SlideShare a Scribd company logo
1 of 64
Download to read offline
Lecture (3)Lecture (3)
Stochastic models
for site characterization:
Theory
Models of The Stochastic ApproachModels of The Stochastic Approach
Discrete Models Continuous Models Hybrid Models
Stochastic Approach
Continuous ModelsContinuous Models
- Multi-variate Normal Method.
-LU-Decomposition Method.
-Nearest Neighbour Method.
-Turning Bands Method.
Multivariate Normal MethodMultivariate Normal Method
The multi-variate normal density function Np(µ,C), p-dimensional normal
random variate, is given by,
( ) ( )⎥
⎦
⎤
⎢
⎣
⎡
µZCµZ
C
Z ---
π||
=f -T
p//
1
221
2
1
exp
)2(
1
)(
where, Np(µ,C) is a multi-variate normal distribution with mean µ, and
covariance matrix C,
p is the number of parameters (nodes of the model),
Z = {Z1, Z2,..., Zp}T, p-dimensional random vector, (p*1),
µ = {µ1, µ2,…, µp}T , p-dimensional mean values vector, (p*1),
T is superscript transpose operation of a matrix,
-1 superscript is inverse operation of a matrix,
C is a pxp covariance matrix given by,
Covariance MatrixCovariance Matrix
...),(
.....
....
...),(
),(..),(
2
1
2
2
12
121
2
2
1
⎥
⎥
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎢
⎢
⎣
⎡
=
p
i
Zp
Z
Z
pZ
ZZCov
ZZCov
ZZCovZZCov
σ
σ
σ
σ
C
⎮C⎮ is the determinant of the covariance matrix C,
and σ2
Zi is the variance of the random parameter Zi.
Diagonal elements are the variances of the individual random variable.
Off-diagonal components are covariances of two random variables Zi, Zj
Correlation MatrixCorrelation Matrix
The correlation coefficient ρij
σσ
ρ
ZZ
ji
ij
ji
)Z,ZCov(
=
The correlation matrix R
1...
.....
..1..
...1
..1
1
21
112
⎥
⎥
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎢
⎢
⎣
⎡
ρ
ρ
ρρ
=
p
p
R
General Technique for Generation ofGeneral Technique for Generation of
Multivariate Distribution (CD Approach)Multivariate Distribution (CD Approach)
Let Z = {Z1,Z2,Z3,...Zp}T be the p-dimensional random vector of interest.
)()()...,(),()( 11212112121 zpz|zpz,...z|zpz,...z,z|zpz,...,z,zp p-pn-p-pp −=
The conditional distribution approach involves the following steps:
(1) generate Z1 = z1 from the marginal distribution of Z1 (uni-variate
distribution of Z1);
(2) generate Z2 = z2 from the conditional distribution of Z2 given Z1 = z1;
(3) generate Z3 = z3 from the conditional distribution of Z3 given Z1 = z1
and Z2 = z2...
and so forth through the p steps.
Comparison between MultiComparison between Multi--variatevariate StatisticalStatistical
Theory and Random Field TheoryTheory and Random Field Theory
•• Statistical Theory:Statistical Theory:
EachEach variatevariate is considered as a component of ais considered as a component of a
random vector and the covariance matrixrandom vector and the covariance matrix
gives the dependences between componentsgives the dependences between components
of the random vector.of the random vector.
•• Random Field Theory:Random Field Theory:
Each node value in the field is considered as aEach node value in the field is considered as a
component of a random vector. Thecomponent of a random vector. The
dependences between node values aredependences between node values are
described by autodescribed by auto--covariance function.covariance function.
Example of CD Approach(1)Example of CD Approach(1)
i-1,j i,j
i,j-1
1,1
Nx,Ny
Nx,1
1,Ny
Nx,j
The joint probability of the lattice process can be expressed mathematically as,
)Pr( 11212111 S=Z...,S=Z,S=Z,S=Z,...,S=Z,S=Z pN,Nqi,j-l,ji-ki,j,, yx
where,
Sk is a state of cell (i,j), which is one of the n states describing the geological
system,
Nx is the maximum number of cells in the horizontal direction,
Ny is the maximum number of cells in the vertical direction.
Example of CD Approach(2)Example of CD Approach(2)
i-1,j i,j
i,j-1
1,1
Nx,Ny
Nx,1
1,Ny
Nx,j
)Pr()Pr(
)Pr(
)Pr(
)Pr(
)Pr(
111111212
11121232122
11111
11111
11212111
S=Z.S=Z|S=Z
.S=Z,S=Z,S=Z|S=Z
...S=Z,...,S=Z,S=Z|S=Z
...S=Z,...,S=Z,S=Z|S=Z
=S=Z...,S=Z,S=Z,S=Z,...,S=Z,S=Z
,,,
,,,f,
,ri,j-l,ji-ki,j
,t-N,NqN,-NpN,N
pN,Nli,j-q,ji-ki,j,,
yxyxyx
yx
where, Pr(z1,1 =S1) is the marginal probability of state S1
Example of CD Approach(3)Example of CD Approach(3)
i-1,j i,j
i,j-1
1,1
Nx,Ny
Nx,1
1,Ny
Nx,j
Introducing some nearest neighbour property according to Markov chain theory,
)Pr()Pr(
)Pr(
)Pr()Pr()Pr(
)Pr()Pr(
)Pr(
111111221
111
111212111221312422
1111
11212111
S=Z.S=Z|S=Z
...S=Z|S=Z
.S=Z|S=Z...S=Z|S=Z.S=Z,S=Z|S=Z
...S=Z,S=Z|S=Z...S=Z,S=Z|S=Z
=S=Z...,S=Z,S=Z,S=Z,...,S=Z,S=Z
,,,
x-N,rN,
,,g,-Nd,N,,,
fi,j-t,ji-ki,ja-N,NlN,-NpN,N
pN,Nqi,j-l,ji-ki,j,,
yy
xx
yxyxyx
yx
LU Decomposition Method (1)LU Decomposition Method (1)
,
,
i
j
X
Y
0
Z
Z
sij
1
p
,
,
,
2 3
,
The algorithm for generating random fields with a given covariance structure
based on the covariance matrix of the system is as follows:
1) Build the covariance matrix C of the system. The elements of C are denoted
by,
)( Z,Z= Covc jiij
and if i=j the covariances becomes the variances.
...),(
.....
....
...),(
),(..),(
2
1
2
2
12
121
2
2
1
⎥
⎥
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎢
⎢
⎣
⎡
=
p
i
Zp
Z
Z
pZ
ZZCov
ZZCov
ZZCovZZCov
σ
σ
σ
σ
C
LU Decomposition Method(2)LU Decomposition Method(2)
,
,
i
j
X
Y
0
Z
Z
sij
1
p
,
,
,
2 3
,
In case of stationary random field, the elements of the covariance matrix are
given as:
)s(=c ij
2
Zij ρσ
σ2
Z is the variance of the process Z,
ρ(sij) is the auto-correlation function, and
sij is the distance vector between point i and point j.
)y-y(+)x-x(=s
2
ji
2
jiij
For pairs of values Zi and Zj with i = 1,...p and j = 1,...p
determine (xi - xj) and (yi - yj)
where, (xi,yi) are the coordinates of point Zi and point (xj,yj) are the
corresponding coordinates for point Zj. The distance sij between two points is,
AutoAuto--Correlation MatrixCorrelation Matrix
,
,
i
j
X
Y
0
Z
Z
sij
1
p
,
,
,
2 3
,
( )
12 1
21
2
1
1 . .
1 . . .
1
. . 1 . .
. . . . .
. . . 1
p
Z
p
ρ ρ
ρ
σ
ρ
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
R C
ρij = cij/σ2
Z is the autocorrelation coefficient between point i and point j.
Properties of AutoProperties of Auto--correlation Matrixcorrelation Matrix
1) All the diagonal elements are equal
to one, i.e. correlation between the
point and itself is perfect (complete
correlation).
2) If ρij = 0, this means no correlation
between i and j.
3) All the off-diagonal elements are
called autocorrelation coefficients
and they are less than one.
4) The autocorrelation matrix is
symmetric, i.e., ρij = ρ ji.
5) According to the stationarity
assumption:
ρ12 = ρ23 =...= ρp-1p,
ρ13 = ρ 24 =...= ρp-2p,
and so on.
LU Decomposition Method (3)LU Decomposition Method (3)
2) One has to decompose the covariance matrix by the Cholesky factorization
method (Square-Root method),
C = L U
where,
L is a unique lower triangular matrix,
U is a unique upper triangular matrix, and
U is LT , i.e., U is the transpose of L.
1
1
1
1
i1
i1
11
1/2
i
2
ii ii ik
k
i
ij ij ik jk
kjj
ij
c
= ,1 i pl
c
= - ,1 i pl c l
1
= - ,1< j <i pl c l l
l
=0 , i < j pl
−
=
−
=
≤ ≤
⎡ ⎤
≤ ≤⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
≤⎢ ⎥
⎣ ⎦
≤
∑
∑
LU Decomposition Method (4)LU Decomposition Method (4)
3) Generation of normally distributed p-dimensional sequence of independent
random numbers with zero mean and unit standard deviation N(0,1) which can
be expressed as,
T
1 2{ , ,..., }pε ε ε=ε
where, ε is vector of normally distributed random numbers, and εi is the i-th
random number drawn from N(0,1).
4) Multiplication of the independent random vector ε by the triangular matrix U
to get a vector of auto-correlated random numbers. This vector can be
expressed by matrix multiplication convention as,
X = U ε
where, X is a vector of multi-variate normal random Np(0,I), 0 is zero mean
vector (p*1), and I is the identity matrix (p*p).
Z = µ + X
Example of LU Decomposition (TwoExample of LU Decomposition (Two--points)points)
( )
( )
( ) 2
2
122
111
2
1
2
2
1
22
22
22
2
2
2
2
21
2
2
1
22221
21
21
2
2
2
22
21
2211
2
1
2
11
22
21
21
1
1
0
10
,
1
0
)())((2)(
12
1
exp
12
1
),(
)())((2)(
12
1
exp
12
1
),(
ερ−σ+ρσε+µ=+µ=
σε+µ=+µ=
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
ε
ε
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
ρ−σρσ
σ
=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
ρ−σ
ρσσ
=⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
ρ−σρσ
σ
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
σρσ
ρσσ
=
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎪⎭
⎪
⎬
⎫
⎪⎩
⎪
⎨
⎧
σ
µ−
+
σ
µ−µ−ρ
−
σ
µ−
ρρ−σ
µ=µ=µ
σ=σ=σ
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎭
⎬
⎫
⎩
⎨
⎧
σ
µ−
+
σσ
µ−µ−ρ
−
σ
µ−
ρρ−σσ
XZ
XZ
X
X
ZZZZ
-
-
π
=ZZf
ZZZZ
-
-
π
=ZZf
UL
C
O O
z1 z2
Numerical Example of LU Decomposition(1)Numerical Example of LU Decomposition(1)
i0 1 i+1i-1 N2
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
⎡
=
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
⎡
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
λ
−σ=
=∆
=λ
=σ
=
−
56.058.048.047.00.00.00.00.00.00.0
00.059.056.047.047.000.00.000.000.000.0
00.000.060.057.049.043.00.000.000.000.0
00.000.000.060.058.049.042.000.000.000.0
00.000.000.000.060.059.046.041.000.000.0
00.000.000.000.000.066.055.045.041.000.0
00.000.000.000.000.000.067.058.049.027.0
00.000.000.000.000.000.000.068.060.052.0
00.000.000.000.000.000.000.000.069.079.0
0.00.00.00.00.00.000.000.000.005.1
1.183.055.028.00.00.00.00.00.00.0
83.01.183.055.028.00.00.00.00.00.0
55.083.01.183.055.028.00.00.00.00.0
28.055.083.01.183.055.028.00.00.00.0
0.028.055.083.01.183.055.028.00.00.0
0.00.028.055.083.01.183.055.028.00.0
0.00.00.028.055.083.01.183.055.028.0
0.00.00.00.028.055.083.01.183.055.0
0.00.00.00.00.028.055.083.01.183.0
0.00.00.00.00.00.028.055.083.01.1
1
8.2
10
}1.11.11.11.11.11.11.11.11.11.1{
}6.06.06.06.06.06.06.06.06.06.0{
2
2
L
C
µ
ji
Z
z
z
xx
mx
m
Numerical Example of LU Decomposition(2)Numerical Example of LU Decomposition(2)
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
⎡
+
−
+
=
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
⎡
+
−
−
+
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
⎡
=+=
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
⎡
+
−
−
=
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
⎡
+
−
+
+
+
−
+
+
−
−
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
⎡
=
.
.
.
.
.
.
.
162.1
241.0
397.0
.
.
.
.
.
.
.
562.0
841.0
203.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
.
.
.
.
.
.
.
562.0
841.0
203.0
639.0
543.0
721.0
876.0
480.0
787.0
548.0
201.0
998.0
193.0
.
56.058.048.047.000.000.000.000.000.000.0
00.059.056.047.047.000.000.000.000.000.0
00.000.060.057.049.043.000.000.000.000.0
00.000.000.060.058.049.042.000.000.000.0
00.000.000.000.060.059.046.041.000.000.0
00.000.000.000.000.066.055.045.041.000.0
00.000.000.000.000.000.067.058.049.027.0
00.000.000.000.000.000.000.068.060.052.0
00.000.000.000.000.000.000.000.069.079.0
0.00.00.00.00.00.000.000.000.005.1
LεµZ
Lε
Nearest Neighbour MethodNearest Neighbour Method
Whittle’s Model [1954],
∑≠ij
ijiji ε+ZW=Z
Zi is a random variable satisfying the nearest neighbour relation,
εi is uncorrelated normal random number with E(εi) = 0, and Var(εi) = σi
2 ,
i=1,2,...p, and
Wij are weighting coefficients.
Anisotropic first-order auto-regressive (Smith and Freeze [1979b])
ε+Z+Zα+Z+Zα=Z ijij+ij-yji+ji-xij )()( 1111
α x is an auto-regressive parameter expressing the degree of dependence of
Zij on its two neighbouring values Zi-1j and Zi+1j, (|αx|<1), and
α y is an auto-regressive parameter expressing the degree of dependence of
Zij on its two neighbouring values Zij-1 and Zij+1, (|α y| < 1).
i,j
i,j+1
i+1,j
i,j-1
i-1,j,,
,
,
,
N=2 N=3
N=4
Nearest Neighbour Method (1)Nearest Neighbour Method (1)
=Z W Z + ε
W is called the p*p connectivity matrix, or the p*p spatial lag operator of scaled
weights, wkl.
The elements of the connectivity matrix wkl are defined as,
i,j
i,j+1
i+1,j
i,j-1
i-1,j,,
,
,
,
N=2 N=3
N=4
N
w
=w
*
kl
kl
where, k = 1,2,...p, l = 1,2,...p, and k ≠ l,
w*
kl = α x if the blocks k and l are contiguous in the x-direction,
w*
kl = α y if the blocks k and l are contiguous in the y-direction, and
w*
kl = 0 otherwise, i.e., if k = l, or if blocks k and l are not contiguous, and
N is the total number of blocks surrounding block k, i.e.,
N=4 if block k is located inside the domain,
N=3 if block k is located on the boundary of the domain, and
N=2 if block k is located at a corner of the domain.
Nearest Neighbour Method (2)Nearest Neighbour Method (2)
+Z = W Z ε
Z ~ 0 and σZ.
ε ~ 0 and σε.
To simulate the predetermined standard deviation σz :
- Start from a random vector ε with σε =1.
- ε is pre-multiplied by an appropriate factor η to yield σz .
η+Z = W Z ε
Solution
( ) η= -1
Z I - W ε
Determination of η
{ }
2
. T
Z
E
σ
=
Z Z
R
Nearest Neighbour Method (3)Nearest Neighbour Method (3)
2 2
2
1 1 1
2
2
2
2
1
( ) (( ) ) (( ) ( ) )
1
1
,
1
1. ( )
ε
Z
- - T T -
ε
Z
Z
Z
m
η σ
σ
σ
η
σ
Taking the trace of a matrix
p tr η
σ
σ
η
V
= =
=
=
=
R = V .
V I - W . I - W I - W . I - W
R = V
V
Vm = tr V/p, and the symbol "tr" is the trace of the matrix, tr (V) = Σ vii , i= 1,…,p
Nearest Neighbour Method (4)Nearest Neighbour Method (4)
1
1
( )
' ( )
Z
m
Z
z
m
σ
V
σ
V
−
−
= +
Z = I - W ε
Z µ I - W ε
The analysis of the covariance function describing the generated random field
with first-order dependence is approximately an exponential decay function.
The advantage is: at the beginning of any simulation the matrix (I - W) must be
inverted only once. For each realization of the process Z, the inverted matrix (I -
W)-1 is simply multiplied by the generated random vector ηε.
The drawback of this method is computing the inverse matrix.
Nearest Neighbour Method (5)Nearest Neighbour Method (5)
Dofcaseina
a
2
4
1
π
=
α−
α
λ =
Turning Bands Method(TBM)Turning Bands Method(TBM)
The TBM was first proposed by Matheron [1973] and applied by the school of
mines in Paris.
Its basic concept is to transform a multidimensional simulation into the sum of a
series of equivalent uni-dimensional simulations
TBM ProcedureTBM Procedure
TBMTBM is a repetition of a two steps:is a repetition of a two steps:
1. a realization of a random process with a prescribed auto1. a realization of a random process with a prescribed auto--
covariance function and zero mean is generated on one line.covariance function and zero mean is generated on one line.
-- TheThe CholeskyCholesky decomposition method can be used (but withdecomposition method can be used (but with
much smaller correlation matrix dimensions) ormuch smaller correlation matrix dimensions) or
-- AutoAuto--regression methods, like nearest neighbour.regression methods, like nearest neighbour.
2. Orthogonal projection of the generated line process to each p2. Orthogonal projection of the generated line process to each pointoint
in the simulated twoin the simulated two-- or threeor three--dimensional random field.dimensional random field.
The two steps are repeated for a given number of lines and thenThe two steps are repeated for a given number of lines and then aa
final value is assigned to each grid point in the field by takinfinal value is assigned to each grid point in the field by taking ag a
weighted average over the total number of lines.weighted average over the total number of lines.
Background of the MethodBackground of the Method
Let Zi(u), i = 1,...L a set of N independent realizations of a one-dimensional,
second order stationarity stochastic process on a line u with an auto-correlation
function ρ1(uo), where uo is the spatial lag on the line.
The values given by the relation,
uZ
L
=x,y,zZ
L
i
is ∑=1
)(
1
)(
is a realization of a two- or three-
dimensional process with zero
mean.
The subscript s represents the
term " simulated " or " synthetic ".
[ ])()(:3 1 uu
du
d
=uρcaseD oo
o
o ρ−
)(:2
0
s
s
s
ρ
πρ
2
=
)u-(
du)u(
caseD
2
o
2
oo1
∫−
Spectral Turning Bands Method (STBM)Spectral Turning Bands Method (STBM)
To circumvent the difficulty, an expression for the spectral density function of
the one-dimensional processes as a function of the radial spectral density
function of the two-dimensional process is used.
This expression is given in a Fourier space by,
2
1( ) ( )
2
Z
SS
σω = ω
The spectral density function of
the uni-dimensional process
S1(ω) along the turning bands
lines is given by one half of the
radial spectral density function
S(ω) of the two-dimensional
process multiplied by the
variance of the two-dimensional
process.
Implementation of the STBM in 2D (1)Implementation of the STBM in 2D (1)
(1) Generation of One-dimensional Uni-variate Process on The Turning Bands
Line: (Standard Fourier Integration method)
∑∫ ≈
+=
ω
ω
ω
ω
ωω
all
j
ui
all
ui
dWedWe=uX
uiYuZuX
j
)()()(
)()()(
X is the sum of a complex series of sinusoidal functions of varying wavelength,
each magnified by complex random amplitude with zero mean dW(ωj), ωj=j.∆ω.
∑
∫
=
+=
+==
M
j
jji
all
j
udWuZ
udWuZuX
1
)cos()()(
)cos()()()}(Re{
φωω
φωω ω
ω
where, φj represents independent random angles which is uniformly distributed
between 0 and 2π,
M is the number of harmonics used in the calculations, ωj =(j-.5) ∆ω, j =1,2,...M,
and ∆ω is the discretized frequency which is given by ωmax/M, and ωmax is the
maximum frequency used in the calculations.
Implementation of the STBM in 2D (2)Implementation of the STBM in 2D (2)
1( ) 4 ( ).j jdW Sω ω ω⎡ ⎤= ∆⎣ ⎦
where, S1(ωj) is the spectral density function of the real process Z(u) on the line.
S1(ω) is assumed to be insignificant outside the region [- ωmax,+ ωmax]
1
1
'
1
1
( ) 2 ( ). cos( )
( ) 2 ( ). cos( )
j
j
M
i j j
j
M
i j j
j
Z u S u
Z u S u
ω ω ω φ
ω ω ω φ
=
=
⎡ ⎤= ∆ +⎣ ⎦
⎡ ⎤= ∆ +⎣ ⎦
∑
∑
where, ω 'j = ωj + δω
The frequency δω is a small random frequency added here in order to avoid
periodicities. δω is uniformly distributed between - ∆ω’ /2 and ∆ω’ /2, where, ∆ω’
is a small frequency, ∆ω’<<∆ω. ∆ω’ is taken equal to ∆ω /20 according to
Shinozuka and Jan [1972]
Implementation of the STBM in 2D (3)Implementation of the STBM in 2D (3)
( )
1/ 222
2
2
3/ 22 2 2 2
2 .exp. var
( ) exp
( )
2 1
yx
Z
x y
Z x y
x x y y
D Anistorpic Co iance
ss
Cov
Spectrum
S
σ
λ λ
σ λ λ
π λ ω λ ω
−
⎡ ⎤⎛ ⎞⎧ ⎫⎧ ⎫ ⎪ ⎪⎢ ⎥⎜ ⎟= − +⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠⎢ ⎥⎣ ⎦
=
+ +
s
ω
Implementation of the STBM in 2D (4)Implementation of the STBM in 2D (4)
(2) Distribution of The Turning Bands Lines and The Number of Lines:
Random orientation versus evenly spaced (it converges faster)
8-16 lines are satisfactory choice in case of isotropic correlation.
(3) Spectral Discretization:
∆ω must be kept small enough.
M must be kept large enough
(M∆ω >50).
Mantoglou and Wilson [1982] WRR
(4) Physical Discretization:
∆u < min {∆x, ∆y, ∆z}
(5) Length of The Turning Bands
Lines:
Minimum length is determined by the
orientation of the line and the domain
size.
Spectral Turning Bands Method:Spectral Turning Bands Method:
Projection from many linesProjection from many lines
Comparison Between Various MethodsComparison Between Various Methods
Item
Method
〈K 〉
m/day
σK
m/day
〈 Y 〉 σY
-0.8 1.3
1.3
1.3
-0.8
-0.8
λx
M
λy
m
NNG 1 2 αx =.98
1.2
1.2
1.2
αy =.50
0.73
MVG 1 2 0.73
TBG 1 2 0.73
Monte-Carlo=100
Domain dimensions =15 ×15 ms
Domain discretization = 1 ×1 ms
Comparison Between Various MethodsComparison Between Various Methods
MosaicMosaic FaciesFacies ((Discrete) ModelsDiscrete) Models
In this approach one is aiming to construct
- formation geological units, its geometric characteristics.
- lithologies.
- units dimensions (length, thickness, and width),
- orientations and frequency of occurrence, etc..
Types of discrete models:Types of discrete models:
•• ObjectObject--based Models.based Models.
•• Sequential based Models:Sequential based Models:
--Markov Chains in 1Markov Chains in 1--D, 2D, 2--D etc.D etc.
--Markov Random Fields.Markov Random Fields.
--TruncatedTruncated GaussianGaussian Fields.Fields.
--Sequential Indicator Simulation Models.Sequential Indicator Simulation Models.
--Random Lines Models.Random Lines Models.
--Random Sets.Random Sets.
ObjectObject--based Modelsbased Models
This model consider only two states (like sand and shale formation).
Two parameters are considered:
1. The density of the random objects per unit of volume.
2. Statistical distribution of the sizes of the objects.
SequentialSequential--based Modelsbased Models
•Markov Chains in 1-D.
•Markov Chain in 2-D.
•Truncations of Gaussian Field.
•Sequential Indicator Simulation.
Theory of OneTheory of One--dimensional Markov Chaindimensional Markov Chain
SS S
i0 1 i+1i-1 N2
l k q
,:)Pr(
)Pr(
pSZ|SZ
SZ,...,SZ,SZ,SZ|SZ
lkl1-iki
p0r3-in2-il1-iki
===
======
...
.....
....
....
..
1
21
11211
⎥
⎥
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎢
⎢
⎣
⎡
=
nnn
lk
n
pp
p
p
ppp
p
1,...,0
1
pp
n
k
lklk =≥ ∑=
wp k
N
lk
N
=
∞→
)(
lim
1,0
...,
1
1
=≥
==
∑
∑
=
=
n
k
kk
klkl
n
l
ww
n,1k,wpw
Transition prob.
Marginal prob.
Example on OneExample on One--dimensional Markov Chaindimensional Markov Chain
Coupled Markov ChainCoupled Markov Chain
i0 1 i+1i-1 N2
SlSf
i0 1 i+1i-1 N2
SkSq
X-Chain
Y-Chain
lkfqqifik1+il1+i pSY,SX|SY,SX ,)Pr( =====
Transition probabilities
},...,,,...,,,....{. 2121, nnqkfllkfq ssssssppp ×=
Marginal probabilities
kllk www .=
Coupled Chain on a LatticeCoupled Chain on a Lattice
i-1,j i,j
i,j-1
1,1
Nx,Ny
Nx,1
1,Ny
Nx,j
Dark Grey (Boundary Cells)
Light Grey (Previously Generated Cells)
White (Unknown Cells)
nk
p.p
p.p
SZSZSZp
p.pC
SYSYSXSXCSZ,SZ|SZ
SYSYSXSXSZ,SZ|SZ
SYSYSZ|SZ
SXSXSZ|SZ
f
v
mf
h
lf
v
mk
h
lk
mjiljikjiklm
n
f
v
mf
h
lf
mjkjlikimjiljikji
mjkjlikimjiljikji
mjkjmjikji
likiljikji
,...1.),|Pr(:
)Pr()Pr()(Pr
)Pr()Pr()(Pr
)Pr()(Pr
)Pr()(Pr
1,,1,,
1
1
111,,1,
111,,1,
11,,
1,1,
======
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
========
========
=====
=====
∑
∑
−−
−
=
−−−−
−−−−
−−
−−
Coupled Chain Prob. In TwoCoupled Chain Prob. In Two--State ModelState Model
Two-State Model
1
1 2
2
1
2 1
1
1
2 2
2
1
1 1
1
2
1 1
1
2
1 2
2
2
1 2
1
2
1 1
2
2
2 1
1
2
2 2
2
2
2 2
1
2
2 1
2
1
1 2
1
1
1 1
2
1
2 1
2
1
2 2
1
P(ij,lk) = P(i,l) P(j,k) , i,j,l,k = 1,2
h v
The Transition Probabilities of The Coupled Chain
k=l k<>l
P(11,11) P(11,22) P(11,21) P(11,12)
P(12,11) P(12,22) P(12,21) P(12,12)
P(21,11) P(21,22) P(21,21) P(21,12)
P(22,11) P(22,22) P(22,21) P(22,12)
ExampleExample of Twoof Two--State ModelState Model
Numerical Example of Two-State Model
The Transition Probabilities of The Coupled Chain
k=l k<>l
P(11,11) =0.250 P(11,22) =0.250 P(11,21) =0.250 P(11,12) =0.250
P(12,11) =0.250 P(12,22) =0.250 P(12,21) =0.250 P(12,12) =0.250
P(21,11) =0.125 P(21,22) =0.375 P(21,21) =0.375 P(21,12) =0.125
P(22,11) =0.125 P(22,22) =0.375 P(22,21) =0.375 P(22,12) =0.125
P(ij,lk) = P(i,l) P(j,k) , i,j,l,k = 1,2
h v
The Horizontal Chain The Vertical Chain
1 2 1 2
1 0.50 0.50 1 0.50 0.50
2 0.25 0.75 2 0.50 0.50
Normalized Transition Probabilities of The Coupled Chain
k=l k<>l
P(11,11) =0.500 P(11,22) =0.500 P(11,21) =0.000 P(11,12) =0.000
P(12,11) =0.500 P(12,22) =0.500 P(12,21) =0.000 P(12,12) =0.000
P(21,11) =0.250 P(21,22) =0.750 P(21,21) =0.000 P(21,12) =0.000
P(22,11) =0.250 P(22,22) =0.750 P(22,21) =0.000 P(22,12) =0.000
P(ij,kk) =
Σ P(i,f) P(j,f)
P(i,k) P(j,k)
i,j,k =1,2
f
Simulation Example (0)Simulation Example (0)
Horizontal Transition Probability Matrix
0.000 0.340 0.330 0.330 0.000 0.347 0.353 0.300
0.340 0.000 0.330 0.330 0.347 0.000 0.323 0.330
0.330 0.340 0.000 0.330 0.340 0.347 0.000 0.313
0.330 0.340 0.330 0.000 0.303 0.356 0.341 0.000
Vertical Transition Probability Matrix
0.000 0.340 0.330 0.330 0.002 0.354 0.340 0.304
0.340 0.000 0.330 0.330 0.342 0.002 0.338 0.319
0.330 0.340 0.000 0.330 0.332 0.349 0.002 0.318
0 10 20 30 40 50 60 70 80 90 100
-50
-40
-30
-20
-10
0
0 50 100 150 200
-50
0
1 2 3 4
0 10 20 30 40 50 60 70 80 90 100
-50
-40
-30
-20
-10
0
(a)
(b)
(c)
0 10 20 30 40 50 60 70 80 90 100
-50
-40
-30
-20
-10
0
(d)
Horizontal Transition Probability Matrix
1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000
0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
Vertical Transition Probability Matrix
0.600 0.100 0.200 0.100 0.571 0.000 0.143 0.286
0.100 0.700 0.100 0.100 0.091 0.818 0.000 0.091
0.150 0.150 0.400 0.300 0.111 0.111 0.222 0.556
0.100 0.200 0.200 0.500 0.043 0.087 0.261 0.609
Horizontal Transition Probability Matrix
0.250 0.250 0.250 0.250 0.211 0.211 0.211 0.368
0.250 0.250 0.250 0.250 0.280 0.240 0.240 0.240
0.250 0.250 0.250 0.250 0.179 0.143 0.286 0.393
0.250 0.250 0.250 0.250 0.107 0.393 0.357 0.143
Vertical Transition Probability Matrix
1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000
0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
XX` - XX` Transition Probability Matrix
0.000 0.340 0.330 0.330 0.000 0.347 0.353 0.300
0.340 0.000 0.330 0.330 0.347 0.000 0.323 0.330
0.330 0.340 0.000 0.330 0.340 0.347 0.000 0.313
0.330 0.340 0.330 0.000 0.303 0.356 0.341 0.000
YY` - YY` Transition Probability Matrix
0.000 0.340 0.330 0.330 0.002 0.354 0.340 0.304
0.340 0.000 0.330 0.330 0.342 0.002 0.338 0.319
0.330 0.340 0.000 0.330 0.332 0.349 0.002 0.318
0.330 0.340 0.330 0.000 0.318 0.345 0.335 0.003
0.330 0.340 0.330 0.000 0.318 0.345 0.335 0.003
Simulation Example (1)Simulation Example (1)
Horizontal Transition Probability Matrix
0.980 0.020 0.983 0.017
0.020 0.980 0.023 0.977
Vertical Transition Probability Matrix
0.500 0.500 0.567 0.433
0.500 0.500 0.581 0.419
0 100 200 300 400 500 600 700 800 900 1000
-500
-400
-300
-200
-100
0
(a) Geological Pattern with Two Phase Materials.
Simulation Example (2)Simulation Example (2)
Horizontal Transition Probability Matrix
0.970 0.010 0.010 0.010 0.970 0.012 0.010 0.009
0.005 0.980 0.005 0.010 0.005 0.984 0.004 0.007
0.020 0.020 0.940 0.020 0.017 0.016 0.951 0.016
0.010 0.010 0.010 0.970 0.010 0.013 0.012 0.965
Vertical Transition Probability Matrix
0.250 0.250 0.250 0.250 0.307 0.387 0.138 0.168
0.250 0.250 0.250 0.250 0.188 0.431 0.146 0.235
0.250 0.250 0.250 0.250 0.253 0.384 0.214 0.148
0.250 0.250 0.250 0.250 0.290 0.336 0.139 0.235
0 100 200 300 400 500 600 700 800 900 1000
-400
-300
-200
-100
0
(b) Relatively Thin Stratified Formation.
Simulation Example (3)Simulation Example (3)
Horizontal Transition Probability Matrix
0.950 0.005 0.005 0.040 0.956 0.004 0.001 0.039
0.010 0.970 0.010 0.010 0.016 0.966 0.005 0.013
0.020 0.010 0.960 0.010 0.058 0.032 0.894 0.016
0.010 0.010 0.010 0.970 0.012 0.008 0.004 0.976
Vertical Transition Probability Matrix
0.700 0.150 0.100 0.050 0.746 0.130 0.038 0.086
0.200 0.500 0.100 0.200 0.154 0.458 0.025 0.363
0.300 0.200 0.300 0.200 0.236 0.202 0.081 0.480
0.100 0.200 0.100 0.600 0.068 0.138 0.030 0.765
0 200 400 600 800 1000 1200
-400
-200
0
(c) Relatively Thick Stratified Formation.
Simulation Example (4)Simulation Example (4)
Horizontal Transition Probability Matrix
0.900 0.050 0.040 0.010 0.959 0.023 0.016 0.002
0.050 0.800 0.100 0.050 0.057 0.834 0.081 0.028
0.020 0.020 0.940 0.020 0.032 0.030 0.919 0.019
0.010 0.010 0.010 0.970 0.021 0.010 0.007 0.962
Vertical Transition Probability Matrix
0.800 0.100 0.050 0.050 0.896 0.026 0.030 0.048
0.100 0.600 0.200 0.100 0.162 0.496 0.253 0.089
0.100 0.300 0.500 0.100 0.102 0.215 0.540 0.143
0.100 0.100 0.200 0.600 0.067 0.044 0.237 0.652
0 100 200 300 400 500 600 700 800 900 1000
-500
-400
-300
-200
-100
0
(a) Geological System with One Unit Has Big Dimensions.
Simulation Example (5)Simulation Example (5)
Horizontal Transition Probability Matrix
0.900 0.030 0.030 0.040 0.924 0.017 0.047 0.013
0.010 0.970 0.010 0.010 0.022 0.960 0.016 0.002
0.010 0.020 0.960 0.010 0.024 0.010 0.963 0.003
0.040 0.040 0.010 0.910 0.093 0.053 0.099 0.755
Vertical Transition Probability Matrix
0.970 0.010 0.010 0.010 0.939 0.020 0.038 0.004
0.040 0.900 0.030 0.030 0.022 0.940 0.033 0.006
0.020 0.010 0.960 0.010 0.017 0.007 0.972 0.005
0.040 0.040 0.010 0.910 0.134 0.043 0.062 0.761
0 200 400 600 800 1000 1200
-600
-400
-200
0
(b) Large Scale Geological Units.
Simulation Example (6)Simulation Example (6)
Horizontal Transition Probability Matrix
0.400 0.200 0.300 0.100 0.924 0.030 0.041 0.006
0.010 0.970 0.010 0.010 0.076 0.914 0.006 0.005
0.010 0.020 0.960 0.010 0.093 0.026 0.876 0.005
0.010 0.005 0.005 0.980 0.067 0.013 0.007 0.913
Vertical Transition Probability Matrix
0.990 0.005 0.001 0.004 0.981 0.014 0.004 0.002
0.200 0.400 0.300 0.100 0.039 0.555 0.343 0.063
0.200 0.300 0.400 0.100 0.053 0.367 0.526 0.054
0.100 0.400 0.100 0.400 0.025 0.468 0.126 0.381
0 200 400 600 800 1000 1200 1400
-400
-200
0
(c) Bed Rock with Sedimentary Deposit.
Simulation Example (7)Simulation Example (7)
XX` - XX` Transition Probability Matrix
0.960 0.020 0.010 0.010 0.983 0.010 0.004 0.003
0.010 0.970 0.010 0.010 0.020 0.968 0.009 0.004
0.020 0.020 0.940 0.020 0.053 0.022 0.909 0.015
0.010 0.010 0.010 0.970 0.020 0.010 0.012 0.959
YY` - YY` Transition Probability Matrix
0.700 0.100 0.100 0.100 0.722 0.100 0.041 0.136
0.250 0.250 0.250 0.250 0.257 0.348 0.122 0.273
0.250 0.250 0.250 0.250 0.235 0.285 0.166 0.313
0.250 0.250 0.250 0.250 0.132 0.196 0.077 0.596
0 200 400 600 800 1000 1200 1400
-400
-200
0
(a) Inclined Bedding with -45 degrees.
Simulation Example (8)Simulation Example (8)
0 100 200 300 400 500 600 700 800 900 1000
-500
-400
-300
-200
-100
0
(b) Inclined Bedding with -7 degrees.
Simulation Example (9)Simulation Example (9)
XX` - XX` Transition Probability Matrix
0.700 0.100 0.100 0.100 0.650 0.098 0.072 0.180
0.100 0.600 0.200 0.100 0.126 0.673 0.093 0.109
0.200 0.200 0.500 0.100 0.181 0.288 0.323 0.209
0.100 0.200 0.200 0.500 0.120 0.223 0.059 0.598
YY` - YY` Transition Probability Matrix
0.980 0.005 0.005 0.010 0.969 0.007 0.012 0.011
0.010 0.970 0.010 0.010 0.003 0.981 0.011 0.005
0.020 0.020 0.940 0.020 0.037 0.027 0.911 0.025
0.010 0.010 0.010 0.970 0.013 0.018 0.007 0.962
0 200 400 600 800 1000 1200 1400 1600 1800 2000
-400
-200
0
(c) Inclined Bedding with 26.5 degrees.
OneOne--dimensional Markov Chain Conditioneddimensional Markov Chain Conditioned
on Future Stateson Future States
i0 1 i+1i-1 N2
SkSl Sq
)1(
)(
)1(
)(
1
11
11
1
1
1
1
1
11
1
1
1
1
1
)(Pr
)Pr().|(Pr
)(Pr).|(Pr).|(Pr
)(Pr
),(Pr
),(Pr).|(Pr
)(Pr
),(Pr
),(Pr),|(Pr
)(Pr
),(Pr
),,Pr(
)(Pr
)(Pr
+−
−
+−
−
−
−−
−−
−
−
−
−
−
−−
−
−
−
−
−
=
====
===
=====
====
==
====
====
==
=====
====
==
===
====
===
iN
lq
iN
kqlk
qlk
iN
lq
lk
iN
kq
qNliki
liliqN
lilikikiqN
qNliki
qNli
kilikiqN
qNliki
qNli
kilikiliqN
qNliki
qNli
qNkili
qNliki
qNliki
p
pp
p
p
pp
SZ,SZ|SZ
SZSZSZ
SZSZSZSZSZ
SZ,SZ|SZ
SZSZ
SZSZSZSZ
SZ,SZ|SZ
SZSZ
SZSZSZSZSZ
SZ,SZ|SZ
SZSZ
SZSZSZ
SZ,SZ|SZ
SZ,SZ|SZ
Coupled Markov Chain (application)Coupled Markov Chain (application)
Two-dimensional Cross-sectional Panel of the Fluvial Succession of the Medial
Area of the Tόrtola Fluvial System, Spain
Length of The Section (m) = 648.
Depth of The Section (m) = 115.
Sampling interval in X-axis (m) = 9.
Sampling interval in Y-axis (m) = 2.5
Horizontal Transition Probability Matrix
State 1 2 3 4 5 6 7 8
1 0.893 0.009 0.005 0.000 0.000 0.000 0.000 0.093
2 0.000 0.796 0.011 0.000 0.000 0.000 0.000 0.194
3 0.000 0.000 0.989 0.000 0.000 0.000 0.000 0.011
4 0.006 0.000 0.013 0.885 0.000 0.000 0.000 0.096
5 0.074 0.000 0.000 0.074 0.593 0.037 0.000 0.222
6 0.000 0.013 0.000 0.000 0.000 0.946 0.000 0.040
7 0.040 0.000 0.000 0.000 0.000 0.000 0.940 0.020
8 0.007 0.006 0.002 0.007 0.005 0.005 0.001 0.968
Vertical Transition Probability Matrix
State 1 2 3 4 5 6 7 8
1 0.591 0.000 0.000 0.000 0.014 0.000 0.042 0.353
2 0.011 0.753 0.097 0.000 0.000 0.000 0.000 0.140
3 0.032 0.000 0.623 0.000 0.000 0.238 0.000 0.107
3 0.000 0.025 0.000 0.662 0.013 0.000 0.000 0.299
5 0.111 0.000 0.000 0.074 0.519 0.000 0.000 0.296
6 0.000 0.000 0.026 0.032 0.006 0.084 0.000 0.851
7 0.120 0.000 0.000 0.100 0.000 0.000 0.360 0.420
8 0.029 0.008 0.039 0.017 0.003 0.031 0.010 0.863
1 2 3 4 5 6 7 8
Coupled Markov Chain: UnconditionalCoupled Markov Chain: Unconditional
SimulationSimulation
0 50 100 150 200 250 300
-80
-60
-40
-20
0
0 50 100 150 200 250 300
-80
-60
-40
-20
0
1 2 3 4 5 6 7 8
0 50 100 150 200 250 300
-80
-60
-40
-20
0
Coupled Markov Chain: ConditionalCoupled Markov Chain: Conditional
SimulationSimulation
1
2
3
4
5
6
7
8
0 50 100 150 200 250 300
-80
-60
-40
-20
0
0 50 100 150 200 250 300
-80
-60
-40
-20
0
0 50 100 150 200 250 300
-80
-60
-40
-20
0
0 50 100 150 200 250 300
-80
-60
-40
-20
0
0 50 100 150 200 250 300
-80
-60
-40
-20
0
0 50 100 150 200 250 300
-80
-60
-40
-20
0
Markov Random Field ModelMarkov Random Field Model
- Originally developed for image processing.
- Similarity between image description and reservoir description.
- The method does not use variogram or auto-correlation to describe
the relation between the neighbouring locations but it is based on the
theory of conditional probabilities.
Procedure (Simulated annealing or Metropolis algorithm):
1. The states in the system are generated by arbitrary distribution over
the lattice.
2. Two grid points are selected at random from the lattice.
3. Simple exchange of the grid points states based on conditional
probabilities.
4. After each trial, a new permutation of the states of the grid points is
created.
5. The procedure continues iteratively until the marginal and the
transition probabilities of the states in the system is stabilized.
TruncatedTruncated GaussianGaussian Field ModelField Model
- Use the same Continuous models.
- Truncate the continuous realizations based on some threshold values.
Random Lines ModelRandom Lines Model
Poisson Random Lines Model
Switzer [1965].
The method generates random lines
from Poisson distribution on a circle.
The lines are used to represent
boundaries between different soils.
Random Sets Mosaic ModelRandom Sets Mosaic Model

More Related Content

What's hot

Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNikolai Priezjev
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIRai University
 
Convex Optimization Modelling with CVXOPT
Convex Optimization Modelling with CVXOPTConvex Optimization Modelling with CVXOPT
Convex Optimization Modelling with CVXOPTandrewmart11
 
Lesson 11 derivative of trigonometric functions
Lesson 11 derivative of trigonometric functionsLesson 11 derivative of trigonometric functions
Lesson 11 derivative of trigonometric functionsRnold Wilson
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSZac Darcy
 
線形回帰モデル
線形回帰モデル線形回帰モデル
線形回帰モデル貴之 八木
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsStavros Vologiannidis
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integralsKavin Ruk
 
Numerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNumerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNikolai Priezjev
 
Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Suddhasheel GHOSH, PhD
 
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodFEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodSuddhasheel GHOSH, PhD
 
How to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surfaceHow to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surfacetr1987
 
Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Framesandreslahe
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulationSolo Hermelin
 
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Shizuoka Inst. Science and Tech.
 

What's hot (20)

Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolation
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
 
Convex Optimization Modelling with CVXOPT
Convex Optimization Modelling with CVXOPTConvex Optimization Modelling with CVXOPT
Convex Optimization Modelling with CVXOPT
 
Krishna
KrishnaKrishna
Krishna
 
Mech MA6351 tpde_notes
Mech MA6351 tpde_notes Mech MA6351 tpde_notes
Mech MA6351 tpde_notes
 
Lesson 11 derivative of trigonometric functions
Lesson 11 derivative of trigonometric functionsLesson 11 derivative of trigonometric functions
Lesson 11 derivative of trigonometric functions
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
Conference ppt
Conference pptConference ppt
Conference ppt
 
線形回帰モデル
線形回帰モデル線形回帰モデル
線形回帰モデル
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systems
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
Numerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNumerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equations
 
Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...
 
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodFEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
 
How to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surfaceHow to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surface
 
Chapter 1 (maths 3)
Chapter 1 (maths 3)Chapter 1 (maths 3)
Chapter 1 (maths 3)
 
Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Frames
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulation
 
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
 
Section4 stochastic
Section4 stochasticSection4 stochastic
Section4 stochastic
 

Similar to Lecture 3: Stochastic Hydrology

Linear models for classification
Linear models for classificationLinear models for classification
Linear models for classificationSung Yub Kim
 
11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...Alexander Decker
 
The Wishart and inverse-wishart distribution
 The Wishart and inverse-wishart distribution The Wishart and inverse-wishart distribution
The Wishart and inverse-wishart distributionPankaj Das
 
A03401001005
A03401001005A03401001005
A03401001005theijes
 
Phase-Type Distributions for Finite Interacting Particle Systems
Phase-Type Distributions for Finite Interacting Particle SystemsPhase-Type Distributions for Finite Interacting Particle Systems
Phase-Type Distributions for Finite Interacting Particle SystemsStefan Eng
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
countor integral
countor integralcountor integral
countor integralSheril Shah
 
International Publication - (Calcolo)
International Publication - (Calcolo)International Publication - (Calcolo)
International Publication - (Calcolo)Alberto Auricchio
 
Relative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer valuesRelative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer valueseSAT Journals
 
Relative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relativeRelative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relativeeSAT Publishing House
 
Chemical dynamics and rare events in soft matter physics
Chemical dynamics and rare events in soft matter physicsChemical dynamics and rare events in soft matter physics
Chemical dynamics and rare events in soft matter physicsBoris Fackovec
 
Generating Chebychev Chaotic Sequence
Generating Chebychev Chaotic SequenceGenerating Chebychev Chaotic Sequence
Generating Chebychev Chaotic SequenceCheng-An Yang
 
Polya recurrence
Polya recurrencePolya recurrence
Polya recurrenceBrian Burns
 
A Novel Methodology for Designing Linear Phase IIR Filters
A Novel Methodology for Designing Linear Phase IIR FiltersA Novel Methodology for Designing Linear Phase IIR Filters
A Novel Methodology for Designing Linear Phase IIR FiltersIDES Editor
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Fabian Pedregosa
 

Similar to Lecture 3: Stochastic Hydrology (20)

Linear models for classification
Linear models for classificationLinear models for classification
Linear models for classification
 
11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...
 
The Wishart and inverse-wishart distribution
 The Wishart and inverse-wishart distribution The Wishart and inverse-wishart distribution
The Wishart and inverse-wishart distribution
 
A03401001005
A03401001005A03401001005
A03401001005
 
Mcqmc talk
Mcqmc talkMcqmc talk
Mcqmc talk
 
Phase-Type Distributions for Finite Interacting Particle Systems
Phase-Type Distributions for Finite Interacting Particle SystemsPhase-Type Distributions for Finite Interacting Particle Systems
Phase-Type Distributions for Finite Interacting Particle Systems
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
countor integral
countor integralcountor integral
countor integral
 
ML unit2.pptx
ML unit2.pptxML unit2.pptx
ML unit2.pptx
 
International Publication - (Calcolo)
International Publication - (Calcolo)International Publication - (Calcolo)
International Publication - (Calcolo)
 
Relative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer valuesRelative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer values
 
Relative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relativeRelative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relative
 
KAUST_talk_short.pdf
KAUST_talk_short.pdfKAUST_talk_short.pdf
KAUST_talk_short.pdf
 
Chemical dynamics and rare events in soft matter physics
Chemical dynamics and rare events in soft matter physicsChemical dynamics and rare events in soft matter physics
Chemical dynamics and rare events in soft matter physics
 
E028047054
E028047054E028047054
E028047054
 
Generating Chebychev Chaotic Sequence
Generating Chebychev Chaotic SequenceGenerating Chebychev Chaotic Sequence
Generating Chebychev Chaotic Sequence
 
Polya recurrence
Polya recurrencePolya recurrence
Polya recurrence
 
A Novel Methodology for Designing Linear Phase IIR Filters
A Novel Methodology for Designing Linear Phase IIR FiltersA Novel Methodology for Designing Linear Phase IIR Filters
A Novel Methodology for Designing Linear Phase IIR Filters
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3
 
Deconvolution
DeconvolutionDeconvolution
Deconvolution
 

More from Amro Elfeki

Simulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial FlowSimulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial FlowAmro Elfeki
 
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...Amro Elfeki
 
Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)Amro Elfeki
 
Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)Amro Elfeki
 
Gradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelGradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelAmro Elfeki
 
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...Amro Elfeki
 
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...Amro Elfeki
 
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introductionSoft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introductionAmro Elfeki
 
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...Amro Elfeki
 
Empirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zonesEmpirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zonesAmro Elfeki
 
Simulation of the central limit theorem
Simulation of the central limit theoremSimulation of the central limit theorem
Simulation of the central limit theoremAmro Elfeki
 
Empirical equations for estimation of transmission losses
Empirical equations for estimation  of transmission lossesEmpirical equations for estimation  of transmission losses
Empirical equations for estimation of transmission lossesAmro Elfeki
 
Representative elementary volume (rev) in porous
Representative elementary volume (rev) in porousRepresentative elementary volume (rev) in porous
Representative elementary volume (rev) in porousAmro Elfeki
 
Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)Amro Elfeki
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)Amro Elfeki
 
Geohydrology ii (2)
Geohydrology ii (2)Geohydrology ii (2)
Geohydrology ii (2)Amro Elfeki
 
Geohydrology ii (1)
Geohydrology ii (1)Geohydrology ii (1)
Geohydrology ii (1)Amro Elfeki
 
Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...
Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...
Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...Amro Elfeki
 
Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...
Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...
Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...Amro Elfeki
 
New Approach for Groundwater Detection Monitoring at Landfills.
 New Approach for Groundwater Detection Monitoring at Landfills.  New Approach for Groundwater Detection Monitoring at Landfills.
New Approach for Groundwater Detection Monitoring at Landfills. Amro Elfeki
 

More from Amro Elfeki (20)

Simulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial FlowSimulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial Flow
 
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
 
Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)
 
Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)
 
Gradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelGradually Varied Flow in Open Channel
Gradually Varied Flow in Open Channel
 
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
 
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
 
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introductionSoft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
 
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
 
Empirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zonesEmpirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zones
 
Simulation of the central limit theorem
Simulation of the central limit theoremSimulation of the central limit theorem
Simulation of the central limit theorem
 
Empirical equations for estimation of transmission losses
Empirical equations for estimation  of transmission lossesEmpirical equations for estimation  of transmission losses
Empirical equations for estimation of transmission losses
 
Representative elementary volume (rev) in porous
Representative elementary volume (rev) in porousRepresentative elementary volume (rev) in porous
Representative elementary volume (rev) in porous
 
Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
 
Geohydrology ii (2)
Geohydrology ii (2)Geohydrology ii (2)
Geohydrology ii (2)
 
Geohydrology ii (1)
Geohydrology ii (1)Geohydrology ii (1)
Geohydrology ii (1)
 
Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...
Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...
Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...
 
Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...
Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...
Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...
 
New Approach for Groundwater Detection Monitoring at Landfills.
 New Approach for Groundwater Detection Monitoring at Landfills.  New Approach for Groundwater Detection Monitoring at Landfills.
New Approach for Groundwater Detection Monitoring at Landfills.
 

Recently uploaded

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIkoyaldeepu123
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 

Recently uploaded (20)

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AI
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 

Lecture 3: Stochastic Hydrology

  • 1. Lecture (3)Lecture (3) Stochastic models for site characterization: Theory
  • 2. Models of The Stochastic ApproachModels of The Stochastic Approach Discrete Models Continuous Models Hybrid Models Stochastic Approach
  • 3. Continuous ModelsContinuous Models - Multi-variate Normal Method. -LU-Decomposition Method. -Nearest Neighbour Method. -Turning Bands Method.
  • 4. Multivariate Normal MethodMultivariate Normal Method The multi-variate normal density function Np(µ,C), p-dimensional normal random variate, is given by, ( ) ( )⎥ ⎦ ⎤ ⎢ ⎣ ⎡ µZCµZ C Z --- π|| =f -T p// 1 221 2 1 exp )2( 1 )( where, Np(µ,C) is a multi-variate normal distribution with mean µ, and covariance matrix C, p is the number of parameters (nodes of the model), Z = {Z1, Z2,..., Zp}T, p-dimensional random vector, (p*1), µ = {µ1, µ2,…, µp}T , p-dimensional mean values vector, (p*1), T is superscript transpose operation of a matrix, -1 superscript is inverse operation of a matrix, C is a pxp covariance matrix given by,
  • 5. Covariance MatrixCovariance Matrix ...),( ..... .... ...),( ),(..),( 2 1 2 2 12 121 2 2 1 ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ = p i Zp Z Z pZ ZZCov ZZCov ZZCovZZCov σ σ σ σ C ⎮C⎮ is the determinant of the covariance matrix C, and σ2 Zi is the variance of the random parameter Zi. Diagonal elements are the variances of the individual random variable. Off-diagonal components are covariances of two random variables Zi, Zj
  • 6. Correlation MatrixCorrelation Matrix The correlation coefficient ρij σσ ρ ZZ ji ij ji )Z,ZCov( = The correlation matrix R 1... ..... ..1.. ...1 ..1 1 21 112 ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ρ ρ ρρ = p p R
  • 7. General Technique for Generation ofGeneral Technique for Generation of Multivariate Distribution (CD Approach)Multivariate Distribution (CD Approach) Let Z = {Z1,Z2,Z3,...Zp}T be the p-dimensional random vector of interest. )()()...,(),()( 11212112121 zpz|zpz,...z|zpz,...z,z|zpz,...,z,zp p-pn-p-pp −= The conditional distribution approach involves the following steps: (1) generate Z1 = z1 from the marginal distribution of Z1 (uni-variate distribution of Z1); (2) generate Z2 = z2 from the conditional distribution of Z2 given Z1 = z1; (3) generate Z3 = z3 from the conditional distribution of Z3 given Z1 = z1 and Z2 = z2... and so forth through the p steps.
  • 8. Comparison between MultiComparison between Multi--variatevariate StatisticalStatistical Theory and Random Field TheoryTheory and Random Field Theory •• Statistical Theory:Statistical Theory: EachEach variatevariate is considered as a component of ais considered as a component of a random vector and the covariance matrixrandom vector and the covariance matrix gives the dependences between componentsgives the dependences between components of the random vector.of the random vector. •• Random Field Theory:Random Field Theory: Each node value in the field is considered as aEach node value in the field is considered as a component of a random vector. Thecomponent of a random vector. The dependences between node values aredependences between node values are described by autodescribed by auto--covariance function.covariance function.
  • 9. Example of CD Approach(1)Example of CD Approach(1) i-1,j i,j i,j-1 1,1 Nx,Ny Nx,1 1,Ny Nx,j The joint probability of the lattice process can be expressed mathematically as, )Pr( 11212111 S=Z...,S=Z,S=Z,S=Z,...,S=Z,S=Z pN,Nqi,j-l,ji-ki,j,, yx where, Sk is a state of cell (i,j), which is one of the n states describing the geological system, Nx is the maximum number of cells in the horizontal direction, Ny is the maximum number of cells in the vertical direction.
  • 10. Example of CD Approach(2)Example of CD Approach(2) i-1,j i,j i,j-1 1,1 Nx,Ny Nx,1 1,Ny Nx,j )Pr()Pr( )Pr( )Pr( )Pr( )Pr( 111111212 11121232122 11111 11111 11212111 S=Z.S=Z|S=Z .S=Z,S=Z,S=Z|S=Z ...S=Z,...,S=Z,S=Z|S=Z ...S=Z,...,S=Z,S=Z|S=Z =S=Z...,S=Z,S=Z,S=Z,...,S=Z,S=Z ,,, ,,,f, ,ri,j-l,ji-ki,j ,t-N,NqN,-NpN,N pN,Nli,j-q,ji-ki,j,, yxyxyx yx where, Pr(z1,1 =S1) is the marginal probability of state S1
  • 11. Example of CD Approach(3)Example of CD Approach(3) i-1,j i,j i,j-1 1,1 Nx,Ny Nx,1 1,Ny Nx,j Introducing some nearest neighbour property according to Markov chain theory, )Pr()Pr( )Pr( )Pr()Pr()Pr( )Pr()Pr( )Pr( 111111221 111 111212111221312422 1111 11212111 S=Z.S=Z|S=Z ...S=Z|S=Z .S=Z|S=Z...S=Z|S=Z.S=Z,S=Z|S=Z ...S=Z,S=Z|S=Z...S=Z,S=Z|S=Z =S=Z...,S=Z,S=Z,S=Z,...,S=Z,S=Z ,,, x-N,rN, ,,g,-Nd,N,,, fi,j-t,ji-ki,ja-N,NlN,-NpN,N pN,Nqi,j-l,ji-ki,j,, yy xx yxyxyx yx
  • 12. LU Decomposition Method (1)LU Decomposition Method (1) , , i j X Y 0 Z Z sij 1 p , , , 2 3 , The algorithm for generating random fields with a given covariance structure based on the covariance matrix of the system is as follows: 1) Build the covariance matrix C of the system. The elements of C are denoted by, )( Z,Z= Covc jiij and if i=j the covariances becomes the variances. ...),( ..... .... ...),( ),(..),( 2 1 2 2 12 121 2 2 1 ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ = p i Zp Z Z pZ ZZCov ZZCov ZZCovZZCov σ σ σ σ C
  • 13. LU Decomposition Method(2)LU Decomposition Method(2) , , i j X Y 0 Z Z sij 1 p , , , 2 3 , In case of stationary random field, the elements of the covariance matrix are given as: )s(=c ij 2 Zij ρσ σ2 Z is the variance of the process Z, ρ(sij) is the auto-correlation function, and sij is the distance vector between point i and point j. )y-y(+)x-x(=s 2 ji 2 jiij For pairs of values Zi and Zj with i = 1,...p and j = 1,...p determine (xi - xj) and (yi - yj) where, (xi,yi) are the coordinates of point Zi and point (xj,yj) are the corresponding coordinates for point Zj. The distance sij between two points is,
  • 14. AutoAuto--Correlation MatrixCorrelation Matrix , , i j X Y 0 Z Z sij 1 p , , , 2 3 , ( ) 12 1 21 2 1 1 . . 1 . . . 1 . . 1 . . . . . . . . . . 1 p Z p ρ ρ ρ σ ρ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ R C ρij = cij/σ2 Z is the autocorrelation coefficient between point i and point j.
  • 15. Properties of AutoProperties of Auto--correlation Matrixcorrelation Matrix 1) All the diagonal elements are equal to one, i.e. correlation between the point and itself is perfect (complete correlation). 2) If ρij = 0, this means no correlation between i and j. 3) All the off-diagonal elements are called autocorrelation coefficients and they are less than one. 4) The autocorrelation matrix is symmetric, i.e., ρij = ρ ji. 5) According to the stationarity assumption: ρ12 = ρ23 =...= ρp-1p, ρ13 = ρ 24 =...= ρp-2p, and so on.
  • 16. LU Decomposition Method (3)LU Decomposition Method (3) 2) One has to decompose the covariance matrix by the Cholesky factorization method (Square-Root method), C = L U where, L is a unique lower triangular matrix, U is a unique upper triangular matrix, and U is LT , i.e., U is the transpose of L. 1 1 1 1 i1 i1 11 1/2 i 2 ii ii ik k i ij ij ik jk kjj ij c = ,1 i pl c = - ,1 i pl c l 1 = - ,1< j <i pl c l l l =0 , i < j pl − = − = ≤ ≤ ⎡ ⎤ ≤ ≤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎡ ⎤ ≤⎢ ⎥ ⎣ ⎦ ≤ ∑ ∑
  • 17. LU Decomposition Method (4)LU Decomposition Method (4) 3) Generation of normally distributed p-dimensional sequence of independent random numbers with zero mean and unit standard deviation N(0,1) which can be expressed as, T 1 2{ , ,..., }pε ε ε=ε where, ε is vector of normally distributed random numbers, and εi is the i-th random number drawn from N(0,1). 4) Multiplication of the independent random vector ε by the triangular matrix U to get a vector of auto-correlated random numbers. This vector can be expressed by matrix multiplication convention as, X = U ε where, X is a vector of multi-variate normal random Np(0,I), 0 is zero mean vector (p*1), and I is the identity matrix (p*p). Z = µ + X
  • 18. Example of LU Decomposition (TwoExample of LU Decomposition (Two--points)points) ( ) ( ) ( ) 2 2 122 111 2 1 2 2 1 22 22 22 2 2 2 2 21 2 2 1 22221 21 21 2 2 2 22 21 2211 2 1 2 11 22 21 21 1 1 0 10 , 1 0 )())((2)( 12 1 exp 12 1 ),( )())((2)( 12 1 exp 12 1 ),( ερ−σ+ρσε+µ=+µ= σε+µ=+µ= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ε ε ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ρ−σρσ σ =⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ρ−σ ρσσ =⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ρ−σρσ σ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ σρσ ρσσ = ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ σ µ− + σ µ−µ−ρ − σ µ− ρρ−σ µ=µ=µ σ=σ=σ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ σ µ− + σσ µ−µ−ρ − σ µ− ρρ−σσ XZ XZ X X ZZZZ - - π =ZZf ZZZZ - - π =ZZf UL C O O z1 z2
  • 19. Numerical Example of LU Decomposition(1)Numerical Example of LU Decomposition(1) i0 1 i+1i-1 N2 ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ = ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ λ −σ= =∆ =λ =σ = − 56.058.048.047.00.00.00.00.00.00.0 00.059.056.047.047.000.00.000.000.000.0 00.000.060.057.049.043.00.000.000.000.0 00.000.000.060.058.049.042.000.000.000.0 00.000.000.000.060.059.046.041.000.000.0 00.000.000.000.000.066.055.045.041.000.0 00.000.000.000.000.000.067.058.049.027.0 00.000.000.000.000.000.000.068.060.052.0 00.000.000.000.000.000.000.000.069.079.0 0.00.00.00.00.00.000.000.000.005.1 1.183.055.028.00.00.00.00.00.00.0 83.01.183.055.028.00.00.00.00.00.0 55.083.01.183.055.028.00.00.00.00.0 28.055.083.01.183.055.028.00.00.00.0 0.028.055.083.01.183.055.028.00.00.0 0.00.028.055.083.01.183.055.028.00.0 0.00.00.028.055.083.01.183.055.028.0 0.00.00.00.028.055.083.01.183.055.0 0.00.00.00.00.028.055.083.01.183.0 0.00.00.00.00.00.028.055.083.01.1 1 8.2 10 }1.11.11.11.11.11.11.11.11.11.1{ }6.06.06.06.06.06.06.06.06.06.0{ 2 2 L C µ ji Z z z xx mx m
  • 20. Numerical Example of LU Decomposition(2)Numerical Example of LU Decomposition(2) ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ + − + = ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ + − − + ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ =+= ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ + − − = ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ + − + + + − + + − − ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ = . . . . . . . 162.1 241.0 397.0 . . . . . . . 562.0 841.0 203.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 . . . . . . . 562.0 841.0 203.0 639.0 543.0 721.0 876.0 480.0 787.0 548.0 201.0 998.0 193.0 . 56.058.048.047.000.000.000.000.000.000.0 00.059.056.047.047.000.000.000.000.000.0 00.000.060.057.049.043.000.000.000.000.0 00.000.000.060.058.049.042.000.000.000.0 00.000.000.000.060.059.046.041.000.000.0 00.000.000.000.000.066.055.045.041.000.0 00.000.000.000.000.000.067.058.049.027.0 00.000.000.000.000.000.000.068.060.052.0 00.000.000.000.000.000.000.000.069.079.0 0.00.00.00.00.00.000.000.000.005.1 LεµZ Lε
  • 21. Nearest Neighbour MethodNearest Neighbour Method Whittle’s Model [1954], ∑≠ij ijiji ε+ZW=Z Zi is a random variable satisfying the nearest neighbour relation, εi is uncorrelated normal random number with E(εi) = 0, and Var(εi) = σi 2 , i=1,2,...p, and Wij are weighting coefficients. Anisotropic first-order auto-regressive (Smith and Freeze [1979b]) ε+Z+Zα+Z+Zα=Z ijij+ij-yji+ji-xij )()( 1111 α x is an auto-regressive parameter expressing the degree of dependence of Zij on its two neighbouring values Zi-1j and Zi+1j, (|αx|<1), and α y is an auto-regressive parameter expressing the degree of dependence of Zij on its two neighbouring values Zij-1 and Zij+1, (|α y| < 1). i,j i,j+1 i+1,j i,j-1 i-1,j,, , , , N=2 N=3 N=4
  • 22. Nearest Neighbour Method (1)Nearest Neighbour Method (1) =Z W Z + ε W is called the p*p connectivity matrix, or the p*p spatial lag operator of scaled weights, wkl. The elements of the connectivity matrix wkl are defined as, i,j i,j+1 i+1,j i,j-1 i-1,j,, , , , N=2 N=3 N=4 N w =w * kl kl where, k = 1,2,...p, l = 1,2,...p, and k ≠ l, w* kl = α x if the blocks k and l are contiguous in the x-direction, w* kl = α y if the blocks k and l are contiguous in the y-direction, and w* kl = 0 otherwise, i.e., if k = l, or if blocks k and l are not contiguous, and N is the total number of blocks surrounding block k, i.e., N=4 if block k is located inside the domain, N=3 if block k is located on the boundary of the domain, and N=2 if block k is located at a corner of the domain.
  • 23. Nearest Neighbour Method (2)Nearest Neighbour Method (2) +Z = W Z ε Z ~ 0 and σZ. ε ~ 0 and σε. To simulate the predetermined standard deviation σz : - Start from a random vector ε with σε =1. - ε is pre-multiplied by an appropriate factor η to yield σz . η+Z = W Z ε Solution ( ) η= -1 Z I - W ε Determination of η { } 2 . T Z E σ = Z Z R
  • 24. Nearest Neighbour Method (3)Nearest Neighbour Method (3) 2 2 2 1 1 1 2 2 2 2 1 ( ) (( ) ) (( ) ( ) ) 1 1 , 1 1. ( ) ε Z - - T T - ε Z Z Z m η σ σ σ η σ Taking the trace of a matrix p tr η σ σ η V = = = = = R = V . V I - W . I - W I - W . I - W R = V V Vm = tr V/p, and the symbol "tr" is the trace of the matrix, tr (V) = Σ vii , i= 1,…,p
  • 25. Nearest Neighbour Method (4)Nearest Neighbour Method (4) 1 1 ( ) ' ( ) Z m Z z m σ V σ V − − = + Z = I - W ε Z µ I - W ε The analysis of the covariance function describing the generated random field with first-order dependence is approximately an exponential decay function. The advantage is: at the beginning of any simulation the matrix (I - W) must be inverted only once. For each realization of the process Z, the inverted matrix (I - W)-1 is simply multiplied by the generated random vector ηε. The drawback of this method is computing the inverse matrix.
  • 26. Nearest Neighbour Method (5)Nearest Neighbour Method (5) Dofcaseina a 2 4 1 π = α− α λ =
  • 27. Turning Bands Method(TBM)Turning Bands Method(TBM) The TBM was first proposed by Matheron [1973] and applied by the school of mines in Paris. Its basic concept is to transform a multidimensional simulation into the sum of a series of equivalent uni-dimensional simulations
  • 28. TBM ProcedureTBM Procedure TBMTBM is a repetition of a two steps:is a repetition of a two steps: 1. a realization of a random process with a prescribed auto1. a realization of a random process with a prescribed auto-- covariance function and zero mean is generated on one line.covariance function and zero mean is generated on one line. -- TheThe CholeskyCholesky decomposition method can be used (but withdecomposition method can be used (but with much smaller correlation matrix dimensions) ormuch smaller correlation matrix dimensions) or -- AutoAuto--regression methods, like nearest neighbour.regression methods, like nearest neighbour. 2. Orthogonal projection of the generated line process to each p2. Orthogonal projection of the generated line process to each pointoint in the simulated twoin the simulated two-- or threeor three--dimensional random field.dimensional random field. The two steps are repeated for a given number of lines and thenThe two steps are repeated for a given number of lines and then aa final value is assigned to each grid point in the field by takinfinal value is assigned to each grid point in the field by taking ag a weighted average over the total number of lines.weighted average over the total number of lines.
  • 29. Background of the MethodBackground of the Method Let Zi(u), i = 1,...L a set of N independent realizations of a one-dimensional, second order stationarity stochastic process on a line u with an auto-correlation function ρ1(uo), where uo is the spatial lag on the line. The values given by the relation, uZ L =x,y,zZ L i is ∑=1 )( 1 )( is a realization of a two- or three- dimensional process with zero mean. The subscript s represents the term " simulated " or " synthetic ". [ ])()(:3 1 uu du d =uρcaseD oo o o ρ− )(:2 0 s s s ρ πρ 2 = )u-( du)u( caseD 2 o 2 oo1 ∫−
  • 30. Spectral Turning Bands Method (STBM)Spectral Turning Bands Method (STBM) To circumvent the difficulty, an expression for the spectral density function of the one-dimensional processes as a function of the radial spectral density function of the two-dimensional process is used. This expression is given in a Fourier space by, 2 1( ) ( ) 2 Z SS σω = ω The spectral density function of the uni-dimensional process S1(ω) along the turning bands lines is given by one half of the radial spectral density function S(ω) of the two-dimensional process multiplied by the variance of the two-dimensional process.
  • 31. Implementation of the STBM in 2D (1)Implementation of the STBM in 2D (1) (1) Generation of One-dimensional Uni-variate Process on The Turning Bands Line: (Standard Fourier Integration method) ∑∫ ≈ += ω ω ω ω ωω all j ui all ui dWedWe=uX uiYuZuX j )()()( )()()( X is the sum of a complex series of sinusoidal functions of varying wavelength, each magnified by complex random amplitude with zero mean dW(ωj), ωj=j.∆ω. ∑ ∫ = += +== M j jji all j udWuZ udWuZuX 1 )cos()()( )cos()()()}(Re{ φωω φωω ω ω where, φj represents independent random angles which is uniformly distributed between 0 and 2π, M is the number of harmonics used in the calculations, ωj =(j-.5) ∆ω, j =1,2,...M, and ∆ω is the discretized frequency which is given by ωmax/M, and ωmax is the maximum frequency used in the calculations.
  • 32. Implementation of the STBM in 2D (2)Implementation of the STBM in 2D (2) 1( ) 4 ( ).j jdW Sω ω ω⎡ ⎤= ∆⎣ ⎦ where, S1(ωj) is the spectral density function of the real process Z(u) on the line. S1(ω) is assumed to be insignificant outside the region [- ωmax,+ ωmax] 1 1 ' 1 1 ( ) 2 ( ). cos( ) ( ) 2 ( ). cos( ) j j M i j j j M i j j j Z u S u Z u S u ω ω ω φ ω ω ω φ = = ⎡ ⎤= ∆ +⎣ ⎦ ⎡ ⎤= ∆ +⎣ ⎦ ∑ ∑ where, ω 'j = ωj + δω The frequency δω is a small random frequency added here in order to avoid periodicities. δω is uniformly distributed between - ∆ω’ /2 and ∆ω’ /2, where, ∆ω’ is a small frequency, ∆ω’<<∆ω. ∆ω’ is taken equal to ∆ω /20 according to Shinozuka and Jan [1972]
  • 33. Implementation of the STBM in 2D (3)Implementation of the STBM in 2D (3) ( ) 1/ 222 2 2 3/ 22 2 2 2 2 .exp. var ( ) exp ( ) 2 1 yx Z x y Z x y x x y y D Anistorpic Co iance ss Cov Spectrum S σ λ λ σ λ λ π λ ω λ ω − ⎡ ⎤⎛ ⎞⎧ ⎫⎧ ⎫ ⎪ ⎪⎢ ⎥⎜ ⎟= − +⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠⎢ ⎥⎣ ⎦ = + + s ω
  • 34. Implementation of the STBM in 2D (4)Implementation of the STBM in 2D (4) (2) Distribution of The Turning Bands Lines and The Number of Lines: Random orientation versus evenly spaced (it converges faster) 8-16 lines are satisfactory choice in case of isotropic correlation. (3) Spectral Discretization: ∆ω must be kept small enough. M must be kept large enough (M∆ω >50). Mantoglou and Wilson [1982] WRR (4) Physical Discretization: ∆u < min {∆x, ∆y, ∆z} (5) Length of The Turning Bands Lines: Minimum length is determined by the orientation of the line and the domain size.
  • 35. Spectral Turning Bands Method:Spectral Turning Bands Method: Projection from many linesProjection from many lines
  • 36. Comparison Between Various MethodsComparison Between Various Methods Item Method 〈K 〉 m/day σK m/day 〈 Y 〉 σY -0.8 1.3 1.3 1.3 -0.8 -0.8 λx M λy m NNG 1 2 αx =.98 1.2 1.2 1.2 αy =.50 0.73 MVG 1 2 0.73 TBG 1 2 0.73 Monte-Carlo=100 Domain dimensions =15 ×15 ms Domain discretization = 1 ×1 ms
  • 37. Comparison Between Various MethodsComparison Between Various Methods
  • 38. MosaicMosaic FaciesFacies ((Discrete) ModelsDiscrete) Models In this approach one is aiming to construct - formation geological units, its geometric characteristics. - lithologies. - units dimensions (length, thickness, and width), - orientations and frequency of occurrence, etc.. Types of discrete models:Types of discrete models: •• ObjectObject--based Models.based Models. •• Sequential based Models:Sequential based Models: --Markov Chains in 1Markov Chains in 1--D, 2D, 2--D etc.D etc. --Markov Random Fields.Markov Random Fields. --TruncatedTruncated GaussianGaussian Fields.Fields. --Sequential Indicator Simulation Models.Sequential Indicator Simulation Models. --Random Lines Models.Random Lines Models. --Random Sets.Random Sets.
  • 39. ObjectObject--based Modelsbased Models This model consider only two states (like sand and shale formation). Two parameters are considered: 1. The density of the random objects per unit of volume. 2. Statistical distribution of the sizes of the objects.
  • 40. SequentialSequential--based Modelsbased Models •Markov Chains in 1-D. •Markov Chain in 2-D. •Truncations of Gaussian Field. •Sequential Indicator Simulation.
  • 41. Theory of OneTheory of One--dimensional Markov Chaindimensional Markov Chain SS S i0 1 i+1i-1 N2 l k q ,:)Pr( )Pr( pSZ|SZ SZ,...,SZ,SZ,SZ|SZ lkl1-iki p0r3-in2-il1-iki === ====== ... ..... .... .... .. 1 21 11211 ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ = nnn lk n pp p p ppp p 1,...,0 1 pp n k lklk =≥ ∑= wp k N lk N = ∞→ )( lim 1,0 ..., 1 1 =≥ == ∑ ∑ = = n k kk klkl n l ww n,1k,wpw Transition prob. Marginal prob.
  • 42. Example on OneExample on One--dimensional Markov Chaindimensional Markov Chain
  • 43. Coupled Markov ChainCoupled Markov Chain i0 1 i+1i-1 N2 SlSf i0 1 i+1i-1 N2 SkSq X-Chain Y-Chain lkfqqifik1+il1+i pSY,SX|SY,SX ,)Pr( ===== Transition probabilities },...,,,...,,,....{. 2121, nnqkfllkfq ssssssppp ×= Marginal probabilities kllk www .=
  • 44. Coupled Chain on a LatticeCoupled Chain on a Lattice i-1,j i,j i,j-1 1,1 Nx,Ny Nx,1 1,Ny Nx,j Dark Grey (Boundary Cells) Light Grey (Previously Generated Cells) White (Unknown Cells) nk p.p p.p SZSZSZp p.pC SYSYSXSXCSZ,SZ|SZ SYSYSXSXSZ,SZ|SZ SYSYSZ|SZ SXSXSZ|SZ f v mf h lf v mk h lk mjiljikjiklm n f v mf h lf mjkjlikimjiljikji mjkjlikimjiljikji mjkjmjikji likiljikji ,...1.),|Pr(: )Pr()Pr()(Pr )Pr()Pr()(Pr )Pr()(Pr )Pr()(Pr 1,,1,, 1 1 111,,1, 111,,1, 11,, 1,1, ====== ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ======== ======== ===== ===== ∑ ∑ −− − = −−−− −−−− −− −−
  • 45. Coupled Chain Prob. In TwoCoupled Chain Prob. In Two--State ModelState Model Two-State Model 1 1 2 2 1 2 1 1 1 2 2 2 1 1 1 1 2 1 1 1 2 1 2 2 2 1 2 1 2 1 1 2 2 2 1 1 2 2 2 2 2 2 2 1 2 2 1 2 1 1 2 1 1 1 1 2 1 2 1 2 1 2 2 1 P(ij,lk) = P(i,l) P(j,k) , i,j,l,k = 1,2 h v The Transition Probabilities of The Coupled Chain k=l k<>l P(11,11) P(11,22) P(11,21) P(11,12) P(12,11) P(12,22) P(12,21) P(12,12) P(21,11) P(21,22) P(21,21) P(21,12) P(22,11) P(22,22) P(22,21) P(22,12)
  • 46. ExampleExample of Twoof Two--State ModelState Model Numerical Example of Two-State Model The Transition Probabilities of The Coupled Chain k=l k<>l P(11,11) =0.250 P(11,22) =0.250 P(11,21) =0.250 P(11,12) =0.250 P(12,11) =0.250 P(12,22) =0.250 P(12,21) =0.250 P(12,12) =0.250 P(21,11) =0.125 P(21,22) =0.375 P(21,21) =0.375 P(21,12) =0.125 P(22,11) =0.125 P(22,22) =0.375 P(22,21) =0.375 P(22,12) =0.125 P(ij,lk) = P(i,l) P(j,k) , i,j,l,k = 1,2 h v The Horizontal Chain The Vertical Chain 1 2 1 2 1 0.50 0.50 1 0.50 0.50 2 0.25 0.75 2 0.50 0.50 Normalized Transition Probabilities of The Coupled Chain k=l k<>l P(11,11) =0.500 P(11,22) =0.500 P(11,21) =0.000 P(11,12) =0.000 P(12,11) =0.500 P(12,22) =0.500 P(12,21) =0.000 P(12,12) =0.000 P(21,11) =0.250 P(21,22) =0.750 P(21,21) =0.000 P(21,12) =0.000 P(22,11) =0.250 P(22,22) =0.750 P(22,21) =0.000 P(22,12) =0.000 P(ij,kk) = Σ P(i,f) P(j,f) P(i,k) P(j,k) i,j,k =1,2 f
  • 47. Simulation Example (0)Simulation Example (0) Horizontal Transition Probability Matrix 0.000 0.340 0.330 0.330 0.000 0.347 0.353 0.300 0.340 0.000 0.330 0.330 0.347 0.000 0.323 0.330 0.330 0.340 0.000 0.330 0.340 0.347 0.000 0.313 0.330 0.340 0.330 0.000 0.303 0.356 0.341 0.000 Vertical Transition Probability Matrix 0.000 0.340 0.330 0.330 0.002 0.354 0.340 0.304 0.340 0.000 0.330 0.330 0.342 0.002 0.338 0.319 0.330 0.340 0.000 0.330 0.332 0.349 0.002 0.318 0 10 20 30 40 50 60 70 80 90 100 -50 -40 -30 -20 -10 0 0 50 100 150 200 -50 0 1 2 3 4 0 10 20 30 40 50 60 70 80 90 100 -50 -40 -30 -20 -10 0 (a) (b) (c) 0 10 20 30 40 50 60 70 80 90 100 -50 -40 -30 -20 -10 0 (d) Horizontal Transition Probability Matrix 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 Vertical Transition Probability Matrix 0.600 0.100 0.200 0.100 0.571 0.000 0.143 0.286 0.100 0.700 0.100 0.100 0.091 0.818 0.000 0.091 0.150 0.150 0.400 0.300 0.111 0.111 0.222 0.556 0.100 0.200 0.200 0.500 0.043 0.087 0.261 0.609 Horizontal Transition Probability Matrix 0.250 0.250 0.250 0.250 0.211 0.211 0.211 0.368 0.250 0.250 0.250 0.250 0.280 0.240 0.240 0.240 0.250 0.250 0.250 0.250 0.179 0.143 0.286 0.393 0.250 0.250 0.250 0.250 0.107 0.393 0.357 0.143 Vertical Transition Probability Matrix 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 XX` - XX` Transition Probability Matrix 0.000 0.340 0.330 0.330 0.000 0.347 0.353 0.300 0.340 0.000 0.330 0.330 0.347 0.000 0.323 0.330 0.330 0.340 0.000 0.330 0.340 0.347 0.000 0.313 0.330 0.340 0.330 0.000 0.303 0.356 0.341 0.000 YY` - YY` Transition Probability Matrix 0.000 0.340 0.330 0.330 0.002 0.354 0.340 0.304 0.340 0.000 0.330 0.330 0.342 0.002 0.338 0.319 0.330 0.340 0.000 0.330 0.332 0.349 0.002 0.318 0.330 0.340 0.330 0.000 0.318 0.345 0.335 0.003 0.330 0.340 0.330 0.000 0.318 0.345 0.335 0.003
  • 48. Simulation Example (1)Simulation Example (1) Horizontal Transition Probability Matrix 0.980 0.020 0.983 0.017 0.020 0.980 0.023 0.977 Vertical Transition Probability Matrix 0.500 0.500 0.567 0.433 0.500 0.500 0.581 0.419 0 100 200 300 400 500 600 700 800 900 1000 -500 -400 -300 -200 -100 0 (a) Geological Pattern with Two Phase Materials.
  • 49. Simulation Example (2)Simulation Example (2) Horizontal Transition Probability Matrix 0.970 0.010 0.010 0.010 0.970 0.012 0.010 0.009 0.005 0.980 0.005 0.010 0.005 0.984 0.004 0.007 0.020 0.020 0.940 0.020 0.017 0.016 0.951 0.016 0.010 0.010 0.010 0.970 0.010 0.013 0.012 0.965 Vertical Transition Probability Matrix 0.250 0.250 0.250 0.250 0.307 0.387 0.138 0.168 0.250 0.250 0.250 0.250 0.188 0.431 0.146 0.235 0.250 0.250 0.250 0.250 0.253 0.384 0.214 0.148 0.250 0.250 0.250 0.250 0.290 0.336 0.139 0.235 0 100 200 300 400 500 600 700 800 900 1000 -400 -300 -200 -100 0 (b) Relatively Thin Stratified Formation.
  • 50. Simulation Example (3)Simulation Example (3) Horizontal Transition Probability Matrix 0.950 0.005 0.005 0.040 0.956 0.004 0.001 0.039 0.010 0.970 0.010 0.010 0.016 0.966 0.005 0.013 0.020 0.010 0.960 0.010 0.058 0.032 0.894 0.016 0.010 0.010 0.010 0.970 0.012 0.008 0.004 0.976 Vertical Transition Probability Matrix 0.700 0.150 0.100 0.050 0.746 0.130 0.038 0.086 0.200 0.500 0.100 0.200 0.154 0.458 0.025 0.363 0.300 0.200 0.300 0.200 0.236 0.202 0.081 0.480 0.100 0.200 0.100 0.600 0.068 0.138 0.030 0.765 0 200 400 600 800 1000 1200 -400 -200 0 (c) Relatively Thick Stratified Formation.
  • 51. Simulation Example (4)Simulation Example (4) Horizontal Transition Probability Matrix 0.900 0.050 0.040 0.010 0.959 0.023 0.016 0.002 0.050 0.800 0.100 0.050 0.057 0.834 0.081 0.028 0.020 0.020 0.940 0.020 0.032 0.030 0.919 0.019 0.010 0.010 0.010 0.970 0.021 0.010 0.007 0.962 Vertical Transition Probability Matrix 0.800 0.100 0.050 0.050 0.896 0.026 0.030 0.048 0.100 0.600 0.200 0.100 0.162 0.496 0.253 0.089 0.100 0.300 0.500 0.100 0.102 0.215 0.540 0.143 0.100 0.100 0.200 0.600 0.067 0.044 0.237 0.652 0 100 200 300 400 500 600 700 800 900 1000 -500 -400 -300 -200 -100 0 (a) Geological System with One Unit Has Big Dimensions.
  • 52. Simulation Example (5)Simulation Example (5) Horizontal Transition Probability Matrix 0.900 0.030 0.030 0.040 0.924 0.017 0.047 0.013 0.010 0.970 0.010 0.010 0.022 0.960 0.016 0.002 0.010 0.020 0.960 0.010 0.024 0.010 0.963 0.003 0.040 0.040 0.010 0.910 0.093 0.053 0.099 0.755 Vertical Transition Probability Matrix 0.970 0.010 0.010 0.010 0.939 0.020 0.038 0.004 0.040 0.900 0.030 0.030 0.022 0.940 0.033 0.006 0.020 0.010 0.960 0.010 0.017 0.007 0.972 0.005 0.040 0.040 0.010 0.910 0.134 0.043 0.062 0.761 0 200 400 600 800 1000 1200 -600 -400 -200 0 (b) Large Scale Geological Units.
  • 53. Simulation Example (6)Simulation Example (6) Horizontal Transition Probability Matrix 0.400 0.200 0.300 0.100 0.924 0.030 0.041 0.006 0.010 0.970 0.010 0.010 0.076 0.914 0.006 0.005 0.010 0.020 0.960 0.010 0.093 0.026 0.876 0.005 0.010 0.005 0.005 0.980 0.067 0.013 0.007 0.913 Vertical Transition Probability Matrix 0.990 0.005 0.001 0.004 0.981 0.014 0.004 0.002 0.200 0.400 0.300 0.100 0.039 0.555 0.343 0.063 0.200 0.300 0.400 0.100 0.053 0.367 0.526 0.054 0.100 0.400 0.100 0.400 0.025 0.468 0.126 0.381 0 200 400 600 800 1000 1200 1400 -400 -200 0 (c) Bed Rock with Sedimentary Deposit.
  • 54. Simulation Example (7)Simulation Example (7) XX` - XX` Transition Probability Matrix 0.960 0.020 0.010 0.010 0.983 0.010 0.004 0.003 0.010 0.970 0.010 0.010 0.020 0.968 0.009 0.004 0.020 0.020 0.940 0.020 0.053 0.022 0.909 0.015 0.010 0.010 0.010 0.970 0.020 0.010 0.012 0.959 YY` - YY` Transition Probability Matrix 0.700 0.100 0.100 0.100 0.722 0.100 0.041 0.136 0.250 0.250 0.250 0.250 0.257 0.348 0.122 0.273 0.250 0.250 0.250 0.250 0.235 0.285 0.166 0.313 0.250 0.250 0.250 0.250 0.132 0.196 0.077 0.596 0 200 400 600 800 1000 1200 1400 -400 -200 0 (a) Inclined Bedding with -45 degrees.
  • 55. Simulation Example (8)Simulation Example (8) 0 100 200 300 400 500 600 700 800 900 1000 -500 -400 -300 -200 -100 0 (b) Inclined Bedding with -7 degrees.
  • 56. Simulation Example (9)Simulation Example (9) XX` - XX` Transition Probability Matrix 0.700 0.100 0.100 0.100 0.650 0.098 0.072 0.180 0.100 0.600 0.200 0.100 0.126 0.673 0.093 0.109 0.200 0.200 0.500 0.100 0.181 0.288 0.323 0.209 0.100 0.200 0.200 0.500 0.120 0.223 0.059 0.598 YY` - YY` Transition Probability Matrix 0.980 0.005 0.005 0.010 0.969 0.007 0.012 0.011 0.010 0.970 0.010 0.010 0.003 0.981 0.011 0.005 0.020 0.020 0.940 0.020 0.037 0.027 0.911 0.025 0.010 0.010 0.010 0.970 0.013 0.018 0.007 0.962 0 200 400 600 800 1000 1200 1400 1600 1800 2000 -400 -200 0 (c) Inclined Bedding with 26.5 degrees.
  • 57. OneOne--dimensional Markov Chain Conditioneddimensional Markov Chain Conditioned on Future Stateson Future States i0 1 i+1i-1 N2 SkSl Sq )1( )( )1( )( 1 11 11 1 1 1 1 1 11 1 1 1 1 1 )(Pr )Pr().|(Pr )(Pr).|(Pr).|(Pr )(Pr ),(Pr ),(Pr).|(Pr )(Pr ),(Pr ),(Pr),|(Pr )(Pr ),(Pr ),,Pr( )(Pr )(Pr +− − +− − − −− −− − − − − − −− − − − − − = ==== === ===== ==== == ==== ==== == ===== ==== == === ==== === iN lq iN kqlk qlk iN lq lk iN kq qNliki liliqN lilikikiqN qNliki qNli kilikiqN qNliki qNli kilikiliqN qNliki qNli qNkili qNliki qNliki p pp p p pp SZ,SZ|SZ SZSZSZ SZSZSZSZSZ SZ,SZ|SZ SZSZ SZSZSZSZ SZ,SZ|SZ SZSZ SZSZSZSZSZ SZ,SZ|SZ SZSZ SZSZSZ SZ,SZ|SZ SZ,SZ|SZ
  • 58. Coupled Markov Chain (application)Coupled Markov Chain (application) Two-dimensional Cross-sectional Panel of the Fluvial Succession of the Medial Area of the Tόrtola Fluvial System, Spain Length of The Section (m) = 648. Depth of The Section (m) = 115. Sampling interval in X-axis (m) = 9. Sampling interval in Y-axis (m) = 2.5 Horizontal Transition Probability Matrix State 1 2 3 4 5 6 7 8 1 0.893 0.009 0.005 0.000 0.000 0.000 0.000 0.093 2 0.000 0.796 0.011 0.000 0.000 0.000 0.000 0.194 3 0.000 0.000 0.989 0.000 0.000 0.000 0.000 0.011 4 0.006 0.000 0.013 0.885 0.000 0.000 0.000 0.096 5 0.074 0.000 0.000 0.074 0.593 0.037 0.000 0.222 6 0.000 0.013 0.000 0.000 0.000 0.946 0.000 0.040 7 0.040 0.000 0.000 0.000 0.000 0.000 0.940 0.020 8 0.007 0.006 0.002 0.007 0.005 0.005 0.001 0.968 Vertical Transition Probability Matrix State 1 2 3 4 5 6 7 8 1 0.591 0.000 0.000 0.000 0.014 0.000 0.042 0.353 2 0.011 0.753 0.097 0.000 0.000 0.000 0.000 0.140 3 0.032 0.000 0.623 0.000 0.000 0.238 0.000 0.107 3 0.000 0.025 0.000 0.662 0.013 0.000 0.000 0.299 5 0.111 0.000 0.000 0.074 0.519 0.000 0.000 0.296 6 0.000 0.000 0.026 0.032 0.006 0.084 0.000 0.851 7 0.120 0.000 0.000 0.100 0.000 0.000 0.360 0.420 8 0.029 0.008 0.039 0.017 0.003 0.031 0.010 0.863 1 2 3 4 5 6 7 8
  • 59. Coupled Markov Chain: UnconditionalCoupled Markov Chain: Unconditional SimulationSimulation 0 50 100 150 200 250 300 -80 -60 -40 -20 0 0 50 100 150 200 250 300 -80 -60 -40 -20 0 1 2 3 4 5 6 7 8 0 50 100 150 200 250 300 -80 -60 -40 -20 0
  • 60. Coupled Markov Chain: ConditionalCoupled Markov Chain: Conditional SimulationSimulation 1 2 3 4 5 6 7 8 0 50 100 150 200 250 300 -80 -60 -40 -20 0 0 50 100 150 200 250 300 -80 -60 -40 -20 0 0 50 100 150 200 250 300 -80 -60 -40 -20 0 0 50 100 150 200 250 300 -80 -60 -40 -20 0 0 50 100 150 200 250 300 -80 -60 -40 -20 0 0 50 100 150 200 250 300 -80 -60 -40 -20 0
  • 61. Markov Random Field ModelMarkov Random Field Model - Originally developed for image processing. - Similarity between image description and reservoir description. - The method does not use variogram or auto-correlation to describe the relation between the neighbouring locations but it is based on the theory of conditional probabilities. Procedure (Simulated annealing or Metropolis algorithm): 1. The states in the system are generated by arbitrary distribution over the lattice. 2. Two grid points are selected at random from the lattice. 3. Simple exchange of the grid points states based on conditional probabilities. 4. After each trial, a new permutation of the states of the grid points is created. 5. The procedure continues iteratively until the marginal and the transition probabilities of the states in the system is stabilized.
  • 62. TruncatedTruncated GaussianGaussian Field ModelField Model - Use the same Continuous models. - Truncate the continuous realizations based on some threshold values.
  • 63. Random Lines ModelRandom Lines Model Poisson Random Lines Model Switzer [1965]. The method generates random lines from Poisson distribution on a circle. The lines are used to represent boundaries between different soils.
  • 64. Random Sets Mosaic ModelRandom Sets Mosaic Model