SlideShare a Scribd company logo
1 of 16
Download to read offline
Calculating the damping constant of a spring + hook
system
By Ariel Garcia, Andrew Huynh and N’Vida Yotcho
Math 238 –Differential equations
Introduction:
A spring of 0.094 kg with initial length of 0.052 m has a stretch of
0.118 m when a hook of 0.512 kg is attached to it (Figure 1).
The spring + hook system is stretched from equilibrium position to - 0.116
m and released at t= 0.6745 s (Figure 2). With a motion detector and the
Vernier software LoggerPro, a position-time graph of the system had been
plotted (Figure 3). Find the damping constant c of the damping force
applying by the air on the spring + hook system.
FIGURE 1.
The spring without the hook (left)
The spring + hook (right)
FIGURE 2.
The
experimental
dispositive
FIGURE 3. Position-time graph of the system after release.
FIGURE 4.
The amplitudes An at time tn
n An tn
0 0.1373 1.05
1 0.1131 1.9
2 0.1035 2.75
3 0.08678 3.6
4 0.07114 4.4
5 0.06867 5.3
6 0.06510 6.1
7 0.05138 6.95
FIGURE 5. Amplitude vs. time graph (exponential envelope)
Initial Value Problem:
m*y’’ + c*y’ + k*y = 0,
y(0.6745) = -0.116, y’(0.6745)=0
==> y’’ +
𝒄
"
*y’ +
#
"
*y = 0
m: effective mass of the system (kg)
c: damping coefficient (N*s/m)
k: spring constant (N/m)
____Effective mass of the system m:
m =
$%&&	
  ()	
  *+,	
  &-./01
2
+ 𝑚𝑎𝑠𝑠	
   𝑜 𝑓	
   𝑡ℎ𝑒	
  ℎ 𝑜𝑜𝑘
=
=.=?@
2
+ 0.512
m = 0.543 kg
____Spring constant k:
Tension of the spring = k *stretch of the spring
Tension of the spring = m * g
è k = A,0&/(0	
  ()	
  *+,	
  &-./01
&*.,*B+	
  ()	
  *+,	
  &*./01	
  
k =
$∗1
&*.,*B+	
  ()	
  *+,	
  &*./01
=
=.D@2∗?.E
=.FFE
k = 45.097 N/m
_____ The Damping coefficient c: is unknown.
But c, k and m are related. Indeed, the damping ratio Ỷ is equal to:
Ỷ =
B
G #∗$
è c = Ỷ * (2 𝑘 ∗ 𝑚)
è
H
$
= Ỷ *2* 𝑘 ∗
$
$
è
H	
  
$
	
  	
  = Ỷ *2*
#
$
	
   , and ω0 =
#
$
B
$
= Ỷ * 2 * ω0
Rewriting the IVP in function of ω0 (undamped natural frequency), and Ỷ:
y’’ +
𝒄
"
*y’ +
#
"
*y = 0
è y’’ + Ỷ * 2 * ω0*y’ + ω02 *y = 0
Solving the IVP:
y’’ + Ỷ * 2 * ω0*y’ + ω02 *y = 0, y(0.6745) = -0.116, y’(0.6745)=0
r2+ Ỷ 2 ω0 r+ ω02 = 0
r=
IG	
  J	
  K=	
  
G
± i
@	
  K=L	
  (FIJL)
G
è y(t) = A e -Ỷ ω0t *cos[µμ ∗ t − 	
  δ]
μ: quasi-frequency --- μ = ω0 1 − ζG
δ : The phase
_____Amplitude decay envelope (Figure 5):
A(t) = A0 e -Ỷ ω0t
For tn : An= A0 e -Ỷ ω0tn
For tn+1: An+1=A0 e -Ỷ ω0(tn+1)
An
An+1
=
A0	
  e	
  	
  	
  −ζ	
  ω0t
A0	
  e	
  	
  	
  −ζ	
  ω0(t+1) è
An
An+1
= e -Ỷ ω0tn +Ỷ ω0(tn+1)
An
An+1
= e Ỷ ω0(tn+1- tn)
T = tn+1-tn
T is the period between each peak
But we know that T =
G]
^0
è T =	
  
G]
ω0 1−ζ2
	
  
So that :
An
An+1
= 	
   𝑒
JK=(
L`
ω0 1−ζ2 )
è
An
An+1
= 𝑒
(
La`
1−ζ2 )
Logarithmic decrement or the logarithm of the amplitudes is for any two
successive peaks: ln	
  [
An
An+1
] =
GJ]
1−ζ2
In general : ln	
  [	
  
c=
cd
	
  ] =
GJd]
FIJL
FIGURE 6. Ln (A0/An) vs. n
0
0.2
0.4
0.6
0.8
1
1.2
0 1 2 3 4 5 6 7 8
ln(A0/An)
n
Our data follows a linear trend. So, it is valid that our model is a linear
damping model, so that, the damping ratio can be estimated by:
Ỷ =
e0
@]fe0L
with 𝛽𝑛 =
F
0
[ln
i=
i0
]
n
𝛽𝑛 4𝜋 + 𝛽𝑛G Ỷ Ỷ
average
is:
0.006
2 0.019965224 3.55 0.00563
3 0.023387802 3.55 0.00659
4 0.027020665 3.55 0.00761
5 0.019201971 3.55 0.00541
6 0.016754876 3.55 0.00472
7 0.019716947 3.55 0.00556
Conclusion:
Ỷ = 0.006 è Ỷ > 0.01 and that is what was
expected for a metal system.
c = Ỷ * (2 𝑘 ∗ 𝑚)
= 0.006 *(2 45.097	
   ∗ 0.543	
  )
c = 0.0593820227
𝒄 ≃ 0.059

More Related Content

What's hot (15)

[Review] contact model fusion
[Review] contact model fusion[Review] contact model fusion
[Review] contact model fusion
 
Theory of machines solution ch 11
Theory of machines solution ch 11 Theory of machines solution ch 11
Theory of machines solution ch 11
 
Response spectra
Response spectraResponse spectra
Response spectra
 
Ch06 pt 2
Ch06 pt 2Ch06 pt 2
Ch06 pt 2
 
Chapter 06
Chapter 06Chapter 06
Chapter 06
 
Physics Formula list (3)
Physics Formula list (3)Physics Formula list (3)
Physics Formula list (3)
 
Lab 8
Lab 8Lab 8
Lab 8
 
Ch04 ssm
Ch04 ssmCh04 ssm
Ch04 ssm
 
Home work 3
Home work 3Home work 3
Home work 3
 
Home work
Home workHome work
Home work
 
Response spectrum
Response spectrumResponse spectrum
Response spectrum
 
Equations (Physics)
Equations (Physics)Equations (Physics)
Equations (Physics)
 
Newton's second law
Newton's second lawNewton's second law
Newton's second law
 
Hooke's law sample problems with solutions
Hooke's law sample problems with solutionsHooke's law sample problems with solutions
Hooke's law sample problems with solutions
 
Mechanics 2
Mechanics 2Mechanics 2
Mechanics 2
 

Viewers also liked

Lineamientos para la inserción del enfoque de paz en los planes de desarrollo...
Lineamientos para la inserción del enfoque de paz en los planes de desarrollo...Lineamientos para la inserción del enfoque de paz en los planes de desarrollo...
Lineamientos para la inserción del enfoque de paz en los planes de desarrollo...Red Sociojurídica - Nodo Antioquia
 
Hrm 560 week 10 assignment 4 change management plan
Hrm 560 week 10 assignment 4   change management planHrm 560 week 10 assignment 4   change management plan
Hrm 560 week 10 assignment 4 change management planlaynepettus
 
كتاب-بكر-أبوبكر-صدر-السماء-الحافية-2012-نصوص-وظلال
  كتاب-بكر-أبوبكر-صدر-السماء-الحافية-2012-نصوص-وظلال  كتاب-بكر-أبوبكر-صدر-السماء-الحافية-2012-نصوص-وظلال
كتاب-بكر-أبوبكر-صدر-السماء-الحافية-2012-نصوص-وظلالBaker AbuBaker
 
نورالوندی.ذرت شیرین
نورالوندی.ذرت شیریننورالوندی.ذرت شیرین
نورالوندی.ذرت شیرینTohid Nooralvandi
 
Sentencia sobre Perspectiva de Genero - 25000 23-26-000-2000-01293-01(27522)
Sentencia sobre Perspectiva de Genero - 25000 23-26-000-2000-01293-01(27522)Sentencia sobre Perspectiva de Genero - 25000 23-26-000-2000-01293-01(27522)
Sentencia sobre Perspectiva de Genero - 25000 23-26-000-2000-01293-01(27522)Red Sociojurídica - Nodo Antioquia
 
CANO BLANDÓN, L. F. (2010). El enfoque retórico del análisis de políticas púb...
CANO BLANDÓN, L. F. (2010). El enfoque retórico del análisis de políticas púb...CANO BLANDÓN, L. F. (2010). El enfoque retórico del análisis de políticas púb...
CANO BLANDÓN, L. F. (2010). El enfoque retórico del análisis de políticas púb...Red Sociojurídica - Nodo Antioquia
 
spring–mass system
spring–mass systemspring–mass system
spring–mass systemDivya modi
 

Viewers also liked (17)

Lineamientos para la inserción del enfoque de paz en los planes de desarrollo...
Lineamientos para la inserción del enfoque de paz en los planes de desarrollo...Lineamientos para la inserción del enfoque de paz en los planes de desarrollo...
Lineamientos para la inserción del enfoque de paz en los planes de desarrollo...
 
Hrm 560 week 10 assignment 4 change management plan
Hrm 560 week 10 assignment 4   change management planHrm 560 week 10 assignment 4   change management plan
Hrm 560 week 10 assignment 4 change management plan
 
كتاب-بكر-أبوبكر-صدر-السماء-الحافية-2012-نصوص-وظلال
  كتاب-بكر-أبوبكر-صدر-السماء-الحافية-2012-نصوص-وظلال  كتاب-بكر-أبوبكر-صدر-السماء-الحافية-2012-نصوص-وظلال
كتاب-بكر-أبوبكر-صدر-السماء-الحافية-2012-نصوص-وظلال
 
Borrowed capital
Borrowed capitalBorrowed capital
Borrowed capital
 
نورالوندی.ذرت شیرین
نورالوندی.ذرت شیریننورالوندی.ذرت شیرین
نورالوندی.ذرت شیرین
 
CANDICE
CANDICECANDICE
CANDICE
 
Sentencia sobre Perspectiva de Genero - 25000 23-26-000-2000-01293-01(27522)
Sentencia sobre Perspectiva de Genero - 25000 23-26-000-2000-01293-01(27522)Sentencia sobre Perspectiva de Genero - 25000 23-26-000-2000-01293-01(27522)
Sentencia sobre Perspectiva de Genero - 25000 23-26-000-2000-01293-01(27522)
 
Microbiology
Microbiology Microbiology
Microbiology
 
Anemia de células falciforme
Anemia de células falciformeAnemia de células falciforme
Anemia de células falciforme
 
F1 2
F1 2F1 2
F1 2
 
Philippians 1
Philippians 1Philippians 1
Philippians 1
 
Is sena liturġika
Is sena liturġikaIs sena liturġika
Is sena liturġika
 
Ppt 5.7 a
Ppt 5.7 aPpt 5.7 a
Ppt 5.7 a
 
CANO BLANDÓN, L. F. (2010). El enfoque retórico del análisis de políticas púb...
CANO BLANDÓN, L. F. (2010). El enfoque retórico del análisis de políticas púb...CANO BLANDÓN, L. F. (2010). El enfoque retórico del análisis de políticas púb...
CANO BLANDÓN, L. F. (2010). El enfoque retórico del análisis de políticas púb...
 
spring–mass system
spring–mass systemspring–mass system
spring–mass system
 
Leptospirosis
LeptospirosisLeptospirosis
Leptospirosis
 
Web Accessibility
Web AccessibilityWeb Accessibility
Web Accessibility
 

Similar to damping_constant_spring

MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docxMATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docxandreecapon
 
Notes mech v
Notes mech vNotes mech v
Notes mech vRung Heo
 
LAB05ex1.mfunction LAB05ex1m = 1; .docx
LAB05ex1.mfunction LAB05ex1m = 1;                          .docxLAB05ex1.mfunction LAB05ex1m = 1;                          .docx
LAB05ex1.mfunction LAB05ex1m = 1; .docxsmile790243
 
Dynamics of structures 5th edition chopra solutions manual
Dynamics of structures 5th edition chopra solutions manualDynamics of structures 5th edition chopra solutions manual
Dynamics of structures 5th edition chopra solutions manualSchneiderxds
 
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang LiuSolutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang LiuHildaLa
 
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...qedobose
 
From the Front LinesOur robotic equipment and its maintenanc.docx
From the Front LinesOur robotic equipment and its maintenanc.docxFrom the Front LinesOur robotic equipment and its maintenanc.docx
From the Front LinesOur robotic equipment and its maintenanc.docxhanneloremccaffery
 
3. convolution fourier
3. convolution fourier3. convolution fourier
3. convolution fourierskysunilyadav
 
Solucionário Introdução à mecânica dos Fluidos - Chapter 01
Solucionário Introdução à mecânica dos Fluidos - Chapter 01Solucionário Introdução à mecânica dos Fluidos - Chapter 01
Solucionário Introdução à mecânica dos Fluidos - Chapter 01Rodolpho Montavoni
 
Find the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfFind the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfarihantelectronics
 
ClassExamplesPeriodicMotionWaves.pdf
ClassExamplesPeriodicMotionWaves.pdfClassExamplesPeriodicMotionWaves.pdf
ClassExamplesPeriodicMotionWaves.pdfPatrickSibanda3
 
Theory of Advanced Relativity
Theory of Advanced RelativityTheory of Advanced Relativity
Theory of Advanced RelativityMihir Jha
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Ansal Valappil
 
03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdf03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdfROCIOMAMANIALATA1
 

Similar to damping_constant_spring (20)

Solutions fox
Solutions   foxSolutions   fox
Solutions fox
 
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docxMATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
 
Notes mech v
Notes mech vNotes mech v
Notes mech v
 
LAB05ex1.mfunction LAB05ex1m = 1; .docx
LAB05ex1.mfunction LAB05ex1m = 1;                          .docxLAB05ex1.mfunction LAB05ex1m = 1;                          .docx
LAB05ex1.mfunction LAB05ex1m = 1; .docx
 
Dynamics of structures 5th edition chopra solutions manual
Dynamics of structures 5th edition chopra solutions manualDynamics of structures 5th edition chopra solutions manual
Dynamics of structures 5th edition chopra solutions manual
 
assignment_2
assignment_2assignment_2
assignment_2
 
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang LiuSolutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
 
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
 
From the Front LinesOur robotic equipment and its maintenanc.docx
From the Front LinesOur robotic equipment and its maintenanc.docxFrom the Front LinesOur robotic equipment and its maintenanc.docx
From the Front LinesOur robotic equipment and its maintenanc.docx
 
3. convolution fourier
3. convolution fourier3. convolution fourier
3. convolution fourier
 
Lecture 5: The Convolution Sum
Lecture 5: The Convolution SumLecture 5: The Convolution Sum
Lecture 5: The Convolution Sum
 
Bazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-ZattiBazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-Zatti
 
Solucionário Introdução à mecânica dos Fluidos - Chapter 01
Solucionário Introdução à mecânica dos Fluidos - Chapter 01Solucionário Introdução à mecânica dos Fluidos - Chapter 01
Solucionário Introdução à mecânica dos Fluidos - Chapter 01
 
Ch03 9
Ch03 9Ch03 9
Ch03 9
 
Find the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfFind the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdf
 
ClassExamplesPeriodicMotionWaves.pdf
ClassExamplesPeriodicMotionWaves.pdfClassExamplesPeriodicMotionWaves.pdf
ClassExamplesPeriodicMotionWaves.pdf
 
Theory of Advanced Relativity
Theory of Advanced RelativityTheory of Advanced Relativity
Theory of Advanced Relativity
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 
Problem and solution i ph o 31
Problem and solution i ph o 31Problem and solution i ph o 31
Problem and solution i ph o 31
 
03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdf03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdf
 

damping_constant_spring

  • 1. Calculating the damping constant of a spring + hook system By Ariel Garcia, Andrew Huynh and N’Vida Yotcho Math 238 –Differential equations
  • 2. Introduction: A spring of 0.094 kg with initial length of 0.052 m has a stretch of 0.118 m when a hook of 0.512 kg is attached to it (Figure 1). The spring + hook system is stretched from equilibrium position to - 0.116 m and released at t= 0.6745 s (Figure 2). With a motion detector and the Vernier software LoggerPro, a position-time graph of the system had been plotted (Figure 3). Find the damping constant c of the damping force applying by the air on the spring + hook system.
  • 3. FIGURE 1. The spring without the hook (left) The spring + hook (right)
  • 5. FIGURE 3. Position-time graph of the system after release.
  • 6. FIGURE 4. The amplitudes An at time tn n An tn 0 0.1373 1.05 1 0.1131 1.9 2 0.1035 2.75 3 0.08678 3.6 4 0.07114 4.4 5 0.06867 5.3 6 0.06510 6.1 7 0.05138 6.95
  • 7. FIGURE 5. Amplitude vs. time graph (exponential envelope)
  • 8. Initial Value Problem: m*y’’ + c*y’ + k*y = 0, y(0.6745) = -0.116, y’(0.6745)=0 ==> y’’ + 𝒄 " *y’ + # " *y = 0 m: effective mass of the system (kg) c: damping coefficient (N*s/m) k: spring constant (N/m)
  • 9. ____Effective mass of the system m: m = $%&&  ()  *+,  &-./01 2 + 𝑚𝑎𝑠𝑠   𝑜 𝑓   𝑡ℎ𝑒  ℎ 𝑜𝑜𝑘 = =.=?@ 2 + 0.512 m = 0.543 kg ____Spring constant k: Tension of the spring = k *stretch of the spring Tension of the spring = m * g è k = A,0&/(0  ()  *+,  &-./01 &*.,*B+  ()  *+,  &*./01   k = $∗1 &*.,*B+  ()  *+,  &*./01 = =.D@2∗?.E =.FFE k = 45.097 N/m
  • 10. _____ The Damping coefficient c: is unknown. But c, k and m are related. Indeed, the damping ratio Ỷ is equal to: Ỷ = B G #∗$ è c = Ỷ * (2 𝑘 ∗ 𝑚) è H $ = Ỷ *2* 𝑘 ∗ $ $ è H   $    = Ỷ *2* # $   , and ω0 = # $ B $ = Ỷ * 2 * ω0 Rewriting the IVP in function of ω0 (undamped natural frequency), and Ỷ: y’’ + 𝒄 " *y’ + # " *y = 0 è y’’ + Ỷ * 2 * ω0*y’ + ω02 *y = 0
  • 11. Solving the IVP: y’’ + Ỷ * 2 * ω0*y’ + ω02 *y = 0, y(0.6745) = -0.116, y’(0.6745)=0 r2+ Ỷ 2 ω0 r+ ω02 = 0 r= IG  J  K=   G ± i @  K=L  (FIJL) G è y(t) = A e -Ỷ ω0t *cos[µμ ∗ t −  δ] μ: quasi-frequency --- μ = ω0 1 − ζG δ : The phase
  • 12. _____Amplitude decay envelope (Figure 5): A(t) = A0 e -Ỷ ω0t For tn : An= A0 e -Ỷ ω0tn For tn+1: An+1=A0 e -Ỷ ω0(tn+1) An An+1 = A0  e      −ζ  ω0t A0  e      −ζ  ω0(t+1) è An An+1 = e -Ỷ ω0tn +Ỷ ω0(tn+1) An An+1 = e Ỷ ω0(tn+1- tn)
  • 13. T = tn+1-tn T is the period between each peak But we know that T = G] ^0 è T =   G] ω0 1−ζ2   So that : An An+1 =   𝑒 JK=( L` ω0 1−ζ2 ) è An An+1 = 𝑒 ( La` 1−ζ2 ) Logarithmic decrement or the logarithm of the amplitudes is for any two successive peaks: ln  [ An An+1 ] = GJ] 1−ζ2 In general : ln  [   c= cd  ] = GJd] FIJL
  • 14. FIGURE 6. Ln (A0/An) vs. n 0 0.2 0.4 0.6 0.8 1 1.2 0 1 2 3 4 5 6 7 8 ln(A0/An) n
  • 15. Our data follows a linear trend. So, it is valid that our model is a linear damping model, so that, the damping ratio can be estimated by: Ỷ = e0 @]fe0L with 𝛽𝑛 = F 0 [ln i= i0 ] n 𝛽𝑛 4𝜋 + 𝛽𝑛G Ỷ Ỷ average is: 0.006 2 0.019965224 3.55 0.00563 3 0.023387802 3.55 0.00659 4 0.027020665 3.55 0.00761 5 0.019201971 3.55 0.00541 6 0.016754876 3.55 0.00472 7 0.019716947 3.55 0.00556
  • 16. Conclusion: Ỷ = 0.006 è Ỷ > 0.01 and that is what was expected for a metal system. c = Ỷ * (2 𝑘 ∗ 𝑚) = 0.006 *(2 45.097   ∗ 0.543  ) c = 0.0593820227 𝒄 ≃ 0.059