SlideShare a Scribd company logo
1 of 18
Download to read offline
An Extremely Brief Overview of the State of the Art of
Maxwell Gregoire
Atom Interferometer Gyroscopes
What is a gyroscope?
● A device for measuring the rotation rate (or any
time derivatives thereof) of its own reference
frame
Applications: Navigation
● Compare satellites to a drag-free test mass
– Solar wind, atmospheric drag
– Important for experiments that reference trajectories
● Submarines
– Cannot access GPS
– Less detectable if they
don't have to ping
● Aircraft and ships
(manned and unmanned)
– Not vulnerable to cyber
attack if they don't need GPS
Applications: Geophysics
● Measure wobble in Earth's rotation rate
due to
– Precession and nutation
– Lunar and solar tides
● Measure tidal drag:
– Earth's rotation causes tidal bulge to
“lead” the moon; moon pulls back on
tidal bulge, causes torque on Earth
opposite rotation vector
– Earth's rotation slows
– Moon's revolution slows, moon orbits
further away (Virial Thm: 2T = -V)
Applications: General Relativity
● Geodetic effect:
– A vector (ex. angular momentum of gyroscope on a satellite)
is affected by space-time curvature created by a nearby
massive body (ex. Earth).
● Lense-Thirring rotation a.k.a. gravitomagnetic frame-dragging:
– An object (ex. gyroscope on a satellite) rotates due to the
rotation of a nearby massive body (ex. Earth)
● Together, these effects predict
precession of a gyroscope on a
satellite that, classically, should not
happen
Applications and Figure of Merit
Sensitivity Quick
Response
Portability
Geodetic effect 10-8
ΩE
absolute X
Frame-dragging 10-10
ΩE
absolute X
ΩE
wobble 10-8
ΩE
change in ΩE
per day
Tidal drag 10-13
ΩE
change in ΩE
per year
Navigation 10-3
ΩE
absolute X X
Earth's rotation rate ΩE
= 7.3∙10-5
Polarizability Measurements
In our lab, the Earth's rotation...
● changes measured static polarizability by up to 1%
– Target accuracy is 0.2%
● changes measured magic zero wavelength by 200 pm
– Target accuracy is < 1 pm
E
d
valence electron cloud
nucleus
U = -α E2
/2
Atom Interferometer
L, T = L/v L, T = L/v
● Interference pattern forms at
position of 3rd grating
● Sweep 3rd grating in +/- x
direction: grating bars either
block or admit “bright spots”
area A
v, λdB
z
x
(not all diffraction orders are shown)
P
Detector
Atom Interferometer
L, T = L/v L, T = L/v
● Measure phase and contrast of
interference pattern
● Contrast = (max-min) / (max+min)
area A
v, λdB
z
x
(not all diffraction orders are shown)
P
Detector
max
min
phase
Atom Interferometer
phase Φ = k · [– 2Δx2(T) + Δx3(2T)]
L, T = L/v L, T = L/v
● k: grating “reciprocal lattice vector” a.k.a kx given to atom
in 1st order diffraction
● Δxi: how much grating i has moved since atom hit first
grating
area A
v, λdB
z
x
Detector
Atom Interferometer
phase Φ = (2π/d) · [– 2Δx2(T)+ Δx3(2T)]
L, T = L/v L, T = L/v
● d: grating period
● Δxi: how much grating i has moved (in x direction) since
atom hit first grating
area A
v, λdB
z
x
Detector
The Sagnac Effect
● grating period d
Φsag = (2π/d) · [0 – 0 + (ΩL)(2L/v)] = … = 4πΩA / λdBv
L, T = L/v L, T = L/v
phase Φ = (2π/d) · [– 2Δx2(T)+ Δx3(2T)]
area A
v, λdB
Ω
z
x
Detector
Atoms vs Light: response factor matters
● Response factor: Φsag/Ω
● In general, Φsag/Ω = 4πA / λv
● Φsag
atom = λlightc = mc2 ≈ 1011
Φsag
light λdBv ħv
That said, number of atoms matters
● In shot-noise limit: δΩ = δΦ = Ω
Φsag/Ω ΦsagC√N
When statistics are Gaussian
Nano-grating Interferometer
PROS
● Works with any atomic
species
● High dynamic range
CONS
● Gratings only transmit 0.1% of
atoms
● Contrast ≈ 30%
Light Grating Interferometer
ω1
ω2
|g>
|e>
|i>
Δ
effective ωeff
g ω2
, k2
ω1
, k1
● Kapitza-Dirac diffraction
● Bragg diffraction
● Raman diffraction
Dynamic range
With no Sagnac shift...
Dynamic range
With Sagnac shift...
● Sagnac shift is v-dependent:
– Atoms disperse in x
– Causes contrast loss
– Oh no! Whatever shall we
do?
P
x position along 3rd
grating
slow
fast
slow
fast
Dynamic range
With Sagnac shift, apply static,
non-uniform E
● Field pulls slower atoms more, in
opposite direction of Sagnac
shift
● Recovers contrast
● Measure Ω by maximizing
contrast
+
P
x position along 3rd
grating
cylinder, axis into page

More Related Content

What's hot

Recent neutrino oscillation results from T2K
Recent neutrino oscillation results from T2KRecent neutrino oscillation results from T2K
Recent neutrino oscillation results from T2KSon Cao
 
Introduction to Seismic Method
Introduction to Seismic MethodIntroduction to Seismic Method
Introduction to Seismic MethodŞarlatan Avcısı
 
LEO OR.A.SI Presentation Version No.17
LEO OR.A.SI Presentation Version No.17LEO OR.A.SI Presentation Version No.17
LEO OR.A.SI Presentation Version No.17Antonios Arkas
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 
Presentation for the 16th EUROSTAR Users Conference June 2008
Presentation for the 16th EUROSTAR Users Conference June 2008Presentation for the 16th EUROSTAR Users Conference June 2008
Presentation for the 16th EUROSTAR Users Conference June 2008Antonios Arkas
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 
Lecture 23 april29 static correction
Lecture 23 april29 static correctionLecture 23 april29 static correction
Lecture 23 april29 static correctionAmin khalil
 
The Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugThe Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugTheoretical mechanics department
 
Relativistic Phase Displacement Space Drive
Relativistic Phase Displacement Space DriveRelativistic Phase Displacement Space Drive
Relativistic Phase Displacement Space Drive"Douglas" F. Palte
 
3_Xorbits_InSAR_IGARSS2011.ppt
3_Xorbits_InSAR_IGARSS2011.ppt3_Xorbits_InSAR_IGARSS2011.ppt
3_Xorbits_InSAR_IGARSS2011.pptgrssieee
 
637340main marco pavone_niac
637340main marco pavone_niac637340main marco pavone_niac
637340main marco pavone_niacClifford Stone
 
Richard Perez - GW Solar Symposium 2012
Richard Perez - GW Solar Symposium 2012Richard Perez - GW Solar Symposium 2012
Richard Perez - GW Solar Symposium 2012GW Solar Institute
 
Velocity Models Difference
Velocity Models DifferenceVelocity Models Difference
Velocity Models DifferenceShah Naseer
 
ÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİAli Osman Öncel
 

What's hot (19)

Recent neutrino oscillation results from T2K
Recent neutrino oscillation results from T2KRecent neutrino oscillation results from T2K
Recent neutrino oscillation results from T2K
 
Introduction to Seismic Method
Introduction to Seismic MethodIntroduction to Seismic Method
Introduction to Seismic Method
 
Gravitation
GravitationGravitation
Gravitation
 
LEO OR.A.SI Presentation Version No.17
LEO OR.A.SI Presentation Version No.17LEO OR.A.SI Presentation Version No.17
LEO OR.A.SI Presentation Version No.17
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
Chandrayaan 2 modules
Chandrayaan 2 modulesChandrayaan 2 modules
Chandrayaan 2 modules
 
Presentation for the 16th EUROSTAR Users Conference June 2008
Presentation for the 16th EUROSTAR Users Conference June 2008Presentation for the 16th EUROSTAR Users Conference June 2008
Presentation for the 16th EUROSTAR Users Conference June 2008
 
EAS6415presentation
EAS6415presentationEAS6415presentation
EAS6415presentation
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
Lecture 23 april29 static correction
Lecture 23 april29 static correctionLecture 23 april29 static correction
Lecture 23 april29 static correction
 
Gravitational Waves and Binary Systems (4) - Thibault Damour
Gravitational Waves and Binary Systems (4) - Thibault DamourGravitational Waves and Binary Systems (4) - Thibault Damour
Gravitational Waves and Binary Systems (4) - Thibault Damour
 
The Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugThe Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space Tug
 
Relativistic Phase Displacement Space Drive
Relativistic Phase Displacement Space DriveRelativistic Phase Displacement Space Drive
Relativistic Phase Displacement Space Drive
 
3_Xorbits_InSAR_IGARSS2011.ppt
3_Xorbits_InSAR_IGARSS2011.ppt3_Xorbits_InSAR_IGARSS2011.ppt
3_Xorbits_InSAR_IGARSS2011.ppt
 
637340main marco pavone_niac
637340main marco pavone_niac637340main marco pavone_niac
637340main marco pavone_niac
 
Richard Perez - GW Solar Symposium 2012
Richard Perez - GW Solar Symposium 2012Richard Perez - GW Solar Symposium 2012
Richard Perez - GW Solar Symposium 2012
 
Velocity Models Difference
Velocity Models DifferenceVelocity Models Difference
Velocity Models Difference
 
ÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİ
 
Gravitation
GravitationGravitation
Gravitation
 

Viewers also liked

Interferometers history
Interferometers historyInterferometers history
Interferometers historySolo Hermelin
 
Fiber Optic Gyroscope 1
Fiber Optic Gyroscope 1Fiber Optic Gyroscope 1
Fiber Optic Gyroscope 1Steven Wang
 
The Sagnac Effect
The Sagnac EffectThe Sagnac Effect
The Sagnac EffectHamza Ali
 
Amanda Beatriz e Rafaela - Apple
Amanda Beatriz e Rafaela - AppleAmanda Beatriz e Rafaela - Apple
Amanda Beatriz e Rafaela - AppleEruditos2a
 
Cosmetic dentistry
Cosmetic dentistryCosmetic dentistry
Cosmetic dentistrydentalavenue
 
Ana Júlia Evlyn e Vitor - Mc Donalds Perguntas
Ana Júlia Evlyn e Vitor - Mc Donalds PerguntasAna Júlia Evlyn e Vitor - Mc Donalds Perguntas
Ana Júlia Evlyn e Vitor - Mc Donalds PerguntasEruditos2a
 
Amanda Beatriz e Rafaela - Apple perguntas
Amanda Beatriz e Rafaela - Apple perguntasAmanda Beatriz e Rafaela - Apple perguntas
Amanda Beatriz e Rafaela - Apple perguntasEruditos2a
 
Gregory e Raul - Nike Perguntas
Gregory e Raul - Nike PerguntasGregory e Raul - Nike Perguntas
Gregory e Raul - Nike PerguntasEruditos2a
 
CMSCollaboration_high_energy_physics_paper
CMSCollaboration_high_energy_physics_paperCMSCollaboration_high_energy_physics_paper
CMSCollaboration_high_energy_physics_paperMaxwell Gregoire
 
15214087 pss7-ans
15214087 pss7-ans15214087 pss7-ans
15214087 pss7-ansLukWO
 
College Recruitment for General Audiences
College Recruitment for General AudiencesCollege Recruitment for General Audiences
College Recruitment for General AudiencesMichael Hayes
 
João, Luiz e Misael gibson perguntas
João, Luiz e Misael gibson perguntasJoão, Luiz e Misael gibson perguntas
João, Luiz e Misael gibson perguntasEruditos2a
 
Gabriel, Robson e Vinicius coca
Gabriel, Robson e Vinicius cocaGabriel, Robson e Vinicius coca
Gabriel, Robson e Vinicius cocaEruditos2a
 

Viewers also liked (20)

Interferometers history
Interferometers historyInterferometers history
Interferometers history
 
Polarization
PolarizationPolarization
Polarization
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
Fiber Optic Gyroscope 1
Fiber Optic Gyroscope 1Fiber Optic Gyroscope 1
Fiber Optic Gyroscope 1
 
The Sagnac Effect
The Sagnac EffectThe Sagnac Effect
The Sagnac Effect
 
Amanda Beatriz e Rafaela - Apple
Amanda Beatriz e Rafaela - AppleAmanda Beatriz e Rafaela - Apple
Amanda Beatriz e Rafaela - Apple
 
Teknologi bahan alam farmasi
Teknologi bahan alam farmasiTeknologi bahan alam farmasi
Teknologi bahan alam farmasi
 
Cosmetic dentistry
Cosmetic dentistryCosmetic dentistry
Cosmetic dentistry
 
Types of Braces
Types of BracesTypes of Braces
Types of Braces
 
Ana Júlia Evlyn e Vitor - Mc Donalds Perguntas
Ana Júlia Evlyn e Vitor - Mc Donalds PerguntasAna Júlia Evlyn e Vitor - Mc Donalds Perguntas
Ana Júlia Evlyn e Vitor - Mc Donalds Perguntas
 
Amanda Beatriz e Rafaela - Apple perguntas
Amanda Beatriz e Rafaela - Apple perguntasAmanda Beatriz e Rafaela - Apple perguntas
Amanda Beatriz e Rafaela - Apple perguntas
 
Gregory e Raul - Nike Perguntas
Gregory e Raul - Nike PerguntasGregory e Raul - Nike Perguntas
Gregory e Raul - Nike Perguntas
 
TGS15 tune out gyro
TGS15 tune out gyroTGS15 tune out gyro
TGS15 tune out gyro
 
CMSCollaboration_high_energy_physics_paper
CMSCollaboration_high_energy_physics_paperCMSCollaboration_high_energy_physics_paper
CMSCollaboration_high_energy_physics_paper
 
15214087 pss7-ans
15214087 pss7-ans15214087 pss7-ans
15214087 pss7-ans
 
College Recruitment for General Audiences
College Recruitment for General AudiencesCollege Recruitment for General Audiences
College Recruitment for General Audiences
 
João, Luiz e Misael gibson perguntas
João, Luiz e Misael gibson perguntasJoão, Luiz e Misael gibson perguntas
João, Luiz e Misael gibson perguntas
 
COMPANY PROFILE- SWEATERSINDIA
COMPANY PROFILE- SWEATERSINDIACOMPANY PROFILE- SWEATERSINDIA
COMPANY PROFILE- SWEATERSINDIA
 
Gabriel, Robson e Vinicius coca
Gabriel, Robson e Vinicius cocaGabriel, Robson e Vinicius coca
Gabriel, Robson e Vinicius coca
 
6
66
6
 

Similar to gyroscopes grad talk 2

LIGO - General Information
LIGO - General InformationLIGO - General Information
LIGO - General InformationIan Rothbarth
 
Adamek_SestoGR18.pdf
Adamek_SestoGR18.pdfAdamek_SestoGR18.pdf
Adamek_SestoGR18.pdfgarfacio30
 
Gravitomagnetism successes (3) (1)
Gravitomagnetism successes (3) (1)Gravitomagnetism successes (3) (1)
Gravitomagnetism successes (3) (1)John Hutchison
 
Gravitomagnetism successes (3)
Gravitomagnetism successes (3)Gravitomagnetism successes (3)
Gravitomagnetism successes (3)John Hutchison
 
Act pre 06_apr_2018_michael_ hippke_interstellar communication
Act pre 06_apr_2018_michael_ hippke_interstellar communicationAct pre 06_apr_2018_michael_ hippke_interstellar communication
Act pre 06_apr_2018_michael_ hippke_interstellar communicationAdvanced-Concepts-Team
 
Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Philippe Bouyer
 
Solar radiation calculation
Solar radiation calculationSolar radiation calculation
Solar radiation calculationfrengkyagungt
 
Noise from stray light in interferometric GWs detectors
Noise from stray light in interferometric GWs detectorsNoise from stray light in interferometric GWs detectors
Noise from stray light in interferometric GWs detectorsJose Gonzalez
 
P4 p5 p6 resource
P4 p5 p6 resourceP4 p5 p6 resource
P4 p5 p6 resourcejslides
 
REFRACTION PATHS  - Single Horizontal Refractor
REFRACTION PATHS  - Single Horizontal RefractorREFRACTION PATHS  - Single Horizontal Refractor
REFRACTION PATHS  - Single Horizontal RefractorAhasanHabibSajeeb
 
Atomic Structure-21092023.pdf
Atomic Structure-21092023.pdfAtomic Structure-21092023.pdf
Atomic Structure-21092023.pdfjayesh320682
 
OE Instrumentation_03_Interferometry_2.pdf
OE Instrumentation_03_Interferometry_2.pdfOE Instrumentation_03_Interferometry_2.pdf
OE Instrumentation_03_Interferometry_2.pdfJamesWalter40
 

Similar to gyroscopes grad talk 2 (20)

LIGO - General Information
LIGO - General InformationLIGO - General Information
LIGO - General Information
 
GR.ppt
GR.pptGR.ppt
GR.ppt
 
Adamek_SestoGR18.pdf
Adamek_SestoGR18.pdfAdamek_SestoGR18.pdf
Adamek_SestoGR18.pdf
 
Gravitomagnetism successes (3) (1)
Gravitomagnetism successes (3) (1)Gravitomagnetism successes (3) (1)
Gravitomagnetism successes (3) (1)
 
Gravitomagnetism successes (3)
Gravitomagnetism successes (3)Gravitomagnetism successes (3)
Gravitomagnetism successes (3)
 
Astronomical observations.ppt
Astronomical observations.pptAstronomical observations.ppt
Astronomical observations.ppt
 
Act pre 06_apr_2018_michael_ hippke_interstellar communication
Act pre 06_apr_2018_michael_ hippke_interstellar communicationAct pre 06_apr_2018_michael_ hippke_interstellar communication
Act pre 06_apr_2018_michael_ hippke_interstellar communication
 
Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...
 
Solar radiation calculation
Solar radiation calculationSolar radiation calculation
Solar radiation calculation
 
Velocity And acceleration
Velocity And accelerationVelocity And acceleration
Velocity And acceleration
 
Wave properties
Wave propertiesWave properties
Wave properties
 
Searches for spin-dependent short-range forces
Searches for spin-dependent short-range forcesSearches for spin-dependent short-range forces
Searches for spin-dependent short-range forces
 
Noise from stray light in interferometric GWs detectors
Noise from stray light in interferometric GWs detectorsNoise from stray light in interferometric GWs detectors
Noise from stray light in interferometric GWs detectors
 
P4 p5 p6 resource
P4 p5 p6 resourceP4 p5 p6 resource
P4 p5 p6 resource
 
REFRACTION PATHS  - Single Horizontal Refractor
REFRACTION PATHS  - Single Horizontal RefractorREFRACTION PATHS  - Single Horizontal Refractor
REFRACTION PATHS  - Single Horizontal Refractor
 
Atomic Structure-21092023.pdf
Atomic Structure-21092023.pdfAtomic Structure-21092023.pdf
Atomic Structure-21092023.pdf
 
OE Instrumentation_03_Interferometry_2.pdf
OE Instrumentation_03_Interferometry_2.pdfOE Instrumentation_03_Interferometry_2.pdf
OE Instrumentation_03_Interferometry_2.pdf
 
PH 101 Optics
PH 101 OpticsPH 101 Optics
PH 101 Optics
 
Optics
OpticsOptics
Optics
 
Rocca.ppt
Rocca.pptRocca.ppt
Rocca.ppt
 

gyroscopes grad talk 2

  • 1. An Extremely Brief Overview of the State of the Art of Maxwell Gregoire Atom Interferometer Gyroscopes
  • 2. What is a gyroscope? ● A device for measuring the rotation rate (or any time derivatives thereof) of its own reference frame
  • 3. Applications: Navigation ● Compare satellites to a drag-free test mass – Solar wind, atmospheric drag – Important for experiments that reference trajectories ● Submarines – Cannot access GPS – Less detectable if they don't have to ping ● Aircraft and ships (manned and unmanned) – Not vulnerable to cyber attack if they don't need GPS
  • 4. Applications: Geophysics ● Measure wobble in Earth's rotation rate due to – Precession and nutation – Lunar and solar tides ● Measure tidal drag: – Earth's rotation causes tidal bulge to “lead” the moon; moon pulls back on tidal bulge, causes torque on Earth opposite rotation vector – Earth's rotation slows – Moon's revolution slows, moon orbits further away (Virial Thm: 2T = -V)
  • 5. Applications: General Relativity ● Geodetic effect: – A vector (ex. angular momentum of gyroscope on a satellite) is affected by space-time curvature created by a nearby massive body (ex. Earth). ● Lense-Thirring rotation a.k.a. gravitomagnetic frame-dragging: – An object (ex. gyroscope on a satellite) rotates due to the rotation of a nearby massive body (ex. Earth) ● Together, these effects predict precession of a gyroscope on a satellite that, classically, should not happen
  • 6. Applications and Figure of Merit Sensitivity Quick Response Portability Geodetic effect 10-8 ΩE absolute X Frame-dragging 10-10 ΩE absolute X ΩE wobble 10-8 ΩE change in ΩE per day Tidal drag 10-13 ΩE change in ΩE per year Navigation 10-3 ΩE absolute X X Earth's rotation rate ΩE = 7.3∙10-5
  • 7. Polarizability Measurements In our lab, the Earth's rotation... ● changes measured static polarizability by up to 1% – Target accuracy is 0.2% ● changes measured magic zero wavelength by 200 pm – Target accuracy is < 1 pm E d valence electron cloud nucleus U = -α E2 /2
  • 8. Atom Interferometer L, T = L/v L, T = L/v ● Interference pattern forms at position of 3rd grating ● Sweep 3rd grating in +/- x direction: grating bars either block or admit “bright spots” area A v, λdB z x (not all diffraction orders are shown) P Detector
  • 9. Atom Interferometer L, T = L/v L, T = L/v ● Measure phase and contrast of interference pattern ● Contrast = (max-min) / (max+min) area A v, λdB z x (not all diffraction orders are shown) P Detector max min phase
  • 10. Atom Interferometer phase Φ = k · [– 2Δx2(T) + Δx3(2T)] L, T = L/v L, T = L/v ● k: grating “reciprocal lattice vector” a.k.a kx given to atom in 1st order diffraction ● Δxi: how much grating i has moved since atom hit first grating area A v, λdB z x Detector
  • 11. Atom Interferometer phase Φ = (2π/d) · [– 2Δx2(T)+ Δx3(2T)] L, T = L/v L, T = L/v ● d: grating period ● Δxi: how much grating i has moved (in x direction) since atom hit first grating area A v, λdB z x Detector
  • 12. The Sagnac Effect ● grating period d Φsag = (2π/d) · [0 – 0 + (ΩL)(2L/v)] = … = 4πΩA / λdBv L, T = L/v L, T = L/v phase Φ = (2π/d) · [– 2Δx2(T)+ Δx3(2T)] area A v, λdB Ω z x Detector
  • 13. Atoms vs Light: response factor matters ● Response factor: Φsag/Ω ● In general, Φsag/Ω = 4πA / λv ● Φsag atom = λlightc = mc2 ≈ 1011 Φsag light λdBv ħv That said, number of atoms matters ● In shot-noise limit: δΩ = δΦ = Ω Φsag/Ω ΦsagC√N When statistics are Gaussian
  • 14. Nano-grating Interferometer PROS ● Works with any atomic species ● High dynamic range CONS ● Gratings only transmit 0.1% of atoms ● Contrast ≈ 30%
  • 15. Light Grating Interferometer ω1 ω2 |g> |e> |i> Δ effective ωeff g ω2 , k2 ω1 , k1 ● Kapitza-Dirac diffraction ● Bragg diffraction ● Raman diffraction
  • 16. Dynamic range With no Sagnac shift...
  • 17. Dynamic range With Sagnac shift... ● Sagnac shift is v-dependent: – Atoms disperse in x – Causes contrast loss – Oh no! Whatever shall we do? P x position along 3rd grating slow fast slow fast
  • 18. Dynamic range With Sagnac shift, apply static, non-uniform E ● Field pulls slower atoms more, in opposite direction of Sagnac shift ● Recovers contrast ● Measure Ω by maximizing contrast + P x position along 3rd grating cylinder, axis into page