk6LijQKNXDJr4yisMXXMoOAS2m7SWKgZv2QziD3UTIFN3aqzlj7zTEHLyvijka7YfyMcU9YuVO6ViuHcbvuW5P98cYPlu9QJXTcIml8nKhtJsaLLMdFCGOAoFx4wboSvlfI5M4yjH+ZGluXfxpZ2oxMnGcKVr8yzGr7ySimmC+fn2/rLR3Amt1w1a+ModYmEEgf9KDFiNsfDbVH+VxT/EaWt30q0vYObYPJq+GYYnrzuH31Yr2eXPCFPyYBE5C05Ih/JmEwIJ9/Id/KD/AyeByfBNPh8LQ0665gDsmFB/hsTWtQ7</latexit>
for TMYM theory
T(C1)W(C2) = e
2⇡i
k l(C1,C2)
W(C2)T(C1)<latexit sha1_base64="5sz6/GQ1LP7S9v4i44db96Bsov0=">AAACsXicbVFNj9MwEHXD11K+unDkElEhtRKqkmoFe0FasReOi7SlK5JQJu6ktWo7kT0BKit/hV/DFe78G5y2CNplJI+e3ntje2bySgpLUfSrE9y4eev2naO73Xv3Hzx81Dt+/N6WteE44aUszVUOFqXQOCFBEq8qg6ByidN8dd7q089orCj1Ja0rzBQstCgEB/LUrHd6OTifxcOpz+Pha/zo0sIAd+O0EqFo3KqRrf6iVZutaVvQnfX60SjaRHgdxDvQZ7u4mB138nRe8lqhJi7B2iSOKsocGBJcYtNNa4sV8BUsMPFQg0KbuU2LTfjcM/OwKI0/msIN+2+FA2XtWuXeqYCW9lBryf9pSU3FaeaErmpCzbcPFbUMqQzbeYVzYZCTXHsA3Aj/15Avwc+I/FT3XmnvNrawe504CYRf/c88q/ELL5UCPXep4o1PvoKDPJAqaJI4c6nEggb9ODVisaThoSn/a0r+mLLGbyU+3MF1MBmPXo6idyf9sze79Ryxp+wZG7CYvWJn7C27YBPG2Tf2nf1gP4OT4EPwKci31qCzq3nC9iJY/QZzztVW</latexit><latexit sha1_base64="5sz6/GQ1LP7S9v4i44db96Bsov0=">AAACsXicbVFNj9MwEHXD11K+unDkElEhtRKqkmoFe0FasReOi7SlK5JQJu6ktWo7kT0BKit/hV/DFe78G5y2CNplJI+e3ntje2bySgpLUfSrE9y4eev2naO73Xv3Hzx81Dt+/N6WteE44aUszVUOFqXQOCFBEq8qg6ByidN8dd7q089orCj1Ja0rzBQstCgEB/LUrHd6OTifxcOpz+Pha/zo0sIAd+O0EqFo3KqRrf6iVZutaVvQnfX60SjaRHgdxDvQZ7u4mB138nRe8lqhJi7B2iSOKsocGBJcYtNNa4sV8BUsMPFQg0KbuU2LTfjcM/OwKI0/msIN+2+FA2XtWuXeqYCW9lBryf9pSU3FaeaErmpCzbcPFbUMqQzbeYVzYZCTXHsA3Aj/15Avwc+I/FT3XmnvNrawe504CYRf/c88q/ELL5UCPXep4o1PvoKDPJAqaJI4c6nEggb9ODVisaThoSn/a0r+mLLGbyU+3MF1MBmPXo6idyf9sze79Ryxp+wZG7CYvWJn7C27YBPG2Tf2nf1gP4OT4EPwKci31qCzq3nC9iJY/QZzztVW</latexit>
T(C) is like a ’t Hooft loop for TMYM theory
Wilson Loops
At large finite distances, TMYM and pure YM theories act
analogous to topologically massive AdS gravity (at corresponding
limits) and their observables are link invariants.
hWR1
(C1)TR2
(C2)iT MY M2k
=
✓
hWR1
(C1)iCSk
◆✓
hWR2
(C2)iCSk
◆
+ O(1/m2
)
For TMYM theory with even level number
hWR1
(C1)TR2
(C2)iY M2k
=
✓
hWR1
(C1)iCSk
◆✓
hWR2
(C2)iCS k
◆
+ O(1/m2
)
For YM theory with even level number
Thank You

More Related Content

What's hot

I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2SEENET-MTP
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distributionmathsjournal
 
Application of Integration
Application of IntegrationApplication of Integration
Application of IntegrationRaymundo Raymund
 
On the Zeros of Polar Derivatives
On the Zeros of Polar DerivativesOn the Zeros of Polar Derivatives
On the Zeros of Polar Derivativespaperpublications3
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsionrro7560
 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate MethodsTeja Ande
 
Analysis of a ridge waveguide using overlapping T-blocks
Analysis of a ridge waveguide using overlapping T-blocksAnalysis of a ridge waveguide using overlapping T-blocks
Analysis of a ridge waveguide using overlapping T-blocksYong Heui Cho
 
Analysis of a self-sustained vibration of mass-spring oscillator on moving belt
Analysis of a self-sustained vibration of mass-spring oscillator on moving beltAnalysis of a self-sustained vibration of mass-spring oscillator on moving belt
Analysis of a self-sustained vibration of mass-spring oscillator on moving beltVarun Jadhav
 
Stochastic Schrödinger equations
Stochastic Schrödinger equationsStochastic Schrödinger equations
Stochastic Schrödinger equationsIlya Gikhman
 
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...Mehmet Bariskan
 
Wow! Signal Decoded as Foundations of Theory of Everything
Wow! Signal Decoded as Foundations of Theory of EverythingWow! Signal Decoded as Foundations of Theory of Everything
Wow! Signal Decoded as Foundations of Theory of EverythingXequeMateShannon
 
Jordan Higher K-Centralizer on -Rings
Jordan Higher K-Centralizer on -RingsJordan Higher K-Centralizer on -Rings
Jordan Higher K-Centralizer on -RingsIOSR Journals
 
Particle Physics Presentation
Particle Physics PresentationParticle Physics Presentation
Particle Physics PresentationDrew Silcock
 
Interpolating rational bézier spline curves with local shape control
Interpolating rational bézier spline curves with local shape controlInterpolating rational bézier spline curves with local shape control
Interpolating rational bézier spline curves with local shape controlijcga
 
Jawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikaJawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikamiranteogbonna
 

What's hot (20)

I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distribution
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
 
On the Zeros of Polar Derivatives
On the Zeros of Polar DerivativesOn the Zeros of Polar Derivatives
On the Zeros of Polar Derivatives
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
 
Bc4103338340
Bc4103338340Bc4103338340
Bc4103338340
 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate Methods
 
Prime numbers
Prime numbersPrime numbers
Prime numbers
 
Analysis of a ridge waveguide using overlapping T-blocks
Analysis of a ridge waveguide using overlapping T-blocksAnalysis of a ridge waveguide using overlapping T-blocks
Analysis of a ridge waveguide using overlapping T-blocks
 
Analysis of a self-sustained vibration of mass-spring oscillator on moving belt
Analysis of a self-sustained vibration of mass-spring oscillator on moving beltAnalysis of a self-sustained vibration of mass-spring oscillator on moving belt
Analysis of a self-sustained vibration of mass-spring oscillator on moving belt
 
Stochastic Schrödinger equations
Stochastic Schrödinger equationsStochastic Schrödinger equations
Stochastic Schrödinger equations
 
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
 
Soal latihan1mekanika
Soal latihan1mekanikaSoal latihan1mekanika
Soal latihan1mekanika
 
Math1.1
Math1.1Math1.1
Math1.1
 
Wow! Signal Decoded as Foundations of Theory of Everything
Wow! Signal Decoded as Foundations of Theory of EverythingWow! Signal Decoded as Foundations of Theory of Everything
Wow! Signal Decoded as Foundations of Theory of Everything
 
Jordan Higher K-Centralizer on -Rings
Jordan Higher K-Centralizer on -RingsJordan Higher K-Centralizer on -Rings
Jordan Higher K-Centralizer on -Rings
 
Particle Physics Presentation
Particle Physics PresentationParticle Physics Presentation
Particle Physics Presentation
 
I027055062
I027055062I027055062
I027055062
 
Interpolating rational bézier spline curves with local shape control
Interpolating rational bézier spline curves with local shape controlInterpolating rational bézier spline curves with local shape control
Interpolating rational bézier spline curves with local shape control
 
Jawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikaJawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanika
 

Viewers also liked

Dao tien
Dao tienDao tien
Dao tienhack2k2
 
Management strategies of healthcare institutions e learning course lecture 6_ka
Management strategies of healthcare institutions e learning course lecture 6_kaManagement strategies of healthcare institutions e learning course lecture 6_ka
Management strategies of healthcare institutions e learning course lecture 6_kaMazen Yehia Omar
 
CISS gifted training
CISS gifted trainingCISS gifted training
CISS gifted trainingHyaci
 
Gods of manhattan
Gods of manhattanGods of manhattan
Gods of manhattanfordes
 
Гісторыя малой радзімы: князь Друцкі-Сакалінскі
Гісторыя малой радзімы: князь Друцкі-СакалінскіГісторыя малой радзімы: князь Друцкі-Сакалінскі
Гісторыя малой радзімы: князь Друцкі-СакалінскіFarid Berrashed
 
Innovación, Marca y Diferenciación
Innovación, Marca y DiferenciaciónInnovación, Marca y Diferenciación
Innovación, Marca y DiferenciaciónPaco Barranco
 
Computacion segundo bimestre
Computacion segundo bimestreComputacion segundo bimestre
Computacion segundo bimestreMabe Pacheco
 
Psicologia diversidad 2016
Psicologia  diversidad 2016Psicologia  diversidad 2016
Psicologia diversidad 2016Marisa Canales
 

Viewers also liked (13)

National Certificate
National CertificateNational Certificate
National Certificate
 
MembershipCertificate
MembershipCertificateMembershipCertificate
MembershipCertificate
 
Dao tien
Dao tienDao tien
Dao tien
 
Management strategies of healthcare institutions e learning course lecture 6_ka
Management strategies of healthcare institutions e learning course lecture 6_kaManagement strategies of healthcare institutions e learning course lecture 6_ka
Management strategies of healthcare institutions e learning course lecture 6_ka
 
ITM 6
ITM 6ITM 6
ITM 6
 
Маніфэст Беларускага Вызвольнага Руху
Маніфэст Беларускага Вызвольнага РухуМаніфэст Беларускага Вызвольнага Руху
Маніфэст Беларускага Вызвольнага Руху
 
CISS gifted training
CISS gifted trainingCISS gifted training
CISS gifted training
 
Gods of manhattan
Gods of manhattanGods of manhattan
Gods of manhattan
 
Гісторыя малой радзімы: князь Друцкі-Сакалінскі
Гісторыя малой радзімы: князь Друцкі-СакалінскіГісторыя малой радзімы: князь Друцкі-Сакалінскі
Гісторыя малой радзімы: князь Друцкі-Сакалінскі
 
Innovación, Marca y Diferenciación
Innovación, Marca y DiferenciaciónInnovación, Marca y Diferenciación
Innovación, Marca y Diferenciación
 
Lesson 5
Lesson 5Lesson 5
Lesson 5
 
Computacion segundo bimestre
Computacion segundo bimestreComputacion segundo bimestre
Computacion segundo bimestre
 
Psicologia diversidad 2016
Psicologia  diversidad 2016Psicologia  diversidad 2016
Psicologia diversidad 2016
 

Similar to CS DECOMPOSITION

Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
 
Differential geometry three dimensional space
Differential geometry   three dimensional spaceDifferential geometry   three dimensional space
Differential geometry three dimensional spaceSolo Hermelin
 
Signals and systems: part i solutions
Signals and systems: part i solutionsSignals and systems: part i solutions
Signals and systems: part i solutionsPatrickMumba7
 
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"Rene Kotze
 
M. Dimitrijević, Noncommutative models of gauge and gravity theories
M. Dimitrijević, Noncommutative models of gauge and gravity theoriesM. Dimitrijević, Noncommutative models of gauge and gravity theories
M. Dimitrijević, Noncommutative models of gauge and gravity theoriesSEENET-MTP
 
121593320 teorema-stokes
121593320 teorema-stokes121593320 teorema-stokes
121593320 teorema-stokessaidattamimi1
 
Orbital shape-orientation
Orbital shape-orientationOrbital shape-orientation
Orbital shape-orientationsmitamalik
 
Dr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paperDr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paperSRINIVASULU N V
 
exceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice modelsexceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice modelsMauritz van den Worm
 
Particle Physics Report
Particle Physics ReportParticle Physics Report
Particle Physics ReportDrew Silcock
 
Brian Covello: Review on Cycloidal Pathways Using Differential Equations
Brian Covello:  Review on Cycloidal Pathways Using Differential EquationsBrian Covello:  Review on Cycloidal Pathways Using Differential Equations
Brian Covello: Review on Cycloidal Pathways Using Differential EquationsBrian Covello
 
Kostadin Trencevski - Noncommutative Coordinates and Applications
Kostadin Trencevski - Noncommutative Coordinates and ApplicationsKostadin Trencevski - Noncommutative Coordinates and Applications
Kostadin Trencevski - Noncommutative Coordinates and ApplicationsSEENET-MTP
 
Applied III Chapter 4(1).pdf
Applied III  Chapter 4(1).pdfApplied III  Chapter 4(1).pdf
Applied III Chapter 4(1).pdfDawitThomas
 
Large variance and fat tail of damage by natural disaster
Large variance and fat tail of damage by natural disasterLarge variance and fat tail of damage by natural disaster
Large variance and fat tail of damage by natural disasterHang-Hyun Jo
 
A Rapid Location Independent Full Tensor Gravity Algorithm
A Rapid Location Independent Full Tensor Gravity AlgorithmA Rapid Location Independent Full Tensor Gravity Algorithm
A Rapid Location Independent Full Tensor Gravity AlgorithmPioneer Natural Resources
 
Crack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsCrack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsijtsrd
 
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...National Cheng Kung University
 

Similar to CS DECOMPOSITION (20)

Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
Differential geometry three dimensional space
Differential geometry   three dimensional spaceDifferential geometry   three dimensional space
Differential geometry three dimensional space
 
Signals and systems: part i solutions
Signals and systems: part i solutionsSignals and systems: part i solutions
Signals and systems: part i solutions
 
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
 
M. Dimitrijević, Noncommutative models of gauge and gravity theories
M. Dimitrijević, Noncommutative models of gauge and gravity theoriesM. Dimitrijević, Noncommutative models of gauge and gravity theories
M. Dimitrijević, Noncommutative models of gauge and gravity theories
 
Stability
StabilityStability
Stability
 
121593320 teorema-stokes
121593320 teorema-stokes121593320 teorema-stokes
121593320 teorema-stokes
 
Orbital shape-orientation
Orbital shape-orientationOrbital shape-orientation
Orbital shape-orientation
 
Dr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paperDr NV SRINIVASULU-Tpjrc ijaerd paper
Dr NV SRINIVASULU-Tpjrc ijaerd paper
 
Beam buckling
Beam bucklingBeam buckling
Beam buckling
 
exceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice modelsexceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice models
 
Particle Physics Report
Particle Physics ReportParticle Physics Report
Particle Physics Report
 
Brian Covello: Review on Cycloidal Pathways Using Differential Equations
Brian Covello:  Review on Cycloidal Pathways Using Differential EquationsBrian Covello:  Review on Cycloidal Pathways Using Differential Equations
Brian Covello: Review on Cycloidal Pathways Using Differential Equations
 
Kostadin Trencevski - Noncommutative Coordinates and Applications
Kostadin Trencevski - Noncommutative Coordinates and ApplicationsKostadin Trencevski - Noncommutative Coordinates and Applications
Kostadin Trencevski - Noncommutative Coordinates and Applications
 
Applied III Chapter 4(1).pdf
Applied III  Chapter 4(1).pdfApplied III  Chapter 4(1).pdf
Applied III Chapter 4(1).pdf
 
Large variance and fat tail of damage by natural disaster
Large variance and fat tail of damage by natural disasterLarge variance and fat tail of damage by natural disaster
Large variance and fat tail of damage by natural disaster
 
A Rapid Location Independent Full Tensor Gravity Algorithm
A Rapid Location Independent Full Tensor Gravity AlgorithmA Rapid Location Independent Full Tensor Gravity Algorithm
A Rapid Location Independent Full Tensor Gravity Algorithm
 
Crack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like formsCrack problems concerning boundaries of convex lens like forms
Crack problems concerning boundaries of convex lens like forms
 
PhotonModel
PhotonModelPhotonModel
PhotonModel
 
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
 

CS DECOMPOSITION

  • 1. CHERN-SIMONS DECOMPOSITION OF 3D GAUGE THEORIES AT LARGE DISTANCES Tuna Yıldırım (UIOWA, ASU) Arizona State University March 27, 2015 • Int.J.Mod.Phys.A, 30(7):1550034, 2015, arXiv:1311.1853 • arXiv:1410.8593 (preprint)
  • 2. Outline Wilson Loops and Knot Theory Geometric Quantization of Chern-Simons Theory Quantization of Topologically Massive Yang-Mills Theory
 - Chern-Simons Splitting Quantization of PureYang-Mills Theory
 - Chern-Simons Splitting Wilson Loops and Chern-Simons Splitting
  • 4. Wilson Loops Area Law hW(C)i / e AC (Mass gap, confined) Perimeter Law hW(C)i / e mLC (Mass gap, not confined) Ex: Yang-Mills in 2+1 D (and hopefully 3+1 D) Ex: Yang-Mills + Chern-Simons Ex: Chern-Simons Link Invariants hW(C)i ! (No mass gap, not confined) . . .
  • 5. Knot Theory A knot is a smooth embedding of a circle in a 3 or higher dimensional space. 6 l. Introduction that 5o does not depend on the metric at all. In fact, SQ can be understood as the integral of a three-form on a three-manifold. Gauge invariance and general covariance are the real reasons for the properties of the expectation value (1.17) that we have observed. Gauge invariance forced us to choose the external source to be expressed in terms of closed paths (conserved external currents), since only gauge-invariant quantities have an intrinsic mean- ing in gauge theories. Because of general covariance, the final result (1.17) only depends on the topological structure of the closed contours. This is why there is invariance under smooth deformations of the paths in E3 . In the previous section, the source term was represented by the simple two- component link shown in Fig. 1.1. But one can consider more complicated links, of course; an example is shown in Fig. 1.2. Figure 1.2. A link is a union of non-intersecting knots.
  • 7. Jones Polynomial and Skein Relations t 1 VL+ (t) t VL (t) = (t1/2 t 1/2 ) VL0 (t) Skein relation of Jones Polynomials The normalization condition is (the polynomial for the unknot) V0(t) = 1 VL+ (t) VL (t) VL0 (t)
  • 8. Jones Polynomial of the Trefoil Knot We start with two unknots t 1 t = (t1/2 t 1/2 ) = t1/2 t 1/2= 1 = 1 t 1 t = (t1/2 t 1/2 ) = t1/2 t 1/2 = 1= t5/2 t1/2
  • 9. Now we can calculate the Jones polynomial of the trefoil knot t 1 t = (t1/2 t 1/2 ) = 1 = t5/2 t1/2 = t + t3 t4 Jones Polynomial of the Trefoil Knot
  • 10. The Wilson loop integral is WR(C) = TrR ✓ Pexp i I c Aµdxµ ◆ A link L is a union of non-intersecting knots Ci < WR1 (C1) . . . WRn (Cn) >⌘< W(L) > [1] E.Witten, Quantum Field Theory and the Jones Polynomial, Comm. Math. Phys.,121:351, 1989. [2] P. Cotta-Ramussino, E. Guadagnini, M. Martellini, M. Mintchev, "Quantum Field Theory and Link Invariants", Nucl. Phys. B330 (1990) 557-574 Wilson Loops and Skein Relations[1,2]
  • 11. SL+ 1 SL = zSL0 Generalized Skein Relation [1] E.Witten, Quantum Field Theory and the Jones Polynomial, Comm. Math. Phys.,121:351, 1989. [2] P. Cotta-Ramussino, E. Guadagnini, M. Martellini, M. Mintchev, "Quantum Field Theory and Link Invariants", Nucl. Phys. B330 (1990) 557-574 Wilson Loops and Skein Relations[1,2] (HOMFLY polynomial) 1 = z = 1 2⇡ k 1 2N + O ✓ 1 k2 ◆ z = i 2⇡ k + O ✓ 1 k2 ◆ Where Here, SL is a polynomial of β and z=z(β). 
 For CS theory (in fundamental representation) hWL+ i 1 hWL i = z( )hWL0 i k: level number of CS
  • 13. Topologically Massive AdS Gravity[3,4] The action is S = Z d3 x  p (R 2⇤) + 1 2µ ✏µ⌫⇢ ✓ ↵ µ @⌫ ⇢↵ + 2 3 ↵ µ ⌫ ⇢↵ ◆ can be written as S[e] = 1 2 ✓ 1 1 µ ◆ SCS ⇥ A+ [e] ⇤ + 1 2 ✓ 1 + 1 µ ◆ SCS ⇥ A [e] ⇤ A± µ a b[e] = !µ a b[e] ± ✏a bceµ c SCS[A] = 1 2 Z ✏µ⌫⇢ ✓ Aµ a b@⌫A⇢ b a + 2 3 Aµ a cA⌫ c bA⇢ b a ◆ where and [3] S. Deser, R. Jackiw, and S. Templeton, 1982. [4] A. Achúcarro and P.K. Townsend, 1986.
  • 14. Topologically Massive AdS Gravity For small values of μ (near CS limit) S[e] ⇡ 1 2µ SCS ⇥ A+ [e] ⇤ + 1 2µ SCS ⇥ A [e] ⇤ We will see that this is analogous to TMYM at large distances (near CS limit) For infinite μ Analogous to YM at large distances S[e] = 1 2 SCS ⇥ A [e] ⇤ 1 2 SCS ⇥ A+ [e] ⇤
  • 16. Chern-Simons Theory SCS = k 4⇡ Z ⌃⇥[ti,tf ] d3 x ✏µ⌫↵ Tr ✓ Aµ@⌫A↵ + 2 3 AµA⌫A↵ ◆ SCS(A) ! SCS(Ag ) = SCS(A) + 2⇡k!(g) Under Aµ ! Ag µ = gAµg 1 (@µg)g 1 !(g) = 1 24⇡2 Z d3 x ✏µ⌫↵ Tr(g 1 @µgg 1 @⌫gg 1 @↵g) is an integer, called the winding number. k has to be an integer eiSCS (A) = eiSCS (Ag )
  • 17. Field equations: We choose the temporal gauge and ,z = x iy ¯z = x + iy Chern-Simons Theory is the Gauss’ law of CS theory Ga = ik 2⇡ Fa z¯z is the generator of infinitesimal gauge transformations SCS = k 4⇡ Z ⌃⇥[ti,tf ] d3 x ✏µ⌫↵ Tr ✓ Aµ@⌫A↵ + 2 3 AµA⌫A↵ ◆
  • 18. The conjugate momenta are and ⇧a¯z = ik 4⇡ Aa z⇧az = ik 4⇡ Aa ¯z Chern-Simons Theory Then the inner product is h1|2i = Z d (M) ⇤ 1 2 ! Z d (M)e K ⇤ 1 2 ⌦ = ik 2⇡ Z ⌃ Aa ¯z Aa z K = k 2⇡ Z ⌃ Aa ¯zAa z The phase space is Kähler with and Kähler potential We choose the Kähler polarization [Az, A¯z] = e 1 2 K [A¯z]
  • 19. The Wave Functional for CS[3,4] Aa z [Aa ¯z] = 2⇡ k Aa ¯z [Aa ¯z] [3] M. Bos and V.P. Nair, "Coherent State Quantization of Chern-Simons Theory", Int. J. Mod. Phys. A5, 959 (1990). [4] V.P.Nair, "Quantum Field Theory - A Modern Perspective", Springer, (2005). The quantum wave-functional must satisfy the Gauss’ law constraint Fa z¯z [Aa ¯z] = 0 If Σ is simply connected we can parametrize the gauge fields as A¯z = @¯zUU 1 Az = (U† 1 )@zU† U 2 SL(N, C) U(x, 0, C) = Pexp 0 @ Z x 0 C (A¯zd¯z + Azdz) 1 A @zA¯z @¯zAz + [Az, A¯z] = 0 where and U ! gU
  • 20. An infinitesimal gauge transformation on the wave functional = Z d2 z✏a ✓ @¯z Aa ¯z + fabc Ab ¯z Ac ¯z ◆ ✏ [A¯z] = k 2⇡ Z d2 z✏a (Fa z¯z @zAa ¯z) = k 2⇡ Z d2 z✏a (@zAa ¯z) ✏ [A¯z] = Z d2 z ✏Aa ¯z Aa ¯z then using , we getAa z [Aa ¯z] = 2⇡ k Aa ¯z [Aa ¯z] The Wave Functional for CS ✏Aa ¯z = D¯z✏a
  • 21. ✏ = k 2⇡ Z d2 z✏a (@zAa ¯z) [A¯z] = exp(kSW ZW (U)) This is a well known condition and it is solved by A¯z = @¯zUU 1 The Wave Functional for CS = Generally the wave-functional is in the form satisfies the Gauss’ law (gauge invariant) required to satisfy the Schrödinger’s equation = 1 H = 0 we take is where the scale dependence would be hidden( )
  • 22. The Measure (CS) The metric of the space of gauge potentials ds2 SL(N,C) = 8 Z Tr[( UU 1 )(U† 1 U† )] The metric of SL(N,C) Then the measure is dµ(A ) = det(D¯zDz)dµ(U, U† )<latexit sha1_base64="KiYftcdnHd6FKoetbaYQhBMFEZg=">AAACr3icbVHLbtQwFPWEVymvKSzZRIyQZiQ0SipUuqnUli5YFonQkZI03Dg3Gau2E9kOdGrlT/o1bOEH+Bs86SCYKVeydHTOub6vvOFMmyD4NfDu3L13/8HWw+1Hj588fTbcef5Z162iGNGa12qWg0bOJEaGGY6zRiGInONZfvF+qZ99RaVZLT+ZRYOpgEqyklEwjsqGe0Ui2nEiwMw1VfaomxwUaMYnmU1yUPaq606yq0lvit5E50kBVYVqkg1HwTTow78NwhUYkVWcZjuDPClq2gqUhnLQOg6DxqQWlGGUY7edtBoboBdQYeygBIE6tf2Anf/aMYVf1so9afye/TfDgtB6IXLn7CfZ1Jbk/7S4NeV+aplsWoOS3hQqW+6b2l9uyy+YQmr4wgGgirlefToHBdS4na5VWf6tdKnXJrEcDF66zhwr8RuthQBZ2ETQzvY7p8A3pAa6OExtwrE041GYKFbNzWTTlP81xX9MaeeuEm7e4DaIdqd70+Dj29Hh8eo8W+QleUXGJCTvyCH5QE5JRCi5Jt/JD/LT2/Vm3rn35cbqDVY5L8haeOw3ApPYcg==</latexit><latexit sha1_base64="KiYftcdnHd6FKoetbaYQhBMFEZg=">AAACr3icbVHLbtQwFPWEVymvKSzZRIyQZiQ0SipUuqnUli5YFonQkZI03Dg3Gau2E9kOdGrlT/o1bOEH+Bs86SCYKVeydHTOub6vvOFMmyD4NfDu3L13/8HWw+1Hj588fTbcef5Z162iGNGa12qWg0bOJEaGGY6zRiGInONZfvF+qZ99RaVZLT+ZRYOpgEqyklEwjsqGe0Ui2nEiwMw1VfaomxwUaMYnmU1yUPaq606yq0lvit5E50kBVYVqkg1HwTTow78NwhUYkVWcZjuDPClq2gqUhnLQOg6DxqQWlGGUY7edtBoboBdQYeygBIE6tf2Anf/aMYVf1so9afye/TfDgtB6IXLn7CfZ1Jbk/7S4NeV+aplsWoOS3hQqW+6b2l9uyy+YQmr4wgGgirlefToHBdS4na5VWf6tdKnXJrEcDF66zhwr8RuthQBZ2ETQzvY7p8A3pAa6OExtwrE041GYKFbNzWTTlP81xX9MaeeuEm7e4DaIdqd70+Dj29Hh8eo8W+QleUXGJCTvyCH5QE5JRCi5Jt/JD/LT2/Vm3rn35cbqDVY5L8haeOw3ApPYcg==</latexit> dµ(A ) = det(D¯zDz)dµ(H)<latexit sha1_base64="HD3wGYWslVZIGU02gp2WbVZ8HbY=">AAACpXicbVFda9RAFJ2NX7V+bfXRl+Ai7IIsSRH1Rajahz5JhW5bSEK4mdzsDp2ZhJkbdTvkT/hrfNV/4b9xNl3R3Xph4HDOuXO/ikYKS1H0axDcuHnr9p2du7v37j94+Gi49/jU1q3hOOO1rM15ARal0DgjQRLPG4OgColnxcWHlX72GY0VtT6hZYOZgrkWleBAnsqHL8pUteNUAS0sN+5dN3lbIo0Pc5cWYNxl1x3ml5PedDTJh6NoGvURXgfxGozYOo7zvUGRljVvFWriEqxN4qihzIEhwSV2u2lrsQF+AXNMPNSg0GauH6sLn3umDKva+Kcp7Nl/Mxwoa5eq8M6+/21tRf5PS1qq3mRO6KYl1PyqUNXKkOpwtaOwFAY5yaUHwI3wvYZ8AQY4+U1uVFn9bWxlNyZxEgi/+s48q/ELr5UCXbpU8c71m+Ygt6QGuiTOXCqxovEoTo2YL2iybSr+mpI/pqzzV4m3b3AdzPanr6bRp5ejg/fr8+ywp+wZG7OYvWYH7Igdsxnj7Bv7zn6wn8E4+BicBKdX1mCwznnCNiLIfwMk69Rc</latexit><latexit sha1_base64="HD3wGYWslVZIGU02gp2WbVZ8HbY=">AAACpXicbVFda9RAFJ2NX7V+bfXRl+Ai7IIsSRH1Rajahz5JhW5bSEK4mdzsDp2ZhJkbdTvkT/hrfNV/4b9xNl3R3Xph4HDOuXO/ikYKS1H0axDcuHnr9p2du7v37j94+Gi49/jU1q3hOOO1rM15ARal0DgjQRLPG4OgColnxcWHlX72GY0VtT6hZYOZgrkWleBAnsqHL8pUteNUAS0sN+5dN3lbIo0Pc5cWYNxl1x3ml5PedDTJh6NoGvURXgfxGozYOo7zvUGRljVvFWriEqxN4qihzIEhwSV2u2lrsQF+AXNMPNSg0GauH6sLn3umDKva+Kcp7Nl/Mxwoa5eq8M6+/21tRf5PS1qq3mRO6KYl1PyqUNXKkOpwtaOwFAY5yaUHwI3wvYZ8AQY4+U1uVFn9bWxlNyZxEgi/+s48q/ELr5UCXbpU8c71m+Ygt6QGuiTOXCqxovEoTo2YL2iybSr+mpI/pqzzV4m3b3AdzPanr6bRp5ejg/fr8+ywp+wZG7OYvWYH7Igdsxnj7Bv7zn6wn8E4+BicBKdX1mCwznnCNiLIfwMk69Rc</latexit> A<latexit sha1_base64="ogCDyQ1nIIIz/VJofZm/sC+SkCU=">AAACgnicbVFNb9QwEPWGFkr5aEuPXKKukIqQVkmLoAcO/bhwLBJLKyVRNfFOdq36I7In0JWVn8G1/C7+TZ10EeyWkSw9vffseZ4paykcJcnvQfRobf3xk42nm8+ev3i5tb3z6pszjeU45kYae1mCQyk0jkmQxMvaIqhS4kV5fdbpF9/ROmH0V5rXWCiYalEJDhSoLFdAM8etP2mvtofJKOkrfgjSBRiyRZ1f7QzKfGJ4o1ATl+BcliY1FR4sCS6x3cwbhzXwa5hiFqAGha7wfeY2fhOYSVwZG46muGf/veFBOTdXZXD2GVe1jvyfljVUHRVe6Loh1Py+UdXImEzcDSCeCIuc5DwA4FaErDGfgQVOYUxLXbq3ravc0k+8BMKbkCywGn9woxToic8Vb30/TQ5yRaqhzdLC5xIr2h+muRXTGb1dNZV/TdkfU9FtJV3dwUMwPhh9GCVf3g+PTxfr2WCv2R7bZyn7yI7ZZ3bOxowzw36yW/YrWo/eRWl0eG+NBos7u2ypok93GuPHLQ==</latexit><latexit sha1_base64="ogCDyQ1nIIIz/VJofZm/sC+SkCU=">AAACgnicbVFNb9QwEPWGFkr5aEuPXKKukIqQVkmLoAcO/bhwLBJLKyVRNfFOdq36I7In0JWVn8G1/C7+TZ10EeyWkSw9vffseZ4paykcJcnvQfRobf3xk42nm8+ev3i5tb3z6pszjeU45kYae1mCQyk0jkmQxMvaIqhS4kV5fdbpF9/ROmH0V5rXWCiYalEJDhSoLFdAM8etP2mvtofJKOkrfgjSBRiyRZ1f7QzKfGJ4o1ATl+BcliY1FR4sCS6x3cwbhzXwa5hiFqAGha7wfeY2fhOYSVwZG46muGf/veFBOTdXZXD2GVe1jvyfljVUHRVe6Loh1Py+UdXImEzcDSCeCIuc5DwA4FaErDGfgQVOYUxLXbq3ravc0k+8BMKbkCywGn9woxToic8Vb30/TQ5yRaqhzdLC5xIr2h+muRXTGb1dNZV/TdkfU9FtJV3dwUMwPhh9GCVf3g+PTxfr2WCv2R7bZyn7yI7ZZ3bOxowzw36yW/YrWo/eRWl0eG+NBos7u2ypok93GuPHLQ==</latexit> ds2 A = Z d2 x Aa i Aa i = 8 Z Tr( A¯z Az) =8 Z Tr[D¯z( UU 1 )Dz(U† 1 U† )] <latexit sha1_base64="ap6Vlt+VXvOTe+JnMZs+QXH1DAM=">AAADJnicbZHLbtNAFIbH5lbCpSldshkRUSWLRnGEoCwi9bZgWaSaVvI41vF4nIw6vmhmDE1GfiAWPAsrhNjxKEzchJKUI1n6/Z/vzO2PS8GVHgx+Oe69+w8ePtp63Hry9Nnz7fbOi0+qqCRlPi1EIS9jUEzwnPmaa8EuS8kgiwW7iK9OFv2Lz0wqXuTnelayMINJzlNOQVsran9L1HgYkQz0VFFpjurRHuG5xsl4eE0wSZjQgI/GEPG1n9H+QYOdy+7KjgyJQZp5Xf915j1CWqM9vGKD01toNedjf2z2vbp3Gs27VpIEJhMmrbMCxkurF7aidmfQHzSF7wpvKTpoWWfRjhOTpKBVxnJNBSgVeINShwak5lSwukUqxUqgVzBhgZU5ZEyFpnnXGr+2ToLTQtrPXqBx/50wkCk1y2JLNg+42VuY/+sFlU4PQsPzstIspzcbpZXAusCLkHDCJaNazKwAKrk9K6ZTkEC1jXJtl8XaUqVq7SZGgGbX9mTWzdkXWmQZ5IkhGa1NEzUFsdEqoQ680BDBUt3teETyyVT3NqH4FgpWUFjbVLzNDO4Kf9h/2x98fNM5PF7Gs4Veoleoizz0Dh2iD+gM+Yg6u85759g5cb+6390f7s8b1HWWM7tordzffwCD6wGV</latexit><latexit sha1_base64="ap6Vlt+VXvOTe+JnMZs+QXH1DAM=">AAADJnicbZHLbtNAFIbH5lbCpSldshkRUSWLRnGEoCwi9bZgWaSaVvI41vF4nIw6vmhmDE1GfiAWPAsrhNjxKEzchJKUI1n6/Z/vzO2PS8GVHgx+Oe69+w8ePtp63Hry9Nnz7fbOi0+qqCRlPi1EIS9jUEzwnPmaa8EuS8kgiwW7iK9OFv2Lz0wqXuTnelayMINJzlNOQVsran9L1HgYkQz0VFFpjurRHuG5xsl4eE0wSZjQgI/GEPG1n9H+QYOdy+7KjgyJQZp5Xf915j1CWqM9vGKD01toNedjf2z2vbp3Gs27VpIEJhMmrbMCxkurF7aidmfQHzSF7wpvKTpoWWfRjhOTpKBVxnJNBSgVeINShwak5lSwukUqxUqgVzBhgZU5ZEyFpnnXGr+2ToLTQtrPXqBx/50wkCk1y2JLNg+42VuY/+sFlU4PQsPzstIspzcbpZXAusCLkHDCJaNazKwAKrk9K6ZTkEC1jXJtl8XaUqVq7SZGgGbX9mTWzdkXWmQZ5IkhGa1NEzUFsdEqoQ680BDBUt3teETyyVT3NqH4FgpWUFjbVLzNDO4Kf9h/2x98fNM5PF7Gs4Veoleoizz0Dh2iD+gM+Yg6u85759g5cb+6390f7s8b1HWWM7tordzffwCD6wGV</latexit> where and det(D¯zDz) = constant ⇥ e2cASW ZW (H) H = U† U H 2 SL(N, C)/SU(N)
  • 23. The Inner Product for CS Theory The inner product is given by h1|2i = Z d (M) ⇤ 1 2 ! Z d (M)e K ⇤ 1 2 h | iCS = Z dµ(H)e(2ca+k)SW ZW (H) <latexit sha1_base64="P8z68TnDjPOmAGjqM42fHT3vpfE=">AAACunicbVFbb9MwFHbDZWPcOnjkxaJCaoVUJROCvUwa7GWPRaN0Ig7RiXPSWrWdyHaAKuT38Gt4BfFvcLoiaMeRfPTpO9/xuWWVFNaF4a9ecOPmrdt7+3cO7t67/+Bh//DRe1vWhuOUl7I0lxlYlELj1Akn8bIyCCqTOMuWZ1189gmNFaV+51YVJgrmWhSCg/NU2n/NJOi5RMomVnztHGVmzaTN2UV7woR2NGeqHp6P8GMzPOIpPF+OLtJm9mHWerJN+4NwHK6NXgfRBgzIxibpYS9jeclrhdpxCdbGUVi5pAHjBJfYHrDaYgV8CXOMPdSg0CbNetaWPvNMTovS+OdbW7P/ZjSgrF2pzCsVuIXdjXXk/2Jx7YrjpBG6qh1qflWoqCV1Je0WR3NhkDu58gC4Eb5XyhdggDu/3q0q3d/GFnZrkkaCwy++M89q/MxLpUDnDVO89c5ncJA7oQraOEoaJrFww0HEjJgv3GhXlP0VxX9ESXeVaPcG18H0aPxyHL59MTh9sznPPnlCnpIhicgrckrOyYRMCSffyHfyg/wMTgIeiGB5JQ16m5zHZMsC9xufmdvR</latexit><latexit sha1_base64="P8z68TnDjPOmAGjqM42fHT3vpfE=">AAACunicbVFbb9MwFHbDZWPcOnjkxaJCaoVUJROCvUwa7GWPRaN0Ig7RiXPSWrWdyHaAKuT38Gt4BfFvcLoiaMeRfPTpO9/xuWWVFNaF4a9ecOPmrdt7+3cO7t67/+Bh//DRe1vWhuOUl7I0lxlYlELj1Akn8bIyCCqTOMuWZ1189gmNFaV+51YVJgrmWhSCg/NU2n/NJOi5RMomVnztHGVmzaTN2UV7woR2NGeqHp6P8GMzPOIpPF+OLtJm9mHWerJN+4NwHK6NXgfRBgzIxibpYS9jeclrhdpxCdbGUVi5pAHjBJfYHrDaYgV8CXOMPdSg0CbNetaWPvNMTovS+OdbW7P/ZjSgrF2pzCsVuIXdjXXk/2Jx7YrjpBG6qh1qflWoqCV1Je0WR3NhkDu58gC4Eb5XyhdggDu/3q0q3d/GFnZrkkaCwy++M89q/MxLpUDnDVO89c5ncJA7oQraOEoaJrFww0HEjJgv3GhXlP0VxX9ESXeVaPcG18H0aPxyHL59MTh9sznPPnlCnpIhicgrckrOyYRMCSffyHfyg/wMTgIeiGB5JQ16m5zHZMsC9xufmdvR</latexit> CS inner product
  • 25. Topologically Massive Yang-Mills Theory The action is given by Here m is called the topological mass. The field equations of this theory are, ✏µ↵ F↵ + 1 m D⌫Fµ⌫ = 0 ST MY M =SCS + SY M = k 4⇡ Z ⌃⇥[ti,tf ] d3 x ✏µ⌫↵ Tr ✓ Aµ@⌫A↵ + 2 3 AµA⌫A↵ ◆ k 4⇡ 1 4m Z ⌃⇥[ti,tf ] d3 x Tr Fµ⌫Fµ⌫
  • 26. Topologically Massive Yang-Mills Theory To simplify the notation, we define, where˜Az = Az + Ez ˜A¯z = A¯z + E¯z Ez = i 2m F0¯z E¯z = i 2m F0z then the momenta are ⇧az = ik 4⇡ ˜Aa ¯z <latexit sha1_base64="TesU9nwYU3Zk+nzxUBkamcnVdso=">AAACpnicbVFNj9MwEHXD17J8deHIJaJC2j1QJWgFXJAWuHCjSISuFGfLxHFaq7YT2ROga/lX8Gu4wq/g3+B0i6BdRrL19N4bz3imbKWwmCS/BtGVq9eu39i7uX/r9p2794YH9z/apjOMZ6yRjTktwXIpNM9QoOSnreGgSsmn5fJNr08/c2NFoz/gquWFgrkWtWCAgZoNn9CJOHNw7l/S2gBzYundMW2Fpyhkxd0rfwYzR0sw7tz72XCUjJN1xJdBugEjsonJ7GBQ0qphneIamQRr8zRpsXBgUDDJ/T7tLG+BLWHO8wA1KG4Lt/6Xjx8HporrxoSjMV6z/2Y4UNauVBmcCnBhd7We/J+Wd1i/KJzQbYdcs4tCdSdjbOJ+SHElDGcoVwEAMyL0GrMFhPlgGOVWlf5tY2u79RMnAfnX0FlgNf/CGqVAV44q5sMVMhjIHakFn6eFo5LXeDhKqRHzBR7tmsq/pvyPqei3ku7u4DLIno6fjZP3x6OT15v17JGH5BE5JCl5Tk7IWzIhGWHkG/lOfpCf0VH0Lsqi6YU1GmxyHpCtiD79BvgQ1pM=</latexit><latexit sha1_base64="TesU9nwYU3Zk+nzxUBkamcnVdso=">AAACpnicbVFNj9MwEHXD17J8deHIJaJC2j1QJWgFXJAWuHCjSISuFGfLxHFaq7YT2ROga/lX8Gu4wq/g3+B0i6BdRrL19N4bz3imbKWwmCS/BtGVq9eu39i7uX/r9p2794YH9z/apjOMZ6yRjTktwXIpNM9QoOSnreGgSsmn5fJNr08/c2NFoz/gquWFgrkWtWCAgZoNn9CJOHNw7l/S2gBzYundMW2Fpyhkxd0rfwYzR0sw7tz72XCUjJN1xJdBugEjsonJ7GBQ0qphneIamQRr8zRpsXBgUDDJ/T7tLG+BLWHO8wA1KG4Lt/6Xjx8HporrxoSjMV6z/2Y4UNauVBmcCnBhd7We/J+Wd1i/KJzQbYdcs4tCdSdjbOJ+SHElDGcoVwEAMyL0GrMFhPlgGOVWlf5tY2u79RMnAfnX0FlgNf/CGqVAV44q5sMVMhjIHakFn6eFo5LXeDhKqRHzBR7tmsq/pvyPqei3ku7u4DLIno6fjZP3x6OT15v17JGH5BE5JCl5Tk7IWzIhGWHkG/lOfpCf0VH0Lsqi6YU1GmxyHpCtiD79BvgQ1pM=</latexit> ⇧a¯z = ik 4⇡ ˜Aa z <latexit sha1_base64="D9et4XQC+Z1dn+ac3xsyaup2yho=">AAACpXicbVHbbhMxEHWWWym3FB55WREhBQmi3aqCviAVeOEJBalpK623q1nvbGLF9q5sbyG1/BN8Da/wF/wNThoESRnJ1tE5ZzzjmbIV3Ngk+dWLbty8dfvOzt3de/cfPHzU33t8YppOM5ywRjT6rASDgiucWG4FnrUaQZYCT8v5h6V+eoHa8EYd20WLuYSp4jVnYANV9F/SMT93QEvQ7tL7t69orYE5PvfugLbcU8tFhe6dP4fisugPklGyivg6SNdgQNYxLvZ6Ja0a1klUlgkwJkuT1uYOtOVMoN+lncEW2BymmAWoQKLJ3epbPn4emCquGx2OsvGK/TfDgTRmIcvglGBnZltbkv/Tss7Wh7njqu0sKnZVqO5EbJt4OaO44hqZFYsAgGkeeo3ZDMJcbJjkRpXl29rUZuMnToDFr6GzwCr8whopQVWOSubDFTIYiC2pBZ+luaMCazscpFTz6cy+2DaVf03ZH1Puw1bS7R1cB5P90etR8vlgcPR+vZ4d8pQ8I0OSkjfkiHwkYzIhjHwj38kP8jMaRp+i4+jkyhr11jlPyEZExW8W2dW+</latexit><latexit sha1_base64="D9et4XQC+Z1dn+ac3xsyaup2yho=">AAACpXicbVHbbhMxEHWWWym3FB55WREhBQmi3aqCviAVeOEJBalpK623q1nvbGLF9q5sbyG1/BN8Da/wF/wNThoESRnJ1tE5ZzzjmbIV3Ngk+dWLbty8dfvOzt3de/cfPHzU33t8YppOM5ywRjT6rASDgiucWG4FnrUaQZYCT8v5h6V+eoHa8EYd20WLuYSp4jVnYANV9F/SMT93QEvQ7tL7t69orYE5PvfugLbcU8tFhe6dP4fisugPklGyivg6SNdgQNYxLvZ6Ja0a1klUlgkwJkuT1uYOtOVMoN+lncEW2BymmAWoQKLJ3epbPn4emCquGx2OsvGK/TfDgTRmIcvglGBnZltbkv/Tss7Wh7njqu0sKnZVqO5EbJt4OaO44hqZFYsAgGkeeo3ZDMJcbJjkRpXl29rUZuMnToDFr6GzwCr8whopQVWOSubDFTIYiC2pBZ+luaMCazscpFTz6cy+2DaVf03ZH1Puw1bS7R1cB5P90etR8vlgcPR+vZ4d8pQ8I0OSkjfkiHwkYzIhjHwj38kP8jMaRp+i4+jkyhr11jlPyEZExW8W2dW+</latexit> (transform like gauge fields) The Kähler potential is K = k 4⇡ Z ⌃ ( ˜Aa ¯zAa z + Aa ¯z ˜Aa z) ⌦ = ik 4⇡ Z ⌃ ( ˜Aa ¯z Aa z + Aa ¯z ˜Aa z)The symplectic two-form is
  • 27. Topologically Massive Yang-Mills Theory ˜Aµ = Aµ + 1 2m ✏µ↵ F↵ Bz = 1 2 ( ˜A1 + iA2) B¯z = 1 2 ( ˜A1 iA2) Cz = 1 2 (A1 + i ˜A2) C¯z = 1 2 (A1 i ˜A2) Using the mixed gauge fields ⌦ = ik 4⇡ Z ⌃ ( Ba ¯z Ba z + Ca ¯z Ca z ) TMYM phase space consists of two Chern-Simons phase spaces with levels k/2
  • 28. We choose the Kähler polarization [Az, A¯z, ˜Az, ˜A¯z] = e 1 2 K [A¯z, ˜A¯z] Topologically Massive Yang-Mills Theory An infinitesimal gauge transformation on the wave-functional ✏ [A¯z, ˜A¯z] = Z d2 z ✓ Aa ¯z ✏Aa ¯z + ˜Aa ¯z ✏ ˜Aa ¯z ◆ = k 4⇡ Z d2 z✏a ⇣ @z ˜A¯z + @zA¯z 2Fz¯z DzE¯z + D¯zEz ⌘a The Gauss law [2Fz¯z + DzE¯z D¯zEz] = 0
  • 29. then the infinitesimal gauge transformation becomes ✏ = k 4⇡ Z d2 z✏a (@¯z ˜Aa z + @¯zAa z) Topologically Massive Yang-Mills Theory same solution, using ˜A¯z = @¯z ˜U ˜U 1 [A¯z, ˜A¯z] = exp  k 2 (SW ZW ( ˜U) + SW ZW (U)) Here is a gauge invariant functional. It is required to satisfy the Schrödinger’s equation.
  • 30. The Hamiltonian [Ea z (x), Eb ¯z(y)] = 8⇡ k ab (2) (x y) Ez E¯z is the creation and is the annihilation operator H = m 2↵ (Ea ¯z Ea z + Ea z Ea ¯z ) | {z } + ↵ m Ba Ba | {z } T V To get rid of the infinite energy term, Hamiltonian needs to be normal ordered as H = m ↵ Ea ¯z Ea z + ↵ m Ba Ba <latexit sha1_base64="vTuclAzsq8uECJqikuYr39STqTA=">AAACLXicbVDLSgMxFM34rPVVdelmsAiCUKYi6kYolUKXFRxb6LTlTpppQzMPkozQhvkiN/6KLgQfuPU3TKez0NZLAifnnMvNPW7EqJCW9WYsLa+srq3nNvKbW9s7u4W9/XsRxhwTG4cs5C0XBGE0ILakkpFWxAn4LiNNd3Qz1ZsPhAsaBndyHJGOD4OAehSD1FSvUHN8kEMMTNWTa8fjgJWfKAdYNISk1oWeclzgapKkj8npzJLp2lrtgj69QtEqWWmZi6CcgSLKqtErvDj9EMc+CSRmIES7bEWyo4BLihlJ8k4sSAR4BAPS1jAAn4iOStdNzGPN9E0v5PoG0kzZ3x0KfCHGvqud0+XEvDYl/9PasfSuOooGUSxJgGeDvJiZMjSn2Zl9ygmWbKwBYE71X008BB2I1AnndQjl+ZUXgX1WuihZt+fFSjVLI4cO0RE6QWV0iSqojhrIRhg9omf0jj6MJ+PV+DS+ZtYlI+s5QH/K+P4BTD6qtg==</latexit><latexit sha1_base64="vTuclAzsq8uECJqikuYr39STqTA=">AAACLXicbVDLSgMxFM34rPVVdelmsAiCUKYi6kYolUKXFRxb6LTlTpppQzMPkozQhvkiN/6KLgQfuPU3TKez0NZLAifnnMvNPW7EqJCW9WYsLa+srq3nNvKbW9s7u4W9/XsRxhwTG4cs5C0XBGE0ILakkpFWxAn4LiNNd3Qz1ZsPhAsaBndyHJGOD4OAehSD1FSvUHN8kEMMTNWTa8fjgJWfKAdYNISk1oWeclzgapKkj8npzJLp2lrtgj69QtEqWWmZi6CcgSLKqtErvDj9EMc+CSRmIES7bEWyo4BLihlJ8k4sSAR4BAPS1jAAn4iOStdNzGPN9E0v5PoG0kzZ3x0KfCHGvqud0+XEvDYl/9PasfSuOooGUSxJgGeDvJiZMjSn2Zl9ygmWbKwBYE71X008BB2I1AnndQjl+ZUXgX1WuihZt+fFSjVLI4cO0RE6QWV0iSqojhrIRhg9omf0jj6MJ+PV+DS+ZtYlI+s5QH/K+P4BTD6qtg==</latexit> The vacuum wave-functional is given by H = 0<latexit sha1_base64="NIE2dL+DdcZa3wGnsRsnufnQwms=">AAAB+XicbVBNS8NAFHypX7V+pXr0slgETyUVUS9C0UuPFYwtNKFstpt26WYTdjdKif0pXjyoePWfePPfuGlz0NaBhWHmPd7sBAlnSjvOt1VaWV1b3yhvVra2d3b37Or+vYpTSahLYh7LboAV5UxQVzPNaTeRFEcBp51gfJP7nQcqFYvFnZ4k1I/wULCQEayN1LerXoT1iGCetaZeW7Erp2/XnLozA1omjYLUoEC7b395g5ikERWacKxUr+Ek2s+w1IxwOq14qaIJJmM8pD1DBY6o8rNZ9Ck6NsoAhbE0T2g0U39vZDhSahIFZjIPqha9XPzP66U6vPQzJpJUU0Hmh8KUIx2jvAc0YJISzSeGYCKZyYrICEtMtGmrYkpoLH55mbin9fO6c3tWa14XbZThEI7gBBpwAU1oQRtcIPAIz/AKb9aT9WK9Wx/z0ZJV7BzAH1ifP0+Qk5A=</latexit><latexit sha1_base64="NIE2dL+DdcZa3wGnsRsnufnQwms=">AAAB+XicbVBNS8NAFHypX7V+pXr0slgETyUVUS9C0UuPFYwtNKFstpt26WYTdjdKif0pXjyoePWfePPfuGlz0NaBhWHmPd7sBAlnSjvOt1VaWV1b3yhvVra2d3b37Or+vYpTSahLYh7LboAV5UxQVzPNaTeRFEcBp51gfJP7nQcqFYvFnZ4k1I/wULCQEayN1LerXoT1iGCetaZeW7Erp2/XnLozA1omjYLUoEC7b395g5ikERWacKxUr+Ek2s+w1IxwOq14qaIJJmM8pD1DBY6o8rNZ9Ck6NsoAhbE0T2g0U39vZDhSahIFZjIPqha9XPzP66U6vPQzJpJUU0Hmh8KUIx2jvAc0YJISzSeGYCKZyYrICEtMtGmrYkpoLH55mbin9fO6c3tWa14XbZThEI7gBBpwAU1oQRtcIPAIz/AKb9aT9WK9Wx/z0ZJV7BzAH1ifP0+Qk5A=</latexit> ↵ = 4⇡ k
  • 31. The Hamiltonian In the strong coupling limit(large m), we can ignore the potential energy term To find the vacuum wave-functional Ez 0 = 0 = exp ✓ k 8⇡ Z Ea ¯z Ea z ◆ = 1 + O(1/m2 ) Ea z = Ea z 8⇡ k ln Ea ¯z ˜Az = Az + Ezwhere
  • 32. The Measure(TMYM) The metric of the space of gauge potentials ds2 A = 4 Z Tr( ˜A¯z Az + A¯z ˜Az) =4 Z Tr[ ˜D¯z( ˜U ˜U 1 )Dz(U† 1 U† ) + D¯z( UU 1 ) ˜Dz( ˜U† 1 ˜U† )] <latexit sha1_base64="mlaaSOkPPnrOSBjxUb/NC+gdpzc=">AAADqHicbVJbb9MwGHUWLqPcNnjkxaJialWtSqYK9jJpgz7wuEkLHUrSynGc1ppzke0MWss/g1/DK/wI/g1OG9ZLsBTp6Jzznc/x90UFo0I6zh9rz37w8NHj/Setp8+ev3h5cPjqi8hLjomHc5bzmwgJwmhGPEklIzcFJyiNGBlFt58qfXRHuKB5di3nBQlTNM1oQjGShpocWv1YjE8mKkiRnAnM1YXWZ0fHg4BmEl7zThATJhEMJGUxMaJxRoirhdawli4mi949vFcbdYtuELTOjuAA1tF+rQ03MnfaeXqNxurY1d3hZNHxxiqI0XRKODRUXbEmdbc3bCZ6laNKWHdddDbCm4lNUXfD1uSg7fSd5YFN4NagDepzaV44CuIclynJJGZICN91ChkqxCXFjOhWUApSIHyLpsQ3MEMpEaFaTlbDd4aJYZJz85lXW7KbFQqlQszTyDiXA9zVKvJ/ml/K5DRUNCtKSTK8apSUDMocVmsCY8oJlmxuAMKcmrtCPEMcYWmWaatLlc1FIrb+RDEkyXdzM8Nm5BvO0xRlsdkyrFerhhHbkQqkfTdUASOJ7LTdgNPpTHZ3TdHa5P8zhdpMxd2dQRN4J/33fedq0D7/WI9nH7wBb0EHuOADOAefwSXwALZ+WD+tX9Zvu2df2SP768q6Z9U1r8HWsaO/UvIz3Q==</latexit><latexit sha1_base64="mlaaSOkPPnrOSBjxUb/NC+gdpzc=">AAADqHicbVJbb9MwGHUWLqPcNnjkxaJialWtSqYK9jJpgz7wuEkLHUrSynGc1ppzke0MWss/g1/DK/wI/g1OG9ZLsBTp6Jzznc/x90UFo0I6zh9rz37w8NHj/Setp8+ev3h5cPjqi8hLjomHc5bzmwgJwmhGPEklIzcFJyiNGBlFt58qfXRHuKB5di3nBQlTNM1oQjGShpocWv1YjE8mKkiRnAnM1YXWZ0fHg4BmEl7zThATJhEMJGUxMaJxRoirhdawli4mi949vFcbdYtuELTOjuAA1tF+rQ03MnfaeXqNxurY1d3hZNHxxiqI0XRKODRUXbEmdbc3bCZ6laNKWHdddDbCm4lNUXfD1uSg7fSd5YFN4NagDepzaV44CuIclynJJGZICN91ChkqxCXFjOhWUApSIHyLpsQ3MEMpEaFaTlbDd4aJYZJz85lXW7KbFQqlQszTyDiXA9zVKvJ/ml/K5DRUNCtKSTK8apSUDMocVmsCY8oJlmxuAMKcmrtCPEMcYWmWaatLlc1FIrb+RDEkyXdzM8Nm5BvO0xRlsdkyrFerhhHbkQqkfTdUASOJ7LTdgNPpTHZ3TdHa5P8zhdpMxd2dQRN4J/33fedq0D7/WI9nH7wBb0EHuOADOAefwSXwALZ+WD+tX9Zvu2df2SP768q6Z9U1r8HWsaO/UvIz3Q==</latexit> The measure dµ(A ) = det( ˜D¯zDz)det(D¯z ˜Dz)dµ( ˜U† U)dµ(U† ˜U)<latexit sha1_base64="kGffsJZLXqNjyYN9nSQj9Y0Pfvs=">AAAC93icbVHLjtMwFHXCayivDsOOTUSF1GyqZISADdIAXbAcJMKM1ITIcW5Sa+wksh2gtcy3sEJs+Rz2fAhOUijtcCVLR+eca1/fkzWMShUEPx33ytVr128c3Bzdun3n7r3x4f33sm4FgYjUrBbnGZbAaAWRoorBeSMA84zBWXbxutPPPoKQtK7eqVUDCcdlRQtKsLJUOv6Sx7ydxhyrpSRCvzT+ixzUNFaU5aDnJtVxhoVeGzNP177XafMtt7Wt/eGigYjMBx3nuCxBmGhQoi3z1+SP0vEkmAV9eZdBuAETtKnT9NDJ4rwmLYdKEYalXIRBoxKNhaKEgRnFrYQGkwtcwsLCCnOQie4XZbzHlsm9ohb2VMrr2X87NOZSrnhmnf1G9rWO/J+2aFXxPNG0aloFFRkeKlrmqdrrtu7lVABRbGUBJoLaWT2yxAITZbPZeaW7W8hC7vxEM6zgs53MshV8IjXnuMp1zInRfXYEsz2pwWYRJjpmUKjpJIwFLZfK3zdlW9PijykxNpVwP4PLIDqePZ0Fb59MTl5t4jlAD9EjNEUheoZO0Bt0iiJE0C9n5Bw5D9y1+9X95n4frK6z6TlCO+X++A1qdfTV</latexit><latexit sha1_base64="kGffsJZLXqNjyYN9nSQj9Y0Pfvs=">AAAC93icbVHLjtMwFHXCayivDsOOTUSF1GyqZISADdIAXbAcJMKM1ITIcW5Sa+wksh2gtcy3sEJs+Rz2fAhOUijtcCVLR+eca1/fkzWMShUEPx33ytVr128c3Bzdun3n7r3x4f33sm4FgYjUrBbnGZbAaAWRoorBeSMA84zBWXbxutPPPoKQtK7eqVUDCcdlRQtKsLJUOv6Sx7ydxhyrpSRCvzT+ixzUNFaU5aDnJtVxhoVeGzNP177XafMtt7Wt/eGigYjMBx3nuCxBmGhQoi3z1+SP0vEkmAV9eZdBuAETtKnT9NDJ4rwmLYdKEYalXIRBoxKNhaKEgRnFrYQGkwtcwsLCCnOQie4XZbzHlsm9ohb2VMrr2X87NOZSrnhmnf1G9rWO/J+2aFXxPNG0aloFFRkeKlrmqdrrtu7lVABRbGUBJoLaWT2yxAITZbPZeaW7W8hC7vxEM6zgs53MshV8IjXnuMp1zInRfXYEsz2pwWYRJjpmUKjpJIwFLZfK3zdlW9PijykxNpVwP4PLIDqePZ0Fb59MTl5t4jlAD9EjNEUheoZO0Bt0iiJE0C9n5Bw5D9y1+9X95n4frK6z6TlCO+X++A1qdfTV</latexit> A<latexit sha1_base64="ogCDyQ1nIIIz/VJofZm/sC+SkCU=">AAACgnicbVFNb9QwEPWGFkr5aEuPXKKukIqQVkmLoAcO/bhwLBJLKyVRNfFOdq36I7In0JWVn8G1/C7+TZ10EeyWkSw9vffseZ4paykcJcnvQfRobf3xk42nm8+ev3i5tb3z6pszjeU45kYae1mCQyk0jkmQxMvaIqhS4kV5fdbpF9/ROmH0V5rXWCiYalEJDhSoLFdAM8etP2mvtofJKOkrfgjSBRiyRZ1f7QzKfGJ4o1ATl+BcliY1FR4sCS6x3cwbhzXwa5hiFqAGha7wfeY2fhOYSVwZG46muGf/veFBOTdXZXD2GVe1jvyfljVUHRVe6Loh1Py+UdXImEzcDSCeCIuc5DwA4FaErDGfgQVOYUxLXbq3ravc0k+8BMKbkCywGn9woxToic8Vb30/TQ5yRaqhzdLC5xIr2h+muRXTGb1dNZV/TdkfU9FtJV3dwUMwPhh9GCVf3g+PTxfr2WCv2R7bZyn7yI7ZZ3bOxowzw36yW/YrWo/eRWl0eG+NBos7u2ypok93GuPHLQ==</latexit><latexit sha1_base64="ogCDyQ1nIIIz/VJofZm/sC+SkCU=">AAACgnicbVFNb9QwEPWGFkr5aEuPXKKukIqQVkmLoAcO/bhwLBJLKyVRNfFOdq36I7In0JWVn8G1/C7+TZ10EeyWkSw9vffseZ4paykcJcnvQfRobf3xk42nm8+ev3i5tb3z6pszjeU45kYae1mCQyk0jkmQxMvaIqhS4kV5fdbpF9/ROmH0V5rXWCiYalEJDhSoLFdAM8etP2mvtofJKOkrfgjSBRiyRZ1f7QzKfGJ4o1ATl+BcliY1FR4sCS6x3cwbhzXwa5hiFqAGha7wfeY2fhOYSVwZG46muGf/veFBOTdXZXD2GVe1jvyfljVUHRVe6Loh1Py+UdXImEzcDSCeCIuc5DwA4FaErDGfgQVOYUxLXbq3ravc0k+8BMKbkCywGn9woxToic8Vb30/TQ5yRaqhzdLC5xIr2h+muRXTGb1dNZV/TdkfU9FtJV3dwUMwPhh9GCVf3g+PTxfr2WCv2R7bZyn7yI7ZZ3bOxowzw36yW/YrWo/eRWl0eG+NBos7u2ypok93GuPHLQ==</latexit> |{z} |{z} N N† = = where det( ˜D¯zDz)det(D¯z ˜Dz) = constant ⇥ e2cA SW ZW (N)+SW ZW (N† )
  • 33. TMYM and CS ⇤ 0 0 = e k 8⇡ R (Ea z Ea ¯z +Ea ¯z Ea z ) = 1 + O(1/m2 )<latexit sha1_base64="bJkbdw5nQFpUnET3dE94NRMeQCc=">AAAC7XicbVHdbtMwGHXC31b+OrjkxqJCapnokgnBbiZNoErcMSTKJsVJ5LhOa9V2ItsBWsuvwRXilmeCp8HpOlg7PsnyyTnH8efzFTVn2kTRryC8cfPW7Ts7u5279+4/eNjde/RJV40idEwqXqnzAmvKmaRjwwyn57WiWBScnhXzt61+9pkqzSr50Sxqmgo8laxkBBtP5V2DyIzlUfa83TMLXR4d08y+QKXCxM6dPUI1c4hJA/ujDOdLiASxI+ehRQVWdunc/ujq1199CQfuON5HApsZwdy+d/34QGSHg07e7UXDaFXwOojXoAfWdZrvBQWaVKQRVBrCsdZJHNUmtVgZRjh1HdRoWmMyx1OaeCixoDq1q3gcfOaZCSwr5Zd/x4q9esJiofVCFN7Z9qq3tZb8n5Y0pjxKLZN1Y6gkFxeVDYemgm3WcMIUJYYvPMBEMd8rJDPsgzV+Ihu3tP9WutQbL7EcG/rVd+ZZSb+QSggsJ9YH7OxlqltSjV0SpxZxWpp+L0aKTWdmsG0q/pmSS1Pq/FTi7RlcB+PD4ath9OFl7+TNejw74Al4CvogBq/BCXgHTsEYEPA7AMFu0Anr8Fv4PfxxYQ2D9ZnHYKPCn38Ak0vuJA==</latexit><latexit sha1_base64="bJkbdw5nQFpUnET3dE94NRMeQCc=">AAAC7XicbVHdbtMwGHXC31b+OrjkxqJCapnokgnBbiZNoErcMSTKJsVJ5LhOa9V2ItsBWsuvwRXilmeCp8HpOlg7PsnyyTnH8efzFTVn2kTRryC8cfPW7Ts7u5279+4/eNjde/RJV40idEwqXqnzAmvKmaRjwwyn57WiWBScnhXzt61+9pkqzSr50Sxqmgo8laxkBBtP5V2DyIzlUfa83TMLXR4d08y+QKXCxM6dPUI1c4hJA/ujDOdLiASxI+ehRQVWdunc/ujq1199CQfuON5HApsZwdy+d/34QGSHg07e7UXDaFXwOojXoAfWdZrvBQWaVKQRVBrCsdZJHNUmtVgZRjh1HdRoWmMyx1OaeCixoDq1q3gcfOaZCSwr5Zd/x4q9esJiofVCFN7Z9qq3tZb8n5Y0pjxKLZN1Y6gkFxeVDYemgm3WcMIUJYYvPMBEMd8rJDPsgzV+Ihu3tP9WutQbL7EcG/rVd+ZZSb+QSggsJ9YH7OxlqltSjV0SpxZxWpp+L0aKTWdmsG0q/pmSS1Pq/FTi7RlcB+PD4ath9OFl7+TNejw74Al4CvogBq/BCXgHTsEYEPA7AMFu0Anr8Fv4PfxxYQ2D9ZnHYKPCn38Ak0vuJA==</latexit> h | iCS = Z dµ(H)e(2ca+k)SW ZW (H) <latexit sha1_base64="P8z68TnDjPOmAGjqM42fHT3vpfE=">AAACunicbVFbb9MwFHbDZWPcOnjkxaJCaoVUJROCvUwa7GWPRaN0Ig7RiXPSWrWdyHaAKuT38Gt4BfFvcLoiaMeRfPTpO9/xuWWVFNaF4a9ecOPmrdt7+3cO7t67/+Bh//DRe1vWhuOUl7I0lxlYlELj1Akn8bIyCCqTOMuWZ1189gmNFaV+51YVJgrmWhSCg/NU2n/NJOi5RMomVnztHGVmzaTN2UV7woR2NGeqHp6P8GMzPOIpPF+OLtJm9mHWerJN+4NwHK6NXgfRBgzIxibpYS9jeclrhdpxCdbGUVi5pAHjBJfYHrDaYgV8CXOMPdSg0CbNetaWPvNMTovS+OdbW7P/ZjSgrF2pzCsVuIXdjXXk/2Jx7YrjpBG6qh1qflWoqCV1Je0WR3NhkDu58gC4Eb5XyhdggDu/3q0q3d/GFnZrkkaCwy++M89q/MxLpUDnDVO89c5ncJA7oQraOEoaJrFww0HEjJgv3GhXlP0VxX9ESXeVaPcG18H0aPxyHL59MTh9sznPPnlCnpIhicgrckrOyYRMCSffyHfyg/wMTgIeiGB5JQ16m5zHZMsC9xufmdvR</latexit><latexit sha1_base64="P8z68TnDjPOmAGjqM42fHT3vpfE=">AAACunicbVFbb9MwFHbDZWPcOnjkxaJCaoVUJROCvUwa7GWPRaN0Ig7RiXPSWrWdyHaAKuT38Gt4BfFvcLoiaMeRfPTpO9/xuWWVFNaF4a9ecOPmrdt7+3cO7t67/+Bh//DRe1vWhuOUl7I0lxlYlELj1Akn8bIyCCqTOMuWZ1189gmNFaV+51YVJgrmWhSCg/NU2n/NJOi5RMomVnztHGVmzaTN2UV7woR2NGeqHp6P8GMzPOIpPF+OLtJm9mHWerJN+4NwHK6NXgfRBgzIxibpYS9jeclrhdpxCdbGUVi5pAHjBJfYHrDaYgV8CXOMPdSg0CbNetaWPvNMTovS+OdbW7P/ZjSgrF2pzCsVuIXdjXXk/2Jx7YrjpBG6qh1qflWoqCV1Je0WR3NhkDu58gC4Eb5XyhdggDu/3q0q3d/GFnZrkkaCwy++M89q/MxLpUDnDVO89c5ncJA7oQraOEoaJrFww0HEjJgv3GhXlP0VxX9ESXeVaPcG18H0aPxyHL59MTh9sznPPnlCnpIhicgrckrOyYRMCSffyHfyg/wMTgIeiGB5JQ16m5zHZMsC9xufmdvR</latexit> CS inner product Two CS parts! h 0| 0iT MY Mk ⇡ Z dµ(N)dµ(N† )e(2cA+ k 2 ) SW ZW (N)+SW ZW (N† ) = h | i2 CSk/2 TMYM inner product h 0| 0i = Z dµ(N)dµ(N† )e(2cA+ k 2 ) SW ZW (N)+SW ZW (N† ) e k 8⇡ R (Ea z Ea ¯z +Ea ¯z Ea z )
  • 34. CS Splitting and Gauge Invariance h 0| 0iT MY Mk = h | iCSk/2 h | iCSk/2 + O(1/m2 ) 1 2 SCS(B) + 1 2 SCS(C) ! 1 2 SCS(B) + 1 2 SCS(C) + 2⇡k! Gauge invariance:
  • 35. Quantization of Pure 
 Yang-Mills Theory
  • 36. Pure Yang-Mills Theory The action is given by SY M = k 4⇡ 1 4m Z ⌃⇥[ti,tf ] d3 x Tr (Fµ⌫Fµ⌫ ) The symplectic two-form is ⌦ = Z ⌃ ( Ea ¯z Aa z + Aa ¯z Ea z ) Gauss’ law is DzEa ¯z D¯zEa z = 0
  • 37. Phase Space Geometry of YM ⌦ = Z ⌃ ( ˜Aa ¯z Aa z Aa ¯z ˆAa z) Symplectic two-form can be written as ˜A¯z = A¯z + E¯z ˆAz = Az Ez where ⌦ = ik 4⇡ Z ⌃ ( Ba ¯z Ba z Ca ¯z Ca z ) Bz = 1 2 ( ˜A1 + iA2) Using the mixed gauge fields Cz = 1 2 (A1 + i ˆA2) YM phase space consists of two CS phase spaces with levels k/2 and -k/2
  • 38. YM Wave-functional Once again, we choose the holomorphic polarization [Az, A¯z, ˆAz, ˜A¯z] = e 1 2 K [A¯z, ˜A¯z] ✏ = k 4⇡ Z d2 z✏a (@zEa ¯z DzEa ¯z + D¯zEa z ) Infinitesimal gauge transformation on wave-functional ✏ = k 4⇡ Z d2 z ✏a (@zEa ¯z ) = k 4⇡ Z d2 z ✏a ⇣ @z ˜Aa ¯z @zAa ¯z ⌘ = k 4⇡ Z d2 z ✏a ⇣ @zAa ¯z @z ˆAa ¯z ⌘ After forcing Gauss’ law
  • 39. YM Wave-functional Solution is [A¯z, ˜A¯z] = exp  k 2 SW ZW ( ˜U) SW ZW (U) [A¯z, ˆA¯z] = exp  k 2 SW ZW (U) SW ZW ( ˆU) or equally In temporal gauge TMYM and YM Hamiltonians are the same. Similarly, Schrödinger’s equation leads to = 1 + O(1/m2 )
  • 40. Measure ds2 A = 4 Z Tr( ˜A¯z Az A¯z ˆAz) = 4 Z Tr[ ˜D¯z( ˜U ˜U 1 )Dz(U† 1 U† ) D¯z( UU 1 ) ˆDz( ˆU† 1 ˆU† )] The metric of the space of gauge potentials A<latexit sha1_base64="ogCDyQ1nIIIz/VJofZm/sC+SkCU=">AAACgnicbVFNb9QwEPWGFkr5aEuPXKKukIqQVkmLoAcO/bhwLBJLKyVRNfFOdq36I7In0JWVn8G1/C7+TZ10EeyWkSw9vffseZ4paykcJcnvQfRobf3xk42nm8+ev3i5tb3z6pszjeU45kYae1mCQyk0jkmQxMvaIqhS4kV5fdbpF9/ROmH0V5rXWCiYalEJDhSoLFdAM8etP2mvtofJKOkrfgjSBRiyRZ1f7QzKfGJ4o1ATl+BcliY1FR4sCS6x3cwbhzXwa5hiFqAGha7wfeY2fhOYSVwZG46muGf/veFBOTdXZXD2GVe1jvyfljVUHRVe6Loh1Py+UdXImEzcDSCeCIuc5DwA4FaErDGfgQVOYUxLXbq3ravc0k+8BMKbkCywGn9woxToic8Vb30/TQ5yRaqhzdLC5xIr2h+muRXTGb1dNZV/TdkfU9FtJV3dwUMwPhh9GCVf3g+PTxfr2WCv2R7bZyn7yI7ZZ3bOxowzw36yW/YrWo/eRWl0eG+NBos7u2ypok93GuPHLQ==</latexit><latexit sha1_base64="ogCDyQ1nIIIz/VJofZm/sC+SkCU=">AAACgnicbVFNb9QwEPWGFkr5aEuPXKKukIqQVkmLoAcO/bhwLBJLKyVRNfFOdq36I7In0JWVn8G1/C7+TZ10EeyWkSw9vffseZ4paykcJcnvQfRobf3xk42nm8+ev3i5tb3z6pszjeU45kYae1mCQyk0jkmQxMvaIqhS4kV5fdbpF9/ROmH0V5rXWCiYalEJDhSoLFdAM8etP2mvtofJKOkrfgjSBRiyRZ1f7QzKfGJ4o1ATl+BcliY1FR4sCS6x3cwbhzXwa5hiFqAGha7wfeY2fhOYSVwZG46muGf/veFBOTdXZXD2GVe1jvyfljVUHRVe6Loh1Py+UdXImEzcDSCeCIuc5DwA4FaErDGfgQVOYUxLXbq3ravc0k+8BMKbkCywGn9woxToic8Vb30/TQ5yRaqhzdLC5xIr2h+muRXTGb1dNZV/TdkfU9FtJV3dwUMwPhh9GCVf3g+PTxfr2WCv2R7bZyn7yI7ZZ3bOxowzw36yW/YrWo/eRWl0eG+NBos7u2ypok93GuPHLQ==</latexit> dµ(A ) = det( ˜D¯zDz)det(D¯z ˆDz)dµ( ˆU† U)dµ(U† ˜U)|{z} |{z} H2H1 dµ(A ) = e2cA SW ZW (H1)+SW ZW (H2) dµ(H1)dµ(H2) Then the gauge invariant measure is
  • 41. YM and CS h | iCS = Z dµ(H)e(2ca+k)SW ZW (H) <latexit sha1_base64="P8z68TnDjPOmAGjqM42fHT3vpfE=">AAACunicbVFbb9MwFHbDZWPcOnjkxaJCaoVUJROCvUwa7GWPRaN0Ig7RiXPSWrWdyHaAKuT38Gt4BfFvcLoiaMeRfPTpO9/xuWWVFNaF4a9ecOPmrdt7+3cO7t67/+Bh//DRe1vWhuOUl7I0lxlYlELj1Akn8bIyCCqTOMuWZ1189gmNFaV+51YVJgrmWhSCg/NU2n/NJOi5RMomVnztHGVmzaTN2UV7woR2NGeqHp6P8GMzPOIpPF+OLtJm9mHWerJN+4NwHK6NXgfRBgzIxibpYS9jeclrhdpxCdbGUVi5pAHjBJfYHrDaYgV8CXOMPdSg0CbNetaWPvNMTovS+OdbW7P/ZjSgrF2pzCsVuIXdjXXk/2Jx7YrjpBG6qh1qflWoqCV1Je0WR3NhkDu58gC4Eb5XyhdggDu/3q0q3d/GFnZrkkaCwy++M89q/MxLpUDnDVO89c5ncJA7oQraOEoaJrFww0HEjJgv3GhXlP0VxX9ESXeVaPcG18H0aPxyHL59MTh9sznPPnlCnpIhicgrckrOyYRMCSffyHfyg/wMTgIeiGB5JQ16m5zHZMsC9xufmdvR</latexit><latexit sha1_base64="P8z68TnDjPOmAGjqM42fHT3vpfE=">AAACunicbVFbb9MwFHbDZWPcOnjkxaJCaoVUJROCvUwa7GWPRaN0Ig7RiXPSWrWdyHaAKuT38Gt4BfFvcLoiaMeRfPTpO9/xuWWVFNaF4a9ecOPmrdt7+3cO7t67/+Bh//DRe1vWhuOUl7I0lxlYlELj1Akn8bIyCCqTOMuWZ1189gmNFaV+51YVJgrmWhSCg/NU2n/NJOi5RMomVnztHGVmzaTN2UV7woR2NGeqHp6P8GMzPOIpPF+OLtJm9mHWerJN+4NwHK6NXgfRBgzIxibpYS9jeclrhdpxCdbGUVi5pAHjBJfYHrDaYgV8CXOMPdSg0CbNetaWPvNMTovS+OdbW7P/ZjSgrF2pzCsVuIXdjXXk/2Jx7YrjpBG6qh1qflWoqCV1Je0WR3NhkDu58gC4Eb5XyhdggDu/3q0q3d/GFnZrkkaCwy++M89q/MxLpUDnDVO89c5ncJA7oQraOEoaJrFww0HEjJgv3GhXlP0VxX9ESXeVaPcG18H0aPxyHL59MTh9sznPPnlCnpIhicgrckrOyYRMCSffyHfyg/wMTgIeiGB5JQ16m5zHZMsC9xufmdvR</latexit> CS inner product YM inner product h 0| 0i = Z dµ(H1)dµ(H2)e(2cA+ k 2 )SW ZW (H1)+(2cA k 2 )SW ZW (H2) + O(1/m2 ) h 0| 0iY Mk = h | iCSk/2 h | iCS k/2 + O(1/m2 ) Gauge invariance: 1 2 SCS(B) 1 2 SCS(C) ! 1 2 SCS(B) 1 2 SCS(C) + ⇡k! ⇡k!
  • 43. Wilson Loops Let us define TR(C) = TrR P e H C ˜Aµdxµ <latexit sha1_base64="OX+KCxgBjNK7iVaJwJwJW5JjNBU=">AAACsHicbVHLbhMxFHWGVwmvFJZsLCKkdEE0A4iyQSpkwzJUCS2KpyOP505iantG9h1oZM2n8DVs4QP4G5w0CJJyJdtH557r+8prJR3G8a9OdO36jZu39m5379y9d/9Bb//hR1c1VsBUVKqypzl3oKSBKUpUcFpb4DpXcJKfj1b+ky9gnazMBJc1pJrPjSyl4BiorHc4yY4Ho4M3E5sdM8q08OOWUTjzz1glDWYjylCqAvzbNmO6ocXFWXjabtbrx8N4bfQqSDagTzY2zvY7OSsq0WgwKBR3bpbENaaeW5RCQdtljYOai3M+h1mAhmtwqV932NKngSloWdlwDNI1+2+E59q5pc6DUnNcuF3fivyfb9Zg+Tr10tQNghGXicpGUazoaly0kBYEqmUAXFgZaqViwS0XGIa6lWX1t3Wl2+rEK45wESoLrIGvotKam8KHObfhChGCqx1XzdtZknqmoMRBP2FWzhd4sCvK/4pmf0RpG7aS7O7gKpg+H74axh9e9o/ebdazRx6TJ2RAEnJIjsh7MiZTIsg38p38ID+jF9GnKIv4pTTqbGIekS2LPv8G31bX7g==</latexit><latexit sha1_base64="OX+KCxgBjNK7iVaJwJwJW5JjNBU=">AAACsHicbVHLbhMxFHWGVwmvFJZsLCKkdEE0A4iyQSpkwzJUCS2KpyOP505iantG9h1oZM2n8DVs4QP4G5w0CJJyJdtH557r+8prJR3G8a9OdO36jZu39m5379y9d/9Bb//hR1c1VsBUVKqypzl3oKSBKUpUcFpb4DpXcJKfj1b+ky9gnazMBJc1pJrPjSyl4BiorHc4yY4Ho4M3E5sdM8q08OOWUTjzz1glDWYjylCqAvzbNmO6ocXFWXjabtbrx8N4bfQqSDagTzY2zvY7OSsq0WgwKBR3bpbENaaeW5RCQdtljYOai3M+h1mAhmtwqV932NKngSloWdlwDNI1+2+E59q5pc6DUnNcuF3fivyfb9Zg+Tr10tQNghGXicpGUazoaly0kBYEqmUAXFgZaqViwS0XGIa6lWX1t3Wl2+rEK45wESoLrIGvotKam8KHObfhChGCqx1XzdtZknqmoMRBP2FWzhd4sCvK/4pmf0RpG7aS7O7gKpg+H74axh9e9o/ebdazRx6TJ2RAEnJIjsh7MiZTIsg38p38ID+jF9GnKIv4pTTqbGIekS2LPv8G31bX7g==</latexit> WR(C) = TrR P e H C Aµdxµ <latexit sha1_base64="d7Xpib2RqZ0P9Dxh53mJGODTQQg=">AAACqHicbVHdbtMwFHYzfkb567ZLbiwqpE6IkiAE3CBt9IbLblrpUJJFjnPSWrOdyD6BVVYeg6fhFh6Ct8HtiqAdR7L96Tvf8fnLaykshuGvTrBz6/adu7v3uvcfPHz0uLe3/8lWjeEw4ZWszHnOLEihYYICJZzXBpjKJUzzy9HSP/0CxopKn+GihlSxmRal4Aw9lfVeTrPTwejw/ZnJThOaKO7GbULhwr1IKqExG9HjLFENLa4u/NN2s14/HIYrozdBtAZ9srZxttfJk6LijQKNXDJr4yisMXXMoOAS2m7SWKgZv2QziD3UTIFN3aqzlj7zTEHLyvijka7YfyMcU9YuVO6ViuHcbvuW5P98cYPlu9QJXTcIml8nKhtJsaLLMdFCGOAoFx4wboSvlfI5M4yjH+ZGluXfxpZ2oxMnGcKVr8yzGr7ySimmC+fn2/rLR3Amt1w1a+ModYmEEgf9KDFiNsfDbVH+VxT/EaWt30q0vYObYPJq+GYYnrzuH31Yr2eXPCFPyYBE5C05Ih/JmEwIJ9/Id/KD/AyeByfBNPh8LQ0665gDsmFB/hsTWtQ7</latexit><latexit sha1_base64="d7Xpib2RqZ0P9Dxh53mJGODTQQg=">AAACqHicbVHdbtMwFHYzfkb567ZLbiwqpE6IkiAE3CBt9IbLblrpUJJFjnPSWrOdyD6BVVYeg6fhFh6Ct8HtiqAdR7L96Tvf8fnLaykshuGvTrBz6/adu7v3uvcfPHz0uLe3/8lWjeEw4ZWszHnOLEihYYICJZzXBpjKJUzzy9HSP/0CxopKn+GihlSxmRal4Aw9lfVeTrPTwejw/ZnJThOaKO7GbULhwr1IKqExG9HjLFENLa4u/NN2s14/HIYrozdBtAZ9srZxttfJk6LijQKNXDJr4yisMXXMoOAS2m7SWKgZv2QziD3UTIFN3aqzlj7zTEHLyvijka7YfyMcU9YuVO6ViuHcbvuW5P98cYPlu9QJXTcIml8nKhtJsaLLMdFCGOAoFx4wboSvlfI5M4yjH+ZGluXfxpZ2oxMnGcKVr8yzGr7ySimmC+fn2/rLR3Amt1w1a+ModYmEEgf9KDFiNsfDbVH+VxT/EaWt30q0vYObYPJq+GYYnrzuH31Yr2eXPCFPyYBE5C05Ih/JmEwIJ9/Id/KD/AyeByfBNPh8LQ0665gDsmFB/hsTWtQ7</latexit> for TMYM theory T(C1)W(C2) = e 2⇡i k l(C1,C2) W(C2)T(C1)<latexit sha1_base64="5sz6/GQ1LP7S9v4i44db96Bsov0=">AAACsXicbVFNj9MwEHXD11K+unDkElEhtRKqkmoFe0FasReOi7SlK5JQJu6ktWo7kT0BKit/hV/DFe78G5y2CNplJI+e3ntje2bySgpLUfSrE9y4eev2naO73Xv3Hzx81Dt+/N6WteE44aUszVUOFqXQOCFBEq8qg6ByidN8dd7q089orCj1Ja0rzBQstCgEB/LUrHd6OTifxcOpz+Pha/zo0sIAd+O0EqFo3KqRrf6iVZutaVvQnfX60SjaRHgdxDvQZ7u4mB138nRe8lqhJi7B2iSOKsocGBJcYtNNa4sV8BUsMPFQg0KbuU2LTfjcM/OwKI0/msIN+2+FA2XtWuXeqYCW9lBryf9pSU3FaeaErmpCzbcPFbUMqQzbeYVzYZCTXHsA3Aj/15Avwc+I/FT3XmnvNrawe504CYRf/c88q/ELL5UCPXep4o1PvoKDPJAqaJI4c6nEggb9ODVisaThoSn/a0r+mLLGbyU+3MF1MBmPXo6idyf9sze79Ryxp+wZG7CYvWJn7C27YBPG2Tf2nf1gP4OT4EPwKci31qCzq3nC9iJY/QZzztVW</latexit><latexit sha1_base64="5sz6/GQ1LP7S9v4i44db96Bsov0=">AAACsXicbVFNj9MwEHXD11K+unDkElEhtRKqkmoFe0FasReOi7SlK5JQJu6ktWo7kT0BKit/hV/DFe78G5y2CNplJI+e3ntje2bySgpLUfSrE9y4eev2naO73Xv3Hzx81Dt+/N6WteE44aUszVUOFqXQOCFBEq8qg6ByidN8dd7q089orCj1Ja0rzBQstCgEB/LUrHd6OTifxcOpz+Pha/zo0sIAd+O0EqFo3KqRrf6iVZutaVvQnfX60SjaRHgdxDvQZ7u4mB138nRe8lqhJi7B2iSOKsocGBJcYtNNa4sV8BUsMPFQg0KbuU2LTfjcM/OwKI0/msIN+2+FA2XtWuXeqYCW9lBryf9pSU3FaeaErmpCzbcPFbUMqQzbeYVzYZCTXHsA3Aj/15Avwc+I/FT3XmnvNrawe504CYRf/c88q/ELL5UCPXep4o1PvoKDPJAqaJI4c6nEggb9ODVisaThoSn/a0r+mLLGbyU+3MF1MBmPXo6idyf9sze79Ryxp+wZG7CYvWJn7C27YBPG2Tf2nf1gP4OT4EPwKci31qCzq3nC9iJY/QZzztVW</latexit> T(C) is like a ’t Hooft loop for TMYM theory
  • 44. Wilson Loops At large finite distances, TMYM and pure YM theories act analogous to topologically massive AdS gravity (at corresponding limits) and their observables are link invariants. hWR1 (C1)TR2 (C2)iT MY M2k = ✓ hWR1 (C1)iCSk ◆✓ hWR2 (C2)iCSk ◆ + O(1/m2 ) For TMYM theory with even level number hWR1 (C1)TR2 (C2)iY M2k = ✓ hWR1 (C1)iCSk ◆✓ hWR2 (C2)iCS k ◆ + O(1/m2 ) For YM theory with even level number