SlideShare a Scribd company logo
1 of 1
Download to read offline
Preparation of Isotopically Labeled Ascorbic Acid Precursors to
Better Understand Ascorbic Acid Biosynthesis in vitro and in planta
Patrick L. Cavins1, Susan Z. Lever1,2
1Department of Chemistry, University of Missouri, Columbia MO 65211
2University of Missouri Research Reactor (MURR), University of Missouri, Columbia MO 65211
OBJECTIVES
Nuclide
Symbol
Half-Life
Decay
Mode
Nuclear Spin
Percent
Abundance
14C 5,730 years b- 0+ Trace
13C Stable 1/2+ 1.109%
12C Stable 0+ 98.93%
11C 20.3 mins b+ 3/2+ N/A
• Carbon-13, a stable isotope with favorable mass spectrometry (MS) and nuclear
magnetic resonance spectroscopy (NMR) properties, can be utilized as a surrogate
for C-11 or C-14.
• The Kiliani-Fischer reaction extends the carbon backbone via addition of cyanide; the
reaction produces epimeric carbons.1 These ratios are known to be pH dependent.2
• Optimal conditions where used to produce the preferred epimer of lactones 13C-3
and 13C-6.
This work was supported by the
Plant Imaging Consortium (PIC,
http://plantimaging.cast.uark.edu/),
funded by the National Science
Foundation Award Numbers IIA-
1430427 and IIA-1430428. Any
opinions, findings, and conclusions
or recommendations expressed in
this material are those of the
author(s) and do not necessarily
reflect the views of NSF.
SYNTHESIS OF L-GALACTONO-1,4-LACTONE
INTRODUCTION
ACKNOWLEDGEMENTS
plc.ii.sgr_5LX.1
plc.ii.sgr_5LX.1.1
0.000
0.001
0.002
0.003
−500
0
500
1000
0 5 10 15
0 5 10 15
time
response
channel
plc.ii.sgr_5LX.1
plc.ii.sgr_5LX.1.1
Response(AU)
Time (Min)
L-Xylose and 3
plc.ii.sgr_11_GalLLyx_only
plc.ii.sgr_11_GalLLyx_only.1
0.000
0.001
0.002
0.003
0.004
0
200
400
600
0 5 10 15
0 5 10 15
time
response
channel
plc.ii.sgr_11_GalLLyx_only
plc.ii.sgr_11_GalLLyx_only.1
Response(AU)
Time (Min)
L-Lyxose and 6
Name Retention Time
L-Xylose 8.2 - RI
3 6.9 - RI
L-Lyxose 7.0 - RI
6 5.9 - RI
2 Silent
• Synthesis, purification, and characterization of carbon-13 labelled gulono-1,4-lactone
(13C-3) and galactono-1,4-lactone (13C-6) from the respective pentoses L-Xylose and L-
Lyxose.
• Optimization and characterization of reaction intermediates (1, 2, 4, and 5) required
for successful carbon-11 implementation.
SYNTHESIS OF L-GULONO-1,4-LACTONE
L-Xylose
O
C
OH
OH
OH
HO
*
1
C
OH
OH
OH
HO N
OH
*
K13
CN
H2O, 48 hrs, RT
Ba(OH)2 • 8H2O
2hrs, 75°C
C
OH
OH
OH
HO
OH
*
O
OH
2
*
C
O
OH
HO OOH
OH
13
C-3
18N H2SO4,
2hrs, 75°C
• Epimeric carbons are indicated by bonds; the initial epimeric purity was 82%
(Gulo) and 18% (Ido).
• Two successive methyl cellosolve recrystallizations removed the unwanted epimer.
Response(AU)
CHARACTERIZATION OF L-GULONO-1,4-LACTONE
*
C
O
OH
HO OOH
13
C-6
L-Lyxose
O
C
OH
OH
OH
HO
*
4
*
OH
NHO
OH
OH
OH
CK13
CN
H2O, 48 hrs, RT
Ba(OH)2 • 8H2O
2hrs, 75°C
C
OH
OH
OH
HO
OH
*
O
OH
5
18N H2SO4,
2hrs, 75°C
OH
• Epimeric carbons are indicated by bonds; the initial epimeric purity was 88% (Gal) and 12%
(Tal).
• The presence of 13C-6 lactone is also indicated by the 13C-NMR Spectra (A), HPLC injection (B),
and analytical TLC using 20% H2O in ACN (C).
PREPARATION FOR 11C SYNTHESIS
180 160 140 120 100 80 60 40 20 ppm
62.10
67.20
70.18
70.70
71.23
71.60
81.95
81.97
175.56
178.57
Current Data Parameters
NAME plc.i.sgr.99.2Recry
EXPNO 2
PROCNO 1
F2 - Acquisition Parameters
Date_ 20160504
Time 11.24
INSTRUM spect
PROBHD 5 mm CPTCI 1H/
PULPROG zgpg30
TD 65536
SOLVENT D2O
NS 256
DS 4
SWH 42613.637 Hz
FIDRES 0.650232 Hz
AQ 0.7689557 sec
RG 188.21
DW 11.733 usec
DE 20.00 usec
TE 298.0 K
D1 2.00000000 sec
D11 0.03000000 sec
TD0 1
======== CHANNEL f1 ========
SFO1 150.8012132 MHz
NUC1 13C
P1 11.00 usec
PLW1 94.00000000 W
======== CHANNEL f2 ========
SFO2 599.6623986 MHz
NUC2 1H
CPDPRG[2 waltz16
PCPD2 80.00 usec
PLW2 6.30959988 W
PLW12 0.06309600 W
PLW13 0.04038100 W
F2 - Processing parameters
SI 32768
SF 150.7845288 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40
plc.i.sgr.99.2Recry || 04 May 2016
95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 ppm
62.10
67.20
70.18
70.70
71.23
71.60
81.95
81.97
Current Data Parameters
NAME plc.i.sgr.99.2Recry
EXPNO 2
PROCNO 1
F2 - Acquisition Parameters
Date_ 20160504
Time 11.24
INSTRUM spect
PROBHD 5 mm CPTCI 1H/
PULPROG zgpg30
TD 65536
SOLVENT D2O
NS 256
DS 4
SWH 42613.637 Hz
FIDRES 0.650232 Hz
AQ 0.7689557 sec
RG 188.21
DW 11.733 usec
DE 20.00 usec
TE 298.0 K
D1 2.00000000 sec
D11 0.03000000 sec
TD0 1
======== CHANNEL f1 ========
SFO1 150.8012132 MHz
NUC1 13C
P1 11.00 usec
PLW1 94.00000000 W
======== CHANNEL f2 ========
SFO2 599.6623986 MHz
NUC2 1H
CPDPRG[2 waltz16
PCPD2 80.00 usec
PLW2 6.30959988 W
PLW12 0.06309600 W
PLW13 0.04038100 W
F2 - Processing parameters
SI 32768
SF 150.7845288 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40
plc.i.sgr.99.2Recry || 04 May 2016
3.23.33.43.53.63.73.83.94.04.14.24.34.44.54.64.74.84.9 ppm
3.681
3.682
3.690
3.691
3.702
3.710
3.711
3.749
3.750
3.788
3.794
3.809
3.814
4.056
4.062
4.064
4.066
4.070
4.075
4.076
4.078
4.079
4.085
4.504
4.508
4.518
4.522
4.535
4.536
4.541
4.542
4.544
4.549
4.550
4.554
4.555
4.557
4.558
4.562
4.563
4.733
4.740
4.748
1.11
1.01
0.94
0.99
1.00
1.00
Current Data Parameters
NAME plc.i.sgr.99.2Recry
EXPNO 1
PROCNO 1
F2 - Acquisition Parameters
Date_ 20160504
Time 11.13
INSTRUM spect
PROBHD 5 mm CPTCI 1H/
PULPROG zg30
TD 65536
SOLVENT D2O
NS 16
DS 2
SWH 12019.230 Hz
FIDRES 0.183399 Hz
AQ 2.7262976 sec
RG 32.25
DW 41.600 usec
DE 30.00 usec
TE 298.0 K
D1 1.00000000 sec
TD0 1
======== CHANNEL f1 ========
SFO1 599.6637031 MHz
NUC1 1H
P1 8.35 usec
PLW1 6.30959988 W
F2 - Processing parameters
SI 65536
SF 599.6599586 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00
plc.i.sgr.99.2Recry || 04 May 2016
• Carbon-13 (A, B, D) and proton (C) NMR Spectra of 13C-3 containing 0.03% percent dioxane.
• The 13C-DEPT (D) and proton (C) both show unique spectral properties (arrows).180 160 140 120 100 80 60 40 20 ppm
60.79
62.11
67.20
70.18
70.19
70.70
70.71
71.22
71.61
81.96
81.97
178.57
Current Data Parameters
NAME plc.i.sgr.99.2Recry
EXPNO 3
PROCNO 1
F2 - Acquisition Parameters
Date_ 20160504
Time 11.40
INSTRUM spect
PROBHD 5 mm CPTCI 1H/
PULPROG deptsp135
TD 65536
SOLVENT D2O
NS 256
DS 4
SWH 36231.883 Hz
FIDRES 0.552855 Hz
AQ 0.9043968 sec
RG 188.21
DW 13.800 usec
DE 20.00 usec
TE 298.0 K
CNST2 145.0000000
D1 2.00000000 sec
D2 0.00344828 sec
D12 0.00002000 sec
TD0 1
======== CHANNEL f1 ========
SFO1 150.7997054 MHz
NUC1 13C
P1 11.00 usec
P13 2000.00 usec
PLW0 0 W
PLW1 94.00000000 W
SPNAM[5] Crp60comp.4
SPOAL5 0.500
SPOFFS5 0 Hz
SPW5 17.37800026 W
======== CHANNEL f2 ========
SFO2 599.6619178 MHz
NUC2 1H
CPDPRG[2 waltz16
P3 8.00 usec
P4 16.00 usec
PCPD2 80.00 usec
PLW2 6.30959988 W
PLW12 0.06309600 W
F2 - Processing parameters
SI 32768
SF 150.7845284 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40
plc.i.sgr.99.2Recry || 04 May 2016
180 160 140 120 100 80 60 40 20 ppm
60.79
62.11
67.20
70.18
70.19
70.70
70.71
71.22
71.61
81.96
81.97
178.57
Current Data Parameters
NAME plc.i.sgr.99.2Recry
EXPNO 3
PROCNO 1
F2 - Acquisition Parameters
Date_ 20160504
Time 11.40
INSTRUM spect
PROBHD 5 mm CPTCI 1H/
PULPROG deptsp135
TD 65536
SOLVENT D2O
NS 256
DS 4
SWH 36231.883 Hz
FIDRES 0.552855 Hz
AQ 0.9043968 sec
RG 188.21
DW 13.800 usec
DE 20.00 usec
TE 298.0 K
CNST2 145.0000000
D1 2.00000000 sec
D2 0.00344828 sec
D12 0.00002000 sec
TD0 1
======== CHANNEL f1 ========
SFO1 150.7997054 MHz
NUC1 13C
P1 11.00 usec
P13 2000.00 usec
PLW0 0 W
PLW1 94.00000000 W
SPNAM[5] Crp60comp.4
SPOAL5 0.500
SPOFFS5 0 Hz
SPW5 17.37800026 W
======== CHANNEL f2 ========
SFO2 599.6619178 MHz
NUC2 1H
CPDPRG[2 waltz16
P3 8.00 usec
P4 16.00 usec
PCPD2 80.00 usec
PLW2 6.30959988 W
PLW12 0.06309600 W
F2 - Processing parameters
SI 32768
SF 150.7845284 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40
plc.i.sgr.99.2Recry || 04 May 2016
Response(AU)
Time (Min) Time (Min)
Response(AU)
Response(AU)
Time (Min)
First
Void
Volume
Void
Volume
Void
Volume
Epimers:	18%/82%	 Epimers:	5.5%/94.5%	
• A Phenomenex Luna-NH2 (5µ x 250 x 4.6 mm) column paired with a RI detector (flow
cell temperature = 35°C) was used for all HPLC separations. The eluent was 20% H2O
in ACN. A: Crude mixture 13C-3, flow rate = 2.0 mL/min. B: First recrystallization with
methyl cellosolve, flow rate = 1.0 mL/min. C: Second recrystallization with methyl
cellosolve, flow rate = 1.0 mL/min. D: Crystal structure of 13C-3.
A B
C D
A
B
C
D
C
O
OH
HO OOH
OH
13C-3
1
23
4
56
plc.ii.sgr.11.prd4
plc.ii.sgr.11.prd4.1
0.000
0.005
0.010
0.015
0.020
0
500
1000
1500
2000
0 5 10 15
0 5 10 15
time
response
channel
plc.ii.sgr.11.prd4
plc.ii.sgr.11.prd4.1
Void
Volume
Response(AU)
Time (Min)
BA
C
Optimal Radiochemical
Yield
Optimal Chemical
Yield
3 Days10 Min
Time (Min)
2
Response(AU)
• Carbon-11’s short half life presents unique synthetic considerations:
See	Katie	Foley’s	Poster	for	More	Information	About	in	vitro and	in	planta work
• Separation of intermediates is key for successful carbon-11 labeling.
References: (1) Serianni, A.; Nunez, H.; Barker, R. Cyanohydrin synthesis: studies with carbon-13-labeled cyanide. J. Org. Chem. 1980, 45, 3329-3349. (2) Zhu, P.; Zacizek, J.; Serianni, A. Acyclic	forms	of	[1-13C]aldohexoses in	aqueous	solution:	Quantitation	by	13C	NMR	and	deuterium	isotope	effects	on	tautomeric	equilibria.	J. Org. Chem. 2001, 66, 6244-6251
0
0
50
100
PercentProductYield
20 40 60
Radiochemical
Yield
Reaction Time (minutes)
Radioactive
Decay
Chemical
Yield

More Related Content

What's hot

In Service Monitoring and Assurance at ITSF 2014
In Service Monitoring and Assurance at ITSF 2014 In Service Monitoring and Assurance at ITSF 2014
In Service Monitoring and Assurance at ITSF 2014 ADVA
 
HPCユーザが知っておきたいTCP/IPの話 ~クラスタ・グリッド環境の落とし穴~
HPCユーザが知っておきたいTCP/IPの話 ~クラスタ・グリッド環境の落とし穴~HPCユーザが知っておきたいTCP/IPの話 ~クラスタ・グリッド環境の落とし穴~
HPCユーザが知っておきたいTCP/IPの話 ~クラスタ・グリッド環境の落とし穴~Ryousei Takano
 
Passive Filter Design using PSpice
Passive Filter Design using PSpicePassive Filter Design using PSpice
Passive Filter Design using PSpiceTsuyoshi Horigome
 
NC10-pres-14 jan 2013
NC10-pres-14 jan 2013NC10-pres-14 jan 2013
NC10-pres-14 jan 2013maria briglia
 
8051 experiments1
8051 experiments18051 experiments1
8051 experiments1tt_aljobory
 
1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...
1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...
1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...John Edwards
 

What's hot (8)

In Service Monitoring and Assurance at ITSF 2014
In Service Monitoring and Assurance at ITSF 2014 In Service Monitoring and Assurance at ITSF 2014
In Service Monitoring and Assurance at ITSF 2014
 
HPCユーザが知っておきたいTCP/IPの話 ~クラスタ・グリッド環境の落とし穴~
HPCユーザが知っておきたいTCP/IPの話 ~クラスタ・グリッド環境の落とし穴~HPCユーザが知っておきたいTCP/IPの話 ~クラスタ・グリッド環境の落とし穴~
HPCユーザが知っておきたいTCP/IPの話 ~クラスタ・グリッド環境の落とし穴~
 
Passive Filter Design using PSpice
Passive Filter Design using PSpicePassive Filter Design using PSpice
Passive Filter Design using PSpice
 
NC10-pres-14 jan 2013
NC10-pres-14 jan 2013NC10-pres-14 jan 2013
NC10-pres-14 jan 2013
 
Schlattauer Leo
Schlattauer LeoSchlattauer Leo
Schlattauer Leo
 
8051 experiments1
8051 experiments18051 experiments1
8051 experiments1
 
DPLL PRESENTATION
DPLL PRESENTATIONDPLL PRESENTATION
DPLL PRESENTATION
 
1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...
1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...
1H qNMR of EPA and DHA Omega-3 Fatty Acid: PLS-Regression Models Obtained at ...
 

Similar to postertemplate_plc_v36_final2

Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...Shimadzu Scientific Instruments
 
Lessons learned from injecting liquid activated carbon suspension
Lessons learned from injecting liquid activated carbon suspensionLessons learned from injecting liquid activated carbon suspension
Lessons learned from injecting liquid activated carbon suspensionAntea Group
 
The Determination of Polychlorinated Biphenyls (PCB) Using EPA Method 8082
The Determination of Polychlorinated Biphenyls (PCB) Using EPA Method 8082The Determination of Polychlorinated Biphenyls (PCB) Using EPA Method 8082
The Determination of Polychlorinated Biphenyls (PCB) Using EPA Method 8082PerkinElmer, Inc.
 
Meeting Presentation Final_ju Fixed
Meeting Presentation Final_ju FixedMeeting Presentation Final_ju Fixed
Meeting Presentation Final_ju FixedTravis Tu
 
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...Tufan Ghosh
 
Marcia Cortes Poster 2010
Marcia Cortes Poster 2010Marcia Cortes Poster 2010
Marcia Cortes Poster 2010Marcia Cortes
 
Finding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixturesFinding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixturesChiral Technologies Worldwide
 
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...IRJET Journal
 
Real 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxReal 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxSaiGouthamSunkara
 
Development of a Multi-Variant Frequency Ladder™ for Next Generation Sequenci...
Development of a Multi-Variant Frequency Ladder™ for Next Generation Sequenci...Development of a Multi-Variant Frequency Ladder™ for Next Generation Sequenci...
Development of a Multi-Variant Frequency Ladder™ for Next Generation Sequenci...Thermo Fisher Scientific
 
Amino Acid Analysis 2010 - Rita Steed.pdf
Amino Acid Analysis 2010 - Rita Steed.pdfAmino Acid Analysis 2010 - Rita Steed.pdf
Amino Acid Analysis 2010 - Rita Steed.pdfRAMONARICLEA1
 
Critical Report Dated related to effluent
Critical Report Dated related to effluentCritical Report Dated related to effluent
Critical Report Dated related to effluentSantanuBiswas69
 
PVT_Gas condesate
PVT_Gas condesatePVT_Gas condesate
PVT_Gas condesatekrackkuk
 
PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016Anirban Kundu
 

Similar to postertemplate_plc_v36_final2 (20)

Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
 
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
 
Cálculos 2
Cálculos 2Cálculos 2
Cálculos 2
 
Lessons learned from injecting liquid activated carbon suspension
Lessons learned from injecting liquid activated carbon suspensionLessons learned from injecting liquid activated carbon suspension
Lessons learned from injecting liquid activated carbon suspension
 
The Determination of Polychlorinated Biphenyls (PCB) Using EPA Method 8082
The Determination of Polychlorinated Biphenyls (PCB) Using EPA Method 8082The Determination of Polychlorinated Biphenyls (PCB) Using EPA Method 8082
The Determination of Polychlorinated Biphenyls (PCB) Using EPA Method 8082
 
Meeting Presentation Final_ju Fixed
Meeting Presentation Final_ju FixedMeeting Presentation Final_ju Fixed
Meeting Presentation Final_ju Fixed
 
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
 
Marcia Cortes Poster 2010
Marcia Cortes Poster 2010Marcia Cortes Poster 2010
Marcia Cortes Poster 2010
 
Finding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixturesFinding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixtures
 
Preparing PRF
Preparing PRFPreparing PRF
Preparing PRF
 
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
 
Real 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxReal 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptx
 
Development of a Multi-Variant Frequency Ladder™ for Next Generation Sequenci...
Development of a Multi-Variant Frequency Ladder™ for Next Generation Sequenci...Development of a Multi-Variant Frequency Ladder™ for Next Generation Sequenci...
Development of a Multi-Variant Frequency Ladder™ for Next Generation Sequenci...
 
Bi-prop Thruster Test
Bi-prop Thruster TestBi-prop Thruster Test
Bi-prop Thruster Test
 
Amino Acid Analysis 2010 - Rita Steed.pdf
Amino Acid Analysis 2010 - Rita Steed.pdfAmino Acid Analysis 2010 - Rita Steed.pdf
Amino Acid Analysis 2010 - Rita Steed.pdf
 
Critical Report Dated related to effluent
Critical Report Dated related to effluentCritical Report Dated related to effluent
Critical Report Dated related to effluent
 
PVT_Gas condesate
PVT_Gas condesatePVT_Gas condesate
PVT_Gas condesate
 
PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016
 
CCR PFD-2
CCR PFD-2CCR PFD-2
CCR PFD-2
 
NOS 2009
NOS 2009NOS 2009
NOS 2009
 

postertemplate_plc_v36_final2

  • 1. Preparation of Isotopically Labeled Ascorbic Acid Precursors to Better Understand Ascorbic Acid Biosynthesis in vitro and in planta Patrick L. Cavins1, Susan Z. Lever1,2 1Department of Chemistry, University of Missouri, Columbia MO 65211 2University of Missouri Research Reactor (MURR), University of Missouri, Columbia MO 65211 OBJECTIVES Nuclide Symbol Half-Life Decay Mode Nuclear Spin Percent Abundance 14C 5,730 years b- 0+ Trace 13C Stable 1/2+ 1.109% 12C Stable 0+ 98.93% 11C 20.3 mins b+ 3/2+ N/A • Carbon-13, a stable isotope with favorable mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) properties, can be utilized as a surrogate for C-11 or C-14. • The Kiliani-Fischer reaction extends the carbon backbone via addition of cyanide; the reaction produces epimeric carbons.1 These ratios are known to be pH dependent.2 • Optimal conditions where used to produce the preferred epimer of lactones 13C-3 and 13C-6. This work was supported by the Plant Imaging Consortium (PIC, http://plantimaging.cast.uark.edu/), funded by the National Science Foundation Award Numbers IIA- 1430427 and IIA-1430428. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of NSF. SYNTHESIS OF L-GALACTONO-1,4-LACTONE INTRODUCTION ACKNOWLEDGEMENTS plc.ii.sgr_5LX.1 plc.ii.sgr_5LX.1.1 0.000 0.001 0.002 0.003 −500 0 500 1000 0 5 10 15 0 5 10 15 time response channel plc.ii.sgr_5LX.1 plc.ii.sgr_5LX.1.1 Response(AU) Time (Min) L-Xylose and 3 plc.ii.sgr_11_GalLLyx_only plc.ii.sgr_11_GalLLyx_only.1 0.000 0.001 0.002 0.003 0.004 0 200 400 600 0 5 10 15 0 5 10 15 time response channel plc.ii.sgr_11_GalLLyx_only plc.ii.sgr_11_GalLLyx_only.1 Response(AU) Time (Min) L-Lyxose and 6 Name Retention Time L-Xylose 8.2 - RI 3 6.9 - RI L-Lyxose 7.0 - RI 6 5.9 - RI 2 Silent • Synthesis, purification, and characterization of carbon-13 labelled gulono-1,4-lactone (13C-3) and galactono-1,4-lactone (13C-6) from the respective pentoses L-Xylose and L- Lyxose. • Optimization and characterization of reaction intermediates (1, 2, 4, and 5) required for successful carbon-11 implementation. SYNTHESIS OF L-GULONO-1,4-LACTONE L-Xylose O C OH OH OH HO * 1 C OH OH OH HO N OH * K13 CN H2O, 48 hrs, RT Ba(OH)2 • 8H2O 2hrs, 75°C C OH OH OH HO OH * O OH 2 * C O OH HO OOH OH 13 C-3 18N H2SO4, 2hrs, 75°C • Epimeric carbons are indicated by bonds; the initial epimeric purity was 82% (Gulo) and 18% (Ido). • Two successive methyl cellosolve recrystallizations removed the unwanted epimer. Response(AU) CHARACTERIZATION OF L-GULONO-1,4-LACTONE * C O OH HO OOH 13 C-6 L-Lyxose O C OH OH OH HO * 4 * OH NHO OH OH OH CK13 CN H2O, 48 hrs, RT Ba(OH)2 • 8H2O 2hrs, 75°C C OH OH OH HO OH * O OH 5 18N H2SO4, 2hrs, 75°C OH • Epimeric carbons are indicated by bonds; the initial epimeric purity was 88% (Gal) and 12% (Tal). • The presence of 13C-6 lactone is also indicated by the 13C-NMR Spectra (A), HPLC injection (B), and analytical TLC using 20% H2O in ACN (C). PREPARATION FOR 11C SYNTHESIS 180 160 140 120 100 80 60 40 20 ppm 62.10 67.20 70.18 70.70 71.23 71.60 81.95 81.97 175.56 178.57 Current Data Parameters NAME plc.i.sgr.99.2Recry EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ 20160504 Time 11.24 INSTRUM spect PROBHD 5 mm CPTCI 1H/ PULPROG zgpg30 TD 65536 SOLVENT D2O NS 256 DS 4 SWH 42613.637 Hz FIDRES 0.650232 Hz AQ 0.7689557 sec RG 188.21 DW 11.733 usec DE 20.00 usec TE 298.0 K D1 2.00000000 sec D11 0.03000000 sec TD0 1 ======== CHANNEL f1 ======== SFO1 150.8012132 MHz NUC1 13C P1 11.00 usec PLW1 94.00000000 W ======== CHANNEL f2 ======== SFO2 599.6623986 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 6.30959988 W PLW12 0.06309600 W PLW13 0.04038100 W F2 - Processing parameters SI 32768 SF 150.7845288 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40 plc.i.sgr.99.2Recry || 04 May 2016 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 ppm 62.10 67.20 70.18 70.70 71.23 71.60 81.95 81.97 Current Data Parameters NAME plc.i.sgr.99.2Recry EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ 20160504 Time 11.24 INSTRUM spect PROBHD 5 mm CPTCI 1H/ PULPROG zgpg30 TD 65536 SOLVENT D2O NS 256 DS 4 SWH 42613.637 Hz FIDRES 0.650232 Hz AQ 0.7689557 sec RG 188.21 DW 11.733 usec DE 20.00 usec TE 298.0 K D1 2.00000000 sec D11 0.03000000 sec TD0 1 ======== CHANNEL f1 ======== SFO1 150.8012132 MHz NUC1 13C P1 11.00 usec PLW1 94.00000000 W ======== CHANNEL f2 ======== SFO2 599.6623986 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 6.30959988 W PLW12 0.06309600 W PLW13 0.04038100 W F2 - Processing parameters SI 32768 SF 150.7845288 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40 plc.i.sgr.99.2Recry || 04 May 2016 3.23.33.43.53.63.73.83.94.04.14.24.34.44.54.64.74.84.9 ppm 3.681 3.682 3.690 3.691 3.702 3.710 3.711 3.749 3.750 3.788 3.794 3.809 3.814 4.056 4.062 4.064 4.066 4.070 4.075 4.076 4.078 4.079 4.085 4.504 4.508 4.518 4.522 4.535 4.536 4.541 4.542 4.544 4.549 4.550 4.554 4.555 4.557 4.558 4.562 4.563 4.733 4.740 4.748 1.11 1.01 0.94 0.99 1.00 1.00 Current Data Parameters NAME plc.i.sgr.99.2Recry EXPNO 1 PROCNO 1 F2 - Acquisition Parameters Date_ 20160504 Time 11.13 INSTRUM spect PROBHD 5 mm CPTCI 1H/ PULPROG zg30 TD 65536 SOLVENT D2O NS 16 DS 2 SWH 12019.230 Hz FIDRES 0.183399 Hz AQ 2.7262976 sec RG 32.25 DW 41.600 usec DE 30.00 usec TE 298.0 K D1 1.00000000 sec TD0 1 ======== CHANNEL f1 ======== SFO1 599.6637031 MHz NUC1 1H P1 8.35 usec PLW1 6.30959988 W F2 - Processing parameters SI 65536 SF 599.6599586 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00 plc.i.sgr.99.2Recry || 04 May 2016 • Carbon-13 (A, B, D) and proton (C) NMR Spectra of 13C-3 containing 0.03% percent dioxane. • The 13C-DEPT (D) and proton (C) both show unique spectral properties (arrows).180 160 140 120 100 80 60 40 20 ppm 60.79 62.11 67.20 70.18 70.19 70.70 70.71 71.22 71.61 81.96 81.97 178.57 Current Data Parameters NAME plc.i.sgr.99.2Recry EXPNO 3 PROCNO 1 F2 - Acquisition Parameters Date_ 20160504 Time 11.40 INSTRUM spect PROBHD 5 mm CPTCI 1H/ PULPROG deptsp135 TD 65536 SOLVENT D2O NS 256 DS 4 SWH 36231.883 Hz FIDRES 0.552855 Hz AQ 0.9043968 sec RG 188.21 DW 13.800 usec DE 20.00 usec TE 298.0 K CNST2 145.0000000 D1 2.00000000 sec D2 0.00344828 sec D12 0.00002000 sec TD0 1 ======== CHANNEL f1 ======== SFO1 150.7997054 MHz NUC1 13C P1 11.00 usec P13 2000.00 usec PLW0 0 W PLW1 94.00000000 W SPNAM[5] Crp60comp.4 SPOAL5 0.500 SPOFFS5 0 Hz SPW5 17.37800026 W ======== CHANNEL f2 ======== SFO2 599.6619178 MHz NUC2 1H CPDPRG[2 waltz16 P3 8.00 usec P4 16.00 usec PCPD2 80.00 usec PLW2 6.30959988 W PLW12 0.06309600 W F2 - Processing parameters SI 32768 SF 150.7845284 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40 plc.i.sgr.99.2Recry || 04 May 2016 180 160 140 120 100 80 60 40 20 ppm 60.79 62.11 67.20 70.18 70.19 70.70 70.71 71.22 71.61 81.96 81.97 178.57 Current Data Parameters NAME plc.i.sgr.99.2Recry EXPNO 3 PROCNO 1 F2 - Acquisition Parameters Date_ 20160504 Time 11.40 INSTRUM spect PROBHD 5 mm CPTCI 1H/ PULPROG deptsp135 TD 65536 SOLVENT D2O NS 256 DS 4 SWH 36231.883 Hz FIDRES 0.552855 Hz AQ 0.9043968 sec RG 188.21 DW 13.800 usec DE 20.00 usec TE 298.0 K CNST2 145.0000000 D1 2.00000000 sec D2 0.00344828 sec D12 0.00002000 sec TD0 1 ======== CHANNEL f1 ======== SFO1 150.7997054 MHz NUC1 13C P1 11.00 usec P13 2000.00 usec PLW0 0 W PLW1 94.00000000 W SPNAM[5] Crp60comp.4 SPOAL5 0.500 SPOFFS5 0 Hz SPW5 17.37800026 W ======== CHANNEL f2 ======== SFO2 599.6619178 MHz NUC2 1H CPDPRG[2 waltz16 P3 8.00 usec P4 16.00 usec PCPD2 80.00 usec PLW2 6.30959988 W PLW12 0.06309600 W F2 - Processing parameters SI 32768 SF 150.7845284 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40 plc.i.sgr.99.2Recry || 04 May 2016 Response(AU) Time (Min) Time (Min) Response(AU) Response(AU) Time (Min) First Void Volume Void Volume Void Volume Epimers: 18%/82% Epimers: 5.5%/94.5% • A Phenomenex Luna-NH2 (5µ x 250 x 4.6 mm) column paired with a RI detector (flow cell temperature = 35°C) was used for all HPLC separations. The eluent was 20% H2O in ACN. A: Crude mixture 13C-3, flow rate = 2.0 mL/min. B: First recrystallization with methyl cellosolve, flow rate = 1.0 mL/min. C: Second recrystallization with methyl cellosolve, flow rate = 1.0 mL/min. D: Crystal structure of 13C-3. A B C D A B C D C O OH HO OOH OH 13C-3 1 23 4 56 plc.ii.sgr.11.prd4 plc.ii.sgr.11.prd4.1 0.000 0.005 0.010 0.015 0.020 0 500 1000 1500 2000 0 5 10 15 0 5 10 15 time response channel plc.ii.sgr.11.prd4 plc.ii.sgr.11.prd4.1 Void Volume Response(AU) Time (Min) BA C Optimal Radiochemical Yield Optimal Chemical Yield 3 Days10 Min Time (Min) 2 Response(AU) • Carbon-11’s short half life presents unique synthetic considerations: See Katie Foley’s Poster for More Information About in vitro and in planta work • Separation of intermediates is key for successful carbon-11 labeling. References: (1) Serianni, A.; Nunez, H.; Barker, R. Cyanohydrin synthesis: studies with carbon-13-labeled cyanide. J. Org. Chem. 1980, 45, 3329-3349. (2) Zhu, P.; Zacizek, J.; Serianni, A. Acyclic forms of [1-13C]aldohexoses in aqueous solution: Quantitation by 13C NMR and deuterium isotope effects on tautomeric equilibria. J. Org. Chem. 2001, 66, 6244-6251 0 0 50 100 PercentProductYield 20 40 60 Radiochemical Yield Reaction Time (minutes) Radioactive Decay Chemical Yield