Slawek Korea

1,624 views

Published on

A presentation of the Corrib clan that was shown in Korea

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,624
On SlideShare
0
From Embeds
0
Number of Embeds
42
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Slawek Korea

    1. 1. Semantic Infrastructure Lab (Corrib) Digital Enterprise Research Institute National University of Ireland, Galway
    2. 2. Outline <ul><li>Motivation </li></ul><ul><li>JeromeDL </li></ul><ul><li>FOAFRealm </li></ul><ul><li>S3B </li></ul><ul><li>MarcOnt </li></ul><ul><li>Didaskon </li></ul><ul><li>Conclusion </li></ul>
    3. 3. Motivation <ul><li>Semantic Web (2.0?) will not emerge by its own </li></ul><ul><li>We need to build an infrastructure first </li></ul><ul><li>Open source – fast research dissemination channel </li></ul><ul><li>JeromeDL spin-off projects (divide and conquer approach) </li></ul>
    4. 4. About us <ul><li>Group of researchers from DERI Galway and students from Gdansk University of Technology </li></ul><ul><li>One goal – make semantic web 2.0 reality </li></ul><ul><li>Supervisors : prof. Stefan Decker (DERI), prof. Henryk Krawczyk (GUT), Sebastian Ryszard Kruk </li></ul><ul><li>PhD Students : Maciej Dąbrowski, Adam Gzella, Sławomir Grzonkowski , Jacek Jankowski, Krystian Samp, Tomasz Woroniecki </li></ul><ul><li>Interns (March-June 2007): Filip Czaja, Jarek Dobrzanski, Wladek Bultrowicz </li></ul><ul><li>9 Master students from GUT </li></ul>
    5. 5. Social Semantic Digital Library <ul><li>A library stores and provides access to resources (books) </li></ul><ul><li>Qualified staff updates catalogues and helps users </li></ul>
    6. 6. Social Semantic Digital Library <ul><li>Machine-readable resources </li></ul><ul><li>Full-text index improves searching </li></ul><ul><li>Easy access </li></ul><ul><li>Availability </li></ul>
    7. 7. Social Semantic Digital Library <ul><li>Resources are accessible by machines, not with machines </li></ul><ul><li>Metadata is rich and extensible </li></ul><ul><li>Searching reflects meaning of terms </li></ul><ul><li>RDF is a standard for representing information </li></ul><ul><li>Not just resources but also knowledge is shared </li></ul>
    8. 8. Social Semantic Digital Library <ul><li>Involves the community into sharing knowledge </li></ul><ul><li>Utilizes social network in searching </li></ul><ul><li>Allows for comments, blogs, shared bookmarks </li></ul><ul><li>Easy tagging </li></ul>
    9. 9. Social Semantic Digital Library <ul><li>Semantic digital libraries </li></ul><ul><ul><li>integrate information based on different metadata, e.g.: resources, user profiles, bookmarks, taxonomies </li></ul></ul><ul><ul><li>provide interoperability with other systems (not only digital libraries) </li></ul></ul><ul><ul><li>deliver more robust, user friendly and adaptable search and browsing interfaces empowered by semantics </li></ul></ul>
    10. 10. JeromeDL – Social Semantic Digital Library <ul><li>JeromeDL fulfills requirements of: </li></ul><ul><li>Librarians </li></ul><ul><ul><li>precise annotations </li></ul></ul><ul><ul><li>rich metadata </li></ul></ul><ul><li>Researchers </li></ul><ul><ul><li>easy publishing </li></ul></ul><ul><ul><li>searching related topics </li></ul></ul><ul><li>Average users </li></ul><ul><ul><li>efficient search and browsing </li></ul></ul><ul><ul><li>online collaboration </li></ul></ul>
    11. 11. Using JeromeDL <ul><li>Uploading a resource </li></ul><ul><ul><li>provide title, abstract, author etc. </li></ul></ul><ul><ul><li>provide structure of the resource (e.g., chapters) </li></ul></ul><ul><ul><li>choose domains of the subject </li></ul></ul><ul><ul><li>choose keywords for the resource </li></ul></ul><ul><ul><li>set additional properties </li></ul></ul><ul><ul><li>upload digital parts of the resource </li></ul></ul>
    12. 12. Using JeromeDL
    13. 13. Using JeromeDL <ul><li>An administrator either approves or rejects a published resource </li></ul>
    14. 14. JeromeDL for a regular user <ul><li>Browsing resources </li></ul><ul><ul><li>by type, author, keyword, domain </li></ul></ul><ul><li>Downloading the resource and its bibliographic description in various formats </li></ul><ul><li>Subscribing to RSS feeds </li></ul><ul><li>Searching </li></ul><ul><ul><li>simple, advanced, distributed, semantic </li></ul></ul>
    15. 15. JeromeDL for a regular user
    16. 16. Search and browsing lifecycle <ul><li>Why ? </li></ul><ul><ul><li>Information can be useful or a garbage </li></ul></ul><ul><ul><li>Different user goals ( Rose and Levinson: Understanding user goals in web search (2004) ) </li></ul></ul><ul><ul><ul><li>Resource Seeking - the user wants to find a specific resource (e.g. lyrics of a song, a program to download, a map service etc.) </li></ul></ul></ul><ul><ul><ul><li>Navigational - the user is searching for a specific web site whose URL s/he forgot </li></ul></ul></ul><ul><ul><ul><li>Informational - the user is looking for information about a topic s/he is interested in </li></ul></ul></ul><ul><li>How ? (Search and browsing actions) </li></ul><ul><ul><li>[REUSE] keyword-based search (resource seeking) </li></ul></ul><ul><ul><li>[REDUCE] faceted navigation (navigational) </li></ul></ul><ul><ul><li>[RECYCLE] collaborative filtering (informational) </li></ul></ul><ul><li>Can this process be improved with Semantic Web and Social Networking technologies? </li></ul>
    17. 17. Query refinement in keyword-based search <ul><li>Why simple full-text search is not enough? </li></ul><ul><ul><li>Too many results (low precision) </li></ul></ul><ul><ul><li>One needs to specify the exact keyword (low recall) </li></ul></ul><ul><ul><li>How to distinguish between: Python and python? (high fall-out) </li></ul></ul><ul><li>How ? </li></ul><ul><ul><li>Disambiguation through a context </li></ul></ul><ul><ul><ul><li>Query context </li></ul></ul></ul><ul><ul><ul><li>Short-term context: </li></ul></ul></ul><ul><ul><ul><ul><li>User’s goal </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Location </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Time </li></ul></ul></ul></ul><ul><ul><ul><li>Long-term context: </li></ul></ul></ul><ul><ul><ul><ul><li>User’s interest </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Search engine specific </li></ul></ul></ul></ul>
    18. 18. Query refinement in keyword-based search <ul><li>How ? </li></ul><ul><ul><li>Query refinement) </li></ul></ul><ul><ul><ul><li>Spread activation </li></ul></ul></ul><ul><ul><ul><li>Types mapping </li></ul></ul></ul><ul><ul><ul><li>Pruning </li></ul></ul></ul><ul><ul><li>Acquiring the context information: </li></ul></ul><ul><ul><ul><li>Previous searches of the user </li></ul></ul></ul><ul><ul><ul><li>Semantically annotated user’s bookmarks </li></ul></ul></ul><ul><ul><ul><li>Community profile </li></ul></ul></ul><ul><li>And ? (Manual query refinement) </li></ul><ul><ul><li>“Tell me why” button and the transcript of refinement process </li></ul></ul><ul><ul><li>Continue to faceted navigation </li></ul></ul>
    19. 19. Faceted navigation on arbitrary graph <ul><li>Why ? </li></ul><ul><ul><li>The search does not end on a (long) list of results </li></ul></ul><ul><ul><li>The results are not a list (!) but a graph </li></ul></ul><ul><ul><li>We loose context with linear navigation </li></ul></ul><ul><ul><li>A need for unified notion (UI, SOA) of filter/narrow and browse/expand services </li></ul></ul>
    20. 20. Faceted navigation on arbitrary graph <ul><li>How (SOA)? </li></ul><ul><ul><li>Defines REST access to services and their composition </li></ul></ul><ul><ul><li>Basic services: access, search, filter, similar, browse, combine </li></ul></ul><ul><ul><li>Meta services: RDF serialization, subscription channels, service ID generation </li></ul></ul><ul><ul><li>Context services: manage contexts, manage service calls/compositions in the context, lists contexts </li></ul></ul><ul><ul><li>Statistics services: properties, values, tokens </li></ul></ul><ul><li>How (User interface)? </li></ul><ul><ul><li>Hexagons to capture the notion of non-linear browsing </li></ul></ul><ul><ul><li>Selecting values from list, tag cloud or TagsTreeMap TM </li></ul></ul><ul><ul><li>Context zoomable interface: </li></ul></ul><ul><ul><ul><li>List (graph) of results </li></ul></ul></ul><ul><ul><ul><li>Browse from current results </li></ul></ul></ul><ul><ul><ul><li>Navigate between service call </li></ul></ul></ul><ul><ul><ul><li>Navigate between contexts (with given call) </li></ul></ul></ul>
    21. 21. Social Semantic Collaborative Filtering <ul><li>Why? </li></ul><ul><ul><li>The bottom-line of acquiring knowledge: informal communication (“word of mouth”) </li></ul></ul><ul><li>How? </li></ul><ul><ul><li>Everyone classifies (filters) the information in bookmark folders (user-oriented taxonomy) </li></ul></ul><ul><ul><li>Peers share (collaborate over) the information (community-driven taxonomy) </li></ul></ul><ul><li>Result? </li></ul><ul><ul><li>Knowledge “flows“ from the expert through the social network to the user </li></ul></ul><ul><ul><li>System amass a lot of information on user/community profile (context) </li></ul></ul>
    22. 22. Social Semantic Collaborative Filtering <ul><li>Problems? </li></ul><ul><ul><li>The horizon of a social network (2-3 degrees of separation) </li></ul></ul><ul><ul><li>How to handle fine-grained information (blogs, wikis, etc.) </li></ul></ul><ul><li>Solutions? (under testing) </li></ul><ul><ul><li>Inference engine to suggest knowledge from the outskirts of the social network </li></ul></ul><ul><ul><li>Support for SIOC metadata: </li></ul></ul><ul><ul><ul><li>SIOC browser in SSCF </li></ul></ul></ul><ul><ul><ul><li>Annotations and evaluations of “local” resources </li></ul></ul></ul>
    23. 23. Putting it all together user profile: recent actions refine search results filter, record, annotate, and share results and actions re-call shared actions user profile: user’s interests filter, record, annotate, and share results
    24. 24. Introduction to MarcOnt <ul><li>Motivation: </li></ul><ul><li>Provide set of tools for </li></ul><ul><li>collaborative ontology </li></ul><ul><li>development </li></ul><ul><li>MarcOnt Initiative goals: </li></ul><ul><li>Collaboration </li></ul><ul><li>Tools for domain experts </li></ul><ul><li>Mediation services </li></ul>
    25. 25. MarcOnt Mediation Services <ul><li>2. Format translation </li></ul>1. Format co-operation MarcOnt Mediation Services RDF Translator
    26. 26. MarcOnt Ontology <ul><li>Central point of MarcOnt Initiative </li></ul><ul><li>Translation and mediation format </li></ul><ul><li>Continuos collaborative ontology improvement </li></ul><ul><li>Knowledge from the domain experts </li></ul><ul><li>Community influence and evaluation </li></ul>
    27. 27. MarcOnt Portal <ul><li>3. Source of knowledge </li></ul><ul><li>Portal provides: </li></ul><ul><li>Suggestions </li></ul><ul><li>Annotations </li></ul><ul><li>Versioning </li></ul><ul><li>Ontology editor </li></ul>
    28. 28. MarcOnt Initiative summary <ul><li>MarcOnt Initiative goals: </li></ul><ul><li>Create a framework for collaborative ontology improvement (E-learning) </li></ul><ul><li>Provide domain experts with tools to share their knowledge </li></ul><ul><li>Offer tools for data mediation between different data formats </li></ul>
    29. 29. Didaskon <ul><li>Didaskon - Automated Curriculum Composition based on the Work-flow Scheduling of Semantically Annotated Learning Object Services </li></ul><ul><li>Architecture of the future e-Learning system (our idea presented on LACLO 2006): </li></ul><ul><li>Ontology for user model – delivering personalised content </li></ul><ul><li>Ontology for content - ensuring cooperation of heterogeneous environments which use different formats </li></ul>
    30. 30. Didaskon - Architecture <ul><li>Didaskon – e-Learning framework, that will be based on existing solutions: </li></ul><ul><li>FOAFRealm - users management, </li></ul><ul><li>JerlomeDL – learning object’s repository, </li></ul><ul><li>MBB – improved browsing, </li></ul><ul><li>MarcOnt – handling different data formats, </li></ul><ul><li>SSIS – tracking informal learning </li></ul>
    31. 31. Conclusion <ul><li>Together with smaller projects (JOnto, TagsTreeMaps, HexBrowser) these are our building blocks for the Semantic Web (2.0) </li></ul><ul><li>The initial infrastructure has been delivered - time to start researching again </li></ul><ul><li>Please visit: http://www.corrib.org/ for more information </li></ul>

    ×