SlideShare a Scribd company logo
1 of 32
Super High Momentum Spectrometer –
Heavy Gas Cherenkov Detector
MATTHEW STRUGARI
SUPERVISOR: DR. GARTH HUBER
PART 1: JUNE 3, 2016
PART 2: JULY 5, 2016
Part 1 June 3, 2016
CHERENKOV RADIATION; REFRACTIVE INDEX; GAS PROPERTIES;
THRESHOLD PRESSURE; CONE ANGLE; TRANSMITTANCE
MATTHEW STRUGARI, 03/06/16 2
A Brief Introduction to Cherenkov Radiation
Cherenkov radiation is a phenomenon which occurs when a charged particle’s velocity (𝑣)
exceeds the light velocity (𝑐 𝑛) within a dielectric medium whose refractive index is 𝑛 > 1.
𝑣 >
𝑐
𝑛
The moving particle polarizes the molecules within the medium.
As the polarized molecules (dipoles) return to their ground state, they oscillate and produce
electric dipole radiation which is known as Cherenkov radiation in this case.
3MATTHEW STRUGARI, 03/06/16
Relativistic Equations
Momentum:
𝑝 = 𝛾𝑚𝑣 = 𝛾𝑚𝛽𝑐
where 𝛾 =
1
1 − 𝛽2
is the Lorentz factor, 𝑚 is the particle rest mass, and 𝛽 =
𝑣
𝑐
Energy:
𝐸 = 𝛾𝑚𝑐2
Combining the equations for momentum and energy then solving for 𝛽 yields:
𝛽 =
𝑝𝑐
𝐸
4MATTHEW STRUGARI, 03/06/16
Relativistic Equations – cont’d
Energy-Momentum relation:
𝐸2 = 𝑝𝑐 2 + 𝑚c2 2
and 𝛽 as:
𝛽 =
𝑝𝑐
𝑝𝑐 2 + 𝑚𝑐2 2
5MATTHEW STRUGARI, 03/06/16
Relativistic Equations – cont’d
Recall that for Cherenkov radiation emission to occur:
𝑣 >
𝑐
𝑛
This can be written in terms of 𝛽 and 𝑛 such that
𝑛 >
1
𝛽
or
𝑛 >
𝑝𝑐 2 + 𝑚𝑐2 2
𝑝𝑐
MATTHEW STRUGARI, 03/06/16 6
Threshold Index of Refraction
MATTHEW STRUGARI, 03/06/16 7
Particle Mass 𝒎 (MeV/c2)
Electron 0.511
Pion 139.57
Kaon 493.67
Proton 938.27
Index of Refraction: 𝑛 >
𝑝𝑐 2+ 𝑚𝑐2 2
𝑝𝑐
Properties of Gases
Name Formula
Molecular Weight
M (g/mol)
Density
ρ (kg/m3)
Boiling Point
Tb (o
C)
Vapour Pressure
Pv (bar)
Index of Refraction
n
Octafluorotetrahydrofuran C4F8O 216.031
9.338 @ 0o
C & 1.013bar1
-0.8o
C @ 1.013bar1
2.12 @ 20o
C1 1.001392
@ 400nm, 22o
C, & 1.013bar4
8.660 @ 15o
C & 1bar1
Decafluorobutane C4F10 238.032
11.21 @ -1.7o
C & 1.013 bar2
-1.7o
C @ 1.013bar2
1.12 @ 0o
C3
1.001424
@ 400nm, 0o
C, & 1.013bar51.64 @ 10.1o
C3
10.06 @ 15o
C & 1.013 bar2
2.32 @ 20o
C3
Octafluorocyclobutane C4F8 200.0311
9.338 @ 0oC & 1.013bar1
-5.98o
C @ 1.013bar1
1.31 @ 0o
C1
1.001285
@ 589.29nm, 0o
C, & 1.013bar68.771 @ 15oC & 1bar1 1.90@ 10o
C1
8.284 @ 21.1o
C & 1bar1
2.69 @ 20o
C1
Carbon Dioxide CO2 44.0101
1.977 @ 0oC & 1.013bar1
-78.5o
C @ 1.013bar
(Sublimation point)1
34.8 @ 0o
C1
1.000459
@ 400nm, 0o
C, & 1.013bar71.848 @ 15o
C & 1bar1
45.0 @ 10o
C1
1.823 @ 21.1o
C & 1.013bar1
57.3 @ 20o
C1
MATTHEW STRUGARI, 03/06/16 8
1 H. Schoen, Handbook of Purified Gases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.
2 “Air Liquide Gas Encyclopedia,” Air Liquide, 2013. [Online]. Available:
http://encyclopedia.airliquide.com/encyclopedia.asp?LanguageID=11&CountryID=19&Formula=c4f10&btnFormula.x=0&btnFormula.y=0&GasID=0&UNNumber=.
3 R. Fowler, J. Hamilton, Jr., J. Kasper, C. Weber, W. Burford III, and H. Anderson, “Physical and Chemical Properties of Pure Fluorocarbons,” Industrial & Engineering Chemistry, vol. 39, no. 3, pp. 375–378, Mar. 1947.
4 E. Fuchey, “C4F8O Index of Refraction,” E-mail. Jun-2016.
5 O. Ullaland, “Fluid systems for RICH detectors,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 553, no. 1–2, pp. 107–113, Nov. 2005.
6 V. P. Zrelov, Cherenkov Radiation in High-Energy Physics. Part II Cherenkov Counters: Determination of Energy and Direction of Elementary Particles. Israel Proram from Scientific Translations Ltd. 1970.
7 A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Optics Communications, vol. 9, no. 4, pp. 432–434, Dec. 1973.
Threshold Pressure
MATTHEW STRUGARI, 03/06/16 9
C4F8O: 𝑛1𝑎𝑡𝑚 = 1.001389
C4F10: 𝑛1𝑎𝑡𝑚 = 1.001424
CO2: 𝑛1𝑎𝑡𝑚 = 1.000459
Gas Pressure: 𝑃 =
𝑛−1
𝑛1𝑎𝑡𝑚 −1
=
𝑝𝑐 2+ 𝑚𝑐2 2
𝑝𝑐
−1
𝑛1𝑎𝑡𝑚 −1
 Operating pressure is assumed to be 1atm until
the intercept with the Cherenkov threshold
boundary upon which the operating pressure
follows a tangent to that point (solid black line).
Cherenkov Radiation Angle: Pion
MATTHEW STRUGARI, 03/06/16 10
C4F8O:
C4F10:
CO2:
Cone Angle: 𝜃𝑐 = cos−1
(
1
𝛽𝑛
)
 Index of refraction is a function of pressure.
Therefore, the decrease in the cone angle is due to
the reduction of operating pressure at the
threshold boundary.
Cherenkov Radiation Angle: Electron
MATTHEW STRUGARI, 03/06/16 11
C4F8O:
C4F10:
CO2:
Cone Angle: 𝜃𝑐 = cos−1
(
1
𝛽𝑛
)
 Index of refraction is a function of pressure.
Therefore, the decrease in the cone angle is due to
the reduction of operating pressure at the
threshold boundary.
Transmittance
MATTHEW STRUGARI, 03/06/16 12
C4F8O:8 C4F10:9
8 M. Artuso, C. Boulahouache, S. Blusk, J. Butt, O. Dorjkhaidav, N. Menaa, R. Mountain, H. Muramatsu, R. Nandakumar, K. Randrianarivony, R. Sia, T. Skwarnicki, S. Stone, J. C. Wang, and K.
Zhang, “Performance of a gas radiator ring imaging Cherenkov detector using multi-anode photomultiplier tubes,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 558, no. 2, pp. 373–387, Mar. 2006.
• BTeV measurements are for 180-250nm. Below this range, 100-158nm: uses C4F10 transmission measured by the HADES Collab, 163-170nm: shift C4F10 upwards by 10nm and scale by
0.955/0.98 to match
9 P. Fauland, The COMPASS experiment and the RICH-1 detector, Bielefeld (Germany): Bielefeld University, 2004.
• Measured by the HADES Collaboration, normalized to 40cm-bar
Transmittance – CO2
MATTHEW STRUGARI, 03/06/16 13
Total Cross Section:10 Transmittance:
10 D. E. Shemansky, “CO2 Extinction Coefficient 1700–3000 Å,” The Journal of Chemical Physics, vol. 56, no. 4, p. 1582, 1972.
Transmittane: 𝑇 = 𝑒−𝑐𝑙𝜎
where 𝑐 = concentration (mol/cm3), 𝑙 = path length (normalized to 100cm), and 𝜎 = total cross section (cm2/mol)
Future Work
Perform Geant4 (Monte Carlo) simulations needed to finalize the expected performance of the
SHMS Heavy Gas Cherenkov detector for distinguishing different particle types
Provide assistance with the preparation of the official detector documentation for Jefferson Lab
MATTHEW STRUGARI, 03/06/16 14
Special Thanks
University of Regina Jefferson Lab
• Dr. Garth Huber • Brad Sawatzky
• Wenliang Li • Mark Jones
• Sparro Group • Simona Malace
Canadian Institute of Nuclear Physics
• Dr. Jean Barrette
• Dr. Barry Davids
• Dr. Jason Donev
MATTHEW STRUGARI, 03/06/16 15
References
1 H. Schoen, Handbook of Purified Gases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.
2 “Air Liquide Gas Encyclopedia,” Air Liquide, 2013. [Online]. Available:
http://encyclopedia.airliquide.com/encyclopedia.asp?LanguageID=11&CountryID=19&Formula=c4f10&btnFormula.x=0&btnFormula.y=0&GasID=0&UNNumber=.
3 R. Fowler, J. Hamilton, Jr., J. Kasper, C. Weber, W. Burford III, and H. Anderson, “Physical and Chemical Properties of Pure Fluorocarbons,” Industrial & Engineering Chemistry, vol. 39, no. 3, pp.
375–378, Mar. 1947.
4 M. Artuso, C. Boulahouache, S. Blusk, J. Butt, O. Dorjkhaidav, N. Menaa, R. Mountain, H. Muramatsu, R. Nandakumar, K. Randrianarivony, R. Sia, T. Skwarnicki, S. Stone, J. C. Wang, and K.
Zhang, “Performance of a gas radiator
ring imaging Cherenkov detector using multi-anode photomultiplier tubes,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, vol. 558, no. 2, pp. 373–387, Mar. 2006.
5 O. Ullaland, “Fluid systems for RICH detectors,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 553,
no. 1–2, pp. 107–113, Nov. 2005.
6 V. P. Zrelov, Cherenkov Radiation in High-Energy Physics. Part II Cherenkov Counters: Determination of Energy and Direction of Elementary Particles. Israel Proram from Scientific Translations
Ltd. 1970.
7 A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Optics Communications, vol. 9,
no. 4, pp. 432–434, Dec. 1973.
8 M. Artuso, C. Boulahouache, S. Blusk, J. Butt, O. Dorjkhaidav, N. Menaa, R. Mountain, H. Muramatsu, R. Nandakumar, K. Randrianarivony, R. Sia, T. Skwarnicki, S. Stone, J. C. Wang, and K.
Zhang, “Performance of a gas radiator ring imaging Cherenkov detector using multi-anode photomultiplier tubes,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 558, no. 2, pp. 373–387, Mar. 2006.
9 P. Fauland, ”The COMPASS experiment and the RICH-1 detector,” Bielefeld (Germany): Bielefeld University, 2004.
10 D. E. Shemansky, “CO2 Extinction Coefficient 1700–3000 Å,” The Journal of Chemical Physics, vol. 56, no. 4, p. 1582, 1972.
MATTHEW STRUGARI, 03/06/16 16
Part 2 July 5, 2016
E/PI SEPARATION; PI/K SEPARATION; PMT FOCUSING
MATTHEW STRUGARI, 05/07/16 17
e/pi Separation
•Study:
• e/pi separation at low momenta
•Goals:
• Maximize electron Cherenkov radiation efficiency
• Minimize pion Cherenkov radiation efficiency
•Simulation Parameters:
• Number of events: 200000
• Gas: C4F10 and CO2
• Particles: e; k; p; pi
• Momenta (GeV/c): 1.5; 3.0; 5.0; 7.0
• Pressure range: 0.25atm to 0.95atm
MATTHEW STRUGARI, 05/07/16 18
MATTHEW STRUGARI, 05/07/16 19C4F10 – e/pi Event Distribution
Increasing Momentum
IncreasingPressure
MATTHEW STRUGARI, 05/07/16 20C4F10 – Particle Efficiency and Ratio
Increasing Pressure
MATTHEW STRUGARI, 05/07/16 21CO2 – e/pi Event Distribution
Increasing Momentum
IncreasingPressure
MATTHEW STRUGARI, 05/07/16 22CO2 – Particle Efficiency and Ratio
Increasing Pressure
pi/k Separation
•Study:
• pi/k separation at intermediate momenta
•Goals:
• Maximize pion Cherenkov radiation efficiency
• Minimize kaon Cherenkov radiation efficiency
•Simulation Parameters:
• Number of events: 200000
• Gas: C4F10 and CO2
• Particles: e; k; p; pi
• Momenta (GeV/c): 1.5; 3.0; 5.0; 7.0
• Pressure range: 0.25atm to 0.95atm
MATTHEW STRUGARI, 05/07/16 23
MATTHEW STRUGARI, 05/07/16 24C4F10 – pi/k Event Distribution
Increasing Momentum
IncreasingPressure
MATTHEW STRUGARI, 05/07/16 25C4F10 – Particle Ratio
Increasing Pressure
MATTHEW STRUGARI, 05/07/16 26CO2 – pi/k Event Distribution
Increasing Momentum
IncreasingPressure
MATTHEW STRUGARI, 05/07/16 27CO2 – Particle Ratio
Increasing Pressure
MATTHEW STRUGARI, 05/07/16 28PMT Focusing – e in CO2
Pressure: 0.35atm
Momentum:7.0GeV/cMomentum:1.5GeV/c
Pressure: 0.75atmPressure: 0.50atm
MATTHEW STRUGARI, 05/07/16 29PMT Focusing – pi in C4F10
Pressure: 0.25atm
Momentum:7.0GeV/cMomentum:1.5GeV/c
Pressure: 0.95atmPressure: 0.50atm
Future Work
Perform a study on individual PMT results as well as a study in mirror misalignment
Provide assistance with the preparation of the official detector documentation for Jefferson Lab
MATTHEW STRUGARI, 05/07/16 30
Special Thanks
University of Regina Jefferson Lab
• Dr. Garth Huber • Brad Sawatzky
• Wenliang Li • Mark Jones
• Sparro Group • Simona Malace
Canadian Institute of Nuclear Physics
• Dr. Jean Barrette
• Dr. Barry Davids
• Dr. Jason Donev
MATTHEW STRUGARI, 05/07/16 31
Index of Refraction Formulae
Sellmeier Equation: C4F10
𝑛 − 1 × 106 =
0.25324
(73.7−2−𝜆−2)
(𝜆 in nm)
twiki.cern.ch/twiki/bin/view/LHCb/C4F10
Dispersion Formula: CO2
𝑛 − 1 =
6.99100×10−2
(166.175−𝜆−2)
+
1.47720×10−3
(79.609−𝜆−2)
+
6.42941×10−5
(56.3064−𝜆−2)
+
5.21306×10−5
(46.0196−𝜆−2)
+
1.46847×10−6
(0.0584738−𝜆−2)
(𝜆 in µm)
•Dispersion formula numerators are oscillator strengths of the transitions, numerical terms of
denominator are the wavenumbers of the corresponding absorption bands
•“Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region”
MATTHEW STRUGARI, 03/06/16 32

More Related Content

What's hot

GCMS Gas Chromatography–Mass Spectrometry
GCMS Gas Chromatography–Mass SpectrometryGCMS Gas Chromatography–Mass Spectrometry
GCMS Gas Chromatography–Mass SpectrometryM Habib
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometryMISHUSINGH1
 
GAS CHROMATOGRAPHY AND MASS SPECTROMETRY (GC-MS) BY P.RAVISANKAR.
GAS CHROMATOGRAPHY AND MASS SPECTROMETRY (GC-MS) BY P.RAVISANKAR.GAS CHROMATOGRAPHY AND MASS SPECTROMETRY (GC-MS) BY P.RAVISANKAR.
GAS CHROMATOGRAPHY AND MASS SPECTROMETRY (GC-MS) BY P.RAVISANKAR.Dr. Ravi Sankar
 
Radio chemical method of analysis
Radio chemical method of analysis Radio chemical method of analysis
Radio chemical method of analysis MedhaThakur2
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopyaqsa ayoub
 
Non destructive methods for analysis of explosive traces
Non destructive methods for analysis of explosive tracesNon destructive methods for analysis of explosive traces
Non destructive methods for analysis of explosive tracesNehaBadhwar1
 
Forensic Terrorism: Detection of Explosives
Forensic Terrorism: Detection of ExplosivesForensic Terrorism: Detection of Explosives
Forensic Terrorism: Detection of ExplosivesJedidah Moses
 
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...CRL Asia
 
Analysis of High Resolution Propane Spectra
Analysis of High Resolution Propane SpectraAnalysis of High Resolution Propane Spectra
Analysis of High Resolution Propane SpectraValerie Klavans
 
1 s2.0-s1875389210007522-main
1 s2.0-s1875389210007522-main1 s2.0-s1875389210007522-main
1 s2.0-s1875389210007522-mainlaaloo41
 
INDUCTIVELY COUPLED PLASMA -ATOMIC EMISSION SPECTROSCOPY
INDUCTIVELY COUPLED PLASMA -ATOMIC EMISSION SPECTROSCOPYINDUCTIVELY COUPLED PLASMA -ATOMIC EMISSION SPECTROSCOPY
INDUCTIVELY COUPLED PLASMA -ATOMIC EMISSION SPECTROSCOPYParimi Anuradha
 
Gc ms applications
Gc ms applicationsGc ms applications
Gc ms applications9829686702
 
Satellite Remote Sensing (Formic Acid)
Satellite Remote Sensing (Formic Acid)Satellite Remote Sensing (Formic Acid)
Satellite Remote Sensing (Formic Acid)Federico Karagulian
 

What's hot (20)

Gc ms ppt
Gc ms pptGc ms ppt
Gc ms ppt
 
GCMS Gas Chromatography–Mass Spectrometry
GCMS Gas Chromatography–Mass SpectrometryGCMS Gas Chromatography–Mass Spectrometry
GCMS Gas Chromatography–Mass Spectrometry
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometry
 
GC-MS
GC-MSGC-MS
GC-MS
 
Polarimetry
PolarimetryPolarimetry
Polarimetry
 
GAS CHROMATOGRAPHY AND MASS SPECTROMETRY (GC-MS) BY P.RAVISANKAR.
GAS CHROMATOGRAPHY AND MASS SPECTROMETRY (GC-MS) BY P.RAVISANKAR.GAS CHROMATOGRAPHY AND MASS SPECTROMETRY (GC-MS) BY P.RAVISANKAR.
GAS CHROMATOGRAPHY AND MASS SPECTROMETRY (GC-MS) BY P.RAVISANKAR.
 
Mass Spectrometry
Mass SpectrometryMass Spectrometry
Mass Spectrometry
 
Radio chemical method of analysis
Radio chemical method of analysis Radio chemical method of analysis
Radio chemical method of analysis
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
 
Aas by i k dhoot
Aas by i k  dhootAas by i k  dhoot
Aas by i k dhoot
 
Non destructive methods for analysis of explosive traces
Non destructive methods for analysis of explosive tracesNon destructive methods for analysis of explosive traces
Non destructive methods for analysis of explosive traces
 
Forensic Terrorism: Detection of Explosives
Forensic Terrorism: Detection of ExplosivesForensic Terrorism: Detection of Explosives
Forensic Terrorism: Detection of Explosives
 
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
 
Analysis of High Resolution Propane Spectra
Analysis of High Resolution Propane SpectraAnalysis of High Resolution Propane Spectra
Analysis of High Resolution Propane Spectra
 
أيات
أياتأيات
أيات
 
1 s2.0-s1875389210007522-main
1 s2.0-s1875389210007522-main1 s2.0-s1875389210007522-main
1 s2.0-s1875389210007522-main
 
INDUCTIVELY COUPLED PLASMA -ATOMIC EMISSION SPECTROSCOPY
INDUCTIVELY COUPLED PLASMA -ATOMIC EMISSION SPECTROSCOPYINDUCTIVELY COUPLED PLASMA -ATOMIC EMISSION SPECTROSCOPY
INDUCTIVELY COUPLED PLASMA -ATOMIC EMISSION SPECTROSCOPY
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometry
 
Gc ms applications
Gc ms applicationsGc ms applications
Gc ms applications
 
Satellite Remote Sensing (Formic Acid)
Satellite Remote Sensing (Formic Acid)Satellite Remote Sensing (Formic Acid)
Satellite Remote Sensing (Formic Acid)
 

Viewers also liked

Academic Field Annotated Bibliography
Academic Field Annotated BibliographyAcademic Field Annotated Bibliography
Academic Field Annotated BibliographyStephanie Templeton
 
How to make 300dpi image from 96dpi screenshot
How to make 300dpi image from 96dpi screenshotHow to make 300dpi image from 96dpi screenshot
How to make 300dpi image from 96dpi screenshotAndrew Zolnai
 
BPN-MODEL PEMBELAJARAN TEMATIK
BPN-MODEL PEMBELAJARAN TEMATIKBPN-MODEL PEMBELAJARAN TEMATIK
BPN-MODEL PEMBELAJARAN TEMATIKDaud Muhamad
 
Cibercultura y transhumanismo
Cibercultura y transhumanismoCibercultura y transhumanismo
Cibercultura y transhumanismoZarela_14
 
Bloqueo ganglio estrellado
Bloqueo ganglio estrelladoBloqueo ganglio estrellado
Bloqueo ganglio estrelladosanganero
 
Los medios de tranporte
Los medios de tranporteLos medios de tranporte
Los medios de tranporteDennise Jara
 
Lesiones Verrucopapilares de la Cavidad Oral
Lesiones Verrucopapilares de la Cavidad OralLesiones Verrucopapilares de la Cavidad Oral
Lesiones Verrucopapilares de la Cavidad OralAngel Cordova
 
Patologia oral infección papiloma humano
Patologia oral   infección papiloma humanoPatologia oral   infección papiloma humano
Patologia oral infección papiloma humanoestomatognaticos
 

Viewers also liked (11)

Mi perro
Mi perroMi perro
Mi perro
 
Academic Field Annotated Bibliography
Academic Field Annotated BibliographyAcademic Field Annotated Bibliography
Academic Field Annotated Bibliography
 
How to make 300dpi image from 96dpi screenshot
How to make 300dpi image from 96dpi screenshotHow to make 300dpi image from 96dpi screenshot
How to make 300dpi image from 96dpi screenshot
 
BPN-MODEL PEMBELAJARAN TEMATIK
BPN-MODEL PEMBELAJARAN TEMATIKBPN-MODEL PEMBELAJARAN TEMATIK
BPN-MODEL PEMBELAJARAN TEMATIK
 
Ss16 12 polegotchenkova-o_a
Ss16 12 polegotchenkova-o_aSs16 12 polegotchenkova-o_a
Ss16 12 polegotchenkova-o_a
 
Cibercultura y transhumanismo
Cibercultura y transhumanismoCibercultura y transhumanismo
Cibercultura y transhumanismo
 
Faringoamigdalitis
FaringoamigdalitisFaringoamigdalitis
Faringoamigdalitis
 
Bloqueo ganglio estrellado
Bloqueo ganglio estrelladoBloqueo ganglio estrellado
Bloqueo ganglio estrellado
 
Los medios de tranporte
Los medios de tranporteLos medios de tranporte
Los medios de tranporte
 
Lesiones Verrucopapilares de la Cavidad Oral
Lesiones Verrucopapilares de la Cavidad OralLesiones Verrucopapilares de la Cavidad Oral
Lesiones Verrucopapilares de la Cavidad Oral
 
Patologia oral infección papiloma humano
Patologia oral   infección papiloma humanoPatologia oral   infección papiloma humano
Patologia oral infección papiloma humano
 

Similar to Super High Momentum Spectrometer – Heavy Gas Cherenkov Detector Performance Optimization

36 Measurement of Σ beam asymmetry in π0 photoproduction off the neutron in t...
36 Measurement of Σ beam asymmetry in π0 photoproduction off the neutron in t...36 Measurement of Σ beam asymmetry in π0 photoproduction off the neutron in t...
36 Measurement of Σ beam asymmetry in π0 photoproduction off the neutron in t...Cristian Randieri PhD
 
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Sérgio Sacani
 
42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...
42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...
42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...Cristian Randieri PhD
 
Neutrinos podem ter viajado mais rápido do que a luz
Neutrinos podem ter viajado mais rápido do que a luzNeutrinos podem ter viajado mais rápido do que a luz
Neutrinos podem ter viajado mais rápido do que a luzDiego Aguiar
 
Measurement of the neutrino velocity with the opera detector in the cngs beam
Measurement of the neutrino velocity with the opera detector in the cngs beamMeasurement of the neutrino velocity with the opera detector in the cngs beam
Measurement of the neutrino velocity with the opera detector in the cngs beamSérgio Sacani
 
Measurement of the neutrino velocity with the OPERA detector in the CNGS beam
Measurement of the neutrino velocity with the OPERA detector in the CNGS beamMeasurement of the neutrino velocity with the OPERA detector in the CNGS beam
Measurement of the neutrino velocity with the OPERA detector in the CNGS beamSebastien Bianchin
 
Assymetries in core_collapse_supernovae_from_maps_of_radioactive_ti_in_cassio...
Assymetries in core_collapse_supernovae_from_maps_of_radioactive_ti_in_cassio...Assymetries in core_collapse_supernovae_from_maps_of_radioactive_ti_in_cassio...
Assymetries in core_collapse_supernovae_from_maps_of_radioactive_ti_in_cassio...Sérgio Sacani
 
On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...
On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...
On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...Javier Lemus Godoy
 
B037309012
B037309012B037309012
B037309012theijes
 
True_Silver_ Nat. Photonics 6 2016
True_Silver_ Nat. Photonics 6 2016True_Silver_ Nat. Photonics 6 2016
True_Silver_ Nat. Photonics 6 2016Supriya Pillai
 
Early kick detection and nonlinear behavior of drilling mu…
Early kick detection and nonlinear behavior of drilling mu…Early kick detection and nonlinear behavior of drilling mu…
Early kick detection and nonlinear behavior of drilling mu…Frank-Michael Jäger
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...Cristian Randieri PhD
 
Phd Tomasz Palczewski Physics
Phd Tomasz Palczewski PhysicsPhd Tomasz Palczewski Physics
Phd Tomasz Palczewski PhysicsTomaszPalczewski
 
FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価Toshihiro FUJII
 

Similar to Super High Momentum Spectrometer – Heavy Gas Cherenkov Detector Performance Optimization (20)

36 Measurement of Σ beam asymmetry in π0 photoproduction off the neutron in t...
36 Measurement of Σ beam asymmetry in π0 photoproduction off the neutron in t...36 Measurement of Σ beam asymmetry in π0 photoproduction off the neutron in t...
36 Measurement of Σ beam asymmetry in π0 photoproduction off the neutron in t...
 
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
 
42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...
42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...
42 Beam Asymmetry Σ of the π- Photoproduction off Neutron - International Jou...
 
APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS
APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MSAPGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS
APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS
 
Neutrinos podem ter viajado mais rápido do que a luz
Neutrinos podem ter viajado mais rápido do que a luzNeutrinos podem ter viajado mais rápido do que a luz
Neutrinos podem ter viajado mais rápido do que a luz
 
Neutrino
NeutrinoNeutrino
Neutrino
 
Measurement of the neutrino velocity with the opera detector in the cngs beam
Measurement of the neutrino velocity with the opera detector in the cngs beamMeasurement of the neutrino velocity with the opera detector in the cngs beam
Measurement of the neutrino velocity with the opera detector in the cngs beam
 
Measurement of the neutrino velocity with the OPERA detector in the CNGS beam
Measurement of the neutrino velocity with the OPERA detector in the CNGS beamMeasurement of the neutrino velocity with the OPERA detector in the CNGS beam
Measurement of the neutrino velocity with the OPERA detector in the CNGS beam
 
Assymetries in core_collapse_supernovae_from_maps_of_radioactive_ti_in_cassio...
Assymetries in core_collapse_supernovae_from_maps_of_radioactive_ti_in_cassio...Assymetries in core_collapse_supernovae_from_maps_of_radioactive_ti_in_cassio...
Assymetries in core_collapse_supernovae_from_maps_of_radioactive_ti_in_cassio...
 
On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...
On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...
On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...
 
CO2PipeHaz - An Integrated, Multi-scale Modelling Approach for the Simulation...
CO2PipeHaz - An Integrated, Multi-scale Modelling Approach for the Simulation...CO2PipeHaz - An Integrated, Multi-scale Modelling Approach for the Simulation...
CO2PipeHaz - An Integrated, Multi-scale Modelling Approach for the Simulation...
 
B037309012
B037309012B037309012
B037309012
 
Understanding Dynamic chemistry at the Catalytic Interface
Understanding Dynamic chemistry at the Catalytic InterfaceUnderstanding Dynamic chemistry at the Catalytic Interface
Understanding Dynamic chemistry at the Catalytic Interface
 
SNBoseTalk06
SNBoseTalk06SNBoseTalk06
SNBoseTalk06
 
True_Silver_ Nat. Photonics 6 2016
True_Silver_ Nat. Photonics 6 2016True_Silver_ Nat. Photonics 6 2016
True_Silver_ Nat. Photonics 6 2016
 
Early kick detection and nonlinear behavior of drilling mu…
Early kick detection and nonlinear behavior of drilling mu…Early kick detection and nonlinear behavior of drilling mu…
Early kick detection and nonlinear behavior of drilling mu…
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
 
gc-ms for nike.pdf.pdf
gc-ms for nike.pdf.pdfgc-ms for nike.pdf.pdf
gc-ms for nike.pdf.pdf
 
Phd Tomasz Palczewski Physics
Phd Tomasz Palczewski PhysicsPhd Tomasz Palczewski Physics
Phd Tomasz Palczewski Physics
 
FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価
 

Super High Momentum Spectrometer – Heavy Gas Cherenkov Detector Performance Optimization

  • 1. Super High Momentum Spectrometer – Heavy Gas Cherenkov Detector MATTHEW STRUGARI SUPERVISOR: DR. GARTH HUBER PART 1: JUNE 3, 2016 PART 2: JULY 5, 2016
  • 2. Part 1 June 3, 2016 CHERENKOV RADIATION; REFRACTIVE INDEX; GAS PROPERTIES; THRESHOLD PRESSURE; CONE ANGLE; TRANSMITTANCE MATTHEW STRUGARI, 03/06/16 2
  • 3. A Brief Introduction to Cherenkov Radiation Cherenkov radiation is a phenomenon which occurs when a charged particle’s velocity (𝑣) exceeds the light velocity (𝑐 𝑛) within a dielectric medium whose refractive index is 𝑛 > 1. 𝑣 > 𝑐 𝑛 The moving particle polarizes the molecules within the medium. As the polarized molecules (dipoles) return to their ground state, they oscillate and produce electric dipole radiation which is known as Cherenkov radiation in this case. 3MATTHEW STRUGARI, 03/06/16
  • 4. Relativistic Equations Momentum: 𝑝 = 𝛾𝑚𝑣 = 𝛾𝑚𝛽𝑐 where 𝛾 = 1 1 − 𝛽2 is the Lorentz factor, 𝑚 is the particle rest mass, and 𝛽 = 𝑣 𝑐 Energy: 𝐸 = 𝛾𝑚𝑐2 Combining the equations for momentum and energy then solving for 𝛽 yields: 𝛽 = 𝑝𝑐 𝐸 4MATTHEW STRUGARI, 03/06/16
  • 5. Relativistic Equations – cont’d Energy-Momentum relation: 𝐸2 = 𝑝𝑐 2 + 𝑚c2 2 and 𝛽 as: 𝛽 = 𝑝𝑐 𝑝𝑐 2 + 𝑚𝑐2 2 5MATTHEW STRUGARI, 03/06/16
  • 6. Relativistic Equations – cont’d Recall that for Cherenkov radiation emission to occur: 𝑣 > 𝑐 𝑛 This can be written in terms of 𝛽 and 𝑛 such that 𝑛 > 1 𝛽 or 𝑛 > 𝑝𝑐 2 + 𝑚𝑐2 2 𝑝𝑐 MATTHEW STRUGARI, 03/06/16 6
  • 7. Threshold Index of Refraction MATTHEW STRUGARI, 03/06/16 7 Particle Mass 𝒎 (MeV/c2) Electron 0.511 Pion 139.57 Kaon 493.67 Proton 938.27 Index of Refraction: 𝑛 > 𝑝𝑐 2+ 𝑚𝑐2 2 𝑝𝑐
  • 8. Properties of Gases Name Formula Molecular Weight M (g/mol) Density ρ (kg/m3) Boiling Point Tb (o C) Vapour Pressure Pv (bar) Index of Refraction n Octafluorotetrahydrofuran C4F8O 216.031 9.338 @ 0o C & 1.013bar1 -0.8o C @ 1.013bar1 2.12 @ 20o C1 1.001392 @ 400nm, 22o C, & 1.013bar4 8.660 @ 15o C & 1bar1 Decafluorobutane C4F10 238.032 11.21 @ -1.7o C & 1.013 bar2 -1.7o C @ 1.013bar2 1.12 @ 0o C3 1.001424 @ 400nm, 0o C, & 1.013bar51.64 @ 10.1o C3 10.06 @ 15o C & 1.013 bar2 2.32 @ 20o C3 Octafluorocyclobutane C4F8 200.0311 9.338 @ 0oC & 1.013bar1 -5.98o C @ 1.013bar1 1.31 @ 0o C1 1.001285 @ 589.29nm, 0o C, & 1.013bar68.771 @ 15oC & 1bar1 1.90@ 10o C1 8.284 @ 21.1o C & 1bar1 2.69 @ 20o C1 Carbon Dioxide CO2 44.0101 1.977 @ 0oC & 1.013bar1 -78.5o C @ 1.013bar (Sublimation point)1 34.8 @ 0o C1 1.000459 @ 400nm, 0o C, & 1.013bar71.848 @ 15o C & 1bar1 45.0 @ 10o C1 1.823 @ 21.1o C & 1.013bar1 57.3 @ 20o C1 MATTHEW STRUGARI, 03/06/16 8 1 H. Schoen, Handbook of Purified Gases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. 2 “Air Liquide Gas Encyclopedia,” Air Liquide, 2013. [Online]. Available: http://encyclopedia.airliquide.com/encyclopedia.asp?LanguageID=11&CountryID=19&Formula=c4f10&btnFormula.x=0&btnFormula.y=0&GasID=0&UNNumber=. 3 R. Fowler, J. Hamilton, Jr., J. Kasper, C. Weber, W. Burford III, and H. Anderson, “Physical and Chemical Properties of Pure Fluorocarbons,” Industrial & Engineering Chemistry, vol. 39, no. 3, pp. 375–378, Mar. 1947. 4 E. Fuchey, “C4F8O Index of Refraction,” E-mail. Jun-2016. 5 O. Ullaland, “Fluid systems for RICH detectors,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 553, no. 1–2, pp. 107–113, Nov. 2005. 6 V. P. Zrelov, Cherenkov Radiation in High-Energy Physics. Part II Cherenkov Counters: Determination of Energy and Direction of Elementary Particles. Israel Proram from Scientific Translations Ltd. 1970. 7 A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Optics Communications, vol. 9, no. 4, pp. 432–434, Dec. 1973.
  • 9. Threshold Pressure MATTHEW STRUGARI, 03/06/16 9 C4F8O: 𝑛1𝑎𝑡𝑚 = 1.001389 C4F10: 𝑛1𝑎𝑡𝑚 = 1.001424 CO2: 𝑛1𝑎𝑡𝑚 = 1.000459 Gas Pressure: 𝑃 = 𝑛−1 𝑛1𝑎𝑡𝑚 −1 = 𝑝𝑐 2+ 𝑚𝑐2 2 𝑝𝑐 −1 𝑛1𝑎𝑡𝑚 −1  Operating pressure is assumed to be 1atm until the intercept with the Cherenkov threshold boundary upon which the operating pressure follows a tangent to that point (solid black line).
  • 10. Cherenkov Radiation Angle: Pion MATTHEW STRUGARI, 03/06/16 10 C4F8O: C4F10: CO2: Cone Angle: 𝜃𝑐 = cos−1 ( 1 𝛽𝑛 )  Index of refraction is a function of pressure. Therefore, the decrease in the cone angle is due to the reduction of operating pressure at the threshold boundary.
  • 11. Cherenkov Radiation Angle: Electron MATTHEW STRUGARI, 03/06/16 11 C4F8O: C4F10: CO2: Cone Angle: 𝜃𝑐 = cos−1 ( 1 𝛽𝑛 )  Index of refraction is a function of pressure. Therefore, the decrease in the cone angle is due to the reduction of operating pressure at the threshold boundary.
  • 12. Transmittance MATTHEW STRUGARI, 03/06/16 12 C4F8O:8 C4F10:9 8 M. Artuso, C. Boulahouache, S. Blusk, J. Butt, O. Dorjkhaidav, N. Menaa, R. Mountain, H. Muramatsu, R. Nandakumar, K. Randrianarivony, R. Sia, T. Skwarnicki, S. Stone, J. C. Wang, and K. Zhang, “Performance of a gas radiator ring imaging Cherenkov detector using multi-anode photomultiplier tubes,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 558, no. 2, pp. 373–387, Mar. 2006. • BTeV measurements are for 180-250nm. Below this range, 100-158nm: uses C4F10 transmission measured by the HADES Collab, 163-170nm: shift C4F10 upwards by 10nm and scale by 0.955/0.98 to match 9 P. Fauland, The COMPASS experiment and the RICH-1 detector, Bielefeld (Germany): Bielefeld University, 2004. • Measured by the HADES Collaboration, normalized to 40cm-bar
  • 13. Transmittance – CO2 MATTHEW STRUGARI, 03/06/16 13 Total Cross Section:10 Transmittance: 10 D. E. Shemansky, “CO2 Extinction Coefficient 1700–3000 Å,” The Journal of Chemical Physics, vol. 56, no. 4, p. 1582, 1972. Transmittane: 𝑇 = 𝑒−𝑐𝑙𝜎 where 𝑐 = concentration (mol/cm3), 𝑙 = path length (normalized to 100cm), and 𝜎 = total cross section (cm2/mol)
  • 14. Future Work Perform Geant4 (Monte Carlo) simulations needed to finalize the expected performance of the SHMS Heavy Gas Cherenkov detector for distinguishing different particle types Provide assistance with the preparation of the official detector documentation for Jefferson Lab MATTHEW STRUGARI, 03/06/16 14
  • 15. Special Thanks University of Regina Jefferson Lab • Dr. Garth Huber • Brad Sawatzky • Wenliang Li • Mark Jones • Sparro Group • Simona Malace Canadian Institute of Nuclear Physics • Dr. Jean Barrette • Dr. Barry Davids • Dr. Jason Donev MATTHEW STRUGARI, 03/06/16 15
  • 16. References 1 H. Schoen, Handbook of Purified Gases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. 2 “Air Liquide Gas Encyclopedia,” Air Liquide, 2013. [Online]. Available: http://encyclopedia.airliquide.com/encyclopedia.asp?LanguageID=11&CountryID=19&Formula=c4f10&btnFormula.x=0&btnFormula.y=0&GasID=0&UNNumber=. 3 R. Fowler, J. Hamilton, Jr., J. Kasper, C. Weber, W. Burford III, and H. Anderson, “Physical and Chemical Properties of Pure Fluorocarbons,” Industrial & Engineering Chemistry, vol. 39, no. 3, pp. 375–378, Mar. 1947. 4 M. Artuso, C. Boulahouache, S. Blusk, J. Butt, O. Dorjkhaidav, N. Menaa, R. Mountain, H. Muramatsu, R. Nandakumar, K. Randrianarivony, R. Sia, T. Skwarnicki, S. Stone, J. C. Wang, and K. Zhang, “Performance of a gas radiator ring imaging Cherenkov detector using multi-anode photomultiplier tubes,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 558, no. 2, pp. 373–387, Mar. 2006. 5 O. Ullaland, “Fluid systems for RICH detectors,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 553, no. 1–2, pp. 107–113, Nov. 2005. 6 V. P. Zrelov, Cherenkov Radiation in High-Energy Physics. Part II Cherenkov Counters: Determination of Energy and Direction of Elementary Particles. Israel Proram from Scientific Translations Ltd. 1970. 7 A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Optics Communications, vol. 9, no. 4, pp. 432–434, Dec. 1973. 8 M. Artuso, C. Boulahouache, S. Blusk, J. Butt, O. Dorjkhaidav, N. Menaa, R. Mountain, H. Muramatsu, R. Nandakumar, K. Randrianarivony, R. Sia, T. Skwarnicki, S. Stone, J. C. Wang, and K. Zhang, “Performance of a gas radiator ring imaging Cherenkov detector using multi-anode photomultiplier tubes,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 558, no. 2, pp. 373–387, Mar. 2006. 9 P. Fauland, ”The COMPASS experiment and the RICH-1 detector,” Bielefeld (Germany): Bielefeld University, 2004. 10 D. E. Shemansky, “CO2 Extinction Coefficient 1700–3000 Å,” The Journal of Chemical Physics, vol. 56, no. 4, p. 1582, 1972. MATTHEW STRUGARI, 03/06/16 16
  • 17. Part 2 July 5, 2016 E/PI SEPARATION; PI/K SEPARATION; PMT FOCUSING MATTHEW STRUGARI, 05/07/16 17
  • 18. e/pi Separation •Study: • e/pi separation at low momenta •Goals: • Maximize electron Cherenkov radiation efficiency • Minimize pion Cherenkov radiation efficiency •Simulation Parameters: • Number of events: 200000 • Gas: C4F10 and CO2 • Particles: e; k; p; pi • Momenta (GeV/c): 1.5; 3.0; 5.0; 7.0 • Pressure range: 0.25atm to 0.95atm MATTHEW STRUGARI, 05/07/16 18
  • 19. MATTHEW STRUGARI, 05/07/16 19C4F10 – e/pi Event Distribution Increasing Momentum IncreasingPressure
  • 20. MATTHEW STRUGARI, 05/07/16 20C4F10 – Particle Efficiency and Ratio Increasing Pressure
  • 21. MATTHEW STRUGARI, 05/07/16 21CO2 – e/pi Event Distribution Increasing Momentum IncreasingPressure
  • 22. MATTHEW STRUGARI, 05/07/16 22CO2 – Particle Efficiency and Ratio Increasing Pressure
  • 23. pi/k Separation •Study: • pi/k separation at intermediate momenta •Goals: • Maximize pion Cherenkov radiation efficiency • Minimize kaon Cherenkov radiation efficiency •Simulation Parameters: • Number of events: 200000 • Gas: C4F10 and CO2 • Particles: e; k; p; pi • Momenta (GeV/c): 1.5; 3.0; 5.0; 7.0 • Pressure range: 0.25atm to 0.95atm MATTHEW STRUGARI, 05/07/16 23
  • 24. MATTHEW STRUGARI, 05/07/16 24C4F10 – pi/k Event Distribution Increasing Momentum IncreasingPressure
  • 25. MATTHEW STRUGARI, 05/07/16 25C4F10 – Particle Ratio Increasing Pressure
  • 26. MATTHEW STRUGARI, 05/07/16 26CO2 – pi/k Event Distribution Increasing Momentum IncreasingPressure
  • 27. MATTHEW STRUGARI, 05/07/16 27CO2 – Particle Ratio Increasing Pressure
  • 28. MATTHEW STRUGARI, 05/07/16 28PMT Focusing – e in CO2 Pressure: 0.35atm Momentum:7.0GeV/cMomentum:1.5GeV/c Pressure: 0.75atmPressure: 0.50atm
  • 29. MATTHEW STRUGARI, 05/07/16 29PMT Focusing – pi in C4F10 Pressure: 0.25atm Momentum:7.0GeV/cMomentum:1.5GeV/c Pressure: 0.95atmPressure: 0.50atm
  • 30. Future Work Perform a study on individual PMT results as well as a study in mirror misalignment Provide assistance with the preparation of the official detector documentation for Jefferson Lab MATTHEW STRUGARI, 05/07/16 30
  • 31. Special Thanks University of Regina Jefferson Lab • Dr. Garth Huber • Brad Sawatzky • Wenliang Li • Mark Jones • Sparro Group • Simona Malace Canadian Institute of Nuclear Physics • Dr. Jean Barrette • Dr. Barry Davids • Dr. Jason Donev MATTHEW STRUGARI, 05/07/16 31
  • 32. Index of Refraction Formulae Sellmeier Equation: C4F10 𝑛 − 1 × 106 = 0.25324 (73.7−2−𝜆−2) (𝜆 in nm) twiki.cern.ch/twiki/bin/view/LHCb/C4F10 Dispersion Formula: CO2 𝑛 − 1 = 6.99100×10−2 (166.175−𝜆−2) + 1.47720×10−3 (79.609−𝜆−2) + 6.42941×10−5 (56.3064−𝜆−2) + 5.21306×10−5 (46.0196−𝜆−2) + 1.46847×10−6 (0.0584738−𝜆−2) (𝜆 in µm) •Dispersion formula numerators are oscillator strengths of the transitions, numerical terms of denominator are the wavenumbers of the corresponding absorption bands •“Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region” MATTHEW STRUGARI, 03/06/16 32