SlideShare a Scribd company logo
1 of 10
Download to read offline
RECOVERY OF INDUSTRIAL EFFLUENT: CASE HISTORY
OF MEMBRANE BIOFOULING AND THE SUCCESSFUL
TREATMENT WITH ALTERNATING NON-OXIDISING AND
OXIDISING BIOCIDE
Martha van Schalkwyk, André Maartens, Pam Allison, Philly Mathe,
Ronel Augustyn and Gerhardt Snyman.
Martha van Schalkwyk – Buckman Africa
e-mail msvanschalkwyk@buckman.com Cell: 082 957 6756
André Maartens – Buckman Africa; Pam Allison – Technical Consultant Buckman
Africa; Philly Mathe – Sasol Synfuels; Ronel Augustyn – Sasol Research and
Development; Gerhardt Snyman – Sasol Technology
ABSTRACT
Keywords: Reverse Osmosis, Treatment of Industrial effluent, Biofouling, Non‐oxidising biocides, Oxidising 
biocides 
Background: Large quantities of raw water can be saved in the industrial sector when blow‐
down water from large cooling systems and industrial effluents are recovered and re‐used using 
membrane  technology  (Peter  Hills,  Technology  &  Engineering,  p260,  2000).  Biofouling  in  these 
membrane plants is practically inevitable and can be directly linked to as much as 56 to 74% of the 
costs of membrane operation (Andrianus van Haandel, Jeroen van der Linde, Handbook biological 
waste water treatment, p298, 2007)(Piet Lens, Theresa Mahony, Biofilms in medicine, industry and 
environmental biotegnology, p610, 2003) . This paper presents an overview of lessons learned on 
full‐scale membrane  plants,  optimisation  of biofouling  monitoring  and  the  successful  alternation 
between oxidising and non‐oxidising microbicides.  
Case  History:  Rapid  development  of  biofilm  resulted  in  the  need  to  implement  a 
chlorination/de‐chlorination disinfection programme, with an alternating non‐oxidising biocide, for a 
17ML/day TRO plant at a refinery in South Africa. High sessile bacteria counts, and high total plate 
counts of 105 
colony forming units (cfu) per ml 
of permeate and 10 6 
colony forming units (cfu) per ml 
of  brine  were  measured.  Microbial  populations  were  monitored  using  Adenosine  tri‐Phosphate 
(ATP) measurements, heterotrophic plate counts (HPC), population surveys, bacterial identifications 
and microbicide kill studies. A key factor that contributed to the excellent results achieved included 
the  use  of  alternating  oxidising  and  non‐oxidising  biocides  with  different  active  ingredients  to 
broaden the spectrum of control and minimise microbial resistance. In addition, regular CIP’s and 
good operational monitoring and control are essential supplements to the anti‐microbial chemicals.  
Both alternating biocides were dosed before pre‐treatment, which consists of sand filters. The sand 
filters were heavily contaminated with microorganisms. The oxidising biocide dosing, together with 
alternating non‐oxidising biocide, were found to be very effective and resulted in reductions in  total 
Search for keyword
plate counts to <10 2 
CFU per ml permeate and <10 3
 CFU per ml brine. To protect the rest of the 
system downstream (Polyamide RO plant) from the oxidising biocide, total and free halogen were 
monitored on a continuous basis. 
Conclusions:  In  the  case  history  presented,  application  of  an  oxidising  biocide  with 
alternating  non‐oxidizing  biocide  for  feed  water  disinfection  has  numerous  benefits  over 
chlorination and de‐chlorination alone. The efficiency of these programmes is however linked to an 
effective monitoring strategy. Monitoring the efficiency of the disinfection programmes was done by 
using adenosine tri‐phosphate measurements, conventional plate counts, and membrane autopsies. 
The  subsequent  results  were:  improved  disinfection  of  the  sand  filters  and  RO  membranes; 
reduction  in  the  replacement  frequency  of  membranes;  reduced  CIP  costs and  reduction of bio‐
fouling on the membranes.    
INTRODUCTION
A water treatment plant at a petrochemical refinery re-utilises saline effluent from
open dams (Refer to Figure 1 for a schematic presentation of the plant layout). The
water chemistry is influenced by various processes upstream as well as seasonal
changes. This continuous change in the feed water composition puts enormous
strain on the water treatment plant, influencing the system’s performance and
ultimately the water recovery on a daily basis. Water recoveries were severely
reduced and tubular cellulose acetate membranes showed evidence of biofouling
and algae growth.
Buckman Africa started shock dosing Oxamine®, an oxidising biocide, on a weekly
basis. After six months, this dosing regime was subsequently adjusted to continuous
dosing. In addition to the oxidising biocide, a non-oxidising biocide was slug-dosed to
address the high microbiological demand in the pre-treatment system. Excellent
microbiological control was obtained with total plate counts of between Log1 and
Log2 cfu/ml on permeate as well as brine samples.
11/20/2009
445 
m3/h
Pre‐
Treatment
640 
m3/h
275 
m3/h
Ash Plant
Permeate
Feed 
Water 
from CAE
11 modular units
960 off TRO modules
STRO 2.5/1.7 AL9(S) 0398
HP pumps, feed flow 
control, flow reversal 
system, recovery control 
system and chemical 
cleaning change over 
system
Filter section:
Down flow filters
Backwash system
Antiscalantaddition
Biocide shock 
facilities
Intermediate 
buffering
Heating of water
TRO  membrane plant
Figure 1. Petrochemical water treatment system with pre-treatment system and TRO
membrane plant.
The water treatment plant was commissioned in 1995 and has a capacity to treat
14ML saline effluent per day at a 45% designed water recovery.
The pre-treatment system consists of 5 down flow sandfilters and a backwash
system, followed by a feed tank. An anti-scalant is added into the feed tank. 11
modular TRO membrane units consisting of 960 TRO membranes are fed from the
feed tank.
The saline effluent feed stream comprised of a salty low hazard solution with high
concentrations of calcium, sulphates and sodium. Membrane biofouling is the main
cause of product and membrane losses and is measured through loss in productivity,
salt rejection and pressure drop. Membrane biofouling is addressed by means of
continuous biocide dosing, mechanical cleaning (sponge balls) and Cleaning-in-
place procedures (CIP). The predominant microorganisms associated with biofouling
of this system include Pseudomonas spp, yeasts and Desulphovibrio.
SHOCK DOSING PERIOD
In August 2008, Buckman Africa started dosing Oxamine® before the sand filters.
Dosages were calculated based on residuals obtained before and after each system
namely the sand filters, feed water tank and the membrane plant. Adenosine tri-
phosphate (ATP) analysis was conducted on-site to measure the efficiency of the
programme.
The oxidant demand of the pre-treatment system for the disinfectant was extremely
high and consumed most of the oxidant residuals, leaving the rest of the system
exposed. Subsequently the dosing point was moved to a point just before the TRO
membrane plant. This situation was also not ideal as the major source and breeding
ground for microorganisms in the sand filters and feed water tank, was not
addressed.
Total aerobic plate counts indicated that shock dosing was effective, but only for very
short periods. Within a day or two, bacterial re-growth would occur and total plate
counts would reach the original counts obtained before dosing.
CONTINUOUS OXIDANT DOSING WITH ALTERNATING NON-OXIDISING
BIOCIDE SHOCK DOSING
After cost and efficiency evaluations, it was decided to change from shock-dosing to
continuous dosing. Initial dosages of Oxamine® were high in order to obtain
sufficient oxidant residual, but as the system bio-fouling was reduced,
microbiological demand decreased, and dosages could be optimised.
The Oxamine® dosing system is monitored continuously and dosage rates are
adjusted in accordance with the residuals (1 ppm), total plate counts and pH of the
system. The alternating non-oxidising biocide is dosed once a week for a five hour
period.
Total plate counts are performed twice a week after each phase of the system to
determine the biocide efficiency and to enable localised problem-solving if
necessary. (Refer to Figure 2, 3 and 4 for a graphic summary of the microbiological
results). TRO membrane swab analysis is performed every three months to
determine if microbiological population shifts have occurred.
Figure 2. Total plate counts obtained during continuous dosing program.
As demonstrated in Figure 2, the system’s total plate counts were reduced after
three weeds from Log6 - Log7 to Log2 - Log3, and these counts remained fairly
constant thereafter in spite of seasonal changes or water chemistry differences.
Unit 67
Total Viable Count
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00 4-Mar-09
11-Mar-09
18-Mar-09
25-Mar-09
1-Apr-09
8-Apr-09
15-Apr-09
22-Apr-09
29-Apr-09
6-May-09
13-May-09
20-May-09
27-May-09
3-Jun-09
10-Jun-09
17-Jun-09
24-Jun-09
1-Jul-09
8-Jul-09
15-Jul-09
22-Jul-09
29-Jul-09
5-Aug-09
12-Aug-09
19-Aug-09
26-Aug-09
2-Sep-09
9-Sep-09
16-Sep-09
23-Sep-09
30-Sep-09
7-Oct-09
14-Oct-09
21-Oct-09
28-Oct-09
4-Nov-09
11-Nov-09
Date
logcfu/ml
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
logcfu/ml
CAE After pH Correction After Sandfilter After Clear Water Tank
67 Brine Clear Ash Effluent 67 Permeate
 
Figure 3. Viable Total plate count ( cfu/ml)
Unit 67
Pseudomonas
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
04-Mar-09
11-Mar-09
18-Mar-09
25-Mar-09
01-Apr-09
08-Apr-09
15-Apr-09
22-Apr-09
29-Apr-09
06-May-09
13-May-09
20-May-09
27-May-09
03-Jun-09
10-Jun-09
17-Jun-09
24-Jun-09
01-Jul-09
08-Jul-09
15-Jul-09
22-Jul-09
29-Jul-09
05-Aug-09
12-Aug-09
19-Aug-09
26-Aug-09
02-Sep-09
09-Sep-09
16-Sep-09
23-Sep-09
30-Sep-09
07-Oct-09
14-Oct-09
21-Oct-09
28-Oct-09
04-Nov-09
11-Nov-09
Date
logcfu/ml
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
logcfu/ml
CAE After pH Correction After Sandfilter After Clear Water Tank
67 Brine Clear Ash Effluent 67 Permeate
 
Figure 4. Pseudomonas counts in systems
PRODUCT DISCUSSION
Oxamine® is dosed using automated dosing equipment on site and is controlled by
an online pH meter. The pH of the reaction depends on the buffer capacity of the
dilution water and the dilution ratio of the products.
Oxamine® is highly effective against most bacteria, algae and fungi and it is a quick
kill biocide (as shown in Photo 1-5). Although it is a weak oxidising agent, the active
ingredient is not readily consumed by organic material and is therefore able to
penetrate biofilms without being consumed by extra-cellular slime.
Photo 1. Pre-exposed bioflim
Photo 2. Biofilm exposed to Oxamine® for 15 mintues
Photo 3. Biofilm exposed to Oxamine® for 30 minutes
Photo 4. Bioflim exposed to Oxamine® for 60 minutes
Photo 5. Bioflim exposed to Oxamine® for 90 minutes
The non-oxidising biocide used as a supplement to the oxidising biocide, has long
chemical reacting chains that have the ability to penetrate the slimy extracellular
polymeric layer formed by microorganisms, it does not have as fast a killing rate as
the Oxamine®, but has a half -life of 21 days. Due to this particular characteristic, the
product is ideal to shock-dose to prevent microorganisms building up resistance.
FEATURES OF OXAMINE®
- Environmentally compatible – Truly Green Chemistry
- Less effected by suspended solids compared to traditional oxidising
chemistries
- Not as susceptible to pH changes as traditional oxidising chemistries
- The active ingredient can be easily measured and quantified
- More cost effective than traditional oxidising technology
The alternating biocides improved the cleanliness of the feed water to the plant and
reduced biofouling, which extended the membrane life and reduced operating costs.
No negative impact on the differential pressures, salt rejection or flux through the
membranes was recorded.
REFERENCES
1. Peter Hills, Technology & Engineering, p.260 (2000)
2. Andrianus van Haandel, Jeroen van der Linde, Handbook biological waste
water treatment, p.298 (2007)
3. Piet Lens, Theresa Mahony, Biofilms in medicine, industry and environmental
biotegnology, p.610 (2003)

More Related Content

What's hot

ACQUEAU Workshop Helsinki 2015_SME&wastewater session_Anders Norén_BIOPTECH
ACQUEAU Workshop Helsinki 2015_SME&wastewater session_Anders Norén_BIOPTECHACQUEAU Workshop Helsinki 2015_SME&wastewater session_Anders Norén_BIOPTECH
ACQUEAU Workshop Helsinki 2015_SME&wastewater session_Anders Norén_BIOPTECHACQUEAU, EUREKA Cluster for Water
 
Africa; Performance Of Multistage Filtration Using Different Filter Media
Africa;  Performance Of Multistage Filtration Using Different Filter Media  Africa;  Performance Of Multistage Filtration Using Different Filter Media
Africa; Performance Of Multistage Filtration Using Different Filter Media D7Z
 
Solid state fermentation - Brief introduction
Solid state fermentation - Brief introductionSolid state fermentation - Brief introduction
Solid state fermentation - Brief introductionBalaganesh Kuruba
 
IRJET - Design of Wastewater Treatment Plant in Nagpur City: By Adopting ...
IRJET -  	  Design of Wastewater Treatment Plant in Nagpur City: By Adopting ...IRJET -  	  Design of Wastewater Treatment Plant in Nagpur City: By Adopting ...
IRJET - Design of Wastewater Treatment Plant in Nagpur City: By Adopting ...IRJET Journal
 
IRJET- Automated Water Quality Monitoring System for Aquaponics
IRJET-  	  Automated Water Quality Monitoring System for AquaponicsIRJET-  	  Automated Water Quality Monitoring System for Aquaponics
IRJET- Automated Water Quality Monitoring System for AquaponicsIRJET Journal
 
Hydrolysis of tuber peels and sorghum chaff by cellulolytic culture filtrat...
Hydrolysis of  tuber peels and sorghum chaff  by cellulolytic culture filtrat...Hydrolysis of  tuber peels and sorghum chaff  by cellulolytic culture filtrat...
Hydrolysis of tuber peels and sorghum chaff by cellulolytic culture filtrat...Alexander Decker
 
A novel high efficiency, low maintenance, hydroponic system for synchronous g...
A novel high efficiency, low maintenance, hydroponic system for synchronous g...A novel high efficiency, low maintenance, hydroponic system for synchronous g...
A novel high efficiency, low maintenance, hydroponic system for synchronous g...Chu Ha
 
Review of research on bio reactors used in wastewater ijsit 2.4.6
Review of research on bio reactors used in wastewater  ijsit 2.4.6Review of research on bio reactors used in wastewater  ijsit 2.4.6
Review of research on bio reactors used in wastewater ijsit 2.4.6IJSIT Editor
 
Scale up of industrial microbial processes
Scale up of industrial microbial processes Scale up of industrial microbial processes
Scale up of industrial microbial processes Shubham Vats
 
Appropriiate Technology for Wastewater Treatment In Punjab India
Appropriiate Technology for Wastewater Treatment In Punjab IndiaAppropriiate Technology for Wastewater Treatment In Punjab India
Appropriiate Technology for Wastewater Treatment In Punjab IndiaEarthizenz Eco Friendly Systems
 
Bio arc stp
Bio arc stpBio arc stp
Bio arc stpjeykumar
 
PHYTORID CSIR-NEERI_Indovation 2015_24 January 2015
PHYTORIDCSIR-NEERI_Indovation 2015_24 January 2015PHYTORIDCSIR-NEERI_Indovation 2015_24 January 2015
PHYTORID CSIR-NEERI_Indovation 2015_24 January 2015India Water Portal
 

What's hot (16)

ACQUEAU Workshop Helsinki 2015_SME&wastewater session_Anders Norén_BIOPTECH
ACQUEAU Workshop Helsinki 2015_SME&wastewater session_Anders Norén_BIOPTECHACQUEAU Workshop Helsinki 2015_SME&wastewater session_Anders Norén_BIOPTECH
ACQUEAU Workshop Helsinki 2015_SME&wastewater session_Anders Norén_BIOPTECH
 
Treatment Options for Wastewaters Collected from On-Site Systems
Treatment Options for Wastewaters Collected from On-Site SystemsTreatment Options for Wastewaters Collected from On-Site Systems
Treatment Options for Wastewaters Collected from On-Site Systems
 
Africa; Performance Of Multistage Filtration Using Different Filter Media
Africa;  Performance Of Multistage Filtration Using Different Filter Media  Africa;  Performance Of Multistage Filtration Using Different Filter Media
Africa; Performance Of Multistage Filtration Using Different Filter Media
 
Solid state fermentation - Brief introduction
Solid state fermentation - Brief introductionSolid state fermentation - Brief introduction
Solid state fermentation - Brief introduction
 
World Oil paper
World Oil paperWorld Oil paper
World Oil paper
 
Emerging Technologies in Onsite Wastewater Treatment
Emerging Technologies in Onsite Wastewater TreatmentEmerging Technologies in Onsite Wastewater Treatment
Emerging Technologies in Onsite Wastewater Treatment
 
IRJET - Design of Wastewater Treatment Plant in Nagpur City: By Adopting ...
IRJET -  	  Design of Wastewater Treatment Plant in Nagpur City: By Adopting ...IRJET -  	  Design of Wastewater Treatment Plant in Nagpur City: By Adopting ...
IRJET - Design of Wastewater Treatment Plant in Nagpur City: By Adopting ...
 
IRJET- Automated Water Quality Monitoring System for Aquaponics
IRJET-  	  Automated Water Quality Monitoring System for AquaponicsIRJET-  	  Automated Water Quality Monitoring System for Aquaponics
IRJET- Automated Water Quality Monitoring System for Aquaponics
 
Hydrolysis of tuber peels and sorghum chaff by cellulolytic culture filtrat...
Hydrolysis of  tuber peels and sorghum chaff  by cellulolytic culture filtrat...Hydrolysis of  tuber peels and sorghum chaff  by cellulolytic culture filtrat...
Hydrolysis of tuber peels and sorghum chaff by cellulolytic culture filtrat...
 
A novel high efficiency, low maintenance, hydroponic system for synchronous g...
A novel high efficiency, low maintenance, hydroponic system for synchronous g...A novel high efficiency, low maintenance, hydroponic system for synchronous g...
A novel high efficiency, low maintenance, hydroponic system for synchronous g...
 
Review of research on bio reactors used in wastewater ijsit 2.4.6
Review of research on bio reactors used in wastewater  ijsit 2.4.6Review of research on bio reactors used in wastewater  ijsit 2.4.6
Review of research on bio reactors used in wastewater ijsit 2.4.6
 
Insight into Innovative Decentralized Wastewater Technologies
Insight into Innovative Decentralized Wastewater TechnologiesInsight into Innovative Decentralized Wastewater Technologies
Insight into Innovative Decentralized Wastewater Technologies
 
Scale up of industrial microbial processes
Scale up of industrial microbial processes Scale up of industrial microbial processes
Scale up of industrial microbial processes
 
Appropriiate Technology for Wastewater Treatment In Punjab India
Appropriiate Technology for Wastewater Treatment In Punjab IndiaAppropriiate Technology for Wastewater Treatment In Punjab India
Appropriiate Technology for Wastewater Treatment In Punjab India
 
Bio arc stp
Bio arc stpBio arc stp
Bio arc stp
 
PHYTORID CSIR-NEERI_Indovation 2015_24 January 2015
PHYTORIDCSIR-NEERI_Indovation 2015_24 January 2015PHYTORIDCSIR-NEERI_Indovation 2015_24 January 2015
PHYTORID CSIR-NEERI_Indovation 2015_24 January 2015
 

Viewers also liked (11)

Deep web-2
Deep web-2Deep web-2
Deep web-2
 
Proteccion del software
Proteccion del softwareProteccion del software
Proteccion del software
 
La tecnología educativa en una sociedad de cambio
La tecnología educativa en una sociedad de cambioLa tecnología educativa en una sociedad de cambio
La tecnología educativa en una sociedad de cambio
 
04
0404
04
 
Iowa City Municipal Airport Presentation
Iowa City Municipal Airport PresentationIowa City Municipal Airport Presentation
Iowa City Municipal Airport Presentation
 
Bipul_Raj_Resume
Bipul_Raj_ResumeBipul_Raj_Resume
Bipul_Raj_Resume
 
Oracle WebCenter ile Etkileşimli Kurum
Oracle WebCenter ile Etkileşimli KurumOracle WebCenter ile Etkileşimli Kurum
Oracle WebCenter ile Etkileşimli Kurum
 
Constitucionalidad de los derechos fundamentales y el internet
Constitucionalidad de los derechos fundamentales y el internetConstitucionalidad de los derechos fundamentales y el internet
Constitucionalidad de los derechos fundamentales y el internet
 
Book analysis part 2
Book analysis part 2Book analysis part 2
Book analysis part 2
 
Ciber crimen ensayo
Ciber crimen ensayoCiber crimen ensayo
Ciber crimen ensayo
 
African Railways Vision 2025
African Railways Vision 2025African Railways Vision 2025
African Railways Vision 2025
 

Similar to Membrane Biofouling Recovery: Alternating Biocides Lower Counts

Membrane Treatment Of Potable Water For Pesticides Removal
Membrane Treatment Of Potable Water For Pesticides RemovalMembrane Treatment Of Potable Water For Pesticides Removal
Membrane Treatment Of Potable Water For Pesticides RemovalKonstantinos Plakas
 
Biological treatments of water
Biological treatments of waterBiological treatments of water
Biological treatments of waterMozakkir Azad
 
Anaerobic methods of waste water treatment v.n.nag
Anaerobic methods of waste water treatment v.n.nagAnaerobic methods of waste water treatment v.n.nag
Anaerobic methods of waste water treatment v.n.nagvishal nag
 
Analysis of Organic Fertilizers for Nutrients with AAnalyst 800 Atomic Absorp...
Analysis of Organic Fertilizers for Nutrients with AAnalyst 800 Atomic Absorp...Analysis of Organic Fertilizers for Nutrients with AAnalyst 800 Atomic Absorp...
Analysis of Organic Fertilizers for Nutrients with AAnalyst 800 Atomic Absorp...PerkinElmer, Inc.
 
Using an algal photo bioreactor as a polishing step for secondary treated was...
Using an algal photo bioreactor as a polishing step for secondary treated was...Using an algal photo bioreactor as a polishing step for secondary treated was...
Using an algal photo bioreactor as a polishing step for secondary treated was...AhmedKaram55
 
ABG_Advances in WWTS_IPC_March 19, 2016.pptx
ABG_Advances in WWTS_IPC_March 19, 2016.pptxABG_Advances in WWTS_IPC_March 19, 2016.pptx
ABG_Advances in WWTS_IPC_March 19, 2016.pptxssuser7ba2051
 
IRJET- Expermental Investigation/ on Fertigation in Open Field Agriculture
IRJET-  	  Expermental Investigation/ on Fertigation in Open Field AgricultureIRJET-  	  Expermental Investigation/ on Fertigation in Open Field Agriculture
IRJET- Expermental Investigation/ on Fertigation in Open Field AgricultureIRJET Journal
 
Sewage and Sludge Treatment
 Sewage and Sludge Treatment Sewage and Sludge Treatment
Sewage and Sludge TreatmentAli Safaa97
 
Ashu kumar ppt
Ashu kumar pptAshu kumar ppt
Ashu kumar pptAshu Kumar
 
Phytoremediation of industrial effluent and Reduction of physicochemical para...
Phytoremediation of industrial effluent and Reduction of physicochemical para...Phytoremediation of industrial effluent and Reduction of physicochemical para...
Phytoremediation of industrial effluent and Reduction of physicochemical para...iosrjce
 
IRJET- Characterisation of Grey Water and Treatment using Moving Bed Biof...
IRJET-  	  Characterisation of Grey Water and Treatment using Moving Bed Biof...IRJET-  	  Characterisation of Grey Water and Treatment using Moving Bed Biof...
IRJET- Characterisation of Grey Water and Treatment using Moving Bed Biof...IRJET Journal
 
Completed Final Year Project
Completed Final Year ProjectCompleted Final Year Project
Completed Final Year ProjectAilbhe Gullane
 
Lagoas de alta taxa versando sobre avanços e princiais beneficios da tecnologia
Lagoas de alta taxa versando sobre avanços e princiais beneficios da tecnologiaLagoas de alta taxa versando sobre avanços e princiais beneficios da tecnologia
Lagoas de alta taxa versando sobre avanços e princiais beneficios da tecnologiaLucasVassalledeCastr
 
Cashew nut processing industry waste water treatment
Cashew nut processing industry waste water treatmentCashew nut processing industry waste water treatment
Cashew nut processing industry waste water treatmentVishnu Raj
 

Similar to Membrane Biofouling Recovery: Alternating Biocides Lower Counts (20)

Membrane Treatment Of Potable Water For Pesticides Removal
Membrane Treatment Of Potable Water For Pesticides RemovalMembrane Treatment Of Potable Water For Pesticides Removal
Membrane Treatment Of Potable Water For Pesticides Removal
 
Ae35171177
Ae35171177Ae35171177
Ae35171177
 
Biological treatments of water
Biological treatments of waterBiological treatments of water
Biological treatments of water
 
Anaerobic methods of waste water treatment v.n.nag
Anaerobic methods of waste water treatment v.n.nagAnaerobic methods of waste water treatment v.n.nag
Anaerobic methods of waste water treatment v.n.nag
 
Analysis of Organic Fertilizers for Nutrients with AAnalyst 800 Atomic Absorp...
Analysis of Organic Fertilizers for Nutrients with AAnalyst 800 Atomic Absorp...Analysis of Organic Fertilizers for Nutrients with AAnalyst 800 Atomic Absorp...
Analysis of Organic Fertilizers for Nutrients with AAnalyst 800 Atomic Absorp...
 
1045 1050
1045 10501045 1050
1045 1050
 
Using an algal photo bioreactor as a polishing step for secondary treated was...
Using an algal photo bioreactor as a polishing step for secondary treated was...Using an algal photo bioreactor as a polishing step for secondary treated was...
Using an algal photo bioreactor as a polishing step for secondary treated was...
 
1.pdf
1.pdf1.pdf
1.pdf
 
ABG_Advances in WWTS_IPC_March 19, 2016.pptx
ABG_Advances in WWTS_IPC_March 19, 2016.pptxABG_Advances in WWTS_IPC_March 19, 2016.pptx
ABG_Advances in WWTS_IPC_March 19, 2016.pptx
 
IRJET- Expermental Investigation/ on Fertigation in Open Field Agriculture
IRJET-  	  Expermental Investigation/ on Fertigation in Open Field AgricultureIRJET-  	  Expermental Investigation/ on Fertigation in Open Field Agriculture
IRJET- Expermental Investigation/ on Fertigation in Open Field Agriculture
 
Sewage and Sludge Treatment
 Sewage and Sludge Treatment Sewage and Sludge Treatment
Sewage and Sludge Treatment
 
Ashu kumar ppt
Ashu kumar pptAshu kumar ppt
Ashu kumar ppt
 
vanamei-RAS
vanamei-RASvanamei-RAS
vanamei-RAS
 
Phytoremediation of industrial effluent and Reduction of physicochemical para...
Phytoremediation of industrial effluent and Reduction of physicochemical para...Phytoremediation of industrial effluent and Reduction of physicochemical para...
Phytoremediation of industrial effluent and Reduction of physicochemical para...
 
IRJET- Characterisation of Grey Water and Treatment using Moving Bed Biof...
IRJET-  	  Characterisation of Grey Water and Treatment using Moving Bed Biof...IRJET-  	  Characterisation of Grey Water and Treatment using Moving Bed Biof...
IRJET- Characterisation of Grey Water and Treatment using Moving Bed Biof...
 
Sequential batch reactor (SBR)
Sequential batch reactor (SBR)Sequential batch reactor (SBR)
Sequential batch reactor (SBR)
 
Completed Final Year Project
Completed Final Year ProjectCompleted Final Year Project
Completed Final Year Project
 
Lagoas de alta taxa versando sobre avanços e princiais beneficios da tecnologia
Lagoas de alta taxa versando sobre avanços e princiais beneficios da tecnologiaLagoas de alta taxa versando sobre avanços e princiais beneficios da tecnologia
Lagoas de alta taxa versando sobre avanços e princiais beneficios da tecnologia
 
Cashew nut processing industry waste water treatment
Cashew nut processing industry waste water treatmentCashew nut processing industry waste water treatment
Cashew nut processing industry waste water treatment
 
F04915660
F04915660F04915660
F04915660
 

Membrane Biofouling Recovery: Alternating Biocides Lower Counts

  • 1. RECOVERY OF INDUSTRIAL EFFLUENT: CASE HISTORY OF MEMBRANE BIOFOULING AND THE SUCCESSFUL TREATMENT WITH ALTERNATING NON-OXIDISING AND OXIDISING BIOCIDE Martha van Schalkwyk, André Maartens, Pam Allison, Philly Mathe, Ronel Augustyn and Gerhardt Snyman. Martha van Schalkwyk – Buckman Africa e-mail msvanschalkwyk@buckman.com Cell: 082 957 6756 André Maartens – Buckman Africa; Pam Allison – Technical Consultant Buckman Africa; Philly Mathe – Sasol Synfuels; Ronel Augustyn – Sasol Research and Development; Gerhardt Snyman – Sasol Technology ABSTRACT Keywords: Reverse Osmosis, Treatment of Industrial effluent, Biofouling, Non‐oxidising biocides, Oxidising  biocides  Background: Large quantities of raw water can be saved in the industrial sector when blow‐ down water from large cooling systems and industrial effluents are recovered and re‐used using  membrane  technology  (Peter  Hills,  Technology  &  Engineering,  p260,  2000).  Biofouling  in  these  membrane plants is practically inevitable and can be directly linked to as much as 56 to 74% of the  costs of membrane operation (Andrianus van Haandel, Jeroen van der Linde, Handbook biological  waste water treatment, p298, 2007)(Piet Lens, Theresa Mahony, Biofilms in medicine, industry and  environmental biotegnology, p610, 2003) . This paper presents an overview of lessons learned on  full‐scale membrane  plants,  optimisation  of biofouling  monitoring  and  the  successful  alternation  between oxidising and non‐oxidising microbicides.   Case  History:  Rapid  development  of  biofilm  resulted  in  the  need  to  implement  a  chlorination/de‐chlorination disinfection programme, with an alternating non‐oxidising biocide, for a  17ML/day TRO plant at a refinery in South Africa. High sessile bacteria counts, and high total plate  counts of 105  colony forming units (cfu) per ml  of permeate and 10 6  colony forming units (cfu) per ml  of  brine  were  measured.  Microbial  populations  were  monitored  using  Adenosine  tri‐Phosphate  (ATP) measurements, heterotrophic plate counts (HPC), population surveys, bacterial identifications  and microbicide kill studies. A key factor that contributed to the excellent results achieved included  the  use  of  alternating  oxidising  and  non‐oxidising  biocides  with  different  active  ingredients  to  broaden the spectrum of control and minimise microbial resistance. In addition, regular CIP’s and  good operational monitoring and control are essential supplements to the anti‐microbial chemicals.   Both alternating biocides were dosed before pre‐treatment, which consists of sand filters. The sand  filters were heavily contaminated with microorganisms. The oxidising biocide dosing, together with  alternating non‐oxidising biocide, were found to be very effective and resulted in reductions in  total  Search for keyword
  • 2. plate counts to <10 2  CFU per ml permeate and <10 3  CFU per ml brine. To protect the rest of the  system downstream (Polyamide RO plant) from the oxidising biocide, total and free halogen were  monitored on a continuous basis.  Conclusions:  In  the  case  history  presented,  application  of  an  oxidising  biocide  with  alternating  non‐oxidizing  biocide  for  feed  water  disinfection  has  numerous  benefits  over  chlorination and de‐chlorination alone. The efficiency of these programmes is however linked to an  effective monitoring strategy. Monitoring the efficiency of the disinfection programmes was done by  using adenosine tri‐phosphate measurements, conventional plate counts, and membrane autopsies.  The  subsequent  results  were:  improved  disinfection  of  the  sand  filters  and  RO  membranes;  reduction  in  the  replacement  frequency  of  membranes;  reduced  CIP  costs and  reduction of bio‐ fouling on the membranes.     INTRODUCTION A water treatment plant at a petrochemical refinery re-utilises saline effluent from open dams (Refer to Figure 1 for a schematic presentation of the plant layout). The water chemistry is influenced by various processes upstream as well as seasonal changes. This continuous change in the feed water composition puts enormous strain on the water treatment plant, influencing the system’s performance and ultimately the water recovery on a daily basis. Water recoveries were severely reduced and tubular cellulose acetate membranes showed evidence of biofouling and algae growth. Buckman Africa started shock dosing Oxamine®, an oxidising biocide, on a weekly basis. After six months, this dosing regime was subsequently adjusted to continuous dosing. In addition to the oxidising biocide, a non-oxidising biocide was slug-dosed to address the high microbiological demand in the pre-treatment system. Excellent microbiological control was obtained with total plate counts of between Log1 and Log2 cfu/ml on permeate as well as brine samples.
  • 3. 11/20/2009 445  m3/h Pre‐ Treatment 640  m3/h 275  m3/h Ash Plant Permeate Feed  Water  from CAE 11 modular units 960 off TRO modules STRO 2.5/1.7 AL9(S) 0398 HP pumps, feed flow  control, flow reversal  system, recovery control  system and chemical  cleaning change over  system Filter section: Down flow filters Backwash system Antiscalantaddition Biocide shock  facilities Intermediate  buffering Heating of water TRO  membrane plant Figure 1. Petrochemical water treatment system with pre-treatment system and TRO membrane plant. The water treatment plant was commissioned in 1995 and has a capacity to treat 14ML saline effluent per day at a 45% designed water recovery. The pre-treatment system consists of 5 down flow sandfilters and a backwash system, followed by a feed tank. An anti-scalant is added into the feed tank. 11 modular TRO membrane units consisting of 960 TRO membranes are fed from the feed tank. The saline effluent feed stream comprised of a salty low hazard solution with high concentrations of calcium, sulphates and sodium. Membrane biofouling is the main cause of product and membrane losses and is measured through loss in productivity, salt rejection and pressure drop. Membrane biofouling is addressed by means of continuous biocide dosing, mechanical cleaning (sponge balls) and Cleaning-in- place procedures (CIP). The predominant microorganisms associated with biofouling of this system include Pseudomonas spp, yeasts and Desulphovibrio. SHOCK DOSING PERIOD In August 2008, Buckman Africa started dosing Oxamine® before the sand filters. Dosages were calculated based on residuals obtained before and after each system namely the sand filters, feed water tank and the membrane plant. Adenosine tri- phosphate (ATP) analysis was conducted on-site to measure the efficiency of the programme.
  • 4. The oxidant demand of the pre-treatment system for the disinfectant was extremely high and consumed most of the oxidant residuals, leaving the rest of the system exposed. Subsequently the dosing point was moved to a point just before the TRO membrane plant. This situation was also not ideal as the major source and breeding ground for microorganisms in the sand filters and feed water tank, was not addressed. Total aerobic plate counts indicated that shock dosing was effective, but only for very short periods. Within a day or two, bacterial re-growth would occur and total plate counts would reach the original counts obtained before dosing. CONTINUOUS OXIDANT DOSING WITH ALTERNATING NON-OXIDISING BIOCIDE SHOCK DOSING After cost and efficiency evaluations, it was decided to change from shock-dosing to continuous dosing. Initial dosages of Oxamine® were high in order to obtain sufficient oxidant residual, but as the system bio-fouling was reduced, microbiological demand decreased, and dosages could be optimised. The Oxamine® dosing system is monitored continuously and dosage rates are adjusted in accordance with the residuals (1 ppm), total plate counts and pH of the system. The alternating non-oxidising biocide is dosed once a week for a five hour period. Total plate counts are performed twice a week after each phase of the system to determine the biocide efficiency and to enable localised problem-solving if necessary. (Refer to Figure 2, 3 and 4 for a graphic summary of the microbiological results). TRO membrane swab analysis is performed every three months to determine if microbiological population shifts have occurred.
  • 5. Figure 2. Total plate counts obtained during continuous dosing program. As demonstrated in Figure 2, the system’s total plate counts were reduced after three weeds from Log6 - Log7 to Log2 - Log3, and these counts remained fairly constant thereafter in spite of seasonal changes or water chemistry differences.
  • 6. Unit 67 Total Viable Count 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 4-Mar-09 11-Mar-09 18-Mar-09 25-Mar-09 1-Apr-09 8-Apr-09 15-Apr-09 22-Apr-09 29-Apr-09 6-May-09 13-May-09 20-May-09 27-May-09 3-Jun-09 10-Jun-09 17-Jun-09 24-Jun-09 1-Jul-09 8-Jul-09 15-Jul-09 22-Jul-09 29-Jul-09 5-Aug-09 12-Aug-09 19-Aug-09 26-Aug-09 2-Sep-09 9-Sep-09 16-Sep-09 23-Sep-09 30-Sep-09 7-Oct-09 14-Oct-09 21-Oct-09 28-Oct-09 4-Nov-09 11-Nov-09 Date logcfu/ml 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 logcfu/ml CAE After pH Correction After Sandfilter After Clear Water Tank 67 Brine Clear Ash Effluent 67 Permeate   Figure 3. Viable Total plate count ( cfu/ml) Unit 67 Pseudomonas 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 04-Mar-09 11-Mar-09 18-Mar-09 25-Mar-09 01-Apr-09 08-Apr-09 15-Apr-09 22-Apr-09 29-Apr-09 06-May-09 13-May-09 20-May-09 27-May-09 03-Jun-09 10-Jun-09 17-Jun-09 24-Jun-09 01-Jul-09 08-Jul-09 15-Jul-09 22-Jul-09 29-Jul-09 05-Aug-09 12-Aug-09 19-Aug-09 26-Aug-09 02-Sep-09 09-Sep-09 16-Sep-09 23-Sep-09 30-Sep-09 07-Oct-09 14-Oct-09 21-Oct-09 28-Oct-09 04-Nov-09 11-Nov-09 Date logcfu/ml 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 logcfu/ml CAE After pH Correction After Sandfilter After Clear Water Tank 67 Brine Clear Ash Effluent 67 Permeate   Figure 4. Pseudomonas counts in systems
  • 7. PRODUCT DISCUSSION Oxamine® is dosed using automated dosing equipment on site and is controlled by an online pH meter. The pH of the reaction depends on the buffer capacity of the dilution water and the dilution ratio of the products. Oxamine® is highly effective against most bacteria, algae and fungi and it is a quick kill biocide (as shown in Photo 1-5). Although it is a weak oxidising agent, the active ingredient is not readily consumed by organic material and is therefore able to penetrate biofilms without being consumed by extra-cellular slime. Photo 1. Pre-exposed bioflim
  • 8. Photo 2. Biofilm exposed to Oxamine® for 15 mintues Photo 3. Biofilm exposed to Oxamine® for 30 minutes
  • 9. Photo 4. Bioflim exposed to Oxamine® for 60 minutes Photo 5. Bioflim exposed to Oxamine® for 90 minutes The non-oxidising biocide used as a supplement to the oxidising biocide, has long chemical reacting chains that have the ability to penetrate the slimy extracellular polymeric layer formed by microorganisms, it does not have as fast a killing rate as the Oxamine®, but has a half -life of 21 days. Due to this particular characteristic, the product is ideal to shock-dose to prevent microorganisms building up resistance.
  • 10. FEATURES OF OXAMINE® - Environmentally compatible – Truly Green Chemistry - Less effected by suspended solids compared to traditional oxidising chemistries - Not as susceptible to pH changes as traditional oxidising chemistries - The active ingredient can be easily measured and quantified - More cost effective than traditional oxidising technology The alternating biocides improved the cleanliness of the feed water to the plant and reduced biofouling, which extended the membrane life and reduced operating costs. No negative impact on the differential pressures, salt rejection or flux through the membranes was recorded. REFERENCES 1. Peter Hills, Technology & Engineering, p.260 (2000) 2. Andrianus van Haandel, Jeroen van der Linde, Handbook biological waste water treatment, p.298 (2007) 3. Piet Lens, Theresa Mahony, Biofilms in medicine, industry and environmental biotegnology, p.610 (2003)