SlideShare a Scribd company logo
1 of 87
Download to read offline
CHAPTER 7
WAVES
Mrs. Nor
Asyikin Bt
Mohd Bajuri
LEARNING OUTCOMES
LEARNING OUTCOMES
Wave motion
● Wave motion is energy
transferred through moving
oscillations or vibrations .
● These can be seen in
vibrations of ropes,
springs and ripple tanks .
● The oscillations/vibrations
can be perpendicular or
parallel to the direction
of wave travel .
● Waves c a n a l s o be
de mons t r a t e d by r i ppl e
t a nks .
● Ri ppl e t a nks ma y be
us e d t o de mons t r a t e
t he wa ve pr ope r t i e s of
r e f l e c t i on, r e f r a c t i on
a nd diffraction .
1. Displacement, x : is the
distance of a point on
the wave from its
equilibrium position .
2. Amplitude, A : is the
maximum displacement of
a particle in the wave
from its equilibrium
position .
General Wave
Properties 3. Wavelength, λ:
( S2018_V22_Q4)
• di s t a nc e move d by
wa ve f r ont / e ne r gy dur i ng
one c yc l e .
or
• mi ni mum di s t a nc e be t we e n
t wo wa ve f r ont s .
or
• di s t a nc e be t we e n t wo
a dj a c e nt wa ve f r ont s .
3. Period, T: is the time
taken for one complete
oscillation of a point
in a wave.
● uni t : s e c onds , s .
4. Frequency, f : i s t he
numbe r os c i l l a t i ons
pe r uni t t i me .
● uni t : pe r s e c ond, s - 1
or he r t z , Hz .
𝑓𝑓 =
1
𝑇𝑇
Both transverse &
longitudinal waves,
can be represented
by two graphs:
1. The di s pl a c e me nt - di s t a nc e
gr a ph ( t i me c ons t a nt )
2. The di s pl a c e me nt - t i me
gr a ph ( di s t a nc e c ons t a nt )
Displacement - Time
Graph
Displacement -
Distance Graph
From t he gr a ph, we c a n
de duc e :
i . The a mpl i t ude of t he wa ve :
A = 4. 5 c m
i i . The wa ve l e ngt h:
λ = 4 c m
Worked example
Fr om t he gr a ph, we c a n
de duc e :
i . The a mpl i t ude of t he wa ve :
A = 4. 5 c m
i i . The pe r i od:
T = 0. 4 s
i i i . The f r e que nc y:
𝑓𝑓 =
1
0.4 𝑠𝑠
= 2. 5 Hz
Progressive
Waves
A progressive waves
transfers energy from one
place to another as a result
of oscillations/vibrations.
(W2014_V23 & W2009_V23)
Example :
1. The energy from sound
reaches our eardrums to
vibrate .
2. the electromagnetic waves
from the sun carry the
energy to the Earth for
the survival of living
things .
● The r e a r e t wo t ype s of
pr ogr e s s i ve wa ve s ;
Tr a ns ve r s e
wa ve s
Longi t udi na l
wa ve s
pr ogr e s s i ve
wa ve s
Transverse
waves
Transverse waves is when
the particles of the medium
vibrate at right angles to
the direction of travel of
the energy (W2014/V23)
• Examples of transverse
waves are :
1. Electromagnetic waves
e. g. radio, visible
light, UV.
2. Vibrations on a guitar
string
• Transverse waves can be
polarized .
transverse wave.mp4
Longitudinal
waves
Longitudinal waves is when
the displacement of
particles/vibration/
oscillation is parallel to
the direction of energy
(W2017/V23)
• Examples are sound waves &
ultrasound waves
• Longitudinal waves cannot
be polarized .
• The wavelength λ of a
l ongi t udi na l wa ve i s t he
di s t a nc e be t we e n
s uc c e s s i ve c ompr e s s i ons
a nd r a r e f a c t i ons .
longitudinal wave.mp4
Representing waves
• Longitudinal waves
shows repeating
pattern of compressed
and rarefaction .
• This gives rise to high
and low pressure
regions .
• This can be difficult
to draw so often
longitudinal wave is
represented as it if
were a sine wave.
Past
year
question
(S2018_V13
&
W2005)
Past
year
question
(S2018_V13
&
S2013_V13
&
W2005)
Past
year
question
(W2013_V13)
Past
year
question
(W2013_V13
&
W2017_V13)
Cathode- Ray
Oscilloscope
• A cathode - Ray Oscilloscope is
a laboratory instrument used
to display, measure and
analyse waveforms of
electrical circuits .
• Figure shows a microphone is
connected to the input of the
c. r . o.
• The microphone converts the
sound waves into a varying
voltage that has the same
frequency as the sound waves .
• This voltage is displayed on
the c. r . o. screen .
• An oscilloscope is
basically a voltmeter that
shows you how voltage
varies with time .
• I ns t e a d of ge t t i ng a
di gi t a l r e a dout ( a s on a
mul t i me t e r ) i t gi ve s you a
gr a ph.
• It plots a voltage against
time graph on the screen .
• The y- axis is voltage ( s o
you c a n s e e how ma ny vol t s
a r e a c r os s t he c ompone nt ) .
 the Y- plate sensitivity
(Y - gain) i n vol t s / di vi s i on.
e . g. V di v⁻¹ or V c m⁻¹
• The x- axis is time ( t he
vol t a ge i s s t e a dy ( D. C. ) or
va r yi ng ( A. C. ) .
 the time base settings is i n
t i me / di vi s i on
e . g. ms di v ⁻¹ or s c m⁻¹
• The di s t a nc e be t we e n pe a ks
or t r oughs , L i s me a s ur e d
us i ng t he s c a l e on t he
c . r . o. di s pl a y.
Determine f or t he s ound:
i . The t i me pe r i od
T = Lx
= 4. 0 c m x 2. 0 ms c m⁻¹
Ans we r : 8. 0 x 10⁻³ s
i i . The f r e que nc y
Ans we r : 125 Hz
Worked example
The t i me ba s e s e t t i ng f or
t he c . r . o. us e d t o obt a i n
t he t r a c e i n f i gur e be l ow i s
2. 0 ms c m⁻¹ .
Worked example
Figure below shows the
trace on an oscilloscope
screen when sound waves are
detected by a microphone .
The time - base is set at 1
ms div ⁻¹ . The y- ga i n i s s e t
t o 20 mV di v⁻¹ .
De t e r mi ne
i . t he f r e que nc y of t he
s ound wa ve s a nd
Ans we r : 250 Hz
i i . t he a mpl i t ude of t he
os c i l l os c ope t r a c e .
Ans we r : 70 x 10⁻³ V
Past year
questions
(S2018_V12_Q23)
Past year
questions
(S2018_V13_Q22)
The wave
equation
The wave equation links
the speed, frequency and
wavelength of a wave.
We can find the speed
wave, 𝑣𝑣 us i ng:
A wa ve wi l l t r a ve l a
di s t a nc e of one whol e
wa ve l e ngt h, λ i n a t i me
e qua l t o one pe r i od, T.
Howe ve r ,
He nc e
𝑣𝑣 = 𝑓𝑓𝜆𝜆
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑓𝑓 =
1
𝑇𝑇
𝑣𝑣 =
𝜆𝜆
𝑇𝑇
=
1
𝑇𝑇
𝜆𝜆
Worked
example
● The wave in the diagram
below has a speed of
340 ms–1.
● What is the wavelength of
the wave?
● Answer : 0. 095 m
Intensity
The intensity of a wave is
the rate of energy
transmitted per unit area
at right angles to the wave
velocity.
𝐼𝐼 =
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
=
𝑃𝑃
𝐴𝐴
• Unit for intensity is
Watts per square metre,
Wm⁻²
• The i nt e ns i t y of a wa ve
ge ne r a l l y de c r e a s e s a s i t
t r a ve l s a l ong.
• The r e a r e t wo r e a s ons f or
t hi s :
1. The wa ve ma y ‘ s pr e a d
out ’ ( a s i n t he e xa mpl e
of l i ght s pr e a di ng out
f r om a c a ndl e ) .
2. The wa ve ma y be a bs or be d
or s c a t t e r e d ( a s whe n
l i ght pa s s e s t hr ough t he
Ea r t h’ s a t mos phe r e ) .
● As a wa ve s pr e a ds out ,
i t s a mpl i t ude de c r e a s e s .
● For a wa ve of a mpl i t ude ,
A a nd f r e que nc y f , t he
i nt e ns i t y I i s
pr opor t i ona l t o A² f² .
I ∝ A² → I = kA²
I ∝ f² → I = kf²
Worked
example
● A wa ve f r om a s our c e ha s a n
a mpl i t ude of 5. 0 c m a nd a n
i nt e ns i t y of 400 W
m⁻² .
i . The a mpl i t ude of t he wa ve i s
i nc r e a s e d t o 10. 0 c m.
Ca l c ul a t e t he i nt e ns i t y now.
Ans we r : 1600 W
m⁻²
i i . The i nt e ns i t y of t he wa ve i s
de c r e a s e d t o 100 W
m⁻² .
Ca l c ul a t e t he a mpl i t ude now.
Ans we r : 2. 5 c m
● Wave f r om a poi nt s our c e
s pr e a d out e qua l l y i n a l l
di r e c t i ons .
● Sur f a c e wa ve i s a s s ume d t o
be s phe r i c a l whe r e a r e a i s
e qua l t o 4πr ² .
● The r e f or e t he i nt e ns i t y,
𝐼𝐼 =
𝑃𝑃
4π𝑟𝑟^
Spherical
wave
● I nt e ns i t y of t he wa ve
de c r e a s e s wi t h i nc r e a s i ng
di s t a nc e f r om t he s our c e .
● At 3 t i me s t he di s t a nc e ,
t he s a me s ound e ne r gy wi l l
be s pr e a d ove r 9 t i me s t he
a r e a , a dr op t o 1/ 9 t he
i nt e ns i t y.
Past year questions
( S2015_V11_Q26)
Next question: Q23: 9702_s14_qp_12.pdf
Past
year
questions
(W2005_Q24)
Phase
● A term used to describe the
relative positions of the
crests or troughs of two
different waves of t he s a me
f r e que nc y i s phase .
● W
he n t he c r e s t s or t r oughs a r e
a l i gne d, t he wa ve s a r e in
phase .
● W
he n t he c r e s t of one wa ve
a l i gns wi t h t he t r ough of
a not he r , t he y a r e
i n antiphase .
Phase
differences
● When crests and troughs
are not aligned the waves
are said to have phase
differences .
● The pha s e di f f e r e nc e t e l l s
us how much a point or a
wave is leads or lags
behind another .
● Pha s e di f f e r e nc e i s
me a s ur e d i n fractions of a
wavelength, degrees or
radians .
● The pha s e di f f e r e nc e c a n
be c a l c ul a t e d f r om:
1. t wo di f f e r e nt poi nt s on
t he s a me wa ve or
2. t he s a me poi nt on t wo
di f f e r e nt wa ve s .
Two different
points on the same
wave
● The phase difference between
two points :
○ In phase i s 360o or 2π r a di a ns
○ In anti - phase i s 180o or π
r a di a ns
● I n f i gur e s how t wo poi nt s A
a nd B, wi t h a s e pa r a t i on of
one whol e wa ve l e ngt h λ,
vi br a t e i n pha s e wi t h e a c h
ot he r .
● The pha s e di f f e r e nc e be t we e n
t he s e t wo os c i l l a t i ng pa r t i c l e s
a t A a nd B i s 360° . ( You c a n
a l s o s a y i t i s 0° . )
● The s e pa r a t i on be t we e n poi nt s C
a nd D i s qua r t e r of a wa ve l e ngt h
– t he pha s e di f f e r e nc e be t we e n
t he s e t wo poi nt s i s 90° .
● In ge ne r a l , whe n t he
s e pa r a t i on be t we e n t wo
os c i l l a t i ng pa r t i c l e s on a
wa ve i s x, t he n t he pha s e
di f f e r e nc e ϕ be t we e n
t he s e pa r t i c l e s i n de gr e e s
c a n be c a l c ul a t e d us i ng
t he e xpr e s s i on:
ϕ =
𝑥𝑥
𝜆𝜆
𝑥𝑥 360°
Example
Points Phase
difference/
degrees
Phase
difference/
radians
Common terms
P and R 360˚or 0 2π or 0 I n pha s e
P a nd Q 180˚ π
Exa c t l y out of
pha s e
R a nd S 90˚ ½ π
90˚ or ½ π out
of pha s e
The same point on
two different
waves.
● The diagram below shows the
red wave leads t he bl ue
wa ve by ¼ λ.
● I n c ont r a s t , t he bl ue wa ve
i s s a i d t o lag be hi nd t he
r e d wa ve by ¼ λ.
● Pha s e di f f e r e nc e ϕ c a n be
me a s ur e d i n:
fractions
degrees
radians
video: path diff 1.mp4
Past year
questions
(S2015_V12_Q25)
Past year
questions
(S2006_Q25)
The frequency of a certain wave is
500 Hz and its speed is 340 ms⁻¹ .
W
ha t i s t he pha s e di f f e r e nc e
be t we e n t he mot i ons of t wo poi nt s
on t he wa ve 0. 17 m a pa r t ?
A s ound wa ve ha s a s pe e d of
330 ms ⁻¹ a nd a f r e que nc y of 50 Hz .
W
ha t i s a pos s i bl e di s t a nc e
be t we e n t wo poi nt s on t he wa ve
t ha t ha ve a pha s e di f f e r e nc e of
60° ?
Past year questions
(W2006_Q25 & S2018_V13_Q20)
Past year questions
(S2020_V12_Q22)
Prediction on
particle movement
● To determine the movement of
a particle in transverse
wave, we have to sketch
another wave i n t he wa ve
di r e c t i on.
The di a gr a m s hows a t r a ns ve r s e
wa ve on a s t r i ng wi t h t wo
poi nt s P a nd Q ma r ke d. The wa ve
i s movi ng i n t he di r e c t i on
s hown. W
ha t wi l l ha ppe n ne xt t o
pa r t i c l e P a nd Q?
Example
The di a gr a m be l ow s hows a
wa ve on a s t r i ng wi t h
pa r t i c l e s P, Q, R, S a nd T
on t he wa ve . The wa ve i s
movi ng i n t he di r e c t i on a s
s hown.
Worked example
a ) W
ha t c a n you s a y a bout
t he mot i on of t he
pa r t i c l e s the next
moment?
b) W
ha t c a n you s a y a bout
t he mot i on of t he
pa r t i c l e s a t t hi s
instant ?
Fi r s t l y, you ha ve t o know t ha t
t he wa ve a bove i s transverse
wave ( t he direction of the
vibration i s perpendicular t o
t he direction of wave motion ) .
He nc e , pa r t i c l e s wi l l
onl y vi br a t e up a nd down onl y.
a) P: down, Q: up, R: up,
S: down, T: down
b) P: at rest , Q: up, R: at
rest , S: down, T: down
● Ta ke not e of P and Q at
crest and trough
respectively .
● He nc e a t t hi s pa r t i c ul a r
i ns t a nt , P i s a t i t s
hi ghe s t poi nt a nd R i s a t
i t s l owe s t poi nt , he nc e
bot h momentary at rest .
Solution
Past
year
questions
(S2004_Q25)
Past year questions
(W2010_V11& S2014_V12_Q24)
LEARNING OUTCOMES
Doppler effect
of Sound
Doppler effect is when the
observed frequency is
different to source
frequency when source
moves relative to observer
(S2017_V21_Q5)
● The s i r e n of a n a mbul a nc e
a ppe a r s t o c ha nge i n pi t c h
whe n i t pa s s e s you.
● The pi t c h i s hi ghe r a s t he
ve hi c l e s a ppr oa c he s you
a nd l owe r a s i t r e c e de s .
● Thi s i s a n e xa mpl e of t he
doppler effect .
● Consider a s our c e of s ound
wa ve s wi t h a c ons t a nt
f r e que nc y a nd a mpl i t ude .
● The s ound wa ve s c a n be
r e pr e s e nt e d a s c onc e nt r i c
c i r c l e s whe r e e a c h c i r c l e
r e pr e s e nt s a c r e s t or
t r ough a s t he wa ve f r ont s
r a di a t e a wa y f r om t he
s our c e .
Sour c e s t a t i ona r y
The source is
stationary
In figure shows a source of
sound emitting wave with a
constant frequency 𝑓𝑓𝑠𝑠 ,
t oge t he r wi t h t wo obs e r ve r s
A a nd B.
● I f t he s our c e i s
s t a t i ona r y, wa ve s a r r i ve
a t A a nd B a t t he s a me
r a t e .
● So bot h obs e r ve r s he a r
s ounds of t he s a me
f r e que nc y 𝑓𝑓𝑠𝑠 .
● W
e c a n a l s o s a y whe n t he
t r uc k i s s t a t i ona r y, t he
wa ve l e ngt h of t he s ound
i s t he s a me i n f r ont of
a nd be hi nd of t he t r uc k.
A
B
The source is
moving
If the source is moving
towards A and away from B
the situation will be
different .
● The di a gr a m s hows t he
wa ve l e ngt h of t he s ound
a r e s qua s he d ( s hor t e ne d)
t oge t he r i n t he
di r e c t i on of A a nd
s pr e a d a pa r t ( l a r ge r ) i n
t he di r e c t i on of B.
● The s ound a ppe a r s a t
a higher f r e que nc y t o
t he obs e r ve r A ( movi ng
t owa r ds t he obs e r ve r A)
● a nd lower f r e que nc y t o
obs e r ve r B ( movi ng a wa y
f r om t he obs e r ve r B)
A
B
Doppler Effect and Its Application.mp4
An equation for
observed frequency
● There are two different
speeds involved in this
situation :
1. Speed of the source, 𝑣𝑣𝑠𝑠
2. Spe e d of t he s ound wa ve s
t r a ve l t hr ough t he a i r , 𝑣𝑣
( whi c h i s una f f e c t e d by
t he s pe e d of t he s our c e )
● Spe e d of a wa ve v de pe nds
onl y on t he me di um i t i s
t r a ve l l i ng t hr ough
We know t ha t whe n t he
obs e r ve r i s s t a t i ona r y, t he
f r e que nc y r e c e i ve d by t he
obs e r ve r i s t he f r e que nc y
e mi t t e d by t he s our c e .
And t he wa ve l e ngt h obs e r ve d
by t he obs e r ve r i s :
𝑣𝑣 = 𝑓𝑓𝑠𝑠 𝜆𝜆0
𝜆𝜆0 =
𝑣𝑣
𝑓𝑓𝑠𝑠
Calculating
doppler effect
When a source of sound waves
moves relative to a
stationary observer, the
observed wavelength 𝜆𝜆𝑜𝑜 i s :
The obs e r ve d f r e que nc y 𝑓𝑓𝑜𝑜 , i s
gi ve n by:
● The wa ve ve l oc i t y f or
s ound wa ve s i s 340 ms - 1.
● The ± de pe nds on whe t he r
t he s our c e i s movi ng
t owa r ds or a wa y f r om t he
obs e r ve r .
I f t he s our c e i s
movi ng towards , t he
de nomi na t or i s 𝑣𝑣 – 𝑣𝑣𝑠𝑠
I f t he s our c e i s
movi ng away, t he
de nomi na t or i s 𝑣𝑣 + 𝑣𝑣𝑠𝑠
𝑓𝑓𝑜𝑜 =
𝑣𝑣
𝜆𝜆𝑜𝑜
= 𝑓𝑓𝑠𝑠
𝑣𝑣
𝑣𝑣 ± 𝑣𝑣𝑠𝑠
𝜆𝜆𝑜𝑜 =
𝑣𝑣 ± 𝑣𝑣𝑠𝑠
𝑓𝑓𝑠𝑠
A t r a i n wi t h a whi s t l e
t ha t e mi t s a not e of
f r e que nc y 800 Hz i s
a ppr oa c hi ng a n obs e r ve r
a t a s pe e d of 60 ms ¯¹ .
W
ha t f r e que nc y of not e
wi l l t he obs e r ve r he a r ?
( s pe e d of s ound i n a i r
= 330 ms ¯¹ )
Worked example Solution
He r e t he s our c e i s
a ppr oa c hi ng t he obs e r ve r .
𝑓𝑓𝑜𝑜 = 𝑓𝑓𝑠𝑠
𝑣𝑣
𝑣𝑣 − 𝑣𝑣𝑠𝑠
𝑓𝑓𝑜𝑜 = 800 𝐻𝐻𝐻𝐻
330 𝑚𝑚𝑚𝑚−1
330 𝑚𝑚𝑚𝑚−1 − 60 𝑚𝑚𝑚𝑚−1
𝑓𝑓𝑜𝑜 = 980 𝐻𝐻𝐻𝐻
A pl a ne ’ s e ngi ne e mi t s a not e
of c ons t a nt f r e que nc y 120 Hz .
I t i s f l yi ng a wa y f r om a
s t a t i ona r y obs e r ve r a t a s pe e d
of 80 ms ⁻¹.
( s pe e d of s ound i n a i r = 330 ms ¯¹ )
Ca l c ul a t e :
i . The obs e r ve d wa ve l e ngt h of
t he s ound r e c e i ve d by t he
obs e r ve r .
i i . I t s obs e r ve d f r e que nc y.
( s pe e d of s ound i n a i r =
330 ms ⁻¹)
Worked example Worked example
The s ound e mi t t e d f r om t he
s i r e n of a n a mbul a nc e ha s a
f r e que nc y of 1500 Hz . The
s pe e d of s ound i s 340 ms ⁻¹ .
Ca l c ul a t e t he di f f e r e nc e i n
f r e que nc y he a r d by a
s t a t i ona r y obs e r ve r a s t he
a mbul a nc e t r a ve l s t owa r ds
a nd t he n a wa y f r om t he
obs e r ve r a t a s pe e d of
30 ms ⁻¹ .
Ans we r : 3. 4 m
Ans we r : 97 Hz
Ans we r : 270 Hz
Past year questions
(S2017_V11_Q25)
Past year questions
(S2017_V12_Q25)
LEARNING OUTCOMES
● Visible l i ght i s j us t a
s ma l l r e gi on of t he
e l e c t r oma gne t i c s pe c t r um.
● Al l e l e c t r oma gne t i c wa ve s
ha ve t he f ol l owi ng
pr ope r t i e s i n c ommon:
1. The y a r e a l l t r a ns ve r s e
wa ve .
2. The y c a n a l l t r a ve l i n
a vacuum.
3. I n a va c uum, a l l E. M
wa ve s t r a ve l a t c ons t a nt
s pe e d, 3. 0 x10⁸ ms ⁻¹.
Electromagnetic
Spectrum
4. Si nc e t he y a r e t r a ns ve r s e ,
a l l wa ve s i n t hi s s pe c t r um
c a n be r e f l e c t e d,
r e f r a c t e d, di f f r a c t e d,
pol a r i s e d a nd i nt e r f e r e nc e .
EM spectrum wavelengths and
frequencies
● The electromagnetic spectrum is arranged in a specific
order based on their wavelengths or frequencies .
The speed of
light
● The wavelength λ a nd t he
f r e que nc y f of t he wa ve s
a r e r e l a t e d by t he
e qua t i on:
c = f λ
● Thi s i s t he s a me a s t he
wa ve e qua t i on: t he wa ve
s pe e d v = c.
● The s pe e d of l i ght i n a
va c uum i s c ons t a nt ,
c = 3. 0 x10⁸ ms ⁻¹
● The hi ghe r t he frequency,
t he hi ghe r t he energy of
t he r a di a t i on.
● Howe ve r , whe n l i ght
t r a ve l s f r om a va c uum
i nt o a ma t e r i a l me di um
s uc h a s gl a s s , i t s s pe e d
decreases but i t s
f r e que nc y remains the
same.
● The r e f or e i t s wavelength
must decrease .
Radiation Wavelength range/ m Frequency range/ Hz
radio waves >10⁶ to 10⁻¹ < 3 x 10⁹
microwaves 10⁻¹ to 10⁻³ 3 x 10⁹ - 3 x 10¹¹
infrared 10⁻³ to 7 x 10⁻⁷ 3 x 10¹¹ - 4.3 x 10¹⁴
visible
7 x 10⁻⁷ (red) to
4 x 10⁻⁷ (violet)
7.5 x 10¹⁴ - 4.3 x 10¹⁴
ultraviolet 4 x 10⁻⁷ to 10⁻⁸ 7.5 x 10¹⁴ - 3 x 10¹⁶
X-rays 10⁻⁸ to 10⁻³ 3 x 10¹⁶ - 7.5 x 10²⁰
𝛾𝛾-rays 10⁻¹⁰ to 10⁻¹⁶ 3 x 10¹⁸ - 3 x 10²⁴
1. Ca l c ul a t e t he f r e que nc y
i n M
Hz of a r a di o wa ve
of wa ve l e ngt h 250 m.
The s pe e d of a l l
e l e c t r oma gne t i c wa ve s
i s 3. 0 x 10⁸ ms ⁻¹.
Ans we r : 1. 2 M
Hz
2. Ca l c ul a t e t he
wa ve l e ngt h i n nm of a n
X- r a y wa ve of f r e que nc y
2. 0 x 10¹⁸ Hz .
Ans we r : 0. 15 nm
Worked example Past year
questions
(S2017_V11_Q26)
W
hi c h l i s t s hows e l e c t r oma gne t i c
wa ve s i n or de r of i nc r e a s i ng
f r e que nc y?
Past
year
questions
(S2017_V12_Q26)
LEARNING OUTCOMES
● Polarisation i s t he
pr oc e s s by whi c h t he
os c i l l a t i ons a r e ma de t o
oc c ur i n one pl a ne onl y.
● I t i s a pr ope r t y t o
di s t i ngui s h be t we e n
t r a ns ve r s e a nd
l ongi t udi na l wa ve .
● A l i ght wa ve t ha t i s
vi br a t i ng i n mor e t ha n one
pl a ne i s r e f e r r e d t o a s
unpol a r i s e d l i ght .
● Li ght e mi t t e d by t he s un,
by a l a mp i n t he c l a s s r oom
or by a c a ndl e f l a me a r e
e xa mpl e s of unpol a r i z e d
l i ght .
Polarisation
● The vi br a t i ons a r e s a i d
t o be pl a ne pol a r i s e d i n
e i t he r ve r t i c a l pl a ne or
hor i z ont a l pl a ne .
● Si nc e l ongi t udi na l wa ve s
vi br a t e a l ong t he i r a xi s
of pr opa ga t i on, i t i s
not pos s i bl e t o pol a r i z e
a l ongi t udi na l wa ve .
● Pol a r i s a t i on i s a c hi e ve
by us i ng ve r t i c a l or
hor i z ont a l s l i t .
● A light wave is an
electromagnetic wave
that travels through the
vacuum of outer space .
● Electromagnetic waves
are transverse waves
consisting of electric
and magnetic fields that
oscillate perpendicular
to the direction of
propagation .
● When we talk about the
direction of polarisation
of light wave, we refer
to the electric field
component .
● Waves c a n be pol a r i s e d
t hr ough a t r a ns pa r e nt
pol yme r ma t e r i a l , s uc h
a s pol a r oi d.
● The pol a r oi d ha s l ong
c ha i ns of mol e c ul e s
a l i gne d i n one
pa r t i c ul a r di r e c t i ons .
Polarization by
use of a
Polaroid Filter
● Any e l e c t r i c f i e l d
vi br a t i ons a l ong
( pa r a l l e l ) t he s e c ha i ns
of mol e c ul e s a r e
a bs or be d.
● M
e a nwhi l e , e l e c t r i c
f i e l d vi br a t i ons a t
r i ght a ngl e s t o t he
c ha i ns of mol e c ul e s a r e
t r a ns mi t t e d.
● The e ne r gy a bs or be d i s
t r a ns f e r r e d t o t he r ma l
e ne r gy i n t he Pol a r oi d.
Relationship between long
chain molecule orientation
and the orientation of the
polarisation axis.
(plane polarised wave)
• Consider a single piece
of Polaroid where the
reference direction is
vertical .
• When a beam of
unpolarized light is
directed at the Polaroid,
a beam of vertically
polarized light rays is
transmitted .
● When a be a m of unpol a r i z e d
l i ght i s di r e c t e d a t t he
pol a r oi d whe r e t he
r e f e r e nc e di r e c t i on i s
ve r t i c a l , a be a m of
ve r t i c a l l y pol a r i s e d l i ght
r a ys i s t r a ns mi t t e d.
● Thi s pl a ne pol a r i s e d
l i ght i s i nc i de nt on a
s e c ond pol a r oi d whos e
t r a ns mi s s i on of a xi s i s
ve r t i c a l .
● The s e c ond pol a r oi d i s
c a l l e d a n a na l ys e r .
● The i nc i de nt l i ght pa s s e s
s t r a i ght t hr ough.
What would happen
when you view
unpolarised light
using two Polaroids?
● Now r ot a t e t he a na l ys e r
t hr ough 90° , s o i t s
t r a ns mi s s i on a xi s i s
hor i z ont a l .
● Thi s t i me , t he a na l ys e r
wi l l a bs or b a l l t he
l i ght .
● The a na l ys e r wi l l a ppe a r
black .
● Turning t he a na l ys e r
t hr ough a f ur t he r 90°
wi l l l e t t he l i ght
t hr ough t he a na l ys e r
a ga i n.
● W
ha t ha ppe ns a t a ngl e s
ot he r t ha n 0° a nd 90° i s
di s c us s e d l a t e r .
What is Polarisation.mp4
Application of
polarisation
Since longitudinal waves
vibrate along their axis of
propagation, it is not
possible to polarise a
longitudinal wave.
Polaroid sunglasses
● Li ght r e f l e c t e d f r om t he
s ur f a c e of wa t e r , or gl a s s ,
i s pa r t i a l l y pol a r i s e d i n a
pl a ne pa r a l l e l t o t he
r e f l e c t i ng s ur f a c e .
● Thi s me a ns t ha t a f t e r
r e f l e c t i ng t he s un' s wa ve s
os c i l l a t i on a ngl e s , t he y
a r e no l onge r r a ndom i n a l l
di r e c t i ons but ha ve a
pr e f e r r e d di r e c t i on on
a ve r a ge .
● In t he c a s e of a
hor i z ont a l s ur f a c e —
l i ke
a l a ke or a r oa d—
t he
pr e f e r r e d di r e c t i on i s
hor i z ont a l .
● The pol a r i z e d f i l t e r s on
t he s e l e ns e s
pr e f e r e nt i a l l y bl oc k t he
hor i z ont a l c ompone nt of
l i ght os c i l l a t i on whi l e
t r a ns mi t t i ng t he
ve r t i c a l c ompone nt .
partially polarised.mp4
● The r e s ul t i s a da r ke r
i ma ge but wi t h be t t e r
c ont r a s t .
The i nt e ns i t y of t he
t r a ns mi t t e d l i ght de pe nds
on t he a ngl e 𝜃𝜃.
Cons i de r t he i nc i de nt
pl a ne pol a r i s e d l i ght of
a mpl i t ude i s A₀.
The c ompone nt of t he
a mpl i t ude t r a ns mi t t e d
t hr ough t he pol a r oi d a l ong
i t s t r a ns mi s s i on a xi s i s
A₀ c os 𝜃𝜃.
Malus’s law
I nt e ns i t y of l i ght i s
pr opor t i ona l t o t he
a mpl i t ude s qua r e d.
𝐼𝐼 ∝ 𝐴𝐴2
So t he i nt e ns i t y of l i ght
t r a ns mi t t e d wi l l be :
𝐼𝐼 = 𝐼𝐼0 𝑐𝑐𝑐𝑐𝑐𝑐2
𝜃𝜃
W
he r e ;
𝐼𝐼 = t r a ns mi t t e d i nt e ns i t y
𝐼𝐼0 = i nc i de nt i nt e ns i t y
𝜃𝜃 = a ngl e be t we e n t he a xe s
of t he pol a r i s e r a nd
a na l ys e r
𝐴𝐴0 sin 𝜃𝜃
𝐴𝐴0 cos 𝜃𝜃
𝐴𝐴0
● The change in intensity against the angle of transmission
a xi s i s a c os i ne s qua r e d gr a ph.
● Va r i a t i on of t r a ns mi t t e d i nt e ns i t y I wi t h a ngl e θ.
● Fr om gr a ph, ma xi mum i nt e ns i t y whe n θ = 0° , 180° a nd s o on,
● a nd z e r o whe n θ = 90° , 270° a nd s o on.
The half rule
When unpolarised light
passes through the first
polariser, half the
intensity of the wave is
always lost (
' G
U
) .
Worked example
page 236
● The Pol a r oi d woul d a l l ow onl y pl a ne
pol a r i s e d l i ght t o ge t t hr ough,
wi t h t he e l e c t r i c f i e l d vi br a t i ons
a l ong t he t r a ns mi s s i on a xi s of t he
Pol a r oi d.
● Al l ot he r os c i l l a t i ng e l e c t r i c
f i e l ds f r om t he i nc omi ng
unpol a r i s e d l i ght wi l l be bl oc ke d
by t he l ong c ha i ns of mol e c ul e s of
t he Pol a r oi d.
● Some of t he i nc i de nt l i ght e ne r gy
i s t r a ns f e r r e d t o t he r ma l e ne r gy
wi t hi n t he Pol a r oi d.
1. Expl a i n wha t ha ppe ns t o
unpol a r i s e d l i ght i nc i de nt a t
a Pol a r oi d.
2. Pl a ne pol a r i s e d l i ght of
i nt e ns i t y 12 W
m⁻² i s
i nc i de nt a t a Pol a r oi d.
Ca l c ul a t e t he i nt e ns i t y of
t he t r a ns mi t t e d l i ght whe n
t he a ngl e be t we e n t he
pl a ne of pol a r i s a t i on of
t he i nc i de nt l i ght a nd t he
t r a ns mi s s i on a xi s of t he
Pol a r oi d i s
i . 45°
Ans we r : 6 W
m⁻²
i i . 60°
Ans we r : 3 W
m⁻²
3. Pl a ne pol a r i s e d l i ght i s
i nc i de nt a t a Pol a r oi d.
Ca l c ul a t e t he a ngl e 𝜃𝜃,
whi c h gi ve s t r a ns mi t t e d
l i ght of i nt e ns i t y 30 %
t ha t of t he i nc i de nt
i nt e ns i t y of l i ght .
Ans we r : 57 ⁰
Unpolarised l i ght i s
i nc i de nt on a pol a r i s e r .
The l i ght t r a ns mi t t e d by
t he f i r s t pol a r i s e r i s
t he n i nc i de nt on a s e c ond
pol a r i s e r .
The pol a r i s i ng( or
t r a ns mi s s i on) a xi s of t he
s e c ond pol a r i s e r i s 30°
t o t ha t of t he f i r s t .
Worked example The i nt e ns i t y i nc i de nt on
t he f i r s t pol a r i s e r i s I .
W
ha t i s t he i nt e ns i t y
e me r gi ng f r om t he s e c ond
pol a r i s e r ?
Step 1
Fr om t he ha l f r ul e , whe n
t he l i ght pa s s e s t hr ough
t he f i r s t pol a r i s e r ha l f
of i t s i nt e ns i t y i s l os t .
Solution
St e p 2
M
a l us ’ s l a w i s us e d t o
f i nd t he i nt e ns i t y of t he
pol a r i s e d l i ght a f t e r t he
s e c ond pol a r i s e r .
St e p 3
Combi ne t he i nt e ns i t y
dr ops .
Unpolarized l i ght wi t h a n
i nt e ns i t y of 𝐼𝐼0 = 16
W
m⁻² i s i nc i de nt on a pa i r
of pol a r i s e r s .
The f i r s t pol a r i s e r ha s
i t s t r a ns mi s s i on a xi s
a l i gne d a t 50o f r om t he
ve r t i c a l .
Worked example The s e c ond pol a r i z e r ha s
i t s t r a ns mi s s i on a xi s
a l i gne d a t 20o f r om t he
ve r t i c a l .
Ca l c ul a t e t he i nt e ns i t y
of t he l i ght goi ng
t hr ough t he pa i r of
f i l t e r s .
Solution
Step 1
From the half rule, when the
light passes through the first
polariser half of its intensity
is lost .
The light incident on the first
polarizer is unpolarized, so the
angle is irrelevant .
Step 2
Through the second polariser .
Step 3
Combine the intensity drops .
Exam
- style
questions
a) State what is meant by
plane polarised light .
[ 1]
● A pl a ne pol a r i s e d wa ve i s
a t r a ns ve r s e wa ve wi t h
os c i l l a t i ons ( of t he
e l e c t r i c f i e l d) i n j us t
one pl a ne .
b) Ve r t i c a l l y pl a ne pol a r i s e d
l i ght i s i nc i de nt on t hr e e
pol a r i s i ng f i l t e r s .
The t r a ns mi s s i on a xi s of t he
f i r s t Pol a r oi d i s ve r t i c a l .
The t r a ns mi s s i on a xi s of t he
s e c ond f i l t e r i s 45° t o t he
ve r t i c a l a nd t he
t r a ns mi s s i on a xi s of t he
l a s t f i l t e r i s hor i z ont a l .
Show t ha t t he i nt e ns i t y of
l i ght e me r gi ng f r om t he
f i na l f i l t e r i s not z e r o.
[ 4]
● The i nt e ns i t y of
t r a ns mi t t e d l i ght f r om
t he f i r s t pol a r i s i ng
f i l t e r = I ₀ ( t he s a me a s
t he i nc i de nt i nt e ns i t y)
[ 1]
● The i nt e ns i t y of l i ght
f r om t he s e c ond f i l t e r
wi l l be :
I = I ₀ c os ² θ = I ₀ c os ² 45°
= 0. 50 I ₀ [ 1]
● The i nt e ns i t y of l i ght
f r om t he l a s t f i l t e r wi l l
be :
I = I ₀ c os ² θ =
[ 0. 50 I ₀] c os ² 45° =
0. 50I ₀ × 0. 50 = 0. 25I ₀ [ 1]
● The f i na l t r a ns mi t t e d
i nt e ns i t y i s not z e r o,
but 25% of t he or i gi na l
i nt e ns i t y.
Alternative
Resources

More Related Content

Similar to 7. Waves_2021.pdf

Light and Sight
Light and SightLight and Sight
Light and Sight
duffieldj
 
Group 7(frequency measurement)
Group 7(frequency measurement)Group 7(frequency measurement)
Group 7(frequency measurement)
Aliya Sahir
 
Refraction of Light-Notes.pdf
Refraction of Light-Notes.pdfRefraction of Light-Notes.pdf
Refraction of Light-Notes.pdf
TITUSINDIMULI
 
3 wave representations
3 wave representations3 wave representations
3 wave representations
MissingWaldo
 

Similar to 7. Waves_2021.pdf (20)

Waves
WavesWaves
Waves
 
AQA GCSE Physics Unit 1 Chapter 5
AQA GCSE Physics Unit 1 Chapter 5AQA GCSE Physics Unit 1 Chapter 5
AQA GCSE Physics Unit 1 Chapter 5
 
Electrical DC Waveform Frequency
Electrical DC Waveform FrequencyElectrical DC Waveform Frequency
Electrical DC Waveform Frequency
 
Statistical Description of Turbulent Flow
Statistical Description of Turbulent FlowStatistical Description of Turbulent Flow
Statistical Description of Turbulent Flow
 
Light and Sight
Light and SightLight and Sight
Light and Sight
 
Topic 3.pptx
Topic 3.pptxTopic 3.pptx
Topic 3.pptx
 
Grade 11, U4 L4-Standing waves
Grade 11, U4 L4-Standing wavesGrade 11, U4 L4-Standing waves
Grade 11, U4 L4-Standing waves
 
Beam Restrictor devices.pptx
Beam Restrictor devices.pptxBeam Restrictor devices.pptx
Beam Restrictor devices.pptx
 
Beam Restrictor devices.pptx
Beam Restrictor devices.pptxBeam Restrictor devices.pptx
Beam Restrictor devices.pptx
 
Group 7(frequency measurement)
Group 7(frequency measurement)Group 7(frequency measurement)
Group 7(frequency measurement)
 
Refraction of Light-Notes.pdf
Refraction of Light-Notes.pdfRefraction of Light-Notes.pdf
Refraction of Light-Notes.pdf
 
Light
LightLight
Light
 
MOS Capacitor.pptx
MOS Capacitor.pptxMOS Capacitor.pptx
MOS Capacitor.pptx
 
4.3 waves
4.3 waves4.3 waves
4.3 waves
 
Grade 11, U5 Acad-Elect Mag
Grade 11, U5 Acad-Elect MagGrade 11, U5 Acad-Elect Mag
Grade 11, U5 Acad-Elect Mag
 
3 wave representations
3 wave representations3 wave representations
3 wave representations
 
Blog
BlogBlog
Blog
 
Introduction
IntroductionIntroduction
Introduction
 
Static_Cone_Penetration_Tests.pdf
Static_Cone_Penetration_Tests.pdfStatic_Cone_Penetration_Tests.pdf
Static_Cone_Penetration_Tests.pdf
 
Digital Signal Processing by Dr. R. Prakash Rao
Digital Signal Processing by Dr. R. Prakash Rao Digital Signal Processing by Dr. R. Prakash Rao
Digital Signal Processing by Dr. R. Prakash Rao
 

Recently uploaded

如何办理(UCI毕业证书)加利福尼亚大学尔湾分校毕业证成绩单本科硕士学位证留信学历认证
如何办理(UCI毕业证书)加利福尼亚大学尔湾分校毕业证成绩单本科硕士学位证留信学历认证如何办理(UCI毕业证书)加利福尼亚大学尔湾分校毕业证成绩单本科硕士学位证留信学历认证
如何办理(UCI毕业证书)加利福尼亚大学尔湾分校毕业证成绩单本科硕士学位证留信学历认证
ugzga
 
如何办理(UCL毕业证书)伦敦大学学院毕业证成绩单本科硕士学位证留信学历认证
如何办理(UCL毕业证书)伦敦大学学院毕业证成绩单本科硕士学位证留信学历认证如何办理(UCL毕业证书)伦敦大学学院毕业证成绩单本科硕士学位证留信学历认证
如何办理(UCL毕业证书)伦敦大学学院毕业证成绩单本科硕士学位证留信学历认证
ugzga
 
如何办理(RUG毕业证书)格罗宁根大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(RUG毕业证书)格罗宁根大学毕业证成绩单本科硕士学位证留信学历认证如何办理(RUG毕业证书)格罗宁根大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(RUG毕业证书)格罗宁根大学毕业证成绩单本科硕士学位证留信学历认证
ugzga
 
如何办理(UW毕业证书)华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(UW毕业证书)华盛顿大学毕业证成绩单本科硕士学位证留信学历认证如何办理(UW毕业证书)华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(UW毕业证书)华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
ugzga
 
NO1 Best Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...
NO1 Best Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...NO1 Best Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...
NO1 Best Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...
Amil baba
 
Week 11 Mini-Tasks.pptxjjjjjjjjjjjjjjjjjjjj
Week 11 Mini-Tasks.pptxjjjjjjjjjjjjjjjjjjjjWeek 11 Mini-Tasks.pptxjjjjjjjjjjjjjjjjjjjj
Week 11 Mini-Tasks.pptxjjjjjjjjjjjjjjjjjjjj
joshuaclack73
 
如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证
ugzga
 
Evaluating natural frequencies and mode shapes.pptx
Evaluating natural frequencies and mode shapes.pptxEvaluating natural frequencies and mode shapes.pptx
Evaluating natural frequencies and mode shapes.pptx
joshuaclack73
 
在线购买田纳西大学毕业证(utk毕业证)硕士学历证书留信网认证原版一模一样
在线购买田纳西大学毕业证(utk毕业证)硕士学历证书留信网认证原版一模一样在线购买田纳西大学毕业证(utk毕业证)硕士学历证书留信网认证原版一模一样
在线购买田纳西大学毕业证(utk毕业证)硕士学历证书留信网认证原版一模一样
ykucop
 
ECHOES OF GENIUS - A Tribute to Nari Gandhi's Architectural Legacy. .pdf
ECHOES OF GENIUS - A Tribute to Nari Gandhi's Architectural Legacy. .pdfECHOES OF GENIUS - A Tribute to Nari Gandhi's Architectural Legacy. .pdf
ECHOES OF GENIUS - A Tribute to Nari Gandhi's Architectural Legacy. .pdf
Sarbjit Bahga
 
如何办理(UB毕业证书)纽约州立大学水牛城分校毕业证成绩单本科硕士学位证留信学历认证
如何办理(UB毕业证书)纽约州立大学水牛城分校毕业证成绩单本科硕士学位证留信学历认证如何办理(UB毕业证书)纽约州立大学水牛城分校毕业证成绩单本科硕士学位证留信学历认证
如何办理(UB毕业证书)纽约州立大学水牛城分校毕业证成绩单本科硕士学位证留信学历认证
ugzga
 

Recently uploaded (20)

如何办理(UCI毕业证书)加利福尼亚大学尔湾分校毕业证成绩单本科硕士学位证留信学历认证
如何办理(UCI毕业证书)加利福尼亚大学尔湾分校毕业证成绩单本科硕士学位证留信学历认证如何办理(UCI毕业证书)加利福尼亚大学尔湾分校毕业证成绩单本科硕士学位证留信学历认证
如何办理(UCI毕业证书)加利福尼亚大学尔湾分校毕业证成绩单本科硕士学位证留信学历认证
 
Spring Summer 2026 Inspirations trend book Peclers Paris
Spring Summer 2026 Inspirations trend book Peclers ParisSpring Summer 2026 Inspirations trend book Peclers Paris
Spring Summer 2026 Inspirations trend book Peclers Paris
 
如何办理(UCL毕业证书)伦敦大学学院毕业证成绩单本科硕士学位证留信学历认证
如何办理(UCL毕业证书)伦敦大学学院毕业证成绩单本科硕士学位证留信学历认证如何办理(UCL毕业证书)伦敦大学学院毕业证成绩单本科硕士学位证留信学历认证
如何办理(UCL毕业证书)伦敦大学学院毕业证成绩单本科硕士学位证留信学历认证
 
如何办理(RUG毕业证书)格罗宁根大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(RUG毕业证书)格罗宁根大学毕业证成绩单本科硕士学位证留信学历认证如何办理(RUG毕业证书)格罗宁根大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(RUG毕业证书)格罗宁根大学毕业证成绩单本科硕士学位证留信学历认证
 
如何办理(UW毕业证书)华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(UW毕业证书)华盛顿大学毕业证成绩单本科硕士学位证留信学历认证如何办理(UW毕业证书)华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(UW毕业证书)华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
 
NO1 Best Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...
NO1 Best Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...NO1 Best Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...
NO1 Best Best Black Magic Specialist Near Me Spiritual Healer Powerful Love S...
 
Spring Summer 26 Colors Trend Book Peclers Paris
Spring Summer 26 Colors Trend Book Peclers ParisSpring Summer 26 Colors Trend Book Peclers Paris
Spring Summer 26 Colors Trend Book Peclers Paris
 
Week 11 Mini-Tasks.pptxjjjjjjjjjjjjjjjjjjjj
Week 11 Mini-Tasks.pptxjjjjjjjjjjjjjjjjjjjjWeek 11 Mini-Tasks.pptxjjjjjjjjjjjjjjjjjjjj
Week 11 Mini-Tasks.pptxjjjjjjjjjjjjjjjjjjjj
 
如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(UoB毕业证书)伯明翰大学毕业证成绩单本科硕士学位证留信学历认证
 
Recycled Modular Low Cost Construction .pdf
Recycled Modular Low Cost Construction .pdfRecycled Modular Low Cost Construction .pdf
Recycled Modular Low Cost Construction .pdf
 
Week of Action 2022_EIT Climate-KIC_Headers
Week of Action 2022_EIT Climate-KIC_HeadersWeek of Action 2022_EIT Climate-KIC_Headers
Week of Action 2022_EIT Climate-KIC_Headers
 
Evaluating natural frequencies and mode shapes.pptx
Evaluating natural frequencies and mode shapes.pptxEvaluating natural frequencies and mode shapes.pptx
Evaluating natural frequencies and mode shapes.pptx
 
Cascading Style Sheet(CSS) PDF Notes by Apna College
Cascading Style Sheet(CSS) PDF Notes by Apna CollegeCascading Style Sheet(CSS) PDF Notes by Apna College
Cascading Style Sheet(CSS) PDF Notes by Apna College
 
Webhost NVME Cloud VPS Hosting1234455678
Webhost NVME Cloud VPS Hosting1234455678Webhost NVME Cloud VPS Hosting1234455678
Webhost NVME Cloud VPS Hosting1234455678
 
BIT Khushi gandhi project.pdf graphic design
BIT Khushi gandhi project.pdf graphic designBIT Khushi gandhi project.pdf graphic design
BIT Khushi gandhi project.pdf graphic design
 
在线购买田纳西大学毕业证(utk毕业证)硕士学历证书留信网认证原版一模一样
在线购买田纳西大学毕业证(utk毕业证)硕士学历证书留信网认证原版一模一样在线购买田纳西大学毕业证(utk毕业证)硕士学历证书留信网认证原版一模一样
在线购买田纳西大学毕业证(utk毕业证)硕士学历证书留信网认证原版一模一样
 
ECHOES OF GENIUS - A Tribute to Nari Gandhi's Architectural Legacy. .pdf
ECHOES OF GENIUS - A Tribute to Nari Gandhi's Architectural Legacy. .pdfECHOES OF GENIUS - A Tribute to Nari Gandhi's Architectural Legacy. .pdf
ECHOES OF GENIUS - A Tribute to Nari Gandhi's Architectural Legacy. .pdf
 
如何办理(UB毕业证书)纽约州立大学水牛城分校毕业证成绩单本科硕士学位证留信学历认证
如何办理(UB毕业证书)纽约州立大学水牛城分校毕业证成绩单本科硕士学位证留信学历认证如何办理(UB毕业证书)纽约州立大学水牛城分校毕业证成绩单本科硕士学位证留信学历认证
如何办理(UB毕业证书)纽约州立大学水牛城分校毕业证成绩单本科硕士学位证留信学历认证
 
Digital Marketing Company in Bangalore.pdf
Digital Marketing Company in Bangalore.pdfDigital Marketing Company in Bangalore.pdf
Digital Marketing Company in Bangalore.pdf
 
Avoid these common UI/UX design mistakes
 Avoid these common UI/UX design mistakes Avoid these common UI/UX design mistakes
Avoid these common UI/UX design mistakes
 

7. Waves_2021.pdf

  • 4. Wave motion ● Wave motion is energy transferred through moving oscillations or vibrations . ● These can be seen in vibrations of ropes, springs and ripple tanks . ● The oscillations/vibrations can be perpendicular or parallel to the direction of wave travel .
  • 5. ● Waves c a n a l s o be de mons t r a t e d by r i ppl e t a nks . ● Ri ppl e t a nks ma y be us e d t o de mons t r a t e t he wa ve pr ope r t i e s of r e f l e c t i on, r e f r a c t i on a nd diffraction .
  • 6. 1. Displacement, x : is the distance of a point on the wave from its equilibrium position . 2. Amplitude, A : is the maximum displacement of a particle in the wave from its equilibrium position . General Wave Properties 3. Wavelength, λ: ( S2018_V22_Q4) • di s t a nc e move d by wa ve f r ont / e ne r gy dur i ng one c yc l e . or • mi ni mum di s t a nc e be t we e n t wo wa ve f r ont s . or • di s t a nc e be t we e n t wo a dj a c e nt wa ve f r ont s .
  • 7. 3. Period, T: is the time taken for one complete oscillation of a point in a wave. ● uni t : s e c onds , s . 4. Frequency, f : i s t he numbe r os c i l l a t i ons pe r uni t t i me . ● uni t : pe r s e c ond, s - 1 or he r t z , Hz . 𝑓𝑓 = 1 𝑇𝑇 Both transverse & longitudinal waves, can be represented by two graphs: 1. The di s pl a c e me nt - di s t a nc e gr a ph ( t i me c ons t a nt ) 2. The di s pl a c e me nt - t i me gr a ph ( di s t a nc e c ons t a nt )
  • 9. From t he gr a ph, we c a n de duc e : i . The a mpl i t ude of t he wa ve : A = 4. 5 c m i i . The wa ve l e ngt h: λ = 4 c m Worked example Fr om t he gr a ph, we c a n de duc e : i . The a mpl i t ude of t he wa ve : A = 4. 5 c m i i . The pe r i od: T = 0. 4 s i i i . The f r e que nc y: 𝑓𝑓 = 1 0.4 𝑠𝑠 = 2. 5 Hz
  • 10. Progressive Waves A progressive waves transfers energy from one place to another as a result of oscillations/vibrations. (W2014_V23 & W2009_V23) Example : 1. The energy from sound reaches our eardrums to vibrate . 2. the electromagnetic waves from the sun carry the energy to the Earth for the survival of living things . ● The r e a r e t wo t ype s of pr ogr e s s i ve wa ve s ; Tr a ns ve r s e wa ve s Longi t udi na l wa ve s pr ogr e s s i ve wa ve s
  • 11. Transverse waves Transverse waves is when the particles of the medium vibrate at right angles to the direction of travel of the energy (W2014/V23) • Examples of transverse waves are : 1. Electromagnetic waves e. g. radio, visible light, UV. 2. Vibrations on a guitar string • Transverse waves can be polarized . transverse wave.mp4
  • 12. Longitudinal waves Longitudinal waves is when the displacement of particles/vibration/ oscillation is parallel to the direction of energy (W2017/V23) • Examples are sound waves & ultrasound waves • Longitudinal waves cannot be polarized . • The wavelength λ of a l ongi t udi na l wa ve i s t he di s t a nc e be t we e n s uc c e s s i ve c ompr e s s i ons a nd r a r e f a c t i ons . longitudinal wave.mp4
  • 13. Representing waves • Longitudinal waves shows repeating pattern of compressed and rarefaction . • This gives rise to high and low pressure regions . • This can be difficult to draw so often longitudinal wave is represented as it if were a sine wave.
  • 18. Cathode- Ray Oscilloscope • A cathode - Ray Oscilloscope is a laboratory instrument used to display, measure and analyse waveforms of electrical circuits . • Figure shows a microphone is connected to the input of the c. r . o. • The microphone converts the sound waves into a varying voltage that has the same frequency as the sound waves . • This voltage is displayed on the c. r . o. screen . • An oscilloscope is basically a voltmeter that shows you how voltage varies with time . • I ns t e a d of ge t t i ng a di gi t a l r e a dout ( a s on a mul t i me t e r ) i t gi ve s you a gr a ph.
  • 19. • It plots a voltage against time graph on the screen . • The y- axis is voltage ( s o you c a n s e e how ma ny vol t s a r e a c r os s t he c ompone nt ) .  the Y- plate sensitivity (Y - gain) i n vol t s / di vi s i on. e . g. V di v⁻¹ or V c m⁻¹ • The x- axis is time ( t he vol t a ge i s s t e a dy ( D. C. ) or va r yi ng ( A. C. ) .  the time base settings is i n t i me / di vi s i on e . g. ms di v ⁻¹ or s c m⁻¹ • The di s t a nc e be t we e n pe a ks or t r oughs , L i s me a s ur e d us i ng t he s c a l e on t he c . r . o. di s pl a y.
  • 20. Determine f or t he s ound: i . The t i me pe r i od T = Lx = 4. 0 c m x 2. 0 ms c m⁻¹ Ans we r : 8. 0 x 10⁻³ s i i . The f r e que nc y Ans we r : 125 Hz Worked example The t i me ba s e s e t t i ng f or t he c . r . o. us e d t o obt a i n t he t r a c e i n f i gur e be l ow i s 2. 0 ms c m⁻¹ .
  • 21. Worked example Figure below shows the trace on an oscilloscope screen when sound waves are detected by a microphone . The time - base is set at 1 ms div ⁻¹ . The y- ga i n i s s e t t o 20 mV di v⁻¹ . De t e r mi ne i . t he f r e que nc y of t he s ound wa ve s a nd Ans we r : 250 Hz i i . t he a mpl i t ude of t he os c i l l os c ope t r a c e . Ans we r : 70 x 10⁻³ V
  • 23. The wave equation The wave equation links the speed, frequency and wavelength of a wave. We can find the speed wave, 𝑣𝑣 us i ng: A wa ve wi l l t r a ve l a di s t a nc e of one whol e wa ve l e ngt h, λ i n a t i me e qua l t o one pe r i od, T. Howe ve r , He nc e 𝑣𝑣 = 𝑓𝑓𝜆𝜆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓 = 1 𝑇𝑇 𝑣𝑣 = 𝜆𝜆 𝑇𝑇 = 1 𝑇𝑇 𝜆𝜆
  • 24. Worked example ● The wave in the diagram below has a speed of 340 ms–1. ● What is the wavelength of the wave? ● Answer : 0. 095 m Intensity The intensity of a wave is the rate of energy transmitted per unit area at right angles to the wave velocity. 𝐼𝐼 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑃𝑃 𝐴𝐴
  • 25. • Unit for intensity is Watts per square metre, Wm⁻² • The i nt e ns i t y of a wa ve ge ne r a l l y de c r e a s e s a s i t t r a ve l s a l ong. • The r e a r e t wo r e a s ons f or t hi s : 1. The wa ve ma y ‘ s pr e a d out ’ ( a s i n t he e xa mpl e of l i ght s pr e a di ng out f r om a c a ndl e ) . 2. The wa ve ma y be a bs or be d or s c a t t e r e d ( a s whe n l i ght pa s s e s t hr ough t he Ea r t h’ s a t mos phe r e ) .
  • 26. ● As a wa ve s pr e a ds out , i t s a mpl i t ude de c r e a s e s . ● For a wa ve of a mpl i t ude , A a nd f r e que nc y f , t he i nt e ns i t y I i s pr opor t i ona l t o A² f² . I ∝ A² → I = kA² I ∝ f² → I = kf² Worked example ● A wa ve f r om a s our c e ha s a n a mpl i t ude of 5. 0 c m a nd a n i nt e ns i t y of 400 W m⁻² . i . The a mpl i t ude of t he wa ve i s i nc r e a s e d t o 10. 0 c m. Ca l c ul a t e t he i nt e ns i t y now. Ans we r : 1600 W m⁻² i i . The i nt e ns i t y of t he wa ve i s de c r e a s e d t o 100 W m⁻² . Ca l c ul a t e t he a mpl i t ude now. Ans we r : 2. 5 c m
  • 27. ● Wave f r om a poi nt s our c e s pr e a d out e qua l l y i n a l l di r e c t i ons . ● Sur f a c e wa ve i s a s s ume d t o be s phe r i c a l whe r e a r e a i s e qua l t o 4πr ² . ● The r e f or e t he i nt e ns i t y, 𝐼𝐼 = 𝑃𝑃 4π𝑟𝑟^ Spherical wave ● I nt e ns i t y of t he wa ve de c r e a s e s wi t h i nc r e a s i ng di s t a nc e f r om t he s our c e . ● At 3 t i me s t he di s t a nc e , t he s a me s ound e ne r gy wi l l be s pr e a d ove r 9 t i me s t he a r e a , a dr op t o 1/ 9 t he i nt e ns i t y.
  • 28. Past year questions ( S2015_V11_Q26) Next question: Q23: 9702_s14_qp_12.pdf
  • 30. Phase ● A term used to describe the relative positions of the crests or troughs of two different waves of t he s a me f r e que nc y i s phase . ● W he n t he c r e s t s or t r oughs a r e a l i gne d, t he wa ve s a r e in phase . ● W he n t he c r e s t of one wa ve a l i gns wi t h t he t r ough of a not he r , t he y a r e i n antiphase .
  • 31. Phase differences ● When crests and troughs are not aligned the waves are said to have phase differences . ● The pha s e di f f e r e nc e t e l l s us how much a point or a wave is leads or lags behind another . ● Pha s e di f f e r e nc e i s me a s ur e d i n fractions of a wavelength, degrees or radians . ● The pha s e di f f e r e nc e c a n be c a l c ul a t e d f r om: 1. t wo di f f e r e nt poi nt s on t he s a me wa ve or 2. t he s a me poi nt on t wo di f f e r e nt wa ve s .
  • 32. Two different points on the same wave ● The phase difference between two points : ○ In phase i s 360o or 2π r a di a ns ○ In anti - phase i s 180o or π r a di a ns ● I n f i gur e s how t wo poi nt s A a nd B, wi t h a s e pa r a t i on of one whol e wa ve l e ngt h λ, vi br a t e i n pha s e wi t h e a c h ot he r . ● The pha s e di f f e r e nc e be t we e n t he s e t wo os c i l l a t i ng pa r t i c l e s a t A a nd B i s 360° . ( You c a n a l s o s a y i t i s 0° . ) ● The s e pa r a t i on be t we e n poi nt s C a nd D i s qua r t e r of a wa ve l e ngt h – t he pha s e di f f e r e nc e be t we e n t he s e t wo poi nt s i s 90° .
  • 33. ● In ge ne r a l , whe n t he s e pa r a t i on be t we e n t wo os c i l l a t i ng pa r t i c l e s on a wa ve i s x, t he n t he pha s e di f f e r e nc e ϕ be t we e n t he s e pa r t i c l e s i n de gr e e s c a n be c a l c ul a t e d us i ng t he e xpr e s s i on: ϕ = 𝑥𝑥 𝜆𝜆 𝑥𝑥 360°
  • 34. Example Points Phase difference/ degrees Phase difference/ radians Common terms P and R 360˚or 0 2π or 0 I n pha s e P a nd Q 180˚ π Exa c t l y out of pha s e R a nd S 90˚ ½ π 90˚ or ½ π out of pha s e
  • 35. The same point on two different waves. ● The diagram below shows the red wave leads t he bl ue wa ve by ¼ λ. ● I n c ont r a s t , t he bl ue wa ve i s s a i d t o lag be hi nd t he r e d wa ve by ¼ λ. ● Pha s e di f f e r e nc e ϕ c a n be me a s ur e d i n: fractions degrees radians video: path diff 1.mp4
  • 36. Past year questions (S2015_V12_Q25) Past year questions (S2006_Q25) The frequency of a certain wave is 500 Hz and its speed is 340 ms⁻¹ . W ha t i s t he pha s e di f f e r e nc e be t we e n t he mot i ons of t wo poi nt s on t he wa ve 0. 17 m a pa r t ? A s ound wa ve ha s a s pe e d of 330 ms ⁻¹ a nd a f r e que nc y of 50 Hz . W ha t i s a pos s i bl e di s t a nc e be t we e n t wo poi nt s on t he wa ve t ha t ha ve a pha s e di f f e r e nc e of 60° ?
  • 37. Past year questions (W2006_Q25 & S2018_V13_Q20)
  • 39. Prediction on particle movement ● To determine the movement of a particle in transverse wave, we have to sketch another wave i n t he wa ve di r e c t i on. The di a gr a m s hows a t r a ns ve r s e wa ve on a s t r i ng wi t h t wo poi nt s P a nd Q ma r ke d. The wa ve i s movi ng i n t he di r e c t i on s hown. W ha t wi l l ha ppe n ne xt t o pa r t i c l e P a nd Q? Example
  • 40. The di a gr a m be l ow s hows a wa ve on a s t r i ng wi t h pa r t i c l e s P, Q, R, S a nd T on t he wa ve . The wa ve i s movi ng i n t he di r e c t i on a s s hown. Worked example a ) W ha t c a n you s a y a bout t he mot i on of t he pa r t i c l e s the next moment? b) W ha t c a n you s a y a bout t he mot i on of t he pa r t i c l e s a t t hi s instant ? Fi r s t l y, you ha ve t o know t ha t t he wa ve a bove i s transverse wave ( t he direction of the vibration i s perpendicular t o t he direction of wave motion ) . He nc e , pa r t i c l e s wi l l onl y vi br a t e up a nd down onl y.
  • 41. a) P: down, Q: up, R: up, S: down, T: down b) P: at rest , Q: up, R: at rest , S: down, T: down ● Ta ke not e of P and Q at crest and trough respectively . ● He nc e a t t hi s pa r t i c ul a r i ns t a nt , P i s a t i t s hi ghe s t poi nt a nd R i s a t i t s l owe s t poi nt , he nc e bot h momentary at rest . Solution
  • 45. Doppler effect of Sound Doppler effect is when the observed frequency is different to source frequency when source moves relative to observer (S2017_V21_Q5) ● The s i r e n of a n a mbul a nc e a ppe a r s t o c ha nge i n pi t c h whe n i t pa s s e s you. ● The pi t c h i s hi ghe r a s t he ve hi c l e s a ppr oa c he s you a nd l owe r a s i t r e c e de s . ● Thi s i s a n e xa mpl e of t he doppler effect .
  • 46. ● Consider a s our c e of s ound wa ve s wi t h a c ons t a nt f r e que nc y a nd a mpl i t ude . ● The s ound wa ve s c a n be r e pr e s e nt e d a s c onc e nt r i c c i r c l e s whe r e e a c h c i r c l e r e pr e s e nt s a c r e s t or t r ough a s t he wa ve f r ont s r a di a t e a wa y f r om t he s our c e . Sour c e s t a t i ona r y
  • 47. The source is stationary In figure shows a source of sound emitting wave with a constant frequency 𝑓𝑓𝑠𝑠 , t oge t he r wi t h t wo obs e r ve r s A a nd B. ● I f t he s our c e i s s t a t i ona r y, wa ve s a r r i ve a t A a nd B a t t he s a me r a t e . ● So bot h obs e r ve r s he a r s ounds of t he s a me f r e que nc y 𝑓𝑓𝑠𝑠 . ● W e c a n a l s o s a y whe n t he t r uc k i s s t a t i ona r y, t he wa ve l e ngt h of t he s ound i s t he s a me i n f r ont of a nd be hi nd of t he t r uc k. A B
  • 48. The source is moving If the source is moving towards A and away from B the situation will be different . ● The di a gr a m s hows t he wa ve l e ngt h of t he s ound a r e s qua s he d ( s hor t e ne d) t oge t he r i n t he di r e c t i on of A a nd s pr e a d a pa r t ( l a r ge r ) i n t he di r e c t i on of B. ● The s ound a ppe a r s a t a higher f r e que nc y t o t he obs e r ve r A ( movi ng t owa r ds t he obs e r ve r A) ● a nd lower f r e que nc y t o obs e r ve r B ( movi ng a wa y f r om t he obs e r ve r B) A B Doppler Effect and Its Application.mp4
  • 49. An equation for observed frequency ● There are two different speeds involved in this situation : 1. Speed of the source, 𝑣𝑣𝑠𝑠 2. Spe e d of t he s ound wa ve s t r a ve l t hr ough t he a i r , 𝑣𝑣 ( whi c h i s una f f e c t e d by t he s pe e d of t he s our c e ) ● Spe e d of a wa ve v de pe nds onl y on t he me di um i t i s t r a ve l l i ng t hr ough
  • 50. We know t ha t whe n t he obs e r ve r i s s t a t i ona r y, t he f r e que nc y r e c e i ve d by t he obs e r ve r i s t he f r e que nc y e mi t t e d by t he s our c e . And t he wa ve l e ngt h obs e r ve d by t he obs e r ve r i s : 𝑣𝑣 = 𝑓𝑓𝑠𝑠 𝜆𝜆0 𝜆𝜆0 = 𝑣𝑣 𝑓𝑓𝑠𝑠
  • 51. Calculating doppler effect When a source of sound waves moves relative to a stationary observer, the observed wavelength 𝜆𝜆𝑜𝑜 i s : The obs e r ve d f r e que nc y 𝑓𝑓𝑜𝑜 , i s gi ve n by: ● The wa ve ve l oc i t y f or s ound wa ve s i s 340 ms - 1. ● The ± de pe nds on whe t he r t he s our c e i s movi ng t owa r ds or a wa y f r om t he obs e r ve r . I f t he s our c e i s movi ng towards , t he de nomi na t or i s 𝑣𝑣 – 𝑣𝑣𝑠𝑠 I f t he s our c e i s movi ng away, t he de nomi na t or i s 𝑣𝑣 + 𝑣𝑣𝑠𝑠 𝑓𝑓𝑜𝑜 = 𝑣𝑣 𝜆𝜆𝑜𝑜 = 𝑓𝑓𝑠𝑠 𝑣𝑣 𝑣𝑣 ± 𝑣𝑣𝑠𝑠 𝜆𝜆𝑜𝑜 = 𝑣𝑣 ± 𝑣𝑣𝑠𝑠 𝑓𝑓𝑠𝑠
  • 52. A t r a i n wi t h a whi s t l e t ha t e mi t s a not e of f r e que nc y 800 Hz i s a ppr oa c hi ng a n obs e r ve r a t a s pe e d of 60 ms ¯¹ . W ha t f r e que nc y of not e wi l l t he obs e r ve r he a r ? ( s pe e d of s ound i n a i r = 330 ms ¯¹ ) Worked example Solution He r e t he s our c e i s a ppr oa c hi ng t he obs e r ve r . 𝑓𝑓𝑜𝑜 = 𝑓𝑓𝑠𝑠 𝑣𝑣 𝑣𝑣 − 𝑣𝑣𝑠𝑠 𝑓𝑓𝑜𝑜 = 800 𝐻𝐻𝐻𝐻 330 𝑚𝑚𝑚𝑚−1 330 𝑚𝑚𝑚𝑚−1 − 60 𝑚𝑚𝑚𝑚−1 𝑓𝑓𝑜𝑜 = 980 𝐻𝐻𝐻𝐻
  • 53. A pl a ne ’ s e ngi ne e mi t s a not e of c ons t a nt f r e que nc y 120 Hz . I t i s f l yi ng a wa y f r om a s t a t i ona r y obs e r ve r a t a s pe e d of 80 ms ⁻¹. ( s pe e d of s ound i n a i r = 330 ms ¯¹ ) Ca l c ul a t e : i . The obs e r ve d wa ve l e ngt h of t he s ound r e c e i ve d by t he obs e r ve r . i i . I t s obs e r ve d f r e que nc y. ( s pe e d of s ound i n a i r = 330 ms ⁻¹) Worked example Worked example The s ound e mi t t e d f r om t he s i r e n of a n a mbul a nc e ha s a f r e que nc y of 1500 Hz . The s pe e d of s ound i s 340 ms ⁻¹ . Ca l c ul a t e t he di f f e r e nc e i n f r e que nc y he a r d by a s t a t i ona r y obs e r ve r a s t he a mbul a nc e t r a ve l s t owa r ds a nd t he n a wa y f r om t he obs e r ve r a t a s pe e d of 30 ms ⁻¹ . Ans we r : 3. 4 m Ans we r : 97 Hz Ans we r : 270 Hz
  • 57. ● Visible l i ght i s j us t a s ma l l r e gi on of t he e l e c t r oma gne t i c s pe c t r um. ● Al l e l e c t r oma gne t i c wa ve s ha ve t he f ol l owi ng pr ope r t i e s i n c ommon: 1. The y a r e a l l t r a ns ve r s e wa ve . 2. The y c a n a l l t r a ve l i n a vacuum. 3. I n a va c uum, a l l E. M wa ve s t r a ve l a t c ons t a nt s pe e d, 3. 0 x10⁸ ms ⁻¹. Electromagnetic Spectrum 4. Si nc e t he y a r e t r a ns ve r s e , a l l wa ve s i n t hi s s pe c t r um c a n be r e f l e c t e d, r e f r a c t e d, di f f r a c t e d, pol a r i s e d a nd i nt e r f e r e nc e .
  • 58. EM spectrum wavelengths and frequencies ● The electromagnetic spectrum is arranged in a specific order based on their wavelengths or frequencies .
  • 59. The speed of light ● The wavelength λ a nd t he f r e que nc y f of t he wa ve s a r e r e l a t e d by t he e qua t i on: c = f λ ● Thi s i s t he s a me a s t he wa ve e qua t i on: t he wa ve s pe e d v = c. ● The s pe e d of l i ght i n a va c uum i s c ons t a nt , c = 3. 0 x10⁸ ms ⁻¹ ● The hi ghe r t he frequency, t he hi ghe r t he energy of t he r a di a t i on. ● Howe ve r , whe n l i ght t r a ve l s f r om a va c uum i nt o a ma t e r i a l me di um s uc h a s gl a s s , i t s s pe e d decreases but i t s f r e que nc y remains the same. ● The r e f or e i t s wavelength must decrease .
  • 60. Radiation Wavelength range/ m Frequency range/ Hz radio waves >10⁶ to 10⁻¹ < 3 x 10⁹ microwaves 10⁻¹ to 10⁻³ 3 x 10⁹ - 3 x 10¹¹ infrared 10⁻³ to 7 x 10⁻⁷ 3 x 10¹¹ - 4.3 x 10¹⁴ visible 7 x 10⁻⁷ (red) to 4 x 10⁻⁷ (violet) 7.5 x 10¹⁴ - 4.3 x 10¹⁴ ultraviolet 4 x 10⁻⁷ to 10⁻⁸ 7.5 x 10¹⁴ - 3 x 10¹⁶ X-rays 10⁻⁸ to 10⁻³ 3 x 10¹⁶ - 7.5 x 10²⁰ 𝛾𝛾-rays 10⁻¹⁰ to 10⁻¹⁶ 3 x 10¹⁸ - 3 x 10²⁴
  • 61. 1. Ca l c ul a t e t he f r e que nc y i n M Hz of a r a di o wa ve of wa ve l e ngt h 250 m. The s pe e d of a l l e l e c t r oma gne t i c wa ve s i s 3. 0 x 10⁸ ms ⁻¹. Ans we r : 1. 2 M Hz 2. Ca l c ul a t e t he wa ve l e ngt h i n nm of a n X- r a y wa ve of f r e que nc y 2. 0 x 10¹⁸ Hz . Ans we r : 0. 15 nm Worked example Past year questions (S2017_V11_Q26) W hi c h l i s t s hows e l e c t r oma gne t i c wa ve s i n or de r of i nc r e a s i ng f r e que nc y?
  • 64. ● Polarisation i s t he pr oc e s s by whi c h t he os c i l l a t i ons a r e ma de t o oc c ur i n one pl a ne onl y. ● I t i s a pr ope r t y t o di s t i ngui s h be t we e n t r a ns ve r s e a nd l ongi t udi na l wa ve . ● A l i ght wa ve t ha t i s vi br a t i ng i n mor e t ha n one pl a ne i s r e f e r r e d t o a s unpol a r i s e d l i ght . ● Li ght e mi t t e d by t he s un, by a l a mp i n t he c l a s s r oom or by a c a ndl e f l a me a r e e xa mpl e s of unpol a r i z e d l i ght . Polarisation
  • 65. ● The vi br a t i ons a r e s a i d t o be pl a ne pol a r i s e d i n e i t he r ve r t i c a l pl a ne or hor i z ont a l pl a ne . ● Si nc e l ongi t udi na l wa ve s vi br a t e a l ong t he i r a xi s of pr opa ga t i on, i t i s not pos s i bl e t o pol a r i z e a l ongi t udi na l wa ve . ● Pol a r i s a t i on i s a c hi e ve by us i ng ve r t i c a l or hor i z ont a l s l i t .
  • 66. ● A light wave is an electromagnetic wave that travels through the vacuum of outer space . ● Electromagnetic waves are transverse waves consisting of electric and magnetic fields that oscillate perpendicular to the direction of propagation . ● When we talk about the direction of polarisation of light wave, we refer to the electric field component .
  • 67. ● Waves c a n be pol a r i s e d t hr ough a t r a ns pa r e nt pol yme r ma t e r i a l , s uc h a s pol a r oi d. ● The pol a r oi d ha s l ong c ha i ns of mol e c ul e s a l i gne d i n one pa r t i c ul a r di r e c t i ons . Polarization by use of a Polaroid Filter ● Any e l e c t r i c f i e l d vi br a t i ons a l ong ( pa r a l l e l ) t he s e c ha i ns of mol e c ul e s a r e a bs or be d. ● M e a nwhi l e , e l e c t r i c f i e l d vi br a t i ons a t r i ght a ngl e s t o t he c ha i ns of mol e c ul e s a r e t r a ns mi t t e d. ● The e ne r gy a bs or be d i s t r a ns f e r r e d t o t he r ma l e ne r gy i n t he Pol a r oi d.
  • 68. Relationship between long chain molecule orientation and the orientation of the polarisation axis.
  • 69. (plane polarised wave) • Consider a single piece of Polaroid where the reference direction is vertical . • When a beam of unpolarized light is directed at the Polaroid, a beam of vertically polarized light rays is transmitted .
  • 70. ● When a be a m of unpol a r i z e d l i ght i s di r e c t e d a t t he pol a r oi d whe r e t he r e f e r e nc e di r e c t i on i s ve r t i c a l , a be a m of ve r t i c a l l y pol a r i s e d l i ght r a ys i s t r a ns mi t t e d. ● Thi s pl a ne pol a r i s e d l i ght i s i nc i de nt on a s e c ond pol a r oi d whos e t r a ns mi s s i on of a xi s i s ve r t i c a l . ● The s e c ond pol a r oi d i s c a l l e d a n a na l ys e r . ● The i nc i de nt l i ght pa s s e s s t r a i ght t hr ough. What would happen when you view unpolarised light using two Polaroids?
  • 71. ● Now r ot a t e t he a na l ys e r t hr ough 90° , s o i t s t r a ns mi s s i on a xi s i s hor i z ont a l . ● Thi s t i me , t he a na l ys e r wi l l a bs or b a l l t he l i ght . ● The a na l ys e r wi l l a ppe a r black .
  • 72. ● Turning t he a na l ys e r t hr ough a f ur t he r 90° wi l l l e t t he l i ght t hr ough t he a na l ys e r a ga i n. ● W ha t ha ppe ns a t a ngl e s ot he r t ha n 0° a nd 90° i s di s c us s e d l a t e r . What is Polarisation.mp4
  • 73. Application of polarisation Since longitudinal waves vibrate along their axis of propagation, it is not possible to polarise a longitudinal wave. Polaroid sunglasses ● Li ght r e f l e c t e d f r om t he s ur f a c e of wa t e r , or gl a s s , i s pa r t i a l l y pol a r i s e d i n a pl a ne pa r a l l e l t o t he r e f l e c t i ng s ur f a c e . ● Thi s me a ns t ha t a f t e r r e f l e c t i ng t he s un' s wa ve s os c i l l a t i on a ngl e s , t he y a r e no l onge r r a ndom i n a l l di r e c t i ons but ha ve a pr e f e r r e d di r e c t i on on a ve r a ge .
  • 74. ● In t he c a s e of a hor i z ont a l s ur f a c e — l i ke a l a ke or a r oa d— t he pr e f e r r e d di r e c t i on i s hor i z ont a l . ● The pol a r i z e d f i l t e r s on t he s e l e ns e s pr e f e r e nt i a l l y bl oc k t he hor i z ont a l c ompone nt of l i ght os c i l l a t i on whi l e t r a ns mi t t i ng t he ve r t i c a l c ompone nt . partially polarised.mp4 ● The r e s ul t i s a da r ke r i ma ge but wi t h be t t e r c ont r a s t .
  • 75. The i nt e ns i t y of t he t r a ns mi t t e d l i ght de pe nds on t he a ngl e 𝜃𝜃. Cons i de r t he i nc i de nt pl a ne pol a r i s e d l i ght of a mpl i t ude i s A₀. The c ompone nt of t he a mpl i t ude t r a ns mi t t e d t hr ough t he pol a r oi d a l ong i t s t r a ns mi s s i on a xi s i s A₀ c os 𝜃𝜃. Malus’s law I nt e ns i t y of l i ght i s pr opor t i ona l t o t he a mpl i t ude s qua r e d. 𝐼𝐼 ∝ 𝐴𝐴2
  • 76. So t he i nt e ns i t y of l i ght t r a ns mi t t e d wi l l be : 𝐼𝐼 = 𝐼𝐼0 𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃 W he r e ; 𝐼𝐼 = t r a ns mi t t e d i nt e ns i t y 𝐼𝐼0 = i nc i de nt i nt e ns i t y 𝜃𝜃 = a ngl e be t we e n t he a xe s of t he pol a r i s e r a nd a na l ys e r 𝐴𝐴0 sin 𝜃𝜃 𝐴𝐴0 cos 𝜃𝜃 𝐴𝐴0
  • 77. ● The change in intensity against the angle of transmission a xi s i s a c os i ne s qua r e d gr a ph. ● Va r i a t i on of t r a ns mi t t e d i nt e ns i t y I wi t h a ngl e θ. ● Fr om gr a ph, ma xi mum i nt e ns i t y whe n θ = 0° , 180° a nd s o on, ● a nd z e r o whe n θ = 90° , 270° a nd s o on.
  • 78. The half rule When unpolarised light passes through the first polariser, half the intensity of the wave is always lost ( ' G U ) . Worked example page 236 ● The Pol a r oi d woul d a l l ow onl y pl a ne pol a r i s e d l i ght t o ge t t hr ough, wi t h t he e l e c t r i c f i e l d vi br a t i ons a l ong t he t r a ns mi s s i on a xi s of t he Pol a r oi d. ● Al l ot he r os c i l l a t i ng e l e c t r i c f i e l ds f r om t he i nc omi ng unpol a r i s e d l i ght wi l l be bl oc ke d by t he l ong c ha i ns of mol e c ul e s of t he Pol a r oi d. ● Some of t he i nc i de nt l i ght e ne r gy i s t r a ns f e r r e d t o t he r ma l e ne r gy wi t hi n t he Pol a r oi d. 1. Expl a i n wha t ha ppe ns t o unpol a r i s e d l i ght i nc i de nt a t a Pol a r oi d.
  • 79. 2. Pl a ne pol a r i s e d l i ght of i nt e ns i t y 12 W m⁻² i s i nc i de nt a t a Pol a r oi d. Ca l c ul a t e t he i nt e ns i t y of t he t r a ns mi t t e d l i ght whe n t he a ngl e be t we e n t he pl a ne of pol a r i s a t i on of t he i nc i de nt l i ght a nd t he t r a ns mi s s i on a xi s of t he Pol a r oi d i s i . 45° Ans we r : 6 W m⁻² i i . 60° Ans we r : 3 W m⁻² 3. Pl a ne pol a r i s e d l i ght i s i nc i de nt a t a Pol a r oi d. Ca l c ul a t e t he a ngl e 𝜃𝜃, whi c h gi ve s t r a ns mi t t e d l i ght of i nt e ns i t y 30 % t ha t of t he i nc i de nt i nt e ns i t y of l i ght . Ans we r : 57 ⁰
  • 80. Unpolarised l i ght i s i nc i de nt on a pol a r i s e r . The l i ght t r a ns mi t t e d by t he f i r s t pol a r i s e r i s t he n i nc i de nt on a s e c ond pol a r i s e r . The pol a r i s i ng( or t r a ns mi s s i on) a xi s of t he s e c ond pol a r i s e r i s 30° t o t ha t of t he f i r s t . Worked example The i nt e ns i t y i nc i de nt on t he f i r s t pol a r i s e r i s I . W ha t i s t he i nt e ns i t y e me r gi ng f r om t he s e c ond pol a r i s e r ?
  • 81. Step 1 Fr om t he ha l f r ul e , whe n t he l i ght pa s s e s t hr ough t he f i r s t pol a r i s e r ha l f of i t s i nt e ns i t y i s l os t . Solution St e p 2 M a l us ’ s l a w i s us e d t o f i nd t he i nt e ns i t y of t he pol a r i s e d l i ght a f t e r t he s e c ond pol a r i s e r . St e p 3 Combi ne t he i nt e ns i t y dr ops .
  • 82. Unpolarized l i ght wi t h a n i nt e ns i t y of 𝐼𝐼0 = 16 W m⁻² i s i nc i de nt on a pa i r of pol a r i s e r s . The f i r s t pol a r i s e r ha s i t s t r a ns mi s s i on a xi s a l i gne d a t 50o f r om t he ve r t i c a l . Worked example The s e c ond pol a r i z e r ha s i t s t r a ns mi s s i on a xi s a l i gne d a t 20o f r om t he ve r t i c a l . Ca l c ul a t e t he i nt e ns i t y of t he l i ght goi ng t hr ough t he pa i r of f i l t e r s .
  • 83. Solution Step 1 From the half rule, when the light passes through the first polariser half of its intensity is lost . The light incident on the first polarizer is unpolarized, so the angle is irrelevant . Step 2 Through the second polariser . Step 3 Combine the intensity drops .
  • 84. Exam - style questions a) State what is meant by plane polarised light . [ 1] ● A pl a ne pol a r i s e d wa ve i s a t r a ns ve r s e wa ve wi t h os c i l l a t i ons ( of t he e l e c t r i c f i e l d) i n j us t one pl a ne . b) Ve r t i c a l l y pl a ne pol a r i s e d l i ght i s i nc i de nt on t hr e e pol a r i s i ng f i l t e r s . The t r a ns mi s s i on a xi s of t he f i r s t Pol a r oi d i s ve r t i c a l . The t r a ns mi s s i on a xi s of t he s e c ond f i l t e r i s 45° t o t he ve r t i c a l a nd t he t r a ns mi s s i on a xi s of t he l a s t f i l t e r i s hor i z ont a l . Show t ha t t he i nt e ns i t y of l i ght e me r gi ng f r om t he f i na l f i l t e r i s not z e r o. [ 4]
  • 85. ● The i nt e ns i t y of t r a ns mi t t e d l i ght f r om t he f i r s t pol a r i s i ng f i l t e r = I ₀ ( t he s a me a s t he i nc i de nt i nt e ns i t y) [ 1] ● The i nt e ns i t y of l i ght f r om t he s e c ond f i l t e r wi l l be : I = I ₀ c os ² θ = I ₀ c os ² 45° = 0. 50 I ₀ [ 1] ● The i nt e ns i t y of l i ght f r om t he l a s t f i l t e r wi l l be : I = I ₀ c os ² θ = [ 0. 50 I ₀] c os ² 45° = 0. 50I ₀ × 0. 50 = 0. 25I ₀ [ 1] ● The f i na l t r a ns mi t t e d i nt e ns i t y i s not z e r o, but 25% of t he or i gi na l i nt e ns i t y.
  • 86.