SlideShare a Scribd company logo
1 of 6
Download to read offline
TELKOMNIKA Telecommunication Computing Electronics and Control
Vol. 20, No. 6, December 2022, pp. 1393~1398
ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v20i6.23289  1393
Journal homepage: http://telkomnika.uad.ac.id
Effect of distance tip gap on screw electrode of ozone generator:
simulation and experimental study
Djulil Amri1,2
, Syarifa Fitria1,2,3
, Muhammad Irfan Jambak2
, Rizda Fitria Kurnia1,2
,
Dwirina Yuniarti1,2
, Zainuddin Nawawi1,2
1
High Voltage Engineering and Electrical Measurement Laboratory, Department of Electrical Engineering, Faculty of Engineering,
University of Sriwijaya, Palembang, Indonesia
2
Department of Electrical Engineering, Faculty of Engineering, University of Sriwijaya, Palembang, Indonesia
3
Department of Environmental Science, Graduate Program, University of Sriwijaya, Palembang, Indonesia
Article Info ABSTRACT
Article history:
Received Feb 11, 2022
Revised Jul 09, 2022
Accepted Jul 24, 2022
Ozone generation using screw-type electrodes with different distance peak to
peak was studied, with the view to comparing the effectiveness of the two
technologies in improving for high ozone concentration. Current density,
heat flux, and distribution electric potential were performed by using
simulation software Ansys. These simulations indicate that the screw-type
electrode with a distance of 2 mm generates the higher current density, the
result is the same as the initial assumption that the screw distance 2 mm will
be better than distance 1.5 mm because it has lower heat flux. Experimental
work confirms that a screw model with a distance of 2 mm also has high
ozone concentration than a distance 1.5 mm screw model due to current
density making electric field strength also higher to produce high ozone
concentration, as was also noted by previous authors.
Keywords:
Current density
Electric field
Heat flux
Ozone generator
Screw electrode This is an open access article under the CC BY-SA license.
Corresponding Author:
Syarifa Fitria
High Voltage Engineering and Electrical Measurement Laboratory
Department of Electrical Engineering, Faculty of Engineering, University of Sriwijaya
Inderalaya 30662, Palembang, South Sumatera, Indonesia
Email: syarifafitria@ft.unsri.ac.id
1. INTRODUCTION
Ozone is strong oxidizing agent that is widely used in variety of applications including food
sterilization, air purifier, water treatment, disinfection [1]-[6]. Ozone is produced by applying high-voltage to
dielectric barrier discharge reactor. Dielectric barrier discharge is one of the electrical discharges types that
use a barrier on 1 electrode or both sides of the electrodes. In dielectric barrier discharge, a dielectric layer
composed of glass soda lime, quartz, ceramic, or polymer materials is placed between the electrodes [7]-[10].
Ultraviolet radiation, ozone, and hydroxyl radicals can be generated by dielectric barrier discharge [11], [12].
Ozone generation is one of the most popular dielectric barrier discharge study topics [13]-[18]. Experimental
studies of ozone generation are influenced by electrode materials, dielectric materials, input gas, flow rate
input gas, pressure, power supply, gap spacing [19]-[23] have been widely studied to obtain high ozone
concentration. Many research had already been studied to get high ozone concentrations.
Cylindrical dielectric barrier discharge is one of the dielectric barrier discharge types that use cylinder
glass and electrodes. These types are widely used due to being considered efficient in producing ozone
concentration [24]-[26]. In this study, an ozone generator using cylindrical dielectric barrier discharge with
different distance peaks to the peak has been developed. This paper discusses the comparison of different
distances in electrodes by using simulation and experimental to get optimum high ozone concentration.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 6, December 2022: 1393-1398
1394
2. METHOD
Ozone is formed primarily through three-body collisions in which an oxygen atom and an oxygen
molecule collide with the third particle. Since three-body collisions are rare at low pressures, this type of
reaction is obviously more efficient for electrical discharges at atmospheric pressure [13].
𝑂 + 𝑂2 + 𝑀→ 𝑂3 + 𝑀(𝑤ℎ𝑒𝑟𝑒 𝑀 𝑐𝑜𝑢𝑙𝑑 𝑏𝑒 𝑂2 𝑜𝑟 𝑁2) (1)
The most important reactions that lead to ozone decomposition are:
𝑒 + 𝑂3→ 𝑒 + 𝑂2 + 𝑂 (2)
𝑂 + 𝑂3→ 2𝑂2 (3)
In this study, simulation using Ansys software program 18.2. The geometry used in this simulation
represents a solid model of the screw. The various the screw use pitch distance variations, including 0.5 mm;
1.0 mm, 1.5 mm, 2.0 mm Figure 1. Meshing or discretization in finite element analysis (FEA) is the process
of converting a continuous solid domain into a discrete computational domain thus electrical equations can
be solved using numerical methods, in this case using the finite element method Figure 2 or FEA.
Figure 1. Model geometry screw Figure 2. Nodes model mesh visualization screw
The electric potential difference input is used to determine the magnitude of the potential difference
in this case. In this simulation, the potential difference is varied with values of 5 kV, 6 kV, and 7 kV.
The experimental setup is shown in Figure 3. The ozone generator was made by using cylinder glass and
electrodes that applied alternating current (AC) high voltage. The electrode materials used are stainless steel
and cylinder glass used is pyrex glass with 1 mm diameter. Oxygen is used as input gas in the reactor. Ozone
concentration was produced using ozone analyzer bmt 964-bt.
Figure 3. Experimental setup
3. RESULTS AND DISCUSSION
The simulation was carried out using the screw model with a pitch distance variation of 0.5 mm, 1.0 mm,
1.5 mm, and 2.0 mm. Simulation are carried out to determine the pattern of electric potential distribution,
distribution of heat flux and current density. Based on Figure 4, Figure 5, and Figure 6 show the distribution
of electric potential, heat flux, and current density. Input voltage from 5 kV, 6 kV, and 7 kV makes screw
model with a distance of 2 mm have higher heat flux and current density than distance 1.5 mm. Heat flux in
screw model with distance 1.5 mm is 0.55% higher than 2 mm distance peak to peak on 7 kV. Increasing heat
flux in the screw model with a distance of 2 mm is 35.87% from 6 kV to 7 kV. Based on Figure 6, the current
density of is screw model is 92% higher than the coil model of 2 mm distance peak to peak on 7 kV.
Increasing current density in the screw model and coil model is 14.4% and 14.2% from 6 kV to 7 kV of 2
mm distance peak to peak.
TELKOMNIKA Telecommun Comput El Control 
Effect of distance tip gap on screw electrode of ozone generator: simulation and … (Djulil Amri)
1395
Figure 4. Electric potential distribution on the screw model
Figure 5. Distribution of heat flux on the screw model
Figure 6. Distribution of current density on the screw model
Based on Figure 7 that the heat flux produced is also greater for the screw model since the greater
the electric current, the greater the heat flux produced. This will affect the heating process of the system (the
greater the heat flux, the greater the heat generated). However, based on Figure 8 that the screw model with
distance tip 0.5 mm has a higher current density than distance tip 1 mm, 1.5 mm, 2 mm since the cross-sectional
area of the electric current is larger, thus the resistance is getting smaller. With the same potential difference,
the resulting current will also be greater.
The effect of tip distance on current density in the screw model is that the more rapid the tip
distance, the greater the current density. This is due to the shorter current mileage. While in the screw model,
the tip distance does not really affect the current density. The greater the current density, the greater the heat
flux. Meanwhile, the effect of voltage on current density and heat flux is linear, aimed at screw models for
any tip distance.
The current density that occurs in 0.5 mm tip distance is higher than 1 mm, 1.5 mm, 2 mm tip
distance. Current density affects the temperature rise. When the temperature increases the atomic bonding
increases as a result the flow of electrons is inhibited. Thus, an increase in temperature causes an increase in
the resistance of the conductor. The current density is inversely proportional to the cross-section of the
conductor, the larger the cross-section of the conductor the smaller the current density.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 6, December 2022: 1393-1398
1396
Increasing heat flux affects the increasing temperature in the ozone generator. Increasing
temperature makes ozone concentration decrease due to heat makes oxygen difficult for ionization,
dissociation, and recombination of ozone formation. This research accordance with Seyfi et.al. [27], that
ozone production efficiency when temperature decreased. Another study also confirm that sharp edge has
increase ozone generation [28].
This study uses experimental to get ozone concentration. Based on Figure 9 that shown screw model
with a 2 mm tip distance is higher ozone concentration than the screw model with a 1.5 mm tip distance.
These results confirm that the screw model with 2 mm tip distance than the other (0.5 mm, 1.5 mm, and 1 mm).
Figure 7. Effects heat flux and voltage on the screw
model
Figure 8. Effects current density and voltage on the
screw model
Figure 9. Effects ozone concentration and voltage on the screw model
4. CONCLUSION
The difference tip distance affects the results of the ozone concentration due to the influence of
current density which produces high temperatures. The further tip distance makes higher ozone concentration
than rapid tip distance. Rapid tip distance makes temperature increase and ozone concentration decrease due
to heat making oxygen difficult for ionization, dissociation, and recombination of ozone formation.
Efficiency tip distance in ozone generation use a measure of distance that is not rapid to reduce heat and
ozone decomposition
REFERENCES
[1] N. Tzortzakis and A. Chrysargyris, “Postharvest ozone application for the preservation of fruits and vegetables,” Food Reviews
International, vol. 33, no. 3, pp. 270–315, 2017, doi: 10.1080/87559129.2016.1175015.
[2] A. A. Isikber and C. G. Athanassiou, “The use of ozone gas for the control of insects and micro-organisms in stored products,”
Journal of Stored Products Research, vol. 64, pp. 139–145, 2015, doi: 10.1016/j.jspr.2014.06.006.
[3] N. H. Nghi, L. C. Cuong, T. V. Dieu, T. Ngu, and D. T. Y. Oanh, “Ozonation process and water disinfection,” Vietnam Journal of
Chemistry, vol. 56, no. 6, pp. 717–720, 2018, doi: 10.1002/VJCH.201800076.
[4] W. J. Rogers, “The effects of sterilization on medical materials and welded devices,” Joining and Assembly of Medical Materials
and Devices, Woodhead Publishing Limited, 2013, doi: 10.1533/9780857096425.1.79.
[5] E. K. Morali, N. Uzal, and U. Yetis, “Ozonation pre and post-treatment of denim textile mill effluents: Effect of cleaner
TELKOMNIKA Telecommun Comput El Control 
Effect of distance tip gap on screw electrode of ozone generator: simulation and … (Djulil Amri)
1397
production measures,” Journal of Cleaner Production, vol. 137, pp. 1–9, 2016, doi: 10.1016/j.jclepro.2016.07.059.
[6] S. Fitria et al., “Efficacy of Dissolved Ozone against S taphylococcus aureus and B acillus cereus Microorganism,” Journal of
Ecological Engineering, vol. 20, no. 11, pp. 76–81, 2019, [Online] Availabel: http://www.jeeng.net/Efficacy-of-Dissolved-Ozone-
against-Staphylococcus-aureus-and-Bacillus-cereus-Microorganism,113037,0,2.html
[7] M. Facta, Z. B. Salam, and Z. B. Buntat, “The development of ozone generation with low power consumption,” 2009 Innovative
Technologies in Intelligent Systems and Industrial Applications, 2009, pp. 440-445, doi: 10.1109/CITISIA.2009.5224168.
[8] M. R. Cleland and R. A. Galloway, “Ozone Generation in Air during Electron Beam Processing,” Physics Procedia, vol. 66,
pp. 586–594, 2015, doi: 10.1016/j.phpro.2015.05.078.
[9] M. H. Kim et al., “Efficient generation of ozone in arrays of microchannel plasmas,” Journal of Physics D: Applied Physics, vol. 46,
no. 30, 2013, doi: 10.1088/0022-3727/46/30/305201.
[10] H. Conrads and M. Schmidt, “Plasma generation and plasma sources,” Plasma Sources Science and Technology, vol. 9, no. 4,
2000, doi: 10.1088/0963-0252/9/4/301.
[11] B. Pashaie, S. K. Dhali, and F. I. Honea, “Electrical characteristics of a coaxial dielectric barrier discharge,” Journal of Physics D:
Applied Physics, vol. 27, no. 10, 1994, [Online]. Available: http://dx.doi.org/10.1088/0022-3727/27/10/018
[12] J. Xue, L. Chen, and H. Wang, “Degradation mechanism of Alizarin Red in hybrid gas-liquid phase dielectric barrier discharge
plasmas: Experimental and theoretical examination,” Chemical Engineering Journal, vol. 138, no. 1–3, pp. 120–127, 2008,
doi: 10.1016/j.cej.2007.05.055.
[13] T. Homola, B. Pongrác, M. Zemánek, and M. Šimek, “Efficiency of Ozone Production in Coplanar Dielectric Barrier Discharge,”
Plasma Chemistry and Plasma Processing, vol. 39, pp. 1227–1242, 2019, doi: 10.1007/s11090-019-09993-6.
[14] L. Wei, Q. Deng, and Y. Zhang, “Ozone generation enhanced by silica catalyst in oxygen-fed dielectric barrier discharge,”
Vacuum, vol. 173, 2020, doi: 10.1016/j.vacuum.2019.109145.
[15] S. Pekárek, J. Mikeš, M. Červenka, and O. Hanuš, “Air Supply Mode Effects on Ozone Production of Surface Dielectric Barrier
Discharge in a Cylindrical Configuration,” Plasma Chemistry and Plasma Processing, vol. 41, pp. 779–792, 2021, doi:
10.1007/s11090-021-10154-x.
[16] P. Zylka, “Evaluation of ozone generation in volume spiral-tubular dielectric barrier discharge source,” Energies, vol. 13, no. 5,
2020, doi: 10.3390/en13051199.
[17] A. Yehia, “Optimum operating conditions for the ozone generation in the dielectric barrier discharges,” International Journal of
Plasma Environmental Science and Technology (IJPEST), vol. 15, no. 3, 2021, doi: 10.34343/ijpest.2021.15.e03007.
[18] F. Murdiya, I. Saputra, A. Ernawan, A. Hamzah, Firdaus, and Ramdani, “The characteristics of dielectric barrier discharge with
different magnetic field intensity in narrow gap and ozone production,” Journal of Physics: Conference Series, 2021, vol. 2049,
doi: 10.1088/1742-6596/2049/1/012010.
[19] S. Kaneda, N. Hayashi, S. Ihara, S. Satoh, and C. Yamabe, “Application of dielectric material to double-discharge-type ozonizer,”
Vacuum, vol. 73, no. 3–4, pp. 567–571, 2004, doi: 10.1016/j.vacuum.2003.12.088.
[20] J. S. Jung and J. D. Moon, “Corona discharge and ozone generation characteristics of a wire-plate discharge system with a glass-
fiber layer,” Journal of Electrostatics, vol. 66, no. 5–6, pp. 335–341, 2008, doi: 10.1016/j.elstat.2008.02.003.
[21] M. Azam et al., “DDBD ozone plasma reactor generation: the proper dose for medical applications,” Journal of Physics:
Conference Series, 2019, vol. 1217, doi: 10.1088/1742-6596/1217/1/012026.
[22] X. Xu, “Dielectric barrier discharge - Properties and applications,” Thin Solid Films, vol. 390, no. 1–2, pp. 237–242, 2001,
doi: 10.1016/S0040-6090(01)00956-7.
[23] Z. Fang, Y. Qiu, Y. Sun, H. Wang, and K. Edmund, “Experimental study on discharge characteristics and ozone generation of
dielectric barrier discharge in a cylinder-cylinder reactor and a wire-cylinder reactor,” Journal of Electrostatics, vol. 66, no. 7–8,
pp. 421–426, 2008, doi: 10.1016/j.elstat.2008.04.007.
[24] S. Jodpimai, S. Boonduang, and P. Limsuwan, “Dielectric barrier discharge ozone generator using aluminum granules
electrodes,” Journal of Electrostatics, vol. 74, pp. 108–114, 2015, doi: 10.1016/j.elstat.2014.12.003.
[25] M. Nur, M. Restiwijaya, Z. Muchlisin, I. A. Susan, F. Arianto, and S. A. Widyanto, “Power consumption analysis DBD plasma
ozone generator,” Journal of Physics: Conference Series, 2016, vol. 776, doi: 10.1088/1742-6596/776/1/012101.
[26] S. Boonduang, S. Limsuwan, W. Kongsri, and P. Limsuwan, “Effect of Oxygen Pressure and Flow Rate on Electrical
Characteristic and Ozone Concentration of a Cylinder- Cylinder DBD Ozone Generator,” Procedia Engineering, vol. 32, pp. 936–
942, 2012,
doi: 10.1016/j.proeng.2012.02.035.
[27] P. Seyfi, M. R. Golghand, S. Ghasemi, and H. Ghomi, “The effect of mixed electric field on characteristic of ozone generation in
a DBD plasma source,” Journal of Theoretical and Applied Physics, vol. 14, pp. 195–202, 2020, doi: 10.1007/s40094-020-00385-
2.
[28] S. Fitria et al., “Ozone Generation of Electric Field Induction at Sharp Edges Electrodes: Simulation and Experimental Study,”
Journal of Engineering Science and Technology Review, vol. 14, no. 1, pp. 56–60, 2021, doi: 10.25103/jestr.141.05.
BIOGRAPHIES OF AUTHORS
Djulil Amri received the B.S. degree in Electrical Engineering from the
University of Sriwijaya, Palembang Indonesia, in 1996, and Master in Energy Engineering
from the University of Sriwijaya (Unsri), Indonesia in 2008. He is currently as Lecturer in
Electrical Department at University of Sriwijaya. His research interested are 1) high voltage
Phenomenon and Materials Insulation, and 2). Plasma and system ozone generator. He can be
contacted at email: djulilamri@gmail.com.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 6, December 2022: 1393-1398
1398
Syarifa Fitria received the B.S. degree in electrical engineering from the
University of Sriwijaya of Indonesia, Palembang in 2010 and Doctoral degree in
environmental science from the University of Sriwijaya, Palembang in 2020. She is
currently lecturer in electrical engineering of University of Sriwijaya. Her research
interests include ozone production, high voltage, plasma discharge and environmental health.
She can be contacted at email: syarifafitria@ft.unsri.ac.id.
Muhammad Irfan Jambak received the B.S. degree in electrical engineering
from University of Sriwijaya, Indonesia in 1996, Master degree in electrical engineering
from the Universiti Teknologi Malaysia in 2022 and Ph. D in Electrical Engineering from
the Universiti Teknologi Malaysia (UTM), Malaysia in 2010. He is currently lecturer in
Electrical Department of University of Sriwijaya. His research interests i.e. 1) High voltage
phenomenon and materials insulation, and 2) High voltage and protection systems. He can
be contacted at email: irfanjambak@unsri.ac.id.
Rizda Fitri Kurnia received the B.S. degree in electrical engineering from the
University of Sriwijaya of Indonesia, Palembang in 2008 and Master degree in Electrical
Engineering from the Universiti Teknologi Malaysia (UTM), Johor Bahru in 2010. She is
currently lecturer in Electrical Engineering of University of Sriwijaya. Her research interests
include high voltage engineering, partial discharge and nanodielectrics. She can be
contacted at email: rizdafitrikurnia@gmail.com.
Dwirina Yuniarti received the B.S. degree in electrical engineering from the
University of Sriwijaya of Indonesia, Palembang in 1987 and Master degree in
Environmental Engineering from the Institut Teknologi Bandung (ITB), Bandung in 1997.
She is currently senior lecturer in Electrical Engineering of University of Sriwijaya.
Her research interests i.e. 1) high voltage phenomenon and materials insulation, and 2)
elektromagnetik field effect on the environmental. She can be contacted at email:
dwirina@unsri.ac.id.
Zainuddin Nawawi received the B.S. degree in electrical engineering from
University of Sriwijaya, Indonesia in 1984 and Ph. D in Electrical Engineering from the
Universiti Teknologi Malaysia (UTM), Malaysia in 2011. He is currently Professor in
Electrical Department of University of Sriwijaya. His research interests i.e. 1) High voltage
phenomenon and materials insulation, and 2) High voltage and protection systems. He can
be contacted at email: nawawi_z@yahoo.com.

More Related Content

Similar to Effect of distance tip gap on screw electrode of ozone generator: simulation and experimental study

H0409 05 5660
H0409 05 5660H0409 05 5660
H0409 05 5660IJMER
 
Pressurized CF 3 I-CO Gas Mixture under Lightning Impulse and its Solid By-P...
Pressurized CF 3 I-CO  Gas Mixture under Lightning Impulse and its Solid By-P...Pressurized CF 3 I-CO  Gas Mixture under Lightning Impulse and its Solid By-P...
Pressurized CF 3 I-CO Gas Mixture under Lightning Impulse and its Solid By-P...IJECEIAES
 
Report_Paulo_Melo_LabI
Report_Paulo_Melo_LabIReport_Paulo_Melo_LabI
Report_Paulo_Melo_LabIPaulo Melo
 
A Study on Liquid Dielectric Breakdown in Micro-EDM Discharge - Cognitio paper
A Study on Liquid Dielectric Breakdown in  Micro-EDM Discharge - Cognitio paperA Study on Liquid Dielectric Breakdown in  Micro-EDM Discharge - Cognitio paper
A Study on Liquid Dielectric Breakdown in Micro-EDM Discharge - Cognitio paperSantosh Verma
 
Performance analysis of fully depleted dual material
Performance analysis of fully depleted dual materialPerformance analysis of fully depleted dual material
Performance analysis of fully depleted dual materialeSAT Publishing House
 
A Tunable Ferrofluid-based Polydimethylsiloxane (PDMS) Microchannel Inductor ...
A Tunable Ferrofluid-based Polydimethylsiloxane (PDMS) Microchannel Inductor ...A Tunable Ferrofluid-based Polydimethylsiloxane (PDMS) Microchannel Inductor ...
A Tunable Ferrofluid-based Polydimethylsiloxane (PDMS) Microchannel Inductor ...IJECEIAES
 
Study on thermal stress of high power semiconductor laser packaging
Study on thermal stress of high power semiconductor laser packagingStudy on thermal stress of high power semiconductor laser packaging
Study on thermal stress of high power semiconductor laser packagingNaku Technology Co,. Ltd
 
NO2 Gas Sensing Properties of Carbon Films Fabricated by Arc Discharge Methan...
NO2 Gas Sensing Properties of Carbon Films Fabricated by Arc Discharge Methan...NO2 Gas Sensing Properties of Carbon Films Fabricated by Arc Discharge Methan...
NO2 Gas Sensing Properties of Carbon Films Fabricated by Arc Discharge Methan...TELKOMNIKA JOURNAL
 
Effect of silica nanofiller in cross-linked polyethylene as electrical tree ...
Effect of silica nanofiller in cross-linked polyethylene as  electrical tree ...Effect of silica nanofiller in cross-linked polyethylene as  electrical tree ...
Effect of silica nanofiller in cross-linked polyethylene as electrical tree ...IJECEIAES
 
Design and modeling of solenoid inductor integrated with FeNiCo in high frequ...
Design and modeling of solenoid inductor integrated with FeNiCo in high frequ...Design and modeling of solenoid inductor integrated with FeNiCo in high frequ...
Design and modeling of solenoid inductor integrated with FeNiCo in high frequ...TELKOMNIKA JOURNAL
 
IRJET- Development of X-Wire Probe for Hot Wire Anemometry
IRJET- Development of X-Wire Probe for Hot Wire AnemometryIRJET- Development of X-Wire Probe for Hot Wire Anemometry
IRJET- Development of X-Wire Probe for Hot Wire AnemometryIRJET Journal
 
Clarification of the optimum silica nanofiller amount for electrical treeing ...
Clarification of the optimum silica nanofiller amount for electrical treeing ...Clarification of the optimum silica nanofiller amount for electrical treeing ...
Clarification of the optimum silica nanofiller amount for electrical treeing ...TELKOMNIKA JOURNAL
 
IRJET- A Research Paper on Design and Experimentation on Continuous Loop Demu...
IRJET- A Research Paper on Design and Experimentation on Continuous Loop Demu...IRJET- A Research Paper on Design and Experimentation on Continuous Loop Demu...
IRJET- A Research Paper on Design and Experimentation on Continuous Loop Demu...IRJET Journal
 
Poster memarian farnaz
Poster memarian farnazPoster memarian farnaz
Poster memarian farnazmiroli
 

Similar to Effect of distance tip gap on screw electrode of ozone generator: simulation and experimental study (20)

Final Paper
Final PaperFinal Paper
Final Paper
 
H0409 05 5660
H0409 05 5660H0409 05 5660
H0409 05 5660
 
Pressurized CF 3 I-CO Gas Mixture under Lightning Impulse and its Solid By-P...
Pressurized CF 3 I-CO  Gas Mixture under Lightning Impulse and its Solid By-P...Pressurized CF 3 I-CO  Gas Mixture under Lightning Impulse and its Solid By-P...
Pressurized CF 3 I-CO Gas Mixture under Lightning Impulse and its Solid By-P...
 
Report_Paulo_Melo_LabI
Report_Paulo_Melo_LabIReport_Paulo_Melo_LabI
Report_Paulo_Melo_LabI
 
A Study on Liquid Dielectric Breakdown in Micro-EDM Discharge - Cognitio paper
A Study on Liquid Dielectric Breakdown in  Micro-EDM Discharge - Cognitio paperA Study on Liquid Dielectric Breakdown in  Micro-EDM Discharge - Cognitio paper
A Study on Liquid Dielectric Breakdown in Micro-EDM Discharge - Cognitio paper
 
Performance analysis of fully depleted dual material
Performance analysis of fully depleted dual materialPerformance analysis of fully depleted dual material
Performance analysis of fully depleted dual material
 
Jp3616641669
Jp3616641669Jp3616641669
Jp3616641669
 
A Tunable Ferrofluid-based Polydimethylsiloxane (PDMS) Microchannel Inductor ...
A Tunable Ferrofluid-based Polydimethylsiloxane (PDMS) Microchannel Inductor ...A Tunable Ferrofluid-based Polydimethylsiloxane (PDMS) Microchannel Inductor ...
A Tunable Ferrofluid-based Polydimethylsiloxane (PDMS) Microchannel Inductor ...
 
Study on thermal stress of high power semiconductor laser packaging
Study on thermal stress of high power semiconductor laser packagingStudy on thermal stress of high power semiconductor laser packaging
Study on thermal stress of high power semiconductor laser packaging
 
De35589591
De35589591De35589591
De35589591
 
NO2 Gas Sensing Properties of Carbon Films Fabricated by Arc Discharge Methan...
NO2 Gas Sensing Properties of Carbon Films Fabricated by Arc Discharge Methan...NO2 Gas Sensing Properties of Carbon Films Fabricated by Arc Discharge Methan...
NO2 Gas Sensing Properties of Carbon Films Fabricated by Arc Discharge Methan...
 
Lu3421242126
Lu3421242126Lu3421242126
Lu3421242126
 
Effect of silica nanofiller in cross-linked polyethylene as electrical tree ...
Effect of silica nanofiller in cross-linked polyethylene as  electrical tree ...Effect of silica nanofiller in cross-linked polyethylene as  electrical tree ...
Effect of silica nanofiller in cross-linked polyethylene as electrical tree ...
 
W4103136140
W4103136140W4103136140
W4103136140
 
Design and modeling of solenoid inductor integrated with FeNiCo in high frequ...
Design and modeling of solenoid inductor integrated with FeNiCo in high frequ...Design and modeling of solenoid inductor integrated with FeNiCo in high frequ...
Design and modeling of solenoid inductor integrated with FeNiCo in high frequ...
 
Nc342352340
Nc342352340Nc342352340
Nc342352340
 
IRJET- Development of X-Wire Probe for Hot Wire Anemometry
IRJET- Development of X-Wire Probe for Hot Wire AnemometryIRJET- Development of X-Wire Probe for Hot Wire Anemometry
IRJET- Development of X-Wire Probe for Hot Wire Anemometry
 
Clarification of the optimum silica nanofiller amount for electrical treeing ...
Clarification of the optimum silica nanofiller amount for electrical treeing ...Clarification of the optimum silica nanofiller amount for electrical treeing ...
Clarification of the optimum silica nanofiller amount for electrical treeing ...
 
IRJET- A Research Paper on Design and Experimentation on Continuous Loop Demu...
IRJET- A Research Paper on Design and Experimentation on Continuous Loop Demu...IRJET- A Research Paper on Design and Experimentation on Continuous Loop Demu...
IRJET- A Research Paper on Design and Experimentation on Continuous Loop Demu...
 
Poster memarian farnaz
Poster memarian farnazPoster memarian farnaz
Poster memarian farnaz
 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...TELKOMNIKA JOURNAL
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...TELKOMNIKA JOURNAL
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...TELKOMNIKA JOURNAL
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...TELKOMNIKA JOURNAL
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...TELKOMNIKA JOURNAL
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaTELKOMNIKA JOURNAL
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireTELKOMNIKA JOURNAL
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkTELKOMNIKA JOURNAL
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsTELKOMNIKA JOURNAL
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...TELKOMNIKA JOURNAL
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesTELKOMNIKA JOURNAL
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...TELKOMNIKA JOURNAL
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemTELKOMNIKA JOURNAL
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...TELKOMNIKA JOURNAL
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorTELKOMNIKA JOURNAL
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...TELKOMNIKA JOURNAL
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...TELKOMNIKA JOURNAL
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksTELKOMNIKA JOURNAL
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingTELKOMNIKA JOURNAL
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...TELKOMNIKA JOURNAL
 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
 

Recently uploaded

VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 

Recently uploaded (20)

VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 

Effect of distance tip gap on screw electrode of ozone generator: simulation and experimental study

  • 1. TELKOMNIKA Telecommunication Computing Electronics and Control Vol. 20, No. 6, December 2022, pp. 1393~1398 ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v20i6.23289  1393 Journal homepage: http://telkomnika.uad.ac.id Effect of distance tip gap on screw electrode of ozone generator: simulation and experimental study Djulil Amri1,2 , Syarifa Fitria1,2,3 , Muhammad Irfan Jambak2 , Rizda Fitria Kurnia1,2 , Dwirina Yuniarti1,2 , Zainuddin Nawawi1,2 1 High Voltage Engineering and Electrical Measurement Laboratory, Department of Electrical Engineering, Faculty of Engineering, University of Sriwijaya, Palembang, Indonesia 2 Department of Electrical Engineering, Faculty of Engineering, University of Sriwijaya, Palembang, Indonesia 3 Department of Environmental Science, Graduate Program, University of Sriwijaya, Palembang, Indonesia Article Info ABSTRACT Article history: Received Feb 11, 2022 Revised Jul 09, 2022 Accepted Jul 24, 2022 Ozone generation using screw-type electrodes with different distance peak to peak was studied, with the view to comparing the effectiveness of the two technologies in improving for high ozone concentration. Current density, heat flux, and distribution electric potential were performed by using simulation software Ansys. These simulations indicate that the screw-type electrode with a distance of 2 mm generates the higher current density, the result is the same as the initial assumption that the screw distance 2 mm will be better than distance 1.5 mm because it has lower heat flux. Experimental work confirms that a screw model with a distance of 2 mm also has high ozone concentration than a distance 1.5 mm screw model due to current density making electric field strength also higher to produce high ozone concentration, as was also noted by previous authors. Keywords: Current density Electric field Heat flux Ozone generator Screw electrode This is an open access article under the CC BY-SA license. Corresponding Author: Syarifa Fitria High Voltage Engineering and Electrical Measurement Laboratory Department of Electrical Engineering, Faculty of Engineering, University of Sriwijaya Inderalaya 30662, Palembang, South Sumatera, Indonesia Email: syarifafitria@ft.unsri.ac.id 1. INTRODUCTION Ozone is strong oxidizing agent that is widely used in variety of applications including food sterilization, air purifier, water treatment, disinfection [1]-[6]. Ozone is produced by applying high-voltage to dielectric barrier discharge reactor. Dielectric barrier discharge is one of the electrical discharges types that use a barrier on 1 electrode or both sides of the electrodes. In dielectric barrier discharge, a dielectric layer composed of glass soda lime, quartz, ceramic, or polymer materials is placed between the electrodes [7]-[10]. Ultraviolet radiation, ozone, and hydroxyl radicals can be generated by dielectric barrier discharge [11], [12]. Ozone generation is one of the most popular dielectric barrier discharge study topics [13]-[18]. Experimental studies of ozone generation are influenced by electrode materials, dielectric materials, input gas, flow rate input gas, pressure, power supply, gap spacing [19]-[23] have been widely studied to obtain high ozone concentration. Many research had already been studied to get high ozone concentrations. Cylindrical dielectric barrier discharge is one of the dielectric barrier discharge types that use cylinder glass and electrodes. These types are widely used due to being considered efficient in producing ozone concentration [24]-[26]. In this study, an ozone generator using cylindrical dielectric barrier discharge with different distance peaks to the peak has been developed. This paper discusses the comparison of different distances in electrodes by using simulation and experimental to get optimum high ozone concentration.
  • 2.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 6, December 2022: 1393-1398 1394 2. METHOD Ozone is formed primarily through three-body collisions in which an oxygen atom and an oxygen molecule collide with the third particle. Since three-body collisions are rare at low pressures, this type of reaction is obviously more efficient for electrical discharges at atmospheric pressure [13]. 𝑂 + 𝑂2 + 𝑀→ 𝑂3 + 𝑀(𝑤ℎ𝑒𝑟𝑒 𝑀 𝑐𝑜𝑢𝑙𝑑 𝑏𝑒 𝑂2 𝑜𝑟 𝑁2) (1) The most important reactions that lead to ozone decomposition are: 𝑒 + 𝑂3→ 𝑒 + 𝑂2 + 𝑂 (2) 𝑂 + 𝑂3→ 2𝑂2 (3) In this study, simulation using Ansys software program 18.2. The geometry used in this simulation represents a solid model of the screw. The various the screw use pitch distance variations, including 0.5 mm; 1.0 mm, 1.5 mm, 2.0 mm Figure 1. Meshing or discretization in finite element analysis (FEA) is the process of converting a continuous solid domain into a discrete computational domain thus electrical equations can be solved using numerical methods, in this case using the finite element method Figure 2 or FEA. Figure 1. Model geometry screw Figure 2. Nodes model mesh visualization screw The electric potential difference input is used to determine the magnitude of the potential difference in this case. In this simulation, the potential difference is varied with values of 5 kV, 6 kV, and 7 kV. The experimental setup is shown in Figure 3. The ozone generator was made by using cylinder glass and electrodes that applied alternating current (AC) high voltage. The electrode materials used are stainless steel and cylinder glass used is pyrex glass with 1 mm diameter. Oxygen is used as input gas in the reactor. Ozone concentration was produced using ozone analyzer bmt 964-bt. Figure 3. Experimental setup 3. RESULTS AND DISCUSSION The simulation was carried out using the screw model with a pitch distance variation of 0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm. Simulation are carried out to determine the pattern of electric potential distribution, distribution of heat flux and current density. Based on Figure 4, Figure 5, and Figure 6 show the distribution of electric potential, heat flux, and current density. Input voltage from 5 kV, 6 kV, and 7 kV makes screw model with a distance of 2 mm have higher heat flux and current density than distance 1.5 mm. Heat flux in screw model with distance 1.5 mm is 0.55% higher than 2 mm distance peak to peak on 7 kV. Increasing heat flux in the screw model with a distance of 2 mm is 35.87% from 6 kV to 7 kV. Based on Figure 6, the current density of is screw model is 92% higher than the coil model of 2 mm distance peak to peak on 7 kV. Increasing current density in the screw model and coil model is 14.4% and 14.2% from 6 kV to 7 kV of 2 mm distance peak to peak.
  • 3. TELKOMNIKA Telecommun Comput El Control  Effect of distance tip gap on screw electrode of ozone generator: simulation and … (Djulil Amri) 1395 Figure 4. Electric potential distribution on the screw model Figure 5. Distribution of heat flux on the screw model Figure 6. Distribution of current density on the screw model Based on Figure 7 that the heat flux produced is also greater for the screw model since the greater the electric current, the greater the heat flux produced. This will affect the heating process of the system (the greater the heat flux, the greater the heat generated). However, based on Figure 8 that the screw model with distance tip 0.5 mm has a higher current density than distance tip 1 mm, 1.5 mm, 2 mm since the cross-sectional area of the electric current is larger, thus the resistance is getting smaller. With the same potential difference, the resulting current will also be greater. The effect of tip distance on current density in the screw model is that the more rapid the tip distance, the greater the current density. This is due to the shorter current mileage. While in the screw model, the tip distance does not really affect the current density. The greater the current density, the greater the heat flux. Meanwhile, the effect of voltage on current density and heat flux is linear, aimed at screw models for any tip distance. The current density that occurs in 0.5 mm tip distance is higher than 1 mm, 1.5 mm, 2 mm tip distance. Current density affects the temperature rise. When the temperature increases the atomic bonding increases as a result the flow of electrons is inhibited. Thus, an increase in temperature causes an increase in the resistance of the conductor. The current density is inversely proportional to the cross-section of the conductor, the larger the cross-section of the conductor the smaller the current density.
  • 4.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 6, December 2022: 1393-1398 1396 Increasing heat flux affects the increasing temperature in the ozone generator. Increasing temperature makes ozone concentration decrease due to heat makes oxygen difficult for ionization, dissociation, and recombination of ozone formation. This research accordance with Seyfi et.al. [27], that ozone production efficiency when temperature decreased. Another study also confirm that sharp edge has increase ozone generation [28]. This study uses experimental to get ozone concentration. Based on Figure 9 that shown screw model with a 2 mm tip distance is higher ozone concentration than the screw model with a 1.5 mm tip distance. These results confirm that the screw model with 2 mm tip distance than the other (0.5 mm, 1.5 mm, and 1 mm). Figure 7. Effects heat flux and voltage on the screw model Figure 8. Effects current density and voltage on the screw model Figure 9. Effects ozone concentration and voltage on the screw model 4. CONCLUSION The difference tip distance affects the results of the ozone concentration due to the influence of current density which produces high temperatures. The further tip distance makes higher ozone concentration than rapid tip distance. Rapid tip distance makes temperature increase and ozone concentration decrease due to heat making oxygen difficult for ionization, dissociation, and recombination of ozone formation. Efficiency tip distance in ozone generation use a measure of distance that is not rapid to reduce heat and ozone decomposition REFERENCES [1] N. Tzortzakis and A. Chrysargyris, “Postharvest ozone application for the preservation of fruits and vegetables,” Food Reviews International, vol. 33, no. 3, pp. 270–315, 2017, doi: 10.1080/87559129.2016.1175015. [2] A. A. Isikber and C. G. Athanassiou, “The use of ozone gas for the control of insects and micro-organisms in stored products,” Journal of Stored Products Research, vol. 64, pp. 139–145, 2015, doi: 10.1016/j.jspr.2014.06.006. [3] N. H. Nghi, L. C. Cuong, T. V. Dieu, T. Ngu, and D. T. Y. Oanh, “Ozonation process and water disinfection,” Vietnam Journal of Chemistry, vol. 56, no. 6, pp. 717–720, 2018, doi: 10.1002/VJCH.201800076. [4] W. J. Rogers, “The effects of sterilization on medical materials and welded devices,” Joining and Assembly of Medical Materials and Devices, Woodhead Publishing Limited, 2013, doi: 10.1533/9780857096425.1.79. [5] E. K. Morali, N. Uzal, and U. Yetis, “Ozonation pre and post-treatment of denim textile mill effluents: Effect of cleaner
  • 5. TELKOMNIKA Telecommun Comput El Control  Effect of distance tip gap on screw electrode of ozone generator: simulation and … (Djulil Amri) 1397 production measures,” Journal of Cleaner Production, vol. 137, pp. 1–9, 2016, doi: 10.1016/j.jclepro.2016.07.059. [6] S. Fitria et al., “Efficacy of Dissolved Ozone against S taphylococcus aureus and B acillus cereus Microorganism,” Journal of Ecological Engineering, vol. 20, no. 11, pp. 76–81, 2019, [Online] Availabel: http://www.jeeng.net/Efficacy-of-Dissolved-Ozone- against-Staphylococcus-aureus-and-Bacillus-cereus-Microorganism,113037,0,2.html [7] M. Facta, Z. B. Salam, and Z. B. Buntat, “The development of ozone generation with low power consumption,” 2009 Innovative Technologies in Intelligent Systems and Industrial Applications, 2009, pp. 440-445, doi: 10.1109/CITISIA.2009.5224168. [8] M. R. Cleland and R. A. Galloway, “Ozone Generation in Air during Electron Beam Processing,” Physics Procedia, vol. 66, pp. 586–594, 2015, doi: 10.1016/j.phpro.2015.05.078. [9] M. H. Kim et al., “Efficient generation of ozone in arrays of microchannel plasmas,” Journal of Physics D: Applied Physics, vol. 46, no. 30, 2013, doi: 10.1088/0022-3727/46/30/305201. [10] H. Conrads and M. Schmidt, “Plasma generation and plasma sources,” Plasma Sources Science and Technology, vol. 9, no. 4, 2000, doi: 10.1088/0963-0252/9/4/301. [11] B. Pashaie, S. K. Dhali, and F. I. Honea, “Electrical characteristics of a coaxial dielectric barrier discharge,” Journal of Physics D: Applied Physics, vol. 27, no. 10, 1994, [Online]. Available: http://dx.doi.org/10.1088/0022-3727/27/10/018 [12] J. Xue, L. Chen, and H. Wang, “Degradation mechanism of Alizarin Red in hybrid gas-liquid phase dielectric barrier discharge plasmas: Experimental and theoretical examination,” Chemical Engineering Journal, vol. 138, no. 1–3, pp. 120–127, 2008, doi: 10.1016/j.cej.2007.05.055. [13] T. Homola, B. Pongrác, M. Zemánek, and M. Šimek, “Efficiency of Ozone Production in Coplanar Dielectric Barrier Discharge,” Plasma Chemistry and Plasma Processing, vol. 39, pp. 1227–1242, 2019, doi: 10.1007/s11090-019-09993-6. [14] L. Wei, Q. Deng, and Y. Zhang, “Ozone generation enhanced by silica catalyst in oxygen-fed dielectric barrier discharge,” Vacuum, vol. 173, 2020, doi: 10.1016/j.vacuum.2019.109145. [15] S. Pekárek, J. Mikeš, M. Červenka, and O. Hanuš, “Air Supply Mode Effects on Ozone Production of Surface Dielectric Barrier Discharge in a Cylindrical Configuration,” Plasma Chemistry and Plasma Processing, vol. 41, pp. 779–792, 2021, doi: 10.1007/s11090-021-10154-x. [16] P. Zylka, “Evaluation of ozone generation in volume spiral-tubular dielectric barrier discharge source,” Energies, vol. 13, no. 5, 2020, doi: 10.3390/en13051199. [17] A. Yehia, “Optimum operating conditions for the ozone generation in the dielectric barrier discharges,” International Journal of Plasma Environmental Science and Technology (IJPEST), vol. 15, no. 3, 2021, doi: 10.34343/ijpest.2021.15.e03007. [18] F. Murdiya, I. Saputra, A. Ernawan, A. Hamzah, Firdaus, and Ramdani, “The characteristics of dielectric barrier discharge with different magnetic field intensity in narrow gap and ozone production,” Journal of Physics: Conference Series, 2021, vol. 2049, doi: 10.1088/1742-6596/2049/1/012010. [19] S. Kaneda, N. Hayashi, S. Ihara, S. Satoh, and C. Yamabe, “Application of dielectric material to double-discharge-type ozonizer,” Vacuum, vol. 73, no. 3–4, pp. 567–571, 2004, doi: 10.1016/j.vacuum.2003.12.088. [20] J. S. Jung and J. D. Moon, “Corona discharge and ozone generation characteristics of a wire-plate discharge system with a glass- fiber layer,” Journal of Electrostatics, vol. 66, no. 5–6, pp. 335–341, 2008, doi: 10.1016/j.elstat.2008.02.003. [21] M. Azam et al., “DDBD ozone plasma reactor generation: the proper dose for medical applications,” Journal of Physics: Conference Series, 2019, vol. 1217, doi: 10.1088/1742-6596/1217/1/012026. [22] X. Xu, “Dielectric barrier discharge - Properties and applications,” Thin Solid Films, vol. 390, no. 1–2, pp. 237–242, 2001, doi: 10.1016/S0040-6090(01)00956-7. [23] Z. Fang, Y. Qiu, Y. Sun, H. Wang, and K. Edmund, “Experimental study on discharge characteristics and ozone generation of dielectric barrier discharge in a cylinder-cylinder reactor and a wire-cylinder reactor,” Journal of Electrostatics, vol. 66, no. 7–8, pp. 421–426, 2008, doi: 10.1016/j.elstat.2008.04.007. [24] S. Jodpimai, S. Boonduang, and P. Limsuwan, “Dielectric barrier discharge ozone generator using aluminum granules electrodes,” Journal of Electrostatics, vol. 74, pp. 108–114, 2015, doi: 10.1016/j.elstat.2014.12.003. [25] M. Nur, M. Restiwijaya, Z. Muchlisin, I. A. Susan, F. Arianto, and S. A. Widyanto, “Power consumption analysis DBD plasma ozone generator,” Journal of Physics: Conference Series, 2016, vol. 776, doi: 10.1088/1742-6596/776/1/012101. [26] S. Boonduang, S. Limsuwan, W. Kongsri, and P. Limsuwan, “Effect of Oxygen Pressure and Flow Rate on Electrical Characteristic and Ozone Concentration of a Cylinder- Cylinder DBD Ozone Generator,” Procedia Engineering, vol. 32, pp. 936– 942, 2012, doi: 10.1016/j.proeng.2012.02.035. [27] P. Seyfi, M. R. Golghand, S. Ghasemi, and H. Ghomi, “The effect of mixed electric field on characteristic of ozone generation in a DBD plasma source,” Journal of Theoretical and Applied Physics, vol. 14, pp. 195–202, 2020, doi: 10.1007/s40094-020-00385- 2. [28] S. Fitria et al., “Ozone Generation of Electric Field Induction at Sharp Edges Electrodes: Simulation and Experimental Study,” Journal of Engineering Science and Technology Review, vol. 14, no. 1, pp. 56–60, 2021, doi: 10.25103/jestr.141.05. BIOGRAPHIES OF AUTHORS Djulil Amri received the B.S. degree in Electrical Engineering from the University of Sriwijaya, Palembang Indonesia, in 1996, and Master in Energy Engineering from the University of Sriwijaya (Unsri), Indonesia in 2008. He is currently as Lecturer in Electrical Department at University of Sriwijaya. His research interested are 1) high voltage Phenomenon and Materials Insulation, and 2). Plasma and system ozone generator. He can be contacted at email: djulilamri@gmail.com.
  • 6.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 6, December 2022: 1393-1398 1398 Syarifa Fitria received the B.S. degree in electrical engineering from the University of Sriwijaya of Indonesia, Palembang in 2010 and Doctoral degree in environmental science from the University of Sriwijaya, Palembang in 2020. She is currently lecturer in electrical engineering of University of Sriwijaya. Her research interests include ozone production, high voltage, plasma discharge and environmental health. She can be contacted at email: syarifafitria@ft.unsri.ac.id. Muhammad Irfan Jambak received the B.S. degree in electrical engineering from University of Sriwijaya, Indonesia in 1996, Master degree in electrical engineering from the Universiti Teknologi Malaysia in 2022 and Ph. D in Electrical Engineering from the Universiti Teknologi Malaysia (UTM), Malaysia in 2010. He is currently lecturer in Electrical Department of University of Sriwijaya. His research interests i.e. 1) High voltage phenomenon and materials insulation, and 2) High voltage and protection systems. He can be contacted at email: irfanjambak@unsri.ac.id. Rizda Fitri Kurnia received the B.S. degree in electrical engineering from the University of Sriwijaya of Indonesia, Palembang in 2008 and Master degree in Electrical Engineering from the Universiti Teknologi Malaysia (UTM), Johor Bahru in 2010. She is currently lecturer in Electrical Engineering of University of Sriwijaya. Her research interests include high voltage engineering, partial discharge and nanodielectrics. She can be contacted at email: rizdafitrikurnia@gmail.com. Dwirina Yuniarti received the B.S. degree in electrical engineering from the University of Sriwijaya of Indonesia, Palembang in 1987 and Master degree in Environmental Engineering from the Institut Teknologi Bandung (ITB), Bandung in 1997. She is currently senior lecturer in Electrical Engineering of University of Sriwijaya. Her research interests i.e. 1) high voltage phenomenon and materials insulation, and 2) elektromagnetik field effect on the environmental. She can be contacted at email: dwirina@unsri.ac.id. Zainuddin Nawawi received the B.S. degree in electrical engineering from University of Sriwijaya, Indonesia in 1984 and Ph. D in Electrical Engineering from the Universiti Teknologi Malaysia (UTM), Malaysia in 2011. He is currently Professor in Electrical Department of University of Sriwijaya. His research interests i.e. 1) High voltage phenomenon and materials insulation, and 2) High voltage and protection systems. He can be contacted at email: nawawi_z@yahoo.com.