SlideShare a Scribd company logo
1 of 66
Download to read offline
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Leonardo Auslender
Leoldv12 ’at’ gmail ’dot’ com
Informs, NYC 2009.
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Introduction and data description
Overall Graphical View
Befuddlers: Analytics of suppression, redundancy and
enhancement
Befuddlers: Graphical presentation
Coefficient interpretation in multivariate setting
Befuddlers and co-linearity
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Befuddling issues in linear regression context due to
misunderstand of ‘conditioning’. Will show that:
- Uncorrelated predictor to dependent variable may increase
significance and fit of other predictors.
-Correlated predictors may enhance model fit.
-Extreme corr (x, z) does not always  co-linearity.
Coefficient effect interpretation can be faulty when distinction
between zero-order and partial correlation is disregarded.
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Correlations, conditional correlations and Redundancy.
Linear model Y = a0 + a X + b Z + , with usual assumptions; circles below are
unit-variance circles (a + b + d + e = 1).
Y
X
Z
b d
e
a
r2
yx = b + d r2
yz = d + e R2 = b + d + e
pr2
yx = b / (a + b) pr2
yz = e/ (a + e),
sr2
yx = b sr2
yz = e
r2: zero order corr2  SSR(X, Z) / SST.
pr2: partial corr2  r2
yx.z= SSR(X/Z) / [SST – SSR(Z)] .
sr2 : semi-partial corr2  r2
y(x.z) = SSR(X/Z) / SST.
SST = 1 = a + b + d + e.
SSR(X) = b + d.
SSR(X / Z) = b.
SSR(X, Z) = b + d + e.
SSR(Z) = d + e.
But, SSR(X) + SSR(Z) > SSR(X,Z)
not always true.
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Note that in previous slide:
R2 = b + d + e
R2 ≤ r2
yx + r2
yz = b + 2d + e
r2
yx = b + d r2
yz = d + e
‘d’ appears once in R2 while the sum of the marginal correlations
implies 2d. From previous slide, ‘d’ cannot be obtained via partial
or semi partial corrs alone. Instead, via marginal correlations:
R2 = (r2
yx + r2
yz – 2 ryx ryz rxz) / (1 – r2
xz) , and
“d” = r2
yx - sr2
yx = r2
yz - sr2
yz
Y
X
Z
b d
e
a
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009

 
 

 

 

 
2
xz
n
i i
i 1
xy
n n
2 2
i i
i 1 i 1
xy xz yz
yx y(x.z) 2
xz
(1 - r : det. of corr. matrix):
(X X)(Y Y)
Zero order r
(X X) (Y Y)
Semi
Correlations
partial
( r -
of different
r r )
sr r
(1 - r
orders.
)
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
 
 
yx yx.z
yx xz yz
2 2
xz yz
yx.z yw.z xw.z
yx yx.zw 2 2
yw.z xw.z
Partial : pr r
( r - r r )
(1 - r ) (1 - r )
partial 2nd :
( r -
Correlations
r r )
pr r
(1
of different o
- r ) (1
rders.
- r )
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Important relationships:
8/24/2018
2
.
2
.
2 2
. .
2
.
( / ) ( , ) ( )
( ) ( )
( / , )
( , )
( , ) ( , )
( , )
1
yx z
yx zw
y xwz y wz
y wz
SSR x z SSR x z SSR z
pr
SST SSR z SST SSR z
SSR x z w
pr
SST SSR z w
SSR x z SSR z w
SST SSR z w
R R
R

 
 
 







Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Regr R69 = R72 R78
Corr Partial Semi
Y R Square Indep. Var
-0.01836688 0.00034119 0.00034102R69 0.0008622394 R72
R78 -0.02283033 0.00052507 0.00052490
pr2
R69.R72 = r2
R69.R72(R78) = (R2 – r2
R69.R72) / (1 - r2
R69.R72), also equal to
partial corr calculated from all zero order correlations.
sr2
R69.R72 = r2
R69(R72.R78) = (R2 – r2
R69.R72), equal to semi-partial
calculated from all zero order correlations. It is proportion of Var
(R69) fitted by R72 over and above what R78 has already fitted.
Let’s partition R2 ……………… (Note: This is
IMPORTANT!!!).
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
2 2 2 2
0.123... 01 0(2.1) 0(3.12)
2
0( .123... 1)
that is, addition of non-redundant
X information.
...
for p independent vars. Note:
sum of correlations,semi-partial
p
p p
R r r r
r 
    
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Similarly for SSR:
Extra sum of Squares decomposition for SSR
(Type I)

  
  
 

 
1 2 1 2 1
3 2 1 1 2 1
2 3 1 1 1 2 3
2 2 1 2 1 2
1.2
2 2
( , ,,, ) ( ) ( / )
( / , ) ... ( / ,,, , )
( , / ) ( ) ( , , )
( ) ( , ) ( / )
( ) ( )
p
p p
Y
SSR X X X SSR X SSR X X
SSR X X X SSR X X X X
and SSR X X X SSE X SSE X X X
SSE X SSE X X SSR X X
R
SSE X SSE X
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Correlation and angles.
,
.....( )
:
( , )
( ) ( )
( )( )
( ) ( )

 


 

 

 


 
std
n-1
1
2 2
1 1
remember |X |=
1
X standardized
1
corr (X,Y) =
std
X
std std
xy
n
i i
i
xy
n n
i i
i i
X X
X
s
X YCov X Y
nVar X Var Y
r
X X Y Y
r
X X Y Y
Need to find length of standardized Variable to finish corr (X, Y)
and use the concept of inner product.
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018




 
  

 

 

,
, 2
,
2
,2
, 2
,
( )
( 1)
( 1)( )
( )
( )
( 1)
i j i
i j
i j i
i j i
i i j
i j i
X X
z
X X
n
n X X
length z z
X X
n
Length of a standardized Variable
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
( ) ( ) cos
(
os
)
c
, | || | cos




 



 

 
From (1) before,
and by inner product definit
1 1
1
ion:
1
1 1
std std std std
n n
n
X Y X Y
n n
1) Corr (X, Y) = Corr standardized (X, Y).
2) All standardized variables have same length √(n-1).
3) Corr is always inner product of corresponding
standardized variables divided by n – 1  average
weighted sum of standardized X with weights given by
standardized Y, and vice-versa.
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Standardized and non-standardized regression coefficients
x
2
x 2 2 2
'
x
'
' xx
x x
y
'
x
Regular Coefficient b
(X and Z case, lower case: mean removed)
z xy zx zy
b
z x ( xz)
Standardized Coefficient b
b can be obtaineds
General case b b
s from straight regression.
X and Z case b





   
  
yx xz yz
2
xz
'
x yx
r (r * r ) Similarity with straight
(1 r ) regr coeff estimation.
Equality with
X case b r
corr coeff.



Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Example.
Verifying length stdized
variable Result
Statistic
32.28Length X ~ N (-3, 1)
Length Y ~ N ( 5, 4) 51.89
Length Z ~ B (.3, 100) 5.83
Length STD(X) 9.95
Length STD(Y) 9.95
Length STD(Z) 9.95
# Obs 100.00
Sqrt (# Obs - 1) 9.95
Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
X 100 -3.07297 0.99339 -307.29669 -5.89441 -0.94043
Y 100 4.71923 2.16757 471.92321 -0.52986 9.43811
Z 100 0.34000 0.47610 34.00000 0 1.00000
STDX 100 0 1.00000 0 -2.84023 2.14673
STDY 100 0 1.00000 0 -2.42165 2.17703
STDZ 100 0 1.00000 0 -0.71414 1.38628
Correlations X Y Z STDX STDY STDZ
Statistic Computation
-3.073 4.719 0.340 0.000 0.000 0.000MEAN
STD 0.993 2.168 0.476 1.000 1.000 1.000
N 100.000 100.000 100.000 100.000 100.000 100.000
CORR X 1.000 -0.009 0.048 1.000 -0.009 0.048
Y 1.000 0.057 -0.009 1.000 0.057
Z 1.000 0.048 0.057 1.000
STDX 1.000 -0.009 0.048
STDY 1.000 0.057
STDZ 1.000
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Two befuddling issues.
1) Why or when is the sign of a standardized coefficient
opposite to sign of zero order correlation of
predictor with dependent variable?
(Suppression).
2) Why or when does addition of correlated predictor to
set of predictors cause R2 to be higher than sum of
individual zero order correlations?
(Enhancement).
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Classical Suppression Example (Horst 1941).
Study of pilot performance (Y) from measures of
mechanical test (X) & verbal abilities test (Z).
When verbal ability (Z) was added to mechanical (X)
ability in equation, effect of X increased.
Happened because Z fitted variability in X, i.e., test of mechanical
ability also required verbal skills to read test directions. But Z did
not affect Y.
In fact, we have simultaneous equation system (SES)
with two dependent variables, X and Y.
Y = f (X, Z), X = g (Z)
But, specification of SES is far more difficult.
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Horst 1941
Z
Mechanical Ability
Verbal
Ability x
Y pilot
performance
Horst found corr (Y, X) > 0 (pilot performance related to
mechanical ability), corr (Z, X) > 0 (test performance for test
taking), and corr (Z, Y) = 0 (test taking did not assist in airplane
piloting).
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Correlations and Redundancy in linear models.
R2 decomposition. Let Bi be beta coefficients for equation with standardized
variables.
R2 =  Bi
2 + 2  Bi Bj rij ( i  j)
Formula does not decompose Var (Y) because some Bi Bj rij may be
negative. However, when all cross-terms are zero, R2 =  Bi
2 and also
R2 =  r2
yi ………………………………….(1)
(setting cross-correlations to zero): Case of Independence.
Y
X
Z
Independence  No
Redundancy.
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Correlations and redundancy in linear models.
Stepwises  highly correlated variables with dependent variable, “hoping”
formula (1) to apply (but seldom happens).
Rather than independence, more commonly: Redundancy.
It occurs whenever (in absolute terms)
ryx > ryz rxz and ryz > ryx rxz  rxz ≠ 0
sryx < ryx, and Bx < ryx.
RedundancyY
X
Z
d
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Redundant info for Y =
a + bX + cZ
Corr
(Y,X)
Std
Beta
Corr
(Y,Z)
Corr
(X,Z)
Corr(Y,Z)
*Corr(X,Z)
Corr(Y,X)
*Corr(X,
Z)
Semi
(Y,X
/Z)
Y X Z Redundant
?
0.288 0.313 0.346 0.135 0.047 0.039 0.244
R
1
R
2
R3 N
R59 Y 0.288 -0.029 -0.050 -0.073 0.004 -0.021 0.286
R69 N 0.288 -0.070 -0.067 0.012 -0.001 0.004 0.289
R72 Y 0.288 0.024 0.025 0.006 0.000 0.002 0.288
R78 Y 0.288 -0.175 -0.209 -0.129 0.027 -0.037 0.264
Pairwise Redundancy: Surendra Data.
8/24/2018
sryx < ryx, and Bx < ryx.
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Suppression Effects.
Areas ‘a’, ‘b’ and ‘e’ can be understood as proportions
of “Y” variance.
Area ‘d’ does not have same interpretation, because
can take negative value  relationship of suppression
or enhancement.
Y
X
Z
b d
e
a
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
In this case, r2
yz ~ 0, and Z does not
directly affect Y, except in so far as
reducing unfitted variance of X.
bz=0, |bx.z|>|bx|, bx.zbx>0 
a) bx.z > bx> 0 or
b) bx.z < bx < 0
R2 = 1 (two predictor case) 
r2
xz = 1 - r2
xy , i.e., Z fits remaining X
variance.
It can be verified that:
R2 = pr2
yx = sr2
yx
Y
X
Classical
Suppression
Suppression Effects – Classical (some graphics).
Cohen and Cohen (1975).
Conger (1974) calls it “Traditional”. In later parlance, also case of
Enhancement and of Confounding (confounding used in logistic regression).
Y
Z
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
In this case, ryz / ryx < rxz; Z
primarily suppresses unfitted
variance of X, and vice-versa.
Y
X
Z
Suppression Effects – Net (graphics).
Cohen and Cohen (1975)’s notation. Conger (1974) calls
it “negative”. Suppressor variable receives negative
coefficient, and other coefficient is larger than
correlation with dependent variable. Coefficient of
suppressor opposite to sign of zero order correlation
with dependent variable.
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Suppression Effects – Cooperative Suppression.
(no graph, Cohen and Cohen (1975), Conger (1974) calls it “reciprocal”):
Positive correlation with dependent variable, but negative
correlation among pairs of independent variables. Thus,
when variable is partialled out from another, all measures of
fit are enhanced.
In later parlance, case of Enhancement and Confounding.
In this case, suppressor coefficient exceeds correlation with dependent
variable. In terms of correlations and regression coefficients:
8/24/2018
yx yz xz
x.z x x.z x
z.x z z.x z
r 0 r 0 r 0
|b | |b |, b b 0
|b | |b |, b b 0
  
 
 
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Pearson Correlation Coefficients, N = 10000
Prob > |r| under H0: Rho=0
Y X Z
Y 1.00000 0.24484
<.0001
0.12213
<.0001
X 0.24484
<.0001
1.00000 -0.93240
<.0001
Z 0.12213
<.0001
-0.9324
<.0001
1.00000
Cooperative
Suppression
Fit Measure 1 Fit Measure 2
Root
MSE
Depende
nt Mean
Coeff
Var
R-
Square
Adj R-
Sq
Value Value Value Value Value Value
Model
1.95 3.03 64.34 0.06 0.06 0.00X_ALONE
X_AND_Z 0.00 3.03 0.00 1.00 1.00 0.00
Cooperative
Suppression
Parameter
Estimate Pr > |t| VIF
Model Variable
3.79 0.00 .X_ALON
E
Intercept
X 0.12 0.00 .
X_AND_Z Intercept 0.00 1.00 0.00
X 1.33 0.00 7.66
Z 0.67 0.00 7.66
Simulated
Data
8/24/2018
Cooperative Example.
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
“Eli” E(xploratory) L(inear) I(nformation) Plot
(Auslender, 2000):
“0” = corr (Y, X) “S, P” = Semi , Partial [(Y, X / Z)]
Y = R1 & X = R2
Z min max
-0.208974272 0.3463911724
*----------------------------------------------------------------------*
R3 | |------------------------------S-P---------0|
R59 | 0-----|-----------------------------------* |
R69 | 0-------|------------------------------------* |
R72 | |---0--------------------------------* |
R78 |0-------------------------|---------------------------------* |
*----------------------------------------------------------------------*
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Suppression Effects.
Detection:
Std. coeff (semi-partial correlation) > | ri | suppression.
If ri is zero or close to it  classical suppression.
If sg (std coeff) = -sg (correlation)  net suppression.
If std coeff > ri and sg(std coeff) = sg (ri )  cooperative
suppression.
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Horst Conger Cohen
Classical Traditional Classical
Negative Net
Reciprocal Cooperative
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Correlations and Redundancy in linear models.
Misconception (Hamilton, 1987).
Since R2 =  r2
i (orthogonal case)  R2   ri
2 (general case)? NO … (I)
Y = a + b X + c Z + , (with SSR (X, Z)) equivalent to:
1) Y = d + e X + 1  e1 = Y – est (Y), its SSR called SSR(X)
2) Z = f + g X + 2  e2 = Z – est(Z),
3) e1 = h e2 + 3 (no intercept model), SSR called SSR (Z/X) …… (II) 
SSR(X, Z) = SSR(X) + SSR(Z / X) …….(1) (recall earlier slide)
R2 = SSR / SST,  R2 >  r2
i  SSR(Z/X) > SSR(Z) ……. (III)
Deriving Working formulae in terms of simple correlations:
pr2
yz = r2
yz.x = SSR (Z / X) / [SST – SSR(X)], and with (1) 
R2 = r2
x + r2
yz.x(1 - r2
x ) = zero order + semi-partial.
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Correlations and Redundancy in linear models.
 R2  rx
2 + rz.x
2 but R2 > rx
2 + rz
2 is possible.
Nec. and suff. condition for R2 >  r2
i  SSR(Z/X) > SSR(Z) is:
 
 
    
 

 

2
yx yzyx2
xz xz
yx 2
yz
yx yz
2 2 2
yx yx yz
2 2
yx yz
2 2xz Zx
yx yz
0
r 2r r
pr r (r ) 0
(1 r ) r r
2r r
r r
pr (1 r ).
r r "Enhancement"
Remember that: spr
Condition is:
8/24/2018
Currie and Korabinski (1984) call it ‘enhancement’. Hamilton (1987)
“synergism”.
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Correlations and Redundancy in linear models.
Since R2 >  r2
i possible 
1) X-Y scatter plots and correlation measures may be
inadequate for variable selection with correlated variables.
X-Y correlations can be near 0 while R2 could be extremely
high.
2) Variable Removal due to co-linearity suspicions may be
counterproductive.
3) Forward stepwise methods suffer most from co-linearity.
4) Note that Corr (Y, Z) ≈ 0 and Z may still be useful  Effects
on Variable Selection? t-value of Z could be insignificant.
5) Enhancement counterintuitive: predictor contributes more
to regression in presence of other predictors than by itself.
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Pearson Correlation Coefficients, N = 10000
Prob > |r| under H0: Rho=0
Y Z X
Y 1.00000 0.00214
0.8306
0.24484
<.0001
Z 0.00214
0.8306
1.00000 0.97008
<.0001
Simulated
Data, case
Of
Enhancement.
Fit Measure 1 Fit Measure 2
Root MSE
Dependent
Mean Coeff Var R-Square Adj R-Sq
Value Value Value Value Value Value
Model
1.95 3.03 64.34 0.06 0.06 0.00X_ALONE
X_AND_Z 0.00 3.03 0.00 1.00 1.00 0.00
Net Suppression
Estima
te SE
Pr >
|t| VIF
Model Variabl
e
3.79 0.04 0.00 .X_ALON
E
Interc.
X 0.12 0.00 0.00 .
X_AND_
Z
Interc. 0.00 0.00 1.00 0.00
X 1.33 0.00 0.00 7.66
Z 0.67 0.00 0.00 7.66
X on Z Interc. 1.87 0.04 0.00 0.00
Z -0.48 0.00 0.00 1.00
Y and Z hardly correlated,
X and Z highly correlated.
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
x Y ,X z Y ,z
ˆ ˆ| | | r | and | | | r |, stdndrzd coeffs. (1)  
8/24/2018
Unifying differing nomenclature and definitions.
Velicer (1978) changed focus from standardized coeffs
to R2 because in previous formulation, |corr| < 1 but
betas unconstrained.
He suggested:
called “enhancement” by Currie and Korabinski (1984).
Let’s call enhancement (1) and (2) together. Otherwise,
just suppression.
2 2 2
Y,X Y,ZR r r (2) 
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Comparing Suppression and Enhancement
Effects.
Per Friedman & Wall (2005), standardized variables:
x Y , X
ˆ| | | r | 
2 2 2
Y , X Y ,Zi y,i
Suppression :
ˆ| | | r | but R r r   
2 2 2
Y , X Y ,Zi y,i
Re dundancy :
ˆ| | | r | and R r r   
2 2 2
Y ,X Y ,Zi y,i
Enhancement :
ˆ| | | r | but R r r  
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Betas, suppression and enhancement Examples, Y = f (X,
Z). (Friedman-Wall 2005).
yx yz
2 2
yx yz yx yz xzY,X Y,Z X,Z 2
X 2 2
X,Z xz
xz xz yi2 2
yx yz
2 2
yx yz yx yz x
2r r
r r
r r 2r r rr r *r
ˆ , for std X, and R
1 r (1 r )
Enhancement
r or r 0, since r 0 by assumption.
Nec. and suff. conditions :
1) r r and 2) r r 1 r


 
 
 

  
     z
yx yz xz
0 region of enhanc.
if r ,r >0 and r 0 enhancement.

 
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Cooperative
Suppression+
Enhancement
Redundancy
Net
Suppression
Ne
Region Name 2
2 2
2 2
2 2
2 2
ˆ ˆ
( ,0)
ˆ ˆ(0, ) 0 0
2
( , ) 0
xz x z
yx yz yx yz
yz
x yx z yz yx yz
yx
yz yx yz
yx yx yz
yx yx yz
r std std R
I low r r r r
r
II r r r r
r
r r r
III r r r
r r r
IV
 
 
   
     
   

t
Suppresion +
Enhancement
2 2
2 2
2
( , ) 0yx yz
xz yx yx yz
yx yz
r r
r upper r r r
r r
   

8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Different terminology (Friedman, Wall 2005): “1” = X, “2” = Z.
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008
Example 1: 2 indep. Vars: Y = f (X, Z) (Friedman, Wall, 2005).
(R2 = (r2
yx + r2
yz – 2 ryx ryz rxz) / (1 – r2
xz) = r2
yx + r2
y(x.z) )
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 20088/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Suppression and Enhancement Effects –
summary.
”Suppressor” variable: enhances predictive ability of
another variable by reducing irrelevant variance of
otherwise relevant variable. In case of standardized
coefficients, Z is suppressor variable for X if Bx > rYX.
(Note: not necessary that rYZ be strictly 0).
“Redundant” variables decrease weights of other
variables (Conger, 1974).
“Enhancer” variable: increases overall R2 beyond sum
of zero-order correlations.
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
kY k
k k k
xy xz yz
yx y(x.z) 2
xz
k
x ˆyx x
yx ˆy(x .x )
Velicer Suppression 2 predictor case :
( r - r r )
sr r
(1 - r )
J predictor case (Smith,1992) :
ˆx prediction on remaining (J-1) predictors.
( r - r r
sr r
 

  k k
k k
k k
k k
k k k k
k k
ˆx
2
ˆx x
2 2
yx yx
x y ˆyx
ˆ ˆx x x x2 2
yx ˆyx
)
(1 - r )
Velicer's criterion : r sr
2r r
r or r 0
r r
 
 

8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
2
1 2
2
    

  



/
Confusion on signs of coefficients
and interpretation for
( )
{
( )
} ( ) ( )yi
xy xy
xi
xy
Y X
sY Y
b r r
sX X
sg r sg b
. .
. 2
2
But in multivariate: ,
estimated equation (emphasizing "partial")
ˆ ,
1
( ) ( )
( ) ( ) and 1
YX Z YZ X
Y YX YZ XZ
YX Z
X XZ
YX
YX YZ XZ XZ
Y X Z
Y a b X c Z where
s r r r
b
s r
sg b sg r
abs r abs r r r
      
  

 

 
  
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
If recall partial and semi-partial correlation formulae 
. 2
.
1
*
( ) ( )
Y YX YZ XZ
YX Z
X XZ
YX Z
Y
yx
X
Y
X
s r r r
b
s r
b
s
sr
s
s
semi partial
s
sg sg semi partial



 
 
 
8/24/2018
Coefficient signs in multivariate setting cannot necessarily
connote expected effects derived from theoretical analysis.
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Some Definitions.
Setting: linear models, specifically regression.
Co-linearity: existence of (almost) perfect linear
relationships among predictors, such that estimated
coefficients are unstable in repeated samples. Notice
that pair-wise or any other correlation notion is NOT
part of definition; instead LINEAR DEPENDENCE or
INDEPENDENCE is at its core.
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Full (Exact) Colinearity
Equivalent conditions:
( ) ( ' ) | ' | 0rank X rank X X p X X   
One or more predictors can be exactly expressed in terms of the
others. Sampling variance of some β = ∞, non-unique coeffs.
2
1 ( ).iR for some ith predictor s
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Linear Regression Near Co-linearity: more likely.
(X’X) “wobbly”, “almost singular”. Almost??. Detour:
2
2 2
2
2 2
i
1
( ) . ,
( 1) 1
var( ),
: regr X on other X's.

 

i
i i
i i
i
Var b
n s R
s X
R R

8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
Present Practice, derived from ‘small’ datasets experience.
2
1
1 iR
: Variance Inflation Factor of Xi. √VIF_Xi affects CI of βi
multiplicatively.
Rule of thumb: VIF > 10  strong possibility of colinearity.
(1 / VIF) also called Tolerance.
 
 
  


2 2
2 2 ' 2
2 2 2
i
2 -1
,
1 1
( ) . . ,
( 1) 1 1
var( ), : regr X on other X's.
If X standardized, corr = cov matrix
= ( ' )
i
i i i i i
i i i
i i i
Var b
n s R X X R
s X R R
R X X
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009


 
2
2 2
1
( ) . ,
( 1) 1i
i i
Var b
n s R For given ‘p’ model.
1) In data mining, p → ∞, and R2 does not decrease with p 




2
2
lim
lim 1
p i
p
R
R
 Naïve estimation with (almost) all variables for the sake of
prediction (data mining disregards interpretation and with
powerful hard- and soft-ware)  at least colinearity.
Data Mining World.
8/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
2
i 2
xz
2
x,z i
1ˆX, Z indep. standardized, Var( )
1
ˆ1 Var( ) ? Not necessarily.
  
 
     
8/24/2018
When corr (X, Z) is very large, for “given” sigma-sq, var of
beta coefficient grows to infinity. But sigma-sq does not
necessarily stay fixed.
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009
2
2 2
i xz2
xz
2 2
xz yx yz yx yz
2
xz i
1 R 1ˆVar( ) (1), and r 1 R 1.
n 3 1 r
r *r (1 r )(1 r ),
ˆR (r Var( ) 0.
...
extreme values: r
= extreme values)=1, and

    
 
  
 
8/24/2018
Different Formulation.
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
Region II and III: se’s increase with increasing co-linearity, but decrease at
extremes. Fig 5 and 6 show that high correlation coexist with small se’s
under enhancement and even under Suppression.
Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018

More Related Content

What's hot

Cs8092 computer graphics and multimedia unit 2
Cs8092 computer graphics and multimedia unit 2Cs8092 computer graphics and multimedia unit 2
Cs8092 computer graphics and multimedia unit 2SIMONTHOMAS S
 
Smith chart:A graphical representation.
Smith chart:A graphical representation.Smith chart:A graphical representation.
Smith chart:A graphical representation.amitmeghanani
 
Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Nahla Hazem
 
Mesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionMesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionGabriel Peyré
 
Int Math 2 Section 6-3 1011
Int Math 2 Section 6-3 1011Int Math 2 Section 6-3 1011
Int Math 2 Section 6-3 1011Jimbo Lamb
 
Integrated 2 Section 6-3
Integrated 2 Section 6-3Integrated 2 Section 6-3
Integrated 2 Section 6-3Jimbo Lamb
 
Digital Electronics Question Bank
Digital Electronics Question BankDigital Electronics Question Bank
Digital Electronics Question BankMathankumar S
 
Admissions in india 2015
Admissions in india 2015Admissions in india 2015
Admissions in india 2015Edhole.com
 
Lesson 9: Parametric Surfaces
Lesson 9: Parametric SurfacesLesson 9: Parametric Surfaces
Lesson 9: Parametric SurfacesMatthew Leingang
 
2.3 new functions from old functions
2.3 new functions from old functions2.3 new functions from old functions
2.3 new functions from old functionsBarojReal1
 
2.2. interactive computer graphics
2.2. interactive computer graphics2.2. interactive computer graphics
2.2. interactive computer graphicsRatnadeepsinh Jadeja
 
Gate ee 2010 with solutions
Gate ee 2010 with solutionsGate ee 2010 with solutions
Gate ee 2010 with solutionskhemraj298
 
Prévision de consommation électrique avec adaptive GAM
Prévision de consommation électrique avec adaptive GAMPrévision de consommation électrique avec adaptive GAM
Prévision de consommation électrique avec adaptive GAMCdiscount
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areasetcenterrbru
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsGabriel Peyré
 
6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integration6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integrationetcenterrbru
 
11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)Nigel Simmons
 

What's hot (20)

Cs8092 computer graphics and multimedia unit 2
Cs8092 computer graphics and multimedia unit 2Cs8092 computer graphics and multimedia unit 2
Cs8092 computer graphics and multimedia unit 2
 
Smith chart:A graphical representation.
Smith chart:A graphical representation.Smith chart:A graphical representation.
Smith chart:A graphical representation.
 
Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5
 
Mesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionMesh Processing Course : Multiresolution
Mesh Processing Course : Multiresolution
 
Int Math 2 Section 6-3 1011
Int Math 2 Section 6-3 1011Int Math 2 Section 6-3 1011
Int Math 2 Section 6-3 1011
 
Integrated 2 Section 6-3
Integrated 2 Section 6-3Integrated 2 Section 6-3
Integrated 2 Section 6-3
 
Digital Electronics Question Bank
Digital Electronics Question BankDigital Electronics Question Bank
Digital Electronics Question Bank
 
Admissions in india 2015
Admissions in india 2015Admissions in india 2015
Admissions in india 2015
 
Lesson 9: Parametric Surfaces
Lesson 9: Parametric SurfacesLesson 9: Parametric Surfaces
Lesson 9: Parametric Surfaces
 
Formula m2
Formula m2Formula m2
Formula m2
 
Conference ppt
Conference pptConference ppt
Conference ppt
 
Slides euria-1
Slides euria-1Slides euria-1
Slides euria-1
 
2.3 new functions from old functions
2.3 new functions from old functions2.3 new functions from old functions
2.3 new functions from old functions
 
2.2. interactive computer graphics
2.2. interactive computer graphics2.2. interactive computer graphics
2.2. interactive computer graphics
 
Gate ee 2010 with solutions
Gate ee 2010 with solutionsGate ee 2010 with solutions
Gate ee 2010 with solutions
 
Prévision de consommation électrique avec adaptive GAM
Prévision de consommation électrique avec adaptive GAMPrévision de consommation électrique avec adaptive GAM
Prévision de consommation électrique avec adaptive GAM
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse Problems
 
6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integration6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integration
 
11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)
 

Similar to Suppression enhancement

Applications Of One Type Of Euler-Lagrange Fractional Differential Equation
Applications Of One Type Of Euler-Lagrange Fractional Differential EquationApplications Of One Type Of Euler-Lagrange Fractional Differential Equation
Applications Of One Type Of Euler-Lagrange Fractional Differential EquationIRJET Journal
 
Formulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on GraphFormulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on Graphijtsrd
 
Dr Omar Presrntation of (on the solution of Multiobjective (1).ppt
Dr Omar Presrntation of (on the solution of Multiobjective (1).pptDr Omar Presrntation of (on the solution of Multiobjective (1).ppt
Dr Omar Presrntation of (on the solution of Multiobjective (1).ppteyadabdallah
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...Alexander Decker
 
Observations on Ternary Quadratic Equation z2 = 82x2 +y2
Observations on Ternary Quadratic Equation z2 = 82x2 +y2Observations on Ternary Quadratic Equation z2 = 82x2 +y2
Observations on Ternary Quadratic Equation z2 = 82x2 +y2IRJET Journal
 
Lect 03 Smith charts.pdf
Lect 03 Smith charts.pdfLect 03 Smith charts.pdf
Lect 03 Smith charts.pdfAhmed Salem
 
EMF.0.15.VectorCalculus-V.pdf
EMF.0.15.VectorCalculus-V.pdfEMF.0.15.VectorCalculus-V.pdf
EMF.0.15.VectorCalculus-V.pdfrsrao8
 
Passive network-redesign-ntua
Passive network-redesign-ntuaPassive network-redesign-ntua
Passive network-redesign-ntuaIEEE NTUA SB
 
Free vibration analysis of composite plates with uncertain properties
Free vibration analysis of composite plates  with uncertain propertiesFree vibration analysis of composite plates  with uncertain properties
Free vibration analysis of composite plates with uncertain propertiesUniversity of Glasgow
 
An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsLily Rose
 
Anatomy of human motion
Anatomy of human motionAnatomy of human motion
Anatomy of human motionWangdo Kim
 
A modeling approach for integrating durability engineering and robustness in ...
A modeling approach for integrating durability engineering and robustness in ...A modeling approach for integrating durability engineering and robustness in ...
A modeling approach for integrating durability engineering and robustness in ...Phuong Dx
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
techDynamic characteristics and stability of cylindrical textured journal bea...
techDynamic characteristics and stability of cylindrical textured journal bea...techDynamic characteristics and stability of cylindrical textured journal bea...
techDynamic characteristics and stability of cylindrical textured journal bea...ijmech
 
Design of a novel controller to increase the frequency response of an aerospace
Design of a novel controller to increase the frequency response of an aerospaceDesign of a novel controller to increase the frequency response of an aerospace
Design of a novel controller to increase the frequency response of an aerospaceIAEME Publication
 
Mm chap08 -_lossy_compression_algorithms
Mm chap08 -_lossy_compression_algorithmsMm chap08 -_lossy_compression_algorithms
Mm chap08 -_lossy_compression_algorithmsEellekwameowusu
 

Similar to Suppression enhancement (20)

Suppression Enhancement.pdf
Suppression Enhancement.pdfSuppression Enhancement.pdf
Suppression Enhancement.pdf
 
Applications Of One Type Of Euler-Lagrange Fractional Differential Equation
Applications Of One Type Of Euler-Lagrange Fractional Differential EquationApplications Of One Type Of Euler-Lagrange Fractional Differential Equation
Applications Of One Type Of Euler-Lagrange Fractional Differential Equation
 
Formulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on GraphFormulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on Graph
 
Dr Omar Presrntation of (on the solution of Multiobjective (1).ppt
Dr Omar Presrntation of (on the solution of Multiobjective (1).pptDr Omar Presrntation of (on the solution of Multiobjective (1).ppt
Dr Omar Presrntation of (on the solution of Multiobjective (1).ppt
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
 
Observations on Ternary Quadratic Equation z2 = 82x2 +y2
Observations on Ternary Quadratic Equation z2 = 82x2 +y2Observations on Ternary Quadratic Equation z2 = 82x2 +y2
Observations on Ternary Quadratic Equation z2 = 82x2 +y2
 
Lect 03 Smith charts.pdf
Lect 03 Smith charts.pdfLect 03 Smith charts.pdf
Lect 03 Smith charts.pdf
 
EMF.0.15.VectorCalculus-V.pdf
EMF.0.15.VectorCalculus-V.pdfEMF.0.15.VectorCalculus-V.pdf
EMF.0.15.VectorCalculus-V.pdf
 
Smith chart basics
Smith chart basicsSmith chart basics
Smith chart basics
 
Passive network-redesign-ntua
Passive network-redesign-ntuaPassive network-redesign-ntua
Passive network-redesign-ntua
 
Free vibration analysis of composite plates with uncertain properties
Free vibration analysis of composite plates  with uncertain propertiesFree vibration analysis of composite plates  with uncertain properties
Free vibration analysis of composite plates with uncertain properties
 
An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transforms
 
Anatomy of human motion
Anatomy of human motionAnatomy of human motion
Anatomy of human motion
 
A modeling approach for integrating durability engineering and robustness in ...
A modeling approach for integrating durability engineering and robustness in ...A modeling approach for integrating durability engineering and robustness in ...
A modeling approach for integrating durability engineering and robustness in ...
 
Modeling and vibration Analyses of a rotor having multiple disk supported by ...
Modeling and vibration Analyses of a rotor having multiple disk supported by ...Modeling and vibration Analyses of a rotor having multiple disk supported by ...
Modeling and vibration Analyses of a rotor having multiple disk supported by ...
 
Irjet v2i170
Irjet v2i170Irjet v2i170
Irjet v2i170
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
techDynamic characteristics and stability of cylindrical textured journal bea...
techDynamic characteristics and stability of cylindrical textured journal bea...techDynamic characteristics and stability of cylindrical textured journal bea...
techDynamic characteristics and stability of cylindrical textured journal bea...
 
Design of a novel controller to increase the frequency response of an aerospace
Design of a novel controller to increase the frequency response of an aerospaceDesign of a novel controller to increase the frequency response of an aerospace
Design of a novel controller to increase the frequency response of an aerospace
 
Mm chap08 -_lossy_compression_algorithms
Mm chap08 -_lossy_compression_algorithmsMm chap08 -_lossy_compression_algorithms
Mm chap08 -_lossy_compression_algorithms
 

More from Leonardo Auslender

4_2_Ensemble models and gradient boosting2.pdf
4_2_Ensemble models and gradient boosting2.pdf4_2_Ensemble models and gradient boosting2.pdf
4_2_Ensemble models and gradient boosting2.pdfLeonardo Auslender
 
4_5_Model Interpretation and diagnostics part 4_B.pdf
4_5_Model Interpretation and diagnostics part 4_B.pdf4_5_Model Interpretation and diagnostics part 4_B.pdf
4_5_Model Interpretation and diagnostics part 4_B.pdfLeonardo Auslender
 
4_2_Ensemble models and grad boost part 2.pdf
4_2_Ensemble models and grad boost part 2.pdf4_2_Ensemble models and grad boost part 2.pdf
4_2_Ensemble models and grad boost part 2.pdfLeonardo Auslender
 
4_2_Ensemble models and grad boost part 3.pdf
4_2_Ensemble models and grad boost part 3.pdf4_2_Ensemble models and grad boost part 3.pdf
4_2_Ensemble models and grad boost part 3.pdfLeonardo Auslender
 
4_5_Model Interpretation and diagnostics part 4.pdf
4_5_Model Interpretation and diagnostics part 4.pdf4_5_Model Interpretation and diagnostics part 4.pdf
4_5_Model Interpretation and diagnostics part 4.pdfLeonardo Auslender
 
4_3_Ensemble models and grad boost part 2.pdf
4_3_Ensemble models and grad boost part 2.pdf4_3_Ensemble models and grad boost part 2.pdf
4_3_Ensemble models and grad boost part 2.pdfLeonardo Auslender
 
4_2_Ensemble models and grad boost part 1.pdf
4_2_Ensemble models and grad boost part 1.pdf4_2_Ensemble models and grad boost part 1.pdf
4_2_Ensemble models and grad boost part 1.pdfLeonardo Auslender
 
Classification methods and assessment.pdf
Classification methods and assessment.pdfClassification methods and assessment.pdf
Classification methods and assessment.pdfLeonardo Auslender
 
0 Model Interpretation setting.pdf
0 Model Interpretation setting.pdf0 Model Interpretation setting.pdf
0 Model Interpretation setting.pdfLeonardo Auslender
 
4 2 ensemble models and grad boost part 3 2019-10-07
4 2 ensemble models and grad boost part 3 2019-10-074 2 ensemble models and grad boost part 3 2019-10-07
4 2 ensemble models and grad boost part 3 2019-10-07Leonardo Auslender
 
4 2 ensemble models and grad boost part 2 2019-10-07
4 2 ensemble models and grad boost part 2 2019-10-074 2 ensemble models and grad boost part 2 2019-10-07
4 2 ensemble models and grad boost part 2 2019-10-07Leonardo Auslender
 

More from Leonardo Auslender (20)

1 UMI.pdf
1 UMI.pdf1 UMI.pdf
1 UMI.pdf
 
Ensembles.pdf
Ensembles.pdfEnsembles.pdf
Ensembles.pdf
 
4_2_Ensemble models and gradient boosting2.pdf
4_2_Ensemble models and gradient boosting2.pdf4_2_Ensemble models and gradient boosting2.pdf
4_2_Ensemble models and gradient boosting2.pdf
 
4_5_Model Interpretation and diagnostics part 4_B.pdf
4_5_Model Interpretation and diagnostics part 4_B.pdf4_5_Model Interpretation and diagnostics part 4_B.pdf
4_5_Model Interpretation and diagnostics part 4_B.pdf
 
4_2_Ensemble models and grad boost part 2.pdf
4_2_Ensemble models and grad boost part 2.pdf4_2_Ensemble models and grad boost part 2.pdf
4_2_Ensemble models and grad boost part 2.pdf
 
4_2_Ensemble models and grad boost part 3.pdf
4_2_Ensemble models and grad boost part 3.pdf4_2_Ensemble models and grad boost part 3.pdf
4_2_Ensemble models and grad boost part 3.pdf
 
4_5_Model Interpretation and diagnostics part 4.pdf
4_5_Model Interpretation and diagnostics part 4.pdf4_5_Model Interpretation and diagnostics part 4.pdf
4_5_Model Interpretation and diagnostics part 4.pdf
 
4_3_Ensemble models and grad boost part 2.pdf
4_3_Ensemble models and grad boost part 2.pdf4_3_Ensemble models and grad boost part 2.pdf
4_3_Ensemble models and grad boost part 2.pdf
 
4_2_Ensemble models and grad boost part 1.pdf
4_2_Ensemble models and grad boost part 1.pdf4_2_Ensemble models and grad boost part 1.pdf
4_2_Ensemble models and grad boost part 1.pdf
 
4_1_Tree World.pdf
4_1_Tree World.pdf4_1_Tree World.pdf
4_1_Tree World.pdf
 
Classification methods and assessment.pdf
Classification methods and assessment.pdfClassification methods and assessment.pdf
Classification methods and assessment.pdf
 
Linear Regression.pdf
Linear Regression.pdfLinear Regression.pdf
Linear Regression.pdf
 
4 MEDA.pdf
4 MEDA.pdf4 MEDA.pdf
4 MEDA.pdf
 
2 UEDA.pdf
2 UEDA.pdf2 UEDA.pdf
2 UEDA.pdf
 
3 BEDA.pdf
3 BEDA.pdf3 BEDA.pdf
3 BEDA.pdf
 
1 EDA.pdf
1 EDA.pdf1 EDA.pdf
1 EDA.pdf
 
0 Statistics Intro.pdf
0 Statistics Intro.pdf0 Statistics Intro.pdf
0 Statistics Intro.pdf
 
0 Model Interpretation setting.pdf
0 Model Interpretation setting.pdf0 Model Interpretation setting.pdf
0 Model Interpretation setting.pdf
 
4 2 ensemble models and grad boost part 3 2019-10-07
4 2 ensemble models and grad boost part 3 2019-10-074 2 ensemble models and grad boost part 3 2019-10-07
4 2 ensemble models and grad boost part 3 2019-10-07
 
4 2 ensemble models and grad boost part 2 2019-10-07
4 2 ensemble models and grad boost part 2 2019-10-074 2 ensemble models and grad boost part 2 2019-10-07
4 2 ensemble models and grad boost part 2 2019-10-07
 

Recently uploaded

Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...dajasot375
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfLars Albertsson
 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Spark3's new memory model/management
Spark3's new memory model/managementSpark3's new memory model/management
Spark3's new memory model/managementakshesh doshi
 
RadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdfRadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdfgstagge
 
100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptxAnupama Kate
 
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Data Science Project: Advancements in Fetal Health Classification
Data Science Project: Advancements in Fetal Health ClassificationData Science Project: Advancements in Fetal Health Classification
Data Science Project: Advancements in Fetal Health ClassificationBoston Institute of Analytics
 
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...Suhani Kapoor
 
Data Science Jobs and Salaries Analysis.pptx
Data Science Jobs and Salaries Analysis.pptxData Science Jobs and Salaries Analysis.pptx
Data Science Jobs and Salaries Analysis.pptxFurkanTasci3
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
B2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docxB2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docxStephen266013
 
Unveiling Insights: The Role of a Data Analyst
Unveiling Insights: The Role of a Data AnalystUnveiling Insights: The Role of a Data Analyst
Unveiling Insights: The Role of a Data AnalystSamantha Rae Coolbeth
 
Brighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data StorytellingBrighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data StorytellingNeil Barnes
 
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service Amravati
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service AmravatiVIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service Amravati
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service AmravatiSuhani Kapoor
 
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...shivangimorya083
 

Recently uploaded (20)

Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
 
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdf
 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
 
Spark3's new memory model/management
Spark3's new memory model/managementSpark3's new memory model/management
Spark3's new memory model/management
 
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in Kishangarh
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in  KishangarhDelhi 99530 vip 56974 Genuine Escort Service Call Girls in  Kishangarh
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in Kishangarh
 
RadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdfRadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdf
 
100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx
 
E-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptxE-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptx
 
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
 
Data Science Project: Advancements in Fetal Health Classification
Data Science Project: Advancements in Fetal Health ClassificationData Science Project: Advancements in Fetal Health Classification
Data Science Project: Advancements in Fetal Health Classification
 
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
 
Russian Call Girls Dwarka Sector 15 💓 Delhi 9999965857 @Sabina Modi VVIP MODE...
Russian Call Girls Dwarka Sector 15 💓 Delhi 9999965857 @Sabina Modi VVIP MODE...Russian Call Girls Dwarka Sector 15 💓 Delhi 9999965857 @Sabina Modi VVIP MODE...
Russian Call Girls Dwarka Sector 15 💓 Delhi 9999965857 @Sabina Modi VVIP MODE...
 
Data Science Jobs and Salaries Analysis.pptx
Data Science Jobs and Salaries Analysis.pptxData Science Jobs and Salaries Analysis.pptx
Data Science Jobs and Salaries Analysis.pptx
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
B2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docxB2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docx
 
Unveiling Insights: The Role of a Data Analyst
Unveiling Insights: The Role of a Data AnalystUnveiling Insights: The Role of a Data Analyst
Unveiling Insights: The Role of a Data Analyst
 
Brighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data StorytellingBrighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data Storytelling
 
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service Amravati
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service AmravatiVIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service Amravati
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service Amravati
 
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...
 

Suppression enhancement

  • 1. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018 Leonardo Auslender Leoldv12 ’at’ gmail ’dot’ com Informs, NYC 2009.
  • 2. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018 Introduction and data description Overall Graphical View Befuddlers: Analytics of suppression, redundancy and enhancement Befuddlers: Graphical presentation Coefficient interpretation in multivariate setting Befuddlers and co-linearity
  • 3. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018 Befuddling issues in linear regression context due to misunderstand of ‘conditioning’. Will show that: - Uncorrelated predictor to dependent variable may increase significance and fit of other predictors. -Correlated predictors may enhance model fit. -Extreme corr (x, z) does not always  co-linearity. Coefficient effect interpretation can be faulty when distinction between zero-order and partial correlation is disregarded.
  • 4. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
  • 5. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Correlations, conditional correlations and Redundancy. Linear model Y = a0 + a X + b Z + , with usual assumptions; circles below are unit-variance circles (a + b + d + e = 1). Y X Z b d e a r2 yx = b + d r2 yz = d + e R2 = b + d + e pr2 yx = b / (a + b) pr2 yz = e/ (a + e), sr2 yx = b sr2 yz = e r2: zero order corr2  SSR(X, Z) / SST. pr2: partial corr2  r2 yx.z= SSR(X/Z) / [SST – SSR(Z)] . sr2 : semi-partial corr2  r2 y(x.z) = SSR(X/Z) / SST. SST = 1 = a + b + d + e. SSR(X) = b + d. SSR(X / Z) = b. SSR(X, Z) = b + d + e. SSR(Z) = d + e. But, SSR(X) + SSR(Z) > SSR(X,Z) not always true. 8/24/2018
  • 6. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Note that in previous slide: R2 = b + d + e R2 ≤ r2 yx + r2 yz = b + 2d + e r2 yx = b + d r2 yz = d + e ‘d’ appears once in R2 while the sum of the marginal correlations implies 2d. From previous slide, ‘d’ cannot be obtained via partial or semi partial corrs alone. Instead, via marginal correlations: R2 = (r2 yx + r2 yz – 2 ryx ryz rxz) / (1 – r2 xz) , and “d” = r2 yx - sr2 yx = r2 yz - sr2 yz Y X Z b d e a 8/24/2018
  • 7. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009               2 xz n i i i 1 xy n n 2 2 i i i 1 i 1 xy xz yz yx y(x.z) 2 xz (1 - r : det. of corr. matrix): (X X)(Y Y) Zero order r (X X) (Y Y) Semi Correlations partial ( r - of different r r ) sr r (1 - r orders. ) 8/24/2018
  • 8. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009     yx yx.z yx xz yz 2 2 xz yz yx.z yw.z xw.z yx yx.zw 2 2 yw.z xw.z Partial : pr r ( r - r r ) (1 - r ) (1 - r ) partial 2nd : ( r - Correlations r r ) pr r (1 of different o - r ) (1 rders. - r ) 8/24/2018
  • 9. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Important relationships: 8/24/2018 2 . 2 . 2 2 . . 2 . ( / ) ( , ) ( ) ( ) ( ) ( / , ) ( , ) ( , ) ( , ) ( , ) 1 yx z yx zw y xwz y wz y wz SSR x z SSR x z SSR z pr SST SSR z SST SSR z SSR x z w pr SST SSR z w SSR x z SSR z w SST SSR z w R R R              
  • 10. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Regr R69 = R72 R78 Corr Partial Semi Y R Square Indep. Var -0.01836688 0.00034119 0.00034102R69 0.0008622394 R72 R78 -0.02283033 0.00052507 0.00052490 pr2 R69.R72 = r2 R69.R72(R78) = (R2 – r2 R69.R72) / (1 - r2 R69.R72), also equal to partial corr calculated from all zero order correlations. sr2 R69.R72 = r2 R69(R72.R78) = (R2 – r2 R69.R72), equal to semi-partial calculated from all zero order correlations. It is proportion of Var (R69) fitted by R72 over and above what R78 has already fitted. Let’s partition R2 ……………… (Note: This is IMPORTANT!!!). 8/24/2018
  • 11. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 2 2 2 2 0.123... 01 0(2.1) 0(3.12) 2 0( .123... 1) that is, addition of non-redundant X information. ... for p independent vars. Note: sum of correlations,semi-partial p p p R r r r r       8/24/2018
  • 12. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018 Similarly for SSR: Extra sum of Squares decomposition for SSR (Type I)             1 2 1 2 1 3 2 1 1 2 1 2 3 1 1 1 2 3 2 2 1 2 1 2 1.2 2 2 ( , ,,, ) ( ) ( / ) ( / , ) ... ( / ,,, , ) ( , / ) ( ) ( , , ) ( ) ( , ) ( / ) ( ) ( ) p p p Y SSR X X X SSR X SSR X X SSR X X X SSR X X X X and SSR X X X SSE X SSE X X X SSE X SSE X X SSR X X R SSE X SSE X
  • 13. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018 Correlation and angles. , .....( ) : ( , ) ( ) ( ) ( )( ) ( ) ( )                  std n-1 1 2 2 1 1 remember |X |= 1 X standardized 1 corr (X,Y) = std X std std xy n i i i xy n n i i i i X X X s X YCov X Y nVar X Var Y r X X Y Y r X X Y Y Need to find length of standardized Variable to finish corr (X, Y) and use the concept of inner product.
  • 14. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018                 , , 2 , 2 ,2 , 2 , ( ) ( 1) ( 1)( ) ( ) ( ) ( 1) i j i i j i j i i j i i i j i j i X X z X X n n X X length z z X X n Length of a standardized Variable
  • 15. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018 ( ) ( ) cos ( os ) c , | || | cos               From (1) before, and by inner product definit 1 1 1 ion: 1 1 1 std std std std n n n X Y X Y n n 1) Corr (X, Y) = Corr standardized (X, Y). 2) All standardized variables have same length √(n-1). 3) Corr is always inner product of corresponding standardized variables divided by n – 1  average weighted sum of standardized X with weights given by standardized Y, and vice-versa.
  • 16. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018 Standardized and non-standardized regression coefficients x 2 x 2 2 2 ' x ' ' xx x x y ' x Regular Coefficient b (X and Z case, lower case: mean removed) z xy zx zy b z x ( xz) Standardized Coefficient b b can be obtaineds General case b b s from straight regression. X and Z case b             yx xz yz 2 xz ' x yx r (r * r ) Similarity with straight (1 r ) regr coeff estimation. Equality with X case b r corr coeff.   
  • 17. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018 Example. Verifying length stdized variable Result Statistic 32.28Length X ~ N (-3, 1) Length Y ~ N ( 5, 4) 51.89 Length Z ~ B (.3, 100) 5.83 Length STD(X) 9.95 Length STD(Y) 9.95 Length STD(Z) 9.95 # Obs 100.00 Sqrt (# Obs - 1) 9.95 Simple Statistics Variable N Mean Std Dev Sum Minimum Maximum X 100 -3.07297 0.99339 -307.29669 -5.89441 -0.94043 Y 100 4.71923 2.16757 471.92321 -0.52986 9.43811 Z 100 0.34000 0.47610 34.00000 0 1.00000 STDX 100 0 1.00000 0 -2.84023 2.14673 STDY 100 0 1.00000 0 -2.42165 2.17703 STDZ 100 0 1.00000 0 -0.71414 1.38628 Correlations X Y Z STDX STDY STDZ Statistic Computation -3.073 4.719 0.340 0.000 0.000 0.000MEAN STD 0.993 2.168 0.476 1.000 1.000 1.000 N 100.000 100.000 100.000 100.000 100.000 100.000 CORR X 1.000 -0.009 0.048 1.000 -0.009 0.048 Y 1.000 0.057 -0.009 1.000 0.057 Z 1.000 0.048 0.057 1.000 STDX 1.000 -0.009 0.048 STDY 1.000 0.057 STDZ 1.000
  • 18. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
  • 19. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Two befuddling issues. 1) Why or when is the sign of a standardized coefficient opposite to sign of zero order correlation of predictor with dependent variable? (Suppression). 2) Why or when does addition of correlated predictor to set of predictors cause R2 to be higher than sum of individual zero order correlations? (Enhancement). 8/24/2018
  • 20. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
  • 21. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018 Classical Suppression Example (Horst 1941). Study of pilot performance (Y) from measures of mechanical test (X) & verbal abilities test (Z). When verbal ability (Z) was added to mechanical (X) ability in equation, effect of X increased. Happened because Z fitted variability in X, i.e., test of mechanical ability also required verbal skills to read test directions. But Z did not affect Y. In fact, we have simultaneous equation system (SES) with two dependent variables, X and Y. Y = f (X, Z), X = g (Z) But, specification of SES is far more difficult.
  • 22. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018 Horst 1941 Z Mechanical Ability Verbal Ability x Y pilot performance Horst found corr (Y, X) > 0 (pilot performance related to mechanical ability), corr (Z, X) > 0 (test performance for test taking), and corr (Z, Y) = 0 (test taking did not assist in airplane piloting).
  • 23. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Correlations and Redundancy in linear models. R2 decomposition. Let Bi be beta coefficients for equation with standardized variables. R2 =  Bi 2 + 2  Bi Bj rij ( i  j) Formula does not decompose Var (Y) because some Bi Bj rij may be negative. However, when all cross-terms are zero, R2 =  Bi 2 and also R2 =  r2 yi ………………………………….(1) (setting cross-correlations to zero): Case of Independence. Y X Z Independence  No Redundancy. 8/24/2018
  • 24. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Correlations and redundancy in linear models. Stepwises  highly correlated variables with dependent variable, “hoping” formula (1) to apply (but seldom happens). Rather than independence, more commonly: Redundancy. It occurs whenever (in absolute terms) ryx > ryz rxz and ryz > ryx rxz  rxz ≠ 0 sryx < ryx, and Bx < ryx. RedundancyY X Z d 8/24/2018
  • 25. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Redundant info for Y = a + bX + cZ Corr (Y,X) Std Beta Corr (Y,Z) Corr (X,Z) Corr(Y,Z) *Corr(X,Z) Corr(Y,X) *Corr(X, Z) Semi (Y,X /Z) Y X Z Redundant ? 0.288 0.313 0.346 0.135 0.047 0.039 0.244 R 1 R 2 R3 N R59 Y 0.288 -0.029 -0.050 -0.073 0.004 -0.021 0.286 R69 N 0.288 -0.070 -0.067 0.012 -0.001 0.004 0.289 R72 Y 0.288 0.024 0.025 0.006 0.000 0.002 0.288 R78 Y 0.288 -0.175 -0.209 -0.129 0.027 -0.037 0.264 Pairwise Redundancy: Surendra Data. 8/24/2018 sryx < ryx, and Bx < ryx.
  • 26. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Suppression Effects. Areas ‘a’, ‘b’ and ‘e’ can be understood as proportions of “Y” variance. Area ‘d’ does not have same interpretation, because can take negative value  relationship of suppression or enhancement. Y X Z b d e a 8/24/2018
  • 27. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 In this case, r2 yz ~ 0, and Z does not directly affect Y, except in so far as reducing unfitted variance of X. bz=0, |bx.z|>|bx|, bx.zbx>0  a) bx.z > bx> 0 or b) bx.z < bx < 0 R2 = 1 (two predictor case)  r2 xz = 1 - r2 xy , i.e., Z fits remaining X variance. It can be verified that: R2 = pr2 yx = sr2 yx Y X Classical Suppression Suppression Effects – Classical (some graphics). Cohen and Cohen (1975). Conger (1974) calls it “Traditional”. In later parlance, also case of Enhancement and of Confounding (confounding used in logistic regression). Y Z 8/24/2018
  • 28. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 In this case, ryz / ryx < rxz; Z primarily suppresses unfitted variance of X, and vice-versa. Y X Z Suppression Effects – Net (graphics). Cohen and Cohen (1975)’s notation. Conger (1974) calls it “negative”. Suppressor variable receives negative coefficient, and other coefficient is larger than correlation with dependent variable. Coefficient of suppressor opposite to sign of zero order correlation with dependent variable. 8/24/2018
  • 29. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Suppression Effects – Cooperative Suppression. (no graph, Cohen and Cohen (1975), Conger (1974) calls it “reciprocal”): Positive correlation with dependent variable, but negative correlation among pairs of independent variables. Thus, when variable is partialled out from another, all measures of fit are enhanced. In later parlance, case of Enhancement and Confounding. In this case, suppressor coefficient exceeds correlation with dependent variable. In terms of correlations and regression coefficients: 8/24/2018 yx yz xz x.z x x.z x z.x z z.x z r 0 r 0 r 0 |b | |b |, b b 0 |b | |b |, b b 0       
  • 30. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Pearson Correlation Coefficients, N = 10000 Prob > |r| under H0: Rho=0 Y X Z Y 1.00000 0.24484 <.0001 0.12213 <.0001 X 0.24484 <.0001 1.00000 -0.93240 <.0001 Z 0.12213 <.0001 -0.9324 <.0001 1.00000 Cooperative Suppression Fit Measure 1 Fit Measure 2 Root MSE Depende nt Mean Coeff Var R- Square Adj R- Sq Value Value Value Value Value Value Model 1.95 3.03 64.34 0.06 0.06 0.00X_ALONE X_AND_Z 0.00 3.03 0.00 1.00 1.00 0.00 Cooperative Suppression Parameter Estimate Pr > |t| VIF Model Variable 3.79 0.00 .X_ALON E Intercept X 0.12 0.00 . X_AND_Z Intercept 0.00 1.00 0.00 X 1.33 0.00 7.66 Z 0.67 0.00 7.66 Simulated Data 8/24/2018 Cooperative Example.
  • 31. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 “Eli” E(xploratory) L(inear) I(nformation) Plot (Auslender, 2000): “0” = corr (Y, X) “S, P” = Semi , Partial [(Y, X / Z)] Y = R1 & X = R2 Z min max -0.208974272 0.3463911724 *----------------------------------------------------------------------* R3 | |------------------------------S-P---------0| R59 | 0-----|-----------------------------------* | R69 | 0-------|------------------------------------* | R72 | |---0--------------------------------* | R78 |0-------------------------|---------------------------------* | *----------------------------------------------------------------------* 8/24/2018
  • 32. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Suppression Effects. Detection: Std. coeff (semi-partial correlation) > | ri | suppression. If ri is zero or close to it  classical suppression. If sg (std coeff) = -sg (correlation)  net suppression. If std coeff > ri and sg(std coeff) = sg (ri )  cooperative suppression. 8/24/2018
  • 33. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018 Horst Conger Cohen Classical Traditional Classical Negative Net Reciprocal Cooperative
  • 34. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
  • 35. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Correlations and Redundancy in linear models. Misconception (Hamilton, 1987). Since R2 =  r2 i (orthogonal case)  R2   ri 2 (general case)? NO … (I) Y = a + b X + c Z + , (with SSR (X, Z)) equivalent to: 1) Y = d + e X + 1  e1 = Y – est (Y), its SSR called SSR(X) 2) Z = f + g X + 2  e2 = Z – est(Z), 3) e1 = h e2 + 3 (no intercept model), SSR called SSR (Z/X) …… (II)  SSR(X, Z) = SSR(X) + SSR(Z / X) …….(1) (recall earlier slide) R2 = SSR / SST,  R2 >  r2 i  SSR(Z/X) > SSR(Z) ……. (III) Deriving Working formulae in terms of simple correlations: pr2 yz = r2 yz.x = SSR (Z / X) / [SST – SSR(X)], and with (1)  R2 = r2 x + r2 yz.x(1 - r2 x ) = zero order + semi-partial. 8/24/2018
  • 36. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Correlations and Redundancy in linear models.  R2  rx 2 + rz.x 2 but R2 > rx 2 + rz 2 is possible. Nec. and suff. condition for R2 >  r2 i  SSR(Z/X) > SSR(Z) is:                2 yx yzyx2 xz xz yx 2 yz yx yz 2 2 2 yx yx yz 2 2 yx yz 2 2xz Zx yx yz 0 r 2r r pr r (r ) 0 (1 r ) r r 2r r r r pr (1 r ). r r "Enhancement" Remember that: spr Condition is: 8/24/2018 Currie and Korabinski (1984) call it ‘enhancement’. Hamilton (1987) “synergism”.
  • 37. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Correlations and Redundancy in linear models. Since R2 >  r2 i possible  1) X-Y scatter plots and correlation measures may be inadequate for variable selection with correlated variables. X-Y correlations can be near 0 while R2 could be extremely high. 2) Variable Removal due to co-linearity suspicions may be counterproductive. 3) Forward stepwise methods suffer most from co-linearity. 4) Note that Corr (Y, Z) ≈ 0 and Z may still be useful  Effects on Variable Selection? t-value of Z could be insignificant. 5) Enhancement counterintuitive: predictor contributes more to regression in presence of other predictors than by itself. 8/24/2018
  • 38. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Pearson Correlation Coefficients, N = 10000 Prob > |r| under H0: Rho=0 Y Z X Y 1.00000 0.00214 0.8306 0.24484 <.0001 Z 0.00214 0.8306 1.00000 0.97008 <.0001 Simulated Data, case Of Enhancement. Fit Measure 1 Fit Measure 2 Root MSE Dependent Mean Coeff Var R-Square Adj R-Sq Value Value Value Value Value Value Model 1.95 3.03 64.34 0.06 0.06 0.00X_ALONE X_AND_Z 0.00 3.03 0.00 1.00 1.00 0.00 Net Suppression Estima te SE Pr > |t| VIF Model Variabl e 3.79 0.04 0.00 .X_ALON E Interc. X 0.12 0.00 0.00 . X_AND_ Z Interc. 0.00 0.00 1.00 0.00 X 1.33 0.00 0.00 7.66 Z 0.67 0.00 0.00 7.66 X on Z Interc. 1.87 0.04 0.00 0.00 Z -0.48 0.00 0.00 1.00 Y and Z hardly correlated, X and Z highly correlated. 8/24/2018
  • 39. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
  • 40. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 x Y ,X z Y ,z ˆ ˆ| | | r | and | | | r |, stdndrzd coeffs. (1)   8/24/2018 Unifying differing nomenclature and definitions. Velicer (1978) changed focus from standardized coeffs to R2 because in previous formulation, |corr| < 1 but betas unconstrained. He suggested: called “enhancement” by Currie and Korabinski (1984). Let’s call enhancement (1) and (2) together. Otherwise, just suppression. 2 2 2 Y,X Y,ZR r r (2) 
  • 41. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
  • 42. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Comparing Suppression and Enhancement Effects. Per Friedman & Wall (2005), standardized variables: x Y , X ˆ| | | r |  2 2 2 Y , X Y ,Zi y,i Suppression : ˆ| | | r | but R r r    2 2 2 Y , X Y ,Zi y,i Re dundancy : ˆ| | | r | and R r r    2 2 2 Y ,X Y ,Zi y,i Enhancement : ˆ| | | r | but R r r   8/24/2018
  • 43. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Betas, suppression and enhancement Examples, Y = f (X, Z). (Friedman-Wall 2005). yx yz 2 2 yx yz yx yz xzY,X Y,Z X,Z 2 X 2 2 X,Z xz xz xz yi2 2 yx yz 2 2 yx yz yx yz x 2r r r r r r 2r r rr r *r ˆ , for std X, and R 1 r (1 r ) Enhancement r or r 0, since r 0 by assumption. Nec. and suff. conditions : 1) r r and 2) r r 1 r                  z yx yz xz 0 region of enhanc. if r ,r >0 and r 0 enhancement.    8/24/2018
  • 44. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Cooperative Suppression+ Enhancement Redundancy Net Suppression Ne Region Name 2 2 2 2 2 2 2 2 2 ˆ ˆ ( ,0) ˆ ˆ(0, ) 0 0 2 ( , ) 0 xz x z yx yz yx yz yz x yx z yz yx yz yx yz yx yz yx yx yz yx yx yz r std std R I low r r r r r II r r r r r r r r III r r r r r r IV                    t Suppresion + Enhancement 2 2 2 2 2 ( , ) 0yx yz xz yx yx yz yx yz r r r upper r r r r r      8/24/2018
  • 45. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Different terminology (Friedman, Wall 2005): “1” = X, “2” = Z. 8/24/2018
  • 46. Leonardo Auslender M008 Ch. 3 – Copyright 2008 Example 1: 2 indep. Vars: Y = f (X, Z) (Friedman, Wall, 2005). (R2 = (r2 yx + r2 yz – 2 ryx ryz rxz) / (1 – r2 xz) = r2 yx + r2 y(x.z) ) 8/24/2018
  • 47. Leonardo Auslender M008 Ch. 3 – Copyright 20088/24/2018
  • 48. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
  • 49. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
  • 50. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
  • 51. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Suppression and Enhancement Effects – summary. ”Suppressor” variable: enhances predictive ability of another variable by reducing irrelevant variance of otherwise relevant variable. In case of standardized coefficients, Z is suppressor variable for X if Bx > rYX. (Note: not necessary that rYZ be strictly 0). “Redundant” variables decrease weights of other variables (Conger, 1974). “Enhancer” variable: increases overall R2 beyond sum of zero-order correlations. 8/24/2018
  • 52. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 kY k k k k xy xz yz yx y(x.z) 2 xz k x ˆyx x yx ˆy(x .x ) Velicer Suppression 2 predictor case : ( r - r r ) sr r (1 - r ) J predictor case (Smith,1992) : ˆx prediction on remaining (J-1) predictors. ( r - r r sr r      k k k k k k k k k k k k k k ˆx 2 ˆx x 2 2 yx yx x y ˆyx ˆ ˆx x x x2 2 yx ˆyx ) (1 - r ) Velicer's criterion : r sr 2r r r or r 0 r r      8/24/2018
  • 53. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
  • 54. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 2 1 2 2             / Confusion on signs of coefficients and interpretation for ( ) { ( ) } ( ) ( )yi xy xy xi xy Y X sY Y b r r sX X sg r sg b . . . 2 2 But in multivariate: , estimated equation (emphasizing "partial") ˆ , 1 ( ) ( ) ( ) ( ) and 1 YX Z YZ X Y YX YZ XZ YX Z X XZ YX YX YZ XZ XZ Y X Z Y a b X c Z where s r r r b s r sg b sg r abs r abs r r r                    8/24/2018
  • 55. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 If recall partial and semi-partial correlation formulae  . 2 . 1 * ( ) ( ) Y YX YZ XZ YX Z X XZ YX Z Y yx X Y X s r r r b s r b s sr s s semi partial s sg sg semi partial          8/24/2018 Coefficient signs in multivariate setting cannot necessarily connote expected effects derived from theoretical analysis.
  • 56. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
  • 57. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Some Definitions. Setting: linear models, specifically regression. Co-linearity: existence of (almost) perfect linear relationships among predictors, such that estimated coefficients are unstable in repeated samples. Notice that pair-wise or any other correlation notion is NOT part of definition; instead LINEAR DEPENDENCE or INDEPENDENCE is at its core. 8/24/2018
  • 58. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Full (Exact) Colinearity Equivalent conditions: ( ) ( ' ) | ' | 0rank X rank X X p X X    One or more predictors can be exactly expressed in terms of the others. Sampling variance of some β = ∞, non-unique coeffs. 2 1 ( ).iR for some ith predictor s 8/24/2018
  • 59. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Linear Regression Near Co-linearity: more likely. (X’X) “wobbly”, “almost singular”. Almost??. Detour: 2 2 2 2 2 2 i 1 ( ) . , ( 1) 1 var( ), : regr X on other X's.     i i i i i i Var b n s R s X R R  8/24/2018
  • 60. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 Present Practice, derived from ‘small’ datasets experience. 2 1 1 iR : Variance Inflation Factor of Xi. √VIF_Xi affects CI of βi multiplicatively. Rule of thumb: VIF > 10  strong possibility of colinearity. (1 / VIF) also called Tolerance.          2 2 2 2 ' 2 2 2 2 i 2 -1 , 1 1 ( ) . . , ( 1) 1 1 var( ), : regr X on other X's. If X standardized, corr = cov matrix = ( ' ) i i i i i i i i i i i i Var b n s R X X R s X R R R X X 8/24/2018
  • 61. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009     2 2 2 1 ( ) . , ( 1) 1i i i Var b n s R For given ‘p’ model. 1) In data mining, p → ∞, and R2 does not decrease with p      2 2 lim lim 1 p i p R R  Naïve estimation with (almost) all variables for the sake of prediction (data mining disregards interpretation and with powerful hard- and soft-ware)  at least colinearity. Data Mining World. 8/24/2018
  • 62. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 2 i 2 xz 2 x,z i 1ˆX, Z indep. standardized, Var( ) 1 ˆ1 Var( ) ? Not necessarily.            8/24/2018 When corr (X, Z) is very large, for “given” sigma-sq, var of beta coefficient grows to infinity. But sigma-sq does not necessarily stay fixed.
  • 63. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 2009 2 2 2 i xz2 xz 2 2 xz yx yz yx yz 2 xz i 1 R 1ˆVar( ) (1), and r 1 R 1. n 3 1 r r *r (1 r )(1 r ), ˆR (r Var( ) 0. ... extreme values: r = extreme values)=1, and              8/24/2018 Different Formulation.
  • 64. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018
  • 65. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018 Region II and III: se’s increase with increasing co-linearity, but decrease at extremes. Fig 5 and 6 show that high correlation coexist with small se’s under enhancement and even under Suppression.
  • 66. Leonardo Auslender M008 Ch. 3 – Copyright 2008Leonardo Auslender Copyright 20098/24/2018