SlideShare a Scribd company logo
1 of 4
Download to read offline
National Vacuum Electronics Conference 2007, Surrey Ion Beam Centre
Design of Rugged High Voltage Power Supplies for use in Low Noise
Multimode Radar Transmitter Sub-Systems
Derek Newton1
1 TMD Technologies Ltd, Swallowfield Way, Hayes, Middlesex, UB3 1DQ
Abstract:  This paper covers an approach to the 
design of High Voltage Power Supply Units for 
operating Travelling Wave Tube Amplifiers in 
Pulse Doppler Radar Transmitter Sub‐Systems 
where ultra low noise RF Output is mandatory.   
1. Introduction 
A  Radar  Transmitter  is  generally  required  to 
amplify  a  low  noise  coherent  RF  waveform. 
This  waveform  is  generally  provided  by  a 
Radar  RF  Exciter  and  can  be  fixed  frequency, 
frequency chirped, or phase modulated during 
the radar transmitter pulse. It is important that 
the  transmitter  system  amplifies  this  pulsed 
signal  to  a  high  power  whilst  maintaining  its 
coherence and its  fidelity. To  achieve this, the 
transmitter  sub‐system  must  add  virtually  no 
noise to the low power RF input signal as it is 
amplified in the SSA and TWT chain. 
Consequently  it  is  important  to  design  the 
Radar  Transmitter  Sub‐System  to  have  very 
low  overall  added  (residual)  noise  close  to 
carrier.  The  overall  added  noise  within  the 
transmitter  is  made  up  of  both  AM  and  PM 
Noise contributions. These two parameters are 
fundamental  to  achieving  the  overall 
performance required in a pulse doppler radar 
system  and  require  measurement  and 
characterisation very early in the development 
of the transmitter. 
To  maintain  coherent  RF  transmission  in  a 
Radar  Transmitter  requires  that  all  electrode 
voltages  to  the  travelling  wave  tube  be 
carefully  controlled.  Consequently,  Electronic 
Power  Conditioners  that  provide  these 
electrode voltages must maintain stability and 
provide a very low noise and ripple voltage to 
achieve this requirement. 
2. Power Supply Design Requirements 
A typical travelling wave tube requires a heater 
supply,  a  grid  control  voltage,  a  cathode 
supply and a collector supply. 
The  cathode  voltage  supply  to  a  Travelling 
Wave Tube is the most difficult to control and 
requires  special  attention  to  ensure  that  it  is 
very  stable  and  that  it  achieves  an  ultra  low 
voltage  ripple.  This  is  due  to  the  effects  of 
electrode  voltage  ripple  producing  spurious 
AM and PM sidebands on the RF output of the 
Travelling  Wave  Tube.  These  unwanted 
sidebands  are  as  a  direct  result  of  phase 
modulation of the RF signal as it is amplified in 
the TWT slow wave structure. 
Generally  AM  sidebands  at  the  output  of  the 
TWT  are  10  dB  lower  than  the  PM  sidebands 
due to the TWT electrode AM and PM pushing 
figures.  These  pushing  figures  directly  dictate 
the acceptable voltage ripple requirements for a 
National Vacuum Electronics Conference 2007, Surrey Ion Beam Centre
particular  transmitter  close  to  carrier  added 
noise requirement. 
AM  noise  on  the  RF  input  to  the  travelling 
wave tube must also be carefully controlled by 
the transmitter design as this can produce both 
AM  Noise  and  PM  Noise  due  to  AM  to  PM 
conversion within the travelling wave tube. 
A  pulsed  carrier  is  a  continuous  wave  carrier 
whose  amplitude  is  modulated  by  a 
rectangular  pulse  train  having  a  relative 
amplitude  of  one  during  each  pulse  and  zero 
during each interpulse period. 
From  modulation  theory  it  can  be  shown  that 
any  continuous  wave  whose  amplitude  is 
modulated has two sidebands, an upper and a 
lower sideband. Modulation theory also tells us 
that  a  portion  of  the  total  energy  of  the 
continuous  wave  is  contained  in  those  upper 
and  lower  sidebands.  Consequently,  one  way 
of telling how the energy of a pulsed carrier is 
distributed is to look in the frequency domain 
at the sidebands produced when a continuous 
wave (CW) carrier is pulse modulated (as in a 
Radar System). 
Amplitude Modulation can be expressed in the 
time  domain  as  the  result  of  multiplying  the 
CW  carrier  by  a  rectangular  pulse  train. 
Multiplication in the time domain is analogous 
to  the  convolution  of  the  pulsed  waveform 
spectra  and  the  CW  waveform  spectra  in  the 
frequency  domain.  This  produces  the  classic 
(Sin X / X) waveform. 
In  reality  the  ripple  voltage  on  each  of  the 
electrodes  of  the  Travelling  Wave  Tube 
contributes  to  the  overall  phase  noise 
performance  of  the  Travelling  Wave  Tube 
output. 
A heater circuit within the travelling wave tube 
heats the cathode, either directly or indirectly. 
This heater circuit is generally powered by a –
6.30 volt dc supply, relative to the cathode. The 
cathode,  due  to  its  heating,  is  operated 
incandescent  and  will  emit  electrons  from  its 
active  surface.  These  electrons  form  the  beam 
current  within  the  travelling  wave  tube.  This 
beam current may be controlled, (gated on and 
off), by the grid electrode. 
A negative bias voltage on the grid, relative to 
the cathode, will hold the beam current in cut 
off  and  a  positive  bias  voltage  will  turn  the 
beam current on. The grid is driven relative to 
the  cathode  electrode  by  the  grid  modulator 
circuit. 
The travelling wave tube will only amplify an 
RF  input  signal  whilst  its  beam  current  is 
flowing through the slow wave structure of the 
TWT. 
The cathode is biased to a negative dc voltage 
relative to the helix electrode and this voltage 
accelerates the beam current from the cathode 
toward  the  collector.  (Note:  This  is  electron 
flow,  conventional  current  flow  is  from 
collector to cathode). 
The  collector  electrode  purely  ‘collects’  the 
waste  beam  current  after  its  interaction  with 
the  input  RF  signal  on  the  helix  circuit,  (RF 
slow wave structure). 
National Vacuum Electronics Conference 2007, Surrey Ion Beam Centre
The collector may be operated at ground, 0 volt 
or helix, potential but this is at the expense of 
overall transmitter efficiency. 
By  operating  the  collector  electrode  at  a 
depressed  voltage  relative  to  the  helix 
electrode,  overall  transmitter  efficiency  is 
improved.  The  addition  of  extra  collectors 
operating  at  more  depressed  voltages  further 
improves overall transmitter efficiency. 
The  Cathode  to  Helix  voltage  is  the  most 
critical  power  supply  to  the  Travelling  Wave 
Tube as it directly affects the Travelling Wave 
Tube  beam  focussing  and  transmission  of  the 
beam  within  the  Travelling  Wave  Tube  slow 
wave structure. The slow wave structure is the 
section  of  the  Travelling  Wave  Tube  where 
interaction between the Travelling Wave Tube 
beam current and the RF input signal, which is 
to be amplified, takes place. This is generally a 
helix  structure  in  broadband  travelling  wave 
tubes and the beam current travels through the 
centre of this helix structure in a well designed 
tube. As the input RF signal travels down the 
slow  wave  structure  (helix)  beam  energy  is 
transferred to the RF signal on the slow wave 
structure  and  consequential  amplification  of 
the RF input signal occurs. 
Changes  to  the  Cathode  to  Helix  potential 
directly  results  in  beam  velocity  changes  and 
consequent phase modulation of the RF output 
signal. 
Typical  values  for  this  phase  shift  are  of  the 
order  of  0.3  degrees  per  volt  change  on  the 
cathode to helix supply. 
Therefore,  it  is  imperative  that  the  Travelling 
Wave Tube characteristics are fully understood 
prior  to  specifying  the  power  supply 
regulation,  transient  response  and  ripple 
performance requirements for each electrode. 
If  these  requirements  are  under‐specified, 
unsatisfactory RF performance will result. This 
is usually in the form of high amplitude close 
to carrier spurious sidebands on the RF output 
signal  from  the  Travelling  Wave  Tube. 
Alternatively,  over‐specification  results  in 
unnecessary development cost and programme 
delays with no beneficial improvements in RF 
performance. 
In a well designed Radar System the RF source, 
or  exciter,  would  define  the  overall  noise 
performance  of  the  Radar  transmitted  signal. 
The  Radar  Transmitter,  or  Travelling  Wave 
Tube Amplifier, ideally should not degrade the 
performance  of  the  RF  output  from  the  RF 
source.  To  achieve  this,  the  transmitter  must 
have a noise performance that is at least 10 dB 
better  than  the  RF  source  that  is  to  be 
amplified. 
Consequently most modern Radar Transmitters 
demand a very high degree of phase linearity 
in  the  Travelling  Wave  Tube  Amplifier  in  all 
modes including High PRF, Medium PRF and 
Low  PRF.  This  covers  the  Pulse  Repetition 
Frequency (PRF) range to typically 160 kHz for 
an airborne X Band Radar Transmitter, 300 kHz 
for an Airborne Interceptor Radar Transmitter, 
and 1 MHz for a Missile Seeker application at X 
Band. 
The Collector phase sensitivity is usually 2 to 3 
orders  of  magnitude  less  than  that  of  the 
National Vacuum Electronics Conference 2007, Surrey Ion Beam Centre
Cathode  to  Helix  voltage.  Thus  the  voltage 
ripple components on the Collector electrode(s) 
produce  minimal  spurious  modulation  on  the 
RF  output  signal  so  they  are  generally  much 
more easily controlled. 
The spurious phase modulation of a Travelling 
Wave Tube is calculated using: 
d∅ = dV x d∅/dE 
Where, 
d∅ = Required Phase Modulation on the RF 
output in Radians 
dV = Peak AC Cathode ripple voltage 
d∅/dE = Cathode Voltage Phase Pushing figure 
for the TWT 
Radar systems requirements normally limit the 
amplitude  of  these  unwanted  sidebands 
relative to the carrier line amplitude (0 dBc). 
To determine the maximum ripple voltage that 
can be tolerated in a transmitter system, when 
spurious  sidebands  are  specified  as  dB  below 
carrier  (dBc),  the  transmitter  design  engineer 
would use: 
Spurious  to  Carrier  (dBc)  =  20  Log  (d∅/2) 
Where, 
d∅ = The peak to peak phase ripple in Radians 
Hence, for a spurious phase noise of ‐90 dBc, 
‐90 dBc = 20 Log (d∅/2) 
Then, 
       d∅ = 6.320 E –5 Radians peak to peak 
              = 3.624 E –3 degrees peak to peak 
If  the  typical  TWT  cathode  phase  pushing 
figure is 0.3 degrees per volt, then the pulse to 
pulse  voltage  stability  on  the  cathode  to  helix 
supply must be better than 12 milli volts radar 
pulse to radar pulse. 
For a typical 8 kilo Watt pulse output tube this 
equates to 12 milli volts in 15,000 volts! ( i.e. in 
the order of 1 part in 1 million). 
This  is  not  the  total  story  as  there  is  also  a 
requirement  for  random  noise  as  well  as 
spurious sidebands or deterministic noise in a 
well  designed  Pulse  Doppler  Radar  System. 
The  random  noise  requirement  can  be  30  dB 
tighter than the spurious noise requirement, i.e. 
–120 dBc/Hz. Note. As this noise is random it is 
specified  as  a  noise  power  density  where  the 
measurement  bandwidth  becomes  important. 
To  achieve  –120  dBc/Hz,  at  the  Travelling 
Wave  Tube  output,  requires  that  the  Cathode 
to  Helix  supply  random  noise  is  better  than 
1.35  E  –4  volts  rms.  (i.e.  135  micro  volts  in 
15,000 volts which is better than 1 part in 100 
million). 
3. Conclusions 
The above illustration assumes that the cathode 
to  Helix  voltage  is  the  only  contributor  to  the 
overall  phase  noise  performance  of  the 
Travelling Wave Tube. As stated above, this is 
not  the  case,  as  the  ac  voltage  ripple  on  each 
electrode of the tube contributes to the overall 
phase  noise  performance  of  the  transmitter 
sub‐system. Hence, the effects of voltage ripple 
on  all  of  the  electrodes  of  the  tube  must  be 
considered  and  a  noise  budget  for  each 
electrode  contributor  allocated.  This 
demonstrates  that  to  achieve  the  very  small 
ripple voltages required to achieve the overall 
system  performance  requires  careful  design 
and layout techniques. 

More Related Content

What's hot

Am Radio Receiver And Amplifier Experiment And Am Transmission Demonstration
Am Radio Receiver And Amplifier Experiment And Am Transmission DemonstrationAm Radio Receiver And Amplifier Experiment And Am Transmission Demonstration
Am Radio Receiver And Amplifier Experiment And Am Transmission Demonstrationguestb0bbf0
 
IRJET- 4 FT 3 Element Rustproof Marine Antenna
IRJET-  	  4 FT 3 Element Rustproof Marine AntennaIRJET-  	  4 FT 3 Element Rustproof Marine Antenna
IRJET- 4 FT 3 Element Rustproof Marine AntennaIRJET Journal
 
Am transmitter
Am transmitterAm transmitter
Am transmitterAJAL A J
 
AM Radio Presentation
AM Radio PresentationAM Radio Presentation
AM Radio PresentationDe Montfort
 
Exp amplitude modulation (7)
Exp amplitude modulation (7)Exp amplitude modulation (7)
Exp amplitude modulation (7)Sarah Krystelle
 
Small scale fading and multipath measurements
Small scale fading and multipath measurementsSmall scale fading and multipath measurements
Small scale fading and multipath measurementsVrince Vimal
 
Introduction to AM modulation
Introduction to AM modulationIntroduction to AM modulation
Introduction to AM modulationVahid Saffarian
 
Principles of electronic communication systems 4th edition frenzel solutions ...
Principles of electronic communication systems 4th edition frenzel solutions ...Principles of electronic communication systems 4th edition frenzel solutions ...
Principles of electronic communication systems 4th edition frenzel solutions ...issac32342
 
Analog communicationintroduction
Analog communicationintroductionAnalog communicationintroduction
Analog communicationintroductionsrilaxmi524
 
Analog communication
Analog communicationAnalog communication
Analog communicationPreston King
 
Fm Transmitter and receiver
 Fm Transmitter and receiver Fm Transmitter and receiver
Fm Transmitter and receivernurnaser1234
 
Exp amplitude modulation (2)
Exp amplitude modulation (2)Exp amplitude modulation (2)
Exp amplitude modulation (2)Sarah Krystelle
 
Introduction to Communication System
Introduction to Communication SystemIntroduction to Communication System
Introduction to Communication SystemYong Heui Cho
 
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATIONSIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATIONSarah Krystelle
 

What's hot (20)

Am Radio Receiver And Amplifier Experiment And Am Transmission Demonstration
Am Radio Receiver And Amplifier Experiment And Am Transmission DemonstrationAm Radio Receiver And Amplifier Experiment And Am Transmission Demonstration
Am Radio Receiver And Amplifier Experiment And Am Transmission Demonstration
 
IRJET- 4 FT 3 Element Rustproof Marine Antenna
IRJET-  	  4 FT 3 Element Rustproof Marine AntennaIRJET-  	  4 FT 3 Element Rustproof Marine Antenna
IRJET- 4 FT 3 Element Rustproof Marine Antenna
 
3rd qrtr +++
3rd qrtr +++3rd qrtr +++
3rd qrtr +++
 
Am transmitter
Am transmitterAm transmitter
Am transmitter
 
AM Radio Presentation
AM Radio PresentationAM Radio Presentation
AM Radio Presentation
 
Modulation
ModulationModulation
Modulation
 
Exp amplitude modulation (7)
Exp amplitude modulation (7)Exp amplitude modulation (7)
Exp amplitude modulation (7)
 
Small scale fading and multipath measurements
Small scale fading and multipath measurementsSmall scale fading and multipath measurements
Small scale fading and multipath measurements
 
Introduction to AM modulation
Introduction to AM modulationIntroduction to AM modulation
Introduction to AM modulation
 
Principles of electronic communication systems 4th edition frenzel solutions ...
Principles of electronic communication systems 4th edition frenzel solutions ...Principles of electronic communication systems 4th edition frenzel solutions ...
Principles of electronic communication systems 4th edition frenzel solutions ...
 
Analog communicationintroduction
Analog communicationintroductionAnalog communicationintroduction
Analog communicationintroduction
 
Analog communication
Analog communicationAnalog communication
Analog communication
 
Fm Transmitter and receiver
 Fm Transmitter and receiver Fm Transmitter and receiver
Fm Transmitter and receiver
 
Modulation techniques
Modulation techniquesModulation techniques
Modulation techniques
 
Exp amplitude modulation (2)
Exp amplitude modulation (2)Exp amplitude modulation (2)
Exp amplitude modulation (2)
 
Introduction to Communication System
Introduction to Communication SystemIntroduction to Communication System
Introduction to Communication System
 
548 mw intro
548 mw intro548 mw intro
548 mw intro
 
Presented by mueez akhtar Arain
Presented by mueez akhtar ArainPresented by mueez akhtar Arain
Presented by mueez akhtar Arain
 
Geoffrey80
Geoffrey80Geoffrey80
Geoffrey80
 
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATIONSIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION
 

Similar to Rugged Low Noise Radar Power Supplies

Types of klystron Amplifier
Types of klystron AmplifierTypes of klystron Amplifier
Types of klystron AmplifierNupurRathi7
 
0 lecture 3 wp wireless protocol
0 lecture 3 wp wireless protocol0 lecture 3 wp wireless protocol
0 lecture 3 wp wireless protocolumardanjumamaiwada
 
1 radar basic - part ii
1 radar basic - part ii1 radar basic - part ii
1 radar basic - part iiSolo Hermelin
 
Modulation types-amplitude,frequency,phase modulation,
Modulation types-amplitude,frequency,phase modulation,Modulation types-amplitude,frequency,phase modulation,
Modulation types-amplitude,frequency,phase modulation,gayatri suthar
 
Airport servilanc radar system Asr 8 usful presentation
Airport servilanc radar system Asr 8 usful presentationAirport servilanc radar system Asr 8 usful presentation
Airport servilanc radar system Asr 8 usful presentationFaraidonSafi
 
Modulation seminar report
Modulation seminar reportModulation seminar report
Modulation seminar reportAmit Sahu
 
Radio frequency circuit
Radio frequency circuitRadio frequency circuit
Radio frequency circuitpinky0687
 
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2Sarah Krystelle
 
Radio frequency antenna fundamental
Radio frequency  antenna fundamentalRadio frequency  antenna fundamental
Radio frequency antenna fundamentalWaleed Alqudami
 
Exp amplitude modulation (8)
Exp amplitude modulation (8)Exp amplitude modulation (8)
Exp amplitude modulation (8)Sarah Krystelle
 
RADIO TRANSMITTERS.docx
RADIO TRANSMITTERS.docxRADIO TRANSMITTERS.docx
RADIO TRANSMITTERS.docxCyprianObota
 
Exp amplitude modulation (6)
Exp amplitude modulation (6)Exp amplitude modulation (6)
Exp amplitude modulation (6)Sarah Krystelle
 
Exp amplitude modulation (5)
Exp amplitude modulation (5)Exp amplitude modulation (5)
Exp amplitude modulation (5)Sarah Krystelle
 
Radio Frequency Signal Characteristics.pptx
Radio Frequency Signal Characteristics.pptxRadio Frequency Signal Characteristics.pptx
Radio Frequency Signal Characteristics.pptxdivakarangela
 
Amplitude Modulation and Fundamentals.pptx
Amplitude Modulation and Fundamentals.pptxAmplitude Modulation and Fundamentals.pptx
Amplitude Modulation and Fundamentals.pptxDhirajPatel58
 
Exp amplitude modulation (3)
Exp amplitude modulation (3)Exp amplitude modulation (3)
Exp amplitude modulation (3)Sarah Krystelle
 

Similar to Rugged Low Noise Radar Power Supplies (20)

Types of klystron Amplifier
Types of klystron AmplifierTypes of klystron Amplifier
Types of klystron Amplifier
 
0 lecture 3 wp wireless protocol
0 lecture 3 wp wireless protocol0 lecture 3 wp wireless protocol
0 lecture 3 wp wireless protocol
 
1 radar basic - part ii
1 radar basic - part ii1 radar basic - part ii
1 radar basic - part ii
 
Modulation types-amplitude,frequency,phase modulation,
Modulation types-amplitude,frequency,phase modulation,Modulation types-amplitude,frequency,phase modulation,
Modulation types-amplitude,frequency,phase modulation,
 
Airport servilanc radar system Asr 8 usful presentation
Airport servilanc radar system Asr 8 usful presentationAirport servilanc radar system Asr 8 usful presentation
Airport servilanc radar system Asr 8 usful presentation
 
Modulation seminar report
Modulation seminar reportModulation seminar report
Modulation seminar report
 
Radio frequency circuit
Radio frequency circuitRadio frequency circuit
Radio frequency circuit
 
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION COPY 2
 
Radio frequency antenna fundamental
Radio frequency  antenna fundamentalRadio frequency  antenna fundamental
Radio frequency antenna fundamental
 
Exp amplitude modulation (8)
Exp amplitude modulation (8)Exp amplitude modulation (8)
Exp amplitude modulation (8)
 
antennas
antennasantennas
antennas
 
Radar Terminology
Radar TerminologyRadar Terminology
Radar Terminology
 
RADIO TRANSMITTERS.docx
RADIO TRANSMITTERS.docxRADIO TRANSMITTERS.docx
RADIO TRANSMITTERS.docx
 
Exp amplitude modulation (6)
Exp amplitude modulation (6)Exp amplitude modulation (6)
Exp amplitude modulation (6)
 
Abegail
AbegailAbegail
Abegail
 
Twta and sspa
Twta and sspaTwta and sspa
Twta and sspa
 
Exp amplitude modulation (5)
Exp amplitude modulation (5)Exp amplitude modulation (5)
Exp amplitude modulation (5)
 
Radio Frequency Signal Characteristics.pptx
Radio Frequency Signal Characteristics.pptxRadio Frequency Signal Characteristics.pptx
Radio Frequency Signal Characteristics.pptx
 
Amplitude Modulation and Fundamentals.pptx
Amplitude Modulation and Fundamentals.pptxAmplitude Modulation and Fundamentals.pptx
Amplitude Modulation and Fundamentals.pptx
 
Exp amplitude modulation (3)
Exp amplitude modulation (3)Exp amplitude modulation (3)
Exp amplitude modulation (3)
 

Recently uploaded

AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsAndrey Dotsenko
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDGMarianaLemus7
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfjimielynbastida
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 

Recently uploaded (20)

AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDG
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdf
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 

Rugged Low Noise Radar Power Supplies

  • 1. National Vacuum Electronics Conference 2007, Surrey Ion Beam Centre Design of Rugged High Voltage Power Supplies for use in Low Noise Multimode Radar Transmitter Sub-Systems Derek Newton1 1 TMD Technologies Ltd, Swallowfield Way, Hayes, Middlesex, UB3 1DQ Abstract:  This paper covers an approach to the  design of High Voltage Power Supply Units for  operating Travelling Wave Tube Amplifiers in  Pulse Doppler Radar Transmitter Sub‐Systems  where ultra low noise RF Output is mandatory.    1. Introduction  A  Radar  Transmitter  is  generally  required  to  amplify  a  low  noise  coherent  RF  waveform.  This  waveform  is  generally  provided  by  a  Radar  RF  Exciter  and  can  be  fixed  frequency,  frequency chirped, or phase modulated during  the radar transmitter pulse. It is important that  the  transmitter  system  amplifies  this  pulsed  signal  to  a  high  power  whilst  maintaining  its  coherence and its  fidelity. To  achieve this, the  transmitter  sub‐system  must  add  virtually  no  noise to the low power RF input signal as it is  amplified in the SSA and TWT chain.  Consequently  it  is  important  to  design  the  Radar  Transmitter  Sub‐System  to  have  very  low  overall  added  (residual)  noise  close  to  carrier.  The  overall  added  noise  within  the  transmitter  is  made  up  of  both  AM  and  PM  Noise contributions. These two parameters are  fundamental  to  achieving  the  overall  performance required in a pulse doppler radar  system  and  require  measurement  and  characterisation very early in the development  of the transmitter.  To  maintain  coherent  RF  transmission  in  a  Radar  Transmitter  requires  that  all  electrode  voltages  to  the  travelling  wave  tube  be  carefully  controlled.  Consequently,  Electronic  Power  Conditioners  that  provide  these  electrode voltages must maintain stability and  provide a very low noise and ripple voltage to  achieve this requirement.  2. Power Supply Design Requirements  A typical travelling wave tube requires a heater  supply,  a  grid  control  voltage,  a  cathode  supply and a collector supply.  The  cathode  voltage  supply  to  a  Travelling  Wave Tube is the most difficult to control and  requires  special  attention  to  ensure  that  it  is  very  stable  and  that  it  achieves  an  ultra  low  voltage  ripple.  This  is  due  to  the  effects  of  electrode  voltage  ripple  producing  spurious  AM and PM sidebands on the RF output of the  Travelling  Wave  Tube.  These  unwanted  sidebands  are  as  a  direct  result  of  phase  modulation of the RF signal as it is amplified in  the TWT slow wave structure.  Generally  AM  sidebands  at  the  output  of  the  TWT  are  10  dB  lower  than  the  PM  sidebands  due to the TWT electrode AM and PM pushing  figures.  These  pushing  figures  directly  dictate  the acceptable voltage ripple requirements for a 
  • 2. National Vacuum Electronics Conference 2007, Surrey Ion Beam Centre particular  transmitter  close  to  carrier  added  noise requirement.  AM  noise  on  the  RF  input  to  the  travelling  wave tube must also be carefully controlled by  the transmitter design as this can produce both  AM  Noise  and  PM  Noise  due  to  AM  to  PM  conversion within the travelling wave tube.  A  pulsed  carrier  is  a  continuous  wave  carrier  whose  amplitude  is  modulated  by  a  rectangular  pulse  train  having  a  relative  amplitude  of  one  during  each  pulse  and  zero  during each interpulse period.  From  modulation  theory  it  can  be  shown  that  any  continuous  wave  whose  amplitude  is  modulated has two sidebands, an upper and a  lower sideband. Modulation theory also tells us  that  a  portion  of  the  total  energy  of  the  continuous  wave  is  contained  in  those  upper  and  lower  sidebands.  Consequently,  one  way  of telling how the energy of a pulsed carrier is  distributed is to look in the frequency domain  at the sidebands produced when a continuous  wave (CW) carrier is pulse modulated (as in a  Radar System).  Amplitude Modulation can be expressed in the  time  domain  as  the  result  of  multiplying  the  CW  carrier  by  a  rectangular  pulse  train.  Multiplication in the time domain is analogous  to  the  convolution  of  the  pulsed  waveform  spectra  and  the  CW  waveform  spectra  in  the  frequency  domain.  This  produces  the  classic  (Sin X / X) waveform.  In  reality  the  ripple  voltage  on  each  of  the  electrodes  of  the  Travelling  Wave  Tube  contributes  to  the  overall  phase  noise  performance  of  the  Travelling  Wave  Tube  output.  A heater circuit within the travelling wave tube  heats the cathode, either directly or indirectly.  This heater circuit is generally powered by a – 6.30 volt dc supply, relative to the cathode. The  cathode,  due  to  its  heating,  is  operated  incandescent  and  will  emit  electrons  from  its  active  surface.  These  electrons  form  the  beam  current  within  the  travelling  wave  tube.  This  beam current may be controlled, (gated on and  off), by the grid electrode.  A negative bias voltage on the grid, relative to  the cathode, will hold the beam current in cut  off  and  a  positive  bias  voltage  will  turn  the  beam current on. The grid is driven relative to  the  cathode  electrode  by  the  grid  modulator  circuit.  The travelling wave tube will only amplify an  RF  input  signal  whilst  its  beam  current  is  flowing through the slow wave structure of the  TWT.  The cathode is biased to a negative dc voltage  relative to the helix electrode and this voltage  accelerates the beam current from the cathode  toward  the  collector.  (Note:  This  is  electron  flow,  conventional  current  flow  is  from  collector to cathode).  The  collector  electrode  purely  ‘collects’  the  waste  beam  current  after  its  interaction  with  the  input  RF  signal  on  the  helix  circuit,  (RF  slow wave structure). 
  • 3. National Vacuum Electronics Conference 2007, Surrey Ion Beam Centre The collector may be operated at ground, 0 volt  or helix, potential but this is at the expense of  overall transmitter efficiency.  By  operating  the  collector  electrode  at  a  depressed  voltage  relative  to  the  helix  electrode,  overall  transmitter  efficiency  is  improved.  The  addition  of  extra  collectors  operating  at  more  depressed  voltages  further  improves overall transmitter efficiency.  The  Cathode  to  Helix  voltage  is  the  most  critical  power  supply  to  the  Travelling  Wave  Tube as it directly affects the Travelling Wave  Tube  beam  focussing  and  transmission  of  the  beam  within  the  Travelling  Wave  Tube  slow  wave structure. The slow wave structure is the  section  of  the  Travelling  Wave  Tube  where  interaction between the Travelling Wave Tube  beam current and the RF input signal, which is  to be amplified, takes place. This is generally a  helix  structure  in  broadband  travelling  wave  tubes and the beam current travels through the  centre of this helix structure in a well designed  tube. As the input RF signal travels down the  slow  wave  structure  (helix)  beam  energy  is  transferred to the RF signal on the slow wave  structure  and  consequential  amplification  of  the RF input signal occurs.  Changes  to  the  Cathode  to  Helix  potential  directly  results  in  beam  velocity  changes  and  consequent phase modulation of the RF output  signal.  Typical  values  for  this  phase  shift  are  of  the  order  of  0.3  degrees  per  volt  change  on  the  cathode to helix supply.  Therefore,  it  is  imperative  that  the  Travelling  Wave Tube characteristics are fully understood  prior  to  specifying  the  power  supply  regulation,  transient  response  and  ripple  performance requirements for each electrode.  If  these  requirements  are  under‐specified,  unsatisfactory RF performance will result. This  is usually in the form of high amplitude close  to carrier spurious sidebands on the RF output  signal  from  the  Travelling  Wave  Tube.  Alternatively,  over‐specification  results  in  unnecessary development cost and programme  delays with no beneficial improvements in RF  performance.  In a well designed Radar System the RF source,  or  exciter,  would  define  the  overall  noise  performance  of  the  Radar  transmitted  signal.  The  Radar  Transmitter,  or  Travelling  Wave  Tube Amplifier, ideally should not degrade the  performance  of  the  RF  output  from  the  RF  source.  To  achieve  this,  the  transmitter  must  have a noise performance that is at least 10 dB  better  than  the  RF  source  that  is  to  be  amplified.  Consequently most modern Radar Transmitters  demand a very high degree of phase linearity  in  the  Travelling  Wave  Tube  Amplifier  in  all  modes including High PRF, Medium PRF and  Low  PRF.  This  covers  the  Pulse  Repetition  Frequency (PRF) range to typically 160 kHz for  an airborne X Band Radar Transmitter, 300 kHz  for an Airborne Interceptor Radar Transmitter,  and 1 MHz for a Missile Seeker application at X  Band.  The Collector phase sensitivity is usually 2 to 3  orders  of  magnitude  less  than  that  of  the 
  • 4. National Vacuum Electronics Conference 2007, Surrey Ion Beam Centre Cathode  to  Helix  voltage.  Thus  the  voltage  ripple components on the Collector electrode(s)  produce  minimal  spurious  modulation  on  the  RF  output  signal  so  they  are  generally  much  more easily controlled.  The spurious phase modulation of a Travelling  Wave Tube is calculated using:  d∅ = dV x d∅/dE  Where,  d∅ = Required Phase Modulation on the RF  output in Radians  dV = Peak AC Cathode ripple voltage  d∅/dE = Cathode Voltage Phase Pushing figure  for the TWT  Radar systems requirements normally limit the  amplitude  of  these  unwanted  sidebands  relative to the carrier line amplitude (0 dBc).  To determine the maximum ripple voltage that  can be tolerated in a transmitter system, when  spurious  sidebands  are  specified  as  dB  below  carrier  (dBc),  the  transmitter  design  engineer  would use:  Spurious  to  Carrier  (dBc)  =  20  Log  (d∅/2)  Where,  d∅ = The peak to peak phase ripple in Radians  Hence, for a spurious phase noise of ‐90 dBc,  ‐90 dBc = 20 Log (d∅/2)  Then,         d∅ = 6.320 E –5 Radians peak to peak                = 3.624 E –3 degrees peak to peak  If  the  typical  TWT  cathode  phase  pushing  figure is 0.3 degrees per volt, then the pulse to  pulse  voltage  stability  on  the  cathode  to  helix  supply must be better than 12 milli volts radar  pulse to radar pulse.  For a typical 8 kilo Watt pulse output tube this  equates to 12 milli volts in 15,000 volts! ( i.e. in  the order of 1 part in 1 million).  This  is  not  the  total  story  as  there  is  also  a  requirement  for  random  noise  as  well  as  spurious sidebands or deterministic noise in a  well  designed  Pulse  Doppler  Radar  System.  The  random  noise  requirement  can  be  30  dB  tighter than the spurious noise requirement, i.e.  –120 dBc/Hz. Note. As this noise is random it is  specified  as  a  noise  power  density  where  the  measurement  bandwidth  becomes  important.  To  achieve  –120  dBc/Hz,  at  the  Travelling  Wave  Tube  output,  requires  that  the  Cathode  to  Helix  supply  random  noise  is  better  than  1.35  E  –4  volts  rms.  (i.e.  135  micro  volts  in  15,000 volts which is better than 1 part in 100  million).  3. Conclusions  The above illustration assumes that the cathode  to  Helix  voltage  is  the  only  contributor  to  the  overall  phase  noise  performance  of  the  Travelling Wave Tube. As stated above, this is  not  the  case,  as  the  ac  voltage  ripple  on  each  electrode of the tube contributes to the overall  phase  noise  performance  of  the  transmitter  sub‐system. Hence, the effects of voltage ripple  on  all  of  the  electrodes  of  the  tube  must  be  considered  and  a  noise  budget  for  each  electrode  contributor  allocated.  This  demonstrates  that  to  achieve  the  very  small  ripple voltages required to achieve the overall  system  performance  requires  careful  design  and layout techniques.