SlideShare a Scribd company logo
1 of 18
If you are interested in the rest of these
chapters, email lauriewest24@gmail.com
Chapter 3 Amino Acids, Peptides, and Proteins
Multiple Choice Questions
1. Amino acids
Page: 72 Difficulty: 1 Ans: C
The chirality of an amino acid results from the fact that its α carbon:
A) has no net charge.
B) is a carboxylic acid.
C) is bonded to four different chemical groups.
D) is in the L absolute configuration in naturally occurring proteins.
E) is symmetric.
2. Amino acids
Page: 72 Difficulty: 2 Ans: B
Of the 20 standard amino acids, only ___________ is not optically active. The reason is that its side
chain ___________.
A) alanine; is a simple methyl group
B) glycine; is a hydrogen atom
C) glycine; is unbranched
D) lysine; contains only nitrogen
E) proline; forms a covalent bond with the amino group
3. Amino acids
Page: 72 Difficulty: 1 Ans: C
Two amino acids of the standard 20 contain sulfur atoms. They are:
A) cysteine and serine.
B) cysteine and threonine.
C) methionine and cysteine
D) methionine and serine
E) threonine and serine.
4. Amino acids
Page: 75 Difficulty: 1 Ans: A
All of the amino acids that are found in proteins, except for proline, contain a(n):
A) amino group.
B) carbonyl group.
C) carboxyl group.
D) ester group.
E) thiol group.
22
Chapter 3 Amino Acids, Peptides, and Proteins
5. Amino acids
Pages: 75–76 Difficulty: 3 Ans: C
Which of the following statements about aromatic amino acids is correct?
A) All are strongly hydrophilic.
B) Histidine’s ring structure results in its being categorized as aromatic or basic, depending on pH.
C) On a molar basis, tryptophan absorbs more ultraviolet light than tyrosine.
D) The major contribution to the characteristic absorption of light at 280 nm by proteins is the
phenylalanine R group.
E) The presence of a ring structure in its R group determines whether or not an amino acid is
aromatic.
6. Amino acids
Page: 77 Difficulty: 2 Ans: A
Which of the following statements about cystine is correct?
A) Cystine forms when the —CH2—SH R group is oxidized to form a —CH2—S—S—CH2—
disulfide bridge between two cysteines.
B) Cystine is an example of a nonstandard amino acid, derived by linking two standard amino acids.
C) Cystine is formed by the oxidation of the carboxylic acid group on cysteine.
D) Cystine is formed through a peptide linkage between two cysteines.
E) Two cystines are released when a —CH2—S—S—CH2—disulfide bridge is reduced to —CH2—
SH.
7. Amino acids
Page: 77 Difficulty: 2 Ans: A
The uncommon amino acid selenocysteine has an R group with the structure —CH2—SeH (pKa ≈ 5).
In an aqueous solution, pH = 7.0, selenocysteine would:
A) be a fully ionized zwitterion with no net charge.
B) be found in proteins as D-selenocysteine.
C) never be found in a protein.
D) be nonionic.
E) not be optically active.
8. Amino acids
Page: 78 Difficulty: 2 Ans: E
Which two amino acids differ from each other by only one atom?
A) Ser and Thr
B) Leu and Ile
C) Ala and Ser
D) Asp and Asn
E) Ser and Cys
9. Amino acids
Pages: 78–79 Difficulty: 1 Ans: A
Amino acids are ampholytes because they can function as either a(n):
23
Chapter 3 Amino Acids, Peptides, and Proteins
A) acid or a base.
B) neutral molecule or an ion.
C) polar or a nonpolar molecule.
D) standard or a nonstandard monomer in proteins.
E) transparent or a light-absorbing compound.
10. Amino acids
Pages: 79–80 Difficulty: 2 Ans: D
Titration of valine by a strong base, for example NaOH,reveals two pK’s. The titration reaction
occurring at pK2 (pK2 = 9.62) is:
A) —COOH + OH–
→ —COO–
+ H2O.
B) —COOH + —NH2 → —COO–
+ —NH2
+
.
C) —COO–
+ —NH2
+
→ —COOH + —NH2.
D) —NH3
+
+ OH–
→ —NH2 + H2O.
E) —NH2 + OH–
→ —NH–
+ H2O.
11. Amino acids
Pages: 79–80 Difficulty: 1 Ans: C
In a highly basic solution, pH = 13, the dominant form of glycine is:
A) NH2—CH2—COOH.
B) NH2—CH2—COO–
.
C) NH2—CH3
+
—COO–
.
D) NH3
+
—CH2—COOH.
E) NH3
+
—CH2—COO–
.
12. Amino acids
Pages: 80–81 Difficulty: 2 Ans: B
For amino acids with neutral R groups, at any pH below the pI of the amino acid, the population of
amino acids in solution will have:
A) a net negative charge.
B) a net positive charge.
C) no charged groups.
D) no net charge.
E) positive and negative charges in equal concentration.
13. Amino acids
Pages: 80–81 Difficulty: 2 Ans: A
At pH 7.0, converting a glutamic acid to γ-carboxyglutamate, will have what effect on the overall
charge of the protein containing it?
A) It will become more negative
B) It will become more positive.
C) It will stay the same.
D) There is not enough information to answer the question.
E) The answer depends on the salt concentration.
24
Chapter 3 Amino Acids, Peptides, and Proteins
14. Amino acids
Pages: 80–81 Difficulty: 2 Ans: C
At pH 7.0, converting a proline to hydroxyproline, will have what effect on the overall charge of the
protein containing it?
A) It will become more negative
B) It will become more positive.
C) It will stay the same.
D) There is not enough information to answer the question.
E) The answer depends on the salt concentration.
15. Amino acids
Pages: 80–81 Difficulty: 3 Ans: B
What is the approximate charge difference between glutamic acid and α-ketoglutarate at pH 9.5?
A) 0
B) ½
C) 1
D) 1½
E) 2
16. Peptides and proteins
Page: 82 Difficulty: 1 Ans: B
The formation of a peptide bond between two amino acids is an example of a(n) ______________
reaction.
A) cleavage
B) condensation
C) group transfer
D) isomerization
E) oxidation reduction
17. Peptides and proteins
Page: 82 Difficulty: 1 Ans: C
The peptide alanylglutamylglycylalanylleucine has:
A) a disulfide bridge.
B) five peptide bonds.
C) four peptide bonds.
D) no free carboxyl group.
E) two free amino groups.
18. Peptides and proteins
Pages: 82–83 Difficulty: 1 Ans: C
An octapeptide composed of four repeating glycylalanyl units has:
A) one free amino group on an alanyl residue.
B) one free amino group on an alanyl residue and one free carboxyl group on a glycyl residue.
C) one free amino group on a glycyl residue and one free carboxyl group on an alanyl residue.
D) two free amino and two free carboxyl groups.
E) two free carboxyl groups, both on glycyl residues.
25
Chapter 3 Amino Acids, Peptides, and Proteins
19. Peptides and proteins
Page: 82–83 Difficulty: 1 Ans: C
At the isoelectric pH of a tetrapeptide:
A) only the amino and carboxyl termini contribute charge.
B) the amino and carboxyl termini are not charged.
C) the total net charge is zero.
D) there are four ionic charges.
E) two internal amino acids of the tetrapeptide cannot have ionizable R groups.
20. Peptides and proteins
Pages: 83–84 Difficulty: 2 Ans: C
Which of the following is correct with respect to the amino acid composition of proteins?
A) Larger proteins have a more uniform distribution of amino acids than smaller proteins.
B) Proteins contain at least one each of the 20 different standard amino acids.
C) Proteins with different functions usually differ significantly in their amino acid composition.
D) Proteins with the same molecular weight have the same amino acid composition.
E) The average molecular weight of an amino acid in a protein increases with the size of the protein.
21. Peptides and proteins
Page: 83 Difficulty: 2 Ans: B
The average molecular weight of the 20 standard amino acids is 138, but biochemists use 110 when
estimating the number of amino acids in a protein of known molecular weight. Why?
A) The number 110 is based on the fact that the average molecular weight of a protein is 110,000
with an average of 1000 amino acids.
B) The number 110 reflects the higher proportion of small amino acids in proteins, as well as the
loss of water when the peptide bond forms.
C) The number 110 reflects the number of amino acids found in the typical small protein, and only
small proteins have their molecular weight estimated this way.
D) The number 110 takes into account the relatively small size of nonstandard amino acids.
E) The number 138 represents the molecular weight of conjugated amino acids.
22. Peptides and proteins
Page: 84 Difficulty: 1 Ans: C
In a conjugated protein, a prosthetic group is:
A) a fibrous region of a globular protein.
B) a nonidentical subunit of a protein with many identical subunits.
C) a part of the protein that is not composed of amino acids.
D) a subunit of an oligomeric protein.
E) synonymous with “protomer.”
26
Chapter 3 Amino Acids, Peptides, and Proteins
23. Peptides and proteins
Pages: 84–85 Difficulty: 1 Ans: A
Prosthetic groups in the class of proteins known as glycoproteins are composed of:
A) carbohydrates.
B) flavin nucleotides.
C) lipids.
D) metals .
E) phosphates.
24. Working with proteins
Page: 85 Difficulty: 1 Ans: E
For the study of a protein in detail, an effort is usually made to first:
A) conjugate the protein to a known molecule.
B) determine its amino acid composition.
C) determine its amino acid sequence.
D) determine its molecular weight.
E) purify the protein.
25. Working with proteins
Page: 87 Difficulty: 2 Ans: B
In a mixture of the five proteins listed below, which should elute second in size-exclusion (gel- filtration)
chromatography?
A) cytochrome c Mr = 13,000
B) immunoglobulin G Mr = 145,000
C) ribonuclease A Mr = 13,700
D) RNA polymerase Mr = 450,000
E) serum albumin Mr = 68,500
26. Working with proteins
Page: 89 Difficulty: 2 Ans: E
By adding SDS (sodium dodecyl sulfate) during the electrophoresis of proteins, it is possible to:
A) determine a protein’s isoelectric point.
B) determine an enzyme’s specific activity.
C) determine the amino acid composition of the protein.
D) preserve a protein’s native structure and biological activity.
E) separate proteins exclusively on the basis of molecular weight.
27. Working with proteins
Page: 90 Difficulty: 2 Ans: B
To determine the isoelectric point of a protein, first establish that a gel:
A) contains a denaturing detergent that can distribute uniform negative charges over the protein’s surface.
B) exhibits a stable pH gradient when ampholytes become distributed in an electric field.
C) is washed with an antibody specific to the protein of interest.
D) neutralizes all ionic groups on a protein by titrating them with strong bases.
E) relates the unknown protein to a series of protein markers with known molecular weights, Mr.
27
Chapter 3 Amino Acids, Peptides, and Proteins
28. Working with proteins
Pages: 90–91 Difficulty: 3 Ans: A
The first step in two-dimensional gel electrophoresis generates a series of protein bands by isoelectric
focusing. In a second step, a strip of this gel is turned 90 degrees,placed on another gel containing
SDS, and electric current is again applied. In this second step:
A) proteins with similar isoelectric points become further separated according to their molecular
weights.
B) the individual bands become stained so that the isoelectric focus pattern can be visualized.
C) the individual bands become visualized by interacting with protein-specific antibodies in the
second gel.
D) the individual bands undergo a second, more intense isoelectric focusing.
E) the proteins in the bands separate more completely because the second electric current is in the
opposite polarity to the first current.
29. Working with proteins
Page: 91 Difficulty: 1 Ans: B
The term specific activity differs from the term activity in that specific activity:
A) is measured only under optimal conditions.
B) is the activity (enzyme units) in a milligram of protein.
C) is the activity (enzyme units) of a specific protein.
D) refers only to a purified protein.
E) refers to proteins other than enzymes.
30. Peptides and proteins
Page: 92 Difficulty: 1 Ans: B
Which of the following refers to particularly stable arrangements of amino acid residues in a protein
that give rise to recurring patterns?
A) Primary structure
B) Secondary structure
C) Tertiary structure
D) Quaternary structure
E) None of the above
31. Peptides and proteins
Page: 92 Difficulty: 1 Ans: D
Which of the following describes the overall three-dimensional folding of a polypeptide?
A) Primary structure
B) Secondary structure
C) Tertiary structure
D) Quaternary structure
E) None of the above
28
Chapter 3 Amino Acids, Peptides, and Proteins
32. The covalent structure ofproteins
Page: 93 Difficulty: 1 Ans: B
The functional differences,as well as differences in three-dimensional structures, between two
different enzymes from E. coli result directly from their different:
A) affinities for ATP.
B) amino acid sequences.
C) roles in DNA metabolism.
D) roles in the metabolism of E. coli.
E) secondary structures.
33. The covalent structure ofproteins
Page: 95 Difficulty: 2 Ans: C
One method used to prevent disulfide bond interference with protein sequencing procedures is:
A) cleaving proteins with proteases that specifically recognize disulfide bonds.
B) protecting the disulfide bridge against spontaneous reduction to cysteinyl sulfhydryl groups.
C) reducing disulfide bridges and preventing their re-formation by further modifying the —SH
groups.
D) removing cystines from protein sequences by proteolytic cleavage.
E) sequencing proteins that do not contain cysteinyl residues.
34. The covalent structure ofproteins
Pages: 96–97 Difficulty: 3 Ans: C
A nonapeptide was determined to have the following amino acid composition: (Lys)2, (Gly) 2, (Phe)2,
His, Leu, Met. The native peptide was incubated with 1-fluoro-2,4-dinitrobenzene (FDNB) and then
hydrolyzed; 2,4-dinitrophenylhistidine was identified by HPLC. When the native peptide was
exposed to cyanogen bromide (CNBr),an octapeptide and free glycine were recovered. Incubation of
the native peptide with trypsin gave a pentapeptide, a tripeptide, and free Lys. 2,4-Dinitrophenyl-
histidine was recovered from the pentapeptide, and 2,4-dinitrophenylphenylalanine was recovered
from the tripeptide. Digestion with the enzyme pepsin produced a dipeptide, a tripeptide, and a
tetrapeptide. The tetrapeptide was composed of (Lys) 2, Phe, and Gly. The native sequence was
determined to be:
A) Gly–Phe–Lys–Lys–Gly–Leu–Met–Phe–His.
B) His–Leu–Gly–Lys–Lys–Phe–Phe–Gly–Met.
C) His–Leu–Phe–Gly–Lys–Lys–Phe–Met–Gly.
D) His–Phe–Leu–Gly–Lys–Lys–Phe–Met–Gly.
E) Met–Leu–Phe–Lys–Phe–Gly–Gly–Lys–His.
35. The covalent structure ofproteins
Pages: 96–97 Difficulty: 1 Ans: C
Even when a gene is available and its sequence of nucleotides is known, chemical studies of the
protein are still required to determine:
A) molecular weight of the protein.
B) the amino-terminal amino acid.
C) the location of disulfide bonds.
D) the number of amino acids in the protein.
E) whether the protein has the amino acid methionine in its sequence.
29
Chapter 3 Amino Acids, Peptides, and Proteins
36. The covalent structure ofproteins
Page: 100 Difficulty: 1 Ans: C
The term “proteome” has been used to describe:
A) regions (domains) within proteins.
B) regularities in protein structures.
C) the complement of proteins expressed by an organism’s genome.
D) the structure of a protein-synthesizing ribosome.
E) the tertiary structure of a protein.
37. The covalent structure ofproteins
Pages: 98–100 Difficulty: 2 Ans: C
A major advance in the application of mass spectrometry to macromolecules came with the
development of techniques to overcome which of the following problems?
A) Macromolecules were insoluble in the solvents used in mass spectrometry.
B) Mass spectrometric analyses of macromolecules were too complex to interpret.
C) Mass spectrometric analysis involved molecules in the gas phase.
D) Most macromolecules could not be purified to the degree required for mass spectrometric
analysis.
E) The specialized instruments required were prohibitively expensive.
38. The covalent structure ofproteins
Pages: 98–100 Difficulty: 3 Ans: C
Identify the pair of peptides below that cannot be distinguished by tandem mass spectrometry.
A) VTSPLYANEGK and VTCPLYANEGK
B) VTSPLYANEGK and VTSPLYADEGK
C) VTSPLYANEGK and VTSPIYANEGK
D) VTSPLYANEGK and VSTPLYANEGK
E) All of the above
39. Protein sequences and evolution
Pages: 102–106 Difficulty: 3 Ans: A
Compare the following sequences taken from four different proteins, and select the answer that best
characterizes their relationships.
A B C
1 DVEKGKKIDIMKCS HTVEKGGKHKTGPNLH GLFGRKTGQAPGYSYT
2 DVQRALKIDNNLGQ HTVEKGAKHKTAPNVH GLADRIAYQAKATNEE
3 LVTRPLYIFPNEGQ HTLEKAAKHKTGPNLH ALKSSKDLMFTVINDD
4 FFMNEDALVARSSN HQFAASSIHKNAPQFH NLKDSKTYLKPVISET
A) Based only on sequences in column B, protein 4 reveals the greatest evolutionary divergence.
B) Comparing proteins 1 and 2 in column A reveals that these two proteins have diverged the most
throughout evolution.
C) Protein 4 is the protein that shows the greatest overall homology to protein 1.
D) Proteins 2 and 3 show a greater evolutionary distance than proteins 1 and 4.
E) The portions of amino acid sequence shown suggest that these proteins are completely unrelated.
30
Chapter 3 Amino Acids, Peptides, and Proteins
Short Answer Questions
40. Amino acids
Page: 72 Difficulty: 1
What are the structural characteristics common to all amino acids found in naturally occurring
proteins?
Ans: All amino acids found in naturally occurring proteins have an α carbon to which are attached a
carboxylic acid, an amine, a hydrogen, and a variable side chain. All the amino acids are also in the L
configuration.
41. Amino acids
Page: 75 Difficulty: 1
Only one of the common amino acids has no free α-amino group. Name this amino acid and draw its
structure.
Ans: The amino acid L-proline has no free α-amino group, but rather has an imino group formed by
cyclization of the R-group aliphatic chain with the amino group (see Fig. 3-5, p. 79).
42. Amino acids
Pages: 74–77 Difficulty: 2
Briefly describe the five major groupings of amino acids.
Ans: Amino acids may be categorized by the chemistry of their R groups: (1) nonpolar aliphatics; (2)
polar, uncharged; (3) aromatic; (4) positively charged; (5) negatively charged. (See Fig. 3-5, p. 79.)
43. Amino acids
Pages: 73–75 Difficulty: 2
A B C D E
__________________________________________________________________
Tyr-Lys-Met Gly-Pro-Arg Asp-Trp-Tyr Asp-His-Glu Leu-Val-Phe
Which one of the above tripeptides:
____(a) is most negatively charged at pH 7?
____(b) will yield DNP-tyrosine when reacted with l-fluoro-2,4-dinitrobenzene and
hydrolyzed in acid?
____(c) contains the largest number of nonpolar R groups?
____(d) contains sulfur?
____(e) will have the greatest light absorbance at 280 nm?
Ans: (a) D; (b) A; (c) E; (d) A; (e) C
31
Chapter 3 Amino Acids, Peptides, and Proteins
44. Amino acids
Pages: 73–75 Difficulty: 2
Draw the structures of the amino acids phenylalanine and aspartate in the ionization state you would
expect at pH 7.0. Why is aspartate very soluble in water,whereas phenylalanine is much less soluble?
Ans: Aspartate has a polar (hydrophilic) side chain, which forms hydrogen bonds with water. In
contrast, phenylalanine has a nonpolar (hydrophobic) side chain. (See Fig. 3-5, p. 79 for structures.)
45. Amino acids
Pages: 77–78 Difficulty: 3
Name two uncommon amino acids that occur in proteins. By what route do they get into proteins?
Ans: Some examples are 4-hydroxyproline, 5-hydroxylysine, γ-carboxyglutamate, N-methyllysine,
desmosine, and selenocysteine. Uncommon amino acids in proteins (other than selenocysteine)
usually result from chemical modifications of standard amino acid R groups after a protein has been
synthesized.
46. Amino acids
Pages: 78–79 Difficulty: 1
Why do amino acids, when dissolved in water,become zwitterions?
Ans: Near pH = 7, the carboxylic acid group (—COOH) will dissociate to become a negatively
charged —COO–
group, and the —NH2 amino group will attract a proton to become a positively
charged —NH3
+
group.
47. Amino acids
Page: 79 Difficulty: 1
As more OH–
equivalents (base) are added to an amino acid solution, what titration reaction will
occur around pH = 9.5?
Ans: Around pH = 9.5, the —NH3
+
group will be titrated according to the reaction: —NH3
+
+ OH–
→ —NH2 + H2O.
48. Amino acids
Page: 80 Difficulty: 3
In the amino acid glycine, what effect does the positively charged —NH3
+
group have on the pKa of
an amino acid’s —COOH group?
Ans: The positively charged amino group stabilizes the negatively charged ionized form of the
carboxyl group, —COO–
,and repels the departing H+
thereby promoting deprotonation. The effect is
to lower the pKa of the carboxyl group. (See Fig. 3-11, p. 80.)
49. Amino acids
Page: 79 Difficulty: 3
How does the shape of a titration curve confirm the fact that the pH region of greatest buffering
power for an amino acid solution is around its pK’s?
Ans: In a certain range around the pKa’s of an amino acid, the titration curve levels off. This
indicates that for a solution with pH ≈ pK, any given addition of base or acid equivalents will result in
the smallest change in pH—which is the definition of a buffer.
32
Chapter 3 Amino Acids, Peptides, and Proteins
50. Amino acids
Page: 79 Difficulty: 2
Leucine has two dissociable protons: one with a pKa of 2.3, the other with a pKa of 9.7. Sketch a
properly labeled titration curve for leucine titrated with NaOH; indicate where the pH = pK and the
region(s) in which buffering occurs.
Ans: See the titration curve for glycine in Fig. 3-10, p. 79.
51. Amino acids
Page: 80 Difficulty: 2
What is the pI, and how is it determined for amino acids that have nonionizable R groups?
Ans: The pI is the isoelectric point. It occurs at a characteristic pH when a molecule has an equal
number of positive and negative charges,or no net charge. For amino acids with nonionizable R
groups, pI is the arithmetic mean of a molecule’s two pKa values:
pI = 1/2 (pK1 + pK2)
52. Amino acids
Page: 80 Difficulty: 2
The amino acid histidine has a side chain for which the pKa is 6.0. Calculate what fraction of the
histidine side chains will carry a positive charge at pH 5.4. Be sure to show your work.
Ans: pH = pKa + log
pKa – pH = log
antilog (pKa – pH) =
antilog (6.0 – 5.4) =
4 = [acid]/[conjugate base],or
4[conjugate base] = [acid]
Therefore,at pH 5.4, 4/5 (80%) of the histidine will be in the protonated form.
53. Amino acids
Page: 80 Difficulty: 2
The amino acid histidine has three ionizable groups, with pKa values of 1.8, 6.0, and 9.2. (a) Which
pKa corresponds to the histidine side chain? (b) In a solution at pH 5.4, what percentage of the
histidine side chains will carry a positive charge?
Ans: (a) 6.0; (b) 80%. (See the previous problem for expanded solution to this problem.)
33
Chapter 3 Amino Acids, Peptides, and Proteins
54. Amino acids
Page: 81 Difficulty: 2
What is the uniquely important acid-base characteristic of the histidine R group?
Ans: Only the imidazole ring of the histidine R group has a pKa near physiological pH (pKa = 6.0),
which suggests that histidine may provide buffering power in intercellular and intracellular fluids.
55. Peptides and proteins
Page: 82 Difficulty: 1
How can a polypeptide have only one free amino group and one free carboxyl group?
Ans: This is possible only if the peptide has no side chains with carboxyl or amino groups. Then,
with the exception of the single amino-terminal amino acid and the single carboxyl-terminal amino
acid, all the other α-amino and carboxyl groups are covalently condensed into peptide bonds.
56. Peptides and proteins
Page: 82 Difficulty: 1
Hydrolysis of peptide bonds is an exergonic reaction. Why, then, are peptide bonds quite stable?
Ans: Peptide bonds are stable because hydrolysis of peptide (or amide) bonds has a high activation
energy and as a result occurs very slowly.
57. Peptides and proteins
Page: 82 Difficulty: 2
Draw the structure of Gly–Ala–Glu in the ionic form that predominates at pH 7.
Ans: The peptide must have an amino-terminal Gly residue, a carboxyl-terminal Glu residue, and
ionized amino and carboxyl groups.
58. Peptides and proteins
Page: 82 Difficulty: 2
The artificial sweetener NutraSweet®,also called aspartame,is a simple dipeptide,
aspartylphenylalanine methyl ester,on which the free carboxyl of the dipeptide is esterified to methyl
alcohol. Draw the structure of aspartame,showing the ionizable groups in the form they have at pH 7.
(The ionizable group in the side chain of aspartate has a pKa of 3.96.)
Ans: See the structure on p. 83.
59. Peptides and proteins
Page: 84 Difficulty: 1
If the average molecular weight of the 20 standard amino acids is 138, why do biochemists divide a
protein’s molecular weight by 110 to estimate its number of amino acid residues?
Ans: For each peptide bond formed, a molecule of water is lost, bringing the average molecular
weight down to 120. To reflect the preponderance of low-molecular-weight amino acids, the average
molecular weight is lowered further to 110.
34
Chapter 3 Amino Acids, Peptides, and Proteins
60. Peptides and proteins
Page: 84 Difficulty: 2
Lys residues make up 10.5% of the weight of ribonuclease. The ribonuclease molecule contains 10
Lys residues. Calculate the molecular weight of ribonuclease.
Ans: From the structure of lysine, we can calculate its molecular weight (146); when it condenses
(loses H2O, Mr = 18) to form a peptide bond, the resulting residue contributes 146 – 18 = 128 to the
protein’s molecular weight. If 10 Lys residues contribute 10.5% of the protein’s molecular weight,
each Lys residue is 1.05%. To calculate the total molecular weight, divide 128 by 1.05% (0.0105);
the result is 12,190. (The actual value is 13,700.)
61. Working with proteins
Pages: 86–87 Difficulty: 2
Why do smaller molecules elute after large molecules when a mixture of proteins is passed through a
size-exclusion (gel filtration) column?
Ans: The column matrix is composed of cross-linked polymers with pores of selected sizes. Smaller
molecules can enter pores in the polymer beads from which larger molecules would be excluded.
Smaller molecules therefore have a larger three-dimensional space in which to diffuse, making their
path through the column longer. Larger molecules migrate faster because they pass directly through
the column, unhindered by the bead pores.
62. Working with proteins
Pages: 86–87 Difficulty: 2
For each of these methods of separating proteins, describe the principle of the method, and tell what
property of proteins allows their separation by this technique.
(a) ion-exchange chromatography
(b) size-exclusion (gel filtration) chromatography
(c) affinity chromatography
Ans: (a) Ion-exchange chromatography separates proteins on the basis of their charges. (b) Size-
exclusion or gel filtration chromatography separates on the basis of size. (c) Affinity chromatography
separates proteins with specific, high affinity for some ligand (attached to an inert support) from other
proteins with no such affinity. (See Fig. 3-17, p. 87.)
63. Working with proteins
Pages: 86–88 Difficulty: 2
A biochemist is attempting to separate a DNA-binding protein (protein X) from other proteins in a
solution. Only three other proteins (A, B, and C) are present. The proteins have the following
properties:
pI
(isoelectric Size Bind to
point) Mr DNA?
––––––––––––––––––––––––––––––––––––––––––
protein A 7.4 82,000 yes
protein B 3.8 21,500 yes
protein C 7.9 23,000 no
protein X 7.8 22,000 yes
––––––––––––––––––––––––––––––––––––––––––
What type of protein separation techniques might she use to separate:
35
Chapter 3 Amino Acids, Peptides, and Proteins
(a) protein X from protein A?
(b) protein X from protein B?
(c) protein X from protein C?
Ans: (a) Size-exclusion (gel filtration) chromatography to separate on the basis of size; (b) ion-
exchange chromatography or isoelectric focusing to separate on the basis of charge; (c) specific
affinity chromatography, using immobilized DNA.
64. Working with proteins
Pages: 88–89 Difficulty: 2
What factors would make it difficult to interpret the results of a gel electrophoresis of proteins in the
absence of sodium dodecyl sulfate (SDS)?
Ans: Without SDS, protein migration through a gel would be influenced by the protein’s intrinsic net
charge—which could be positive or negative—and its unique three-dimensional shape, in addition to
its molecular weight. Thus, it would be difficult to ascertain the difference between proteins based
upon a comparison of their mobilities in gel electrophoresis.
65. Working with proteins
Pages: 90–91 Difficulty: 2
How can isoelectric focusing be used in conjunction with SDS gel electrophoresis?
Ans: Isoelectric focusing can separate proteins of the same molecular weight on the basis of differing
isoelectric points. SDS gel electrophoresis can then separate proteins with the same isoelectric points
on the basis of differing molecular weights. When combined in two-dimensional electrophoresis, a
great resolution of large numbers of proteins can be achieved.
66. Working with proteins
Pages: 91–92 Difficulty: 3
You are given a solution containing an enzyme that converts B into A. Describe what you would do
to determine the specific activity of this enzyme solution.
Ans: First, add a known volume of the enzyme solution (say, 0.01 mL) to a solution of its substrate B
and measure the initial rate at which product A is formed, expressed as μmol/mL of enzyme
solution/min. Then measure the total protein concentration, expressed as mg/mL. Finally, divide the
enzyme activity (μmol/min/mL) by the protein concentration (mg/mL); the quotient is the specific
activity.
67. Working with proteins
Pages: 91–92 Difficulty: 2
As a protein is purified, both the amount of total protein and the activity of the purified protein
decrease. Why,then, does the specific activity of the purified protein increase?
Ans: Specific activity is the units of enzyme activity (μmol of product/min) divided by the amount of
protein (mg). As the protein is purified, some of it is lost in each step,resulting in a drop in activity.
However,other contaminating proteins are lost to a much greater extent. Therefore,with each
purification step, the purified protein constitutes a greater proportion of the total, resulting in an
increase in specific activity. (See also Table 3-5, p. 88.)
68. Peptides and proteins
Page: 84 Difficulty: 1
36
Chapter 3 Amino Acids, Peptides, and Proteins
Define the primary structure of a protein.
Ans: The primary structure of a protein is its unique sequence of amino acids and any disulfide
bridges present in the native structure, that is, its covalent bond structure.
69. The covalent structure ofproteins
Pages: 94–100 Difficulty: 2
In one or two sentences,describe the usefulness of each of the following reagents or reactions in the
analysis of protein structure:
(a) Edman reagent (phenylisothiocyanate)
(b) protease
(c) reducing agent (dithiothreitol or β-mercaptoethanol)
Ans: (a) Used in determination of the amino acid sequence of a peptide, starting at its amino
terminus; (b) used to produce specific peptide fragments from a polypeptide; (c) used to break
disulfide bonds or “bridges” or to keep them from forming and to keep Cys residues in their reduced
form.
70. The covalent structure ofproteins
Pages: 96–97 Difficulty: 2
A polypeptide is hydrolyzed, and it is determined that there are 3 Lys residues and 2 Arg residues (as
well as other residues). How many peptide fragments can be expected when the native polypeptide is
incubated with the proteolytic enzyme trypsin?
Ans: Six fragments would be expected, unless the carboxyl-terminal residue is Lys or Arg; in which
case there would be five.
71. The covalent structure ofproteins
Pages: 94–95 Difficulty: 2
The following reagents are often used in protein chemistry. Match the reagent with the purpose for
which it is best suited. Some answers may be used more than once or not at all; more than one reagent
may be suitable for a given purpose.
(a) CNBr (cyanogen bromide) (e) performic acid
(b) Edman reagent (phenylisothiocyanate) (f) chymotrypsin
(c) Sanger reagent (FDNB) (g) trypsin
(d) reducing agent (dithiothreitol) (h) iodoacetamide
___ hydrolysis of peptide bonds on the carboxyl side of Lys and Arg
___ cleavage of peptide bonds on the carboxyl side of Met
___ breakage of disulfide (—S—S—) bonds
___ modification of sulfhydryl groups of Cys
___ determination of the amino acid sequence of a peptide
___ determining the amino-terminal amino acid in a polypeptide
Ans: g; a; d and e; h; b; c
72. The covalent structure ofproteins
Pages: 94–97 Difficulty: 2
Conjugated proteins contain chemical substituents in addition to amino acids. List three classes of
conjugated proteins and identify the type of prosthetic group associated with each one.
37
Chapter 3 Amino Acids, Peptides, and Proteins
Ans: Any of the following are acceptable answers:
Lipoproteins, with lipid groups
Glycoproteins, with carbohydrate groups
Phosphoproteins, with phosphoryl groups
Hemoproteins, with heme groups
Flavoproteins, with flavin nucleotide groups
Metalloproteins, with metal ions (zinc, iron, calcium, etc.)
73. The covalent structure ofproteins
Pages: 94–97 Difficulty: 2
Provide a brief definition for a polymorphic protein.
Ans: A polymorphic protein is one whose amino acid sequence varies among the human population.
The variants have little or no differences in the function or activity of the protein.
74. The covalent structure ofproteins
Pages: 94–97 Difficulty: 2
A biochemist wishes to determine the sequence of a protein that contains 123 amino acid residues.
After breaking all of the disulfide bonds, the protein is treated with cyanogen bromide (CNBr),and it
is determined that that this treatment breaks up the protein into seven conveniently sized peptides,
which are separated from each other. It is your turn to take over. Outline the steps you would take to
determine, unambiguously, the sequence of amino acid residues in the original protein.
Ans: (1) Use Edman degradation to determine the sequence of each peptide. (2) Create a second set
of peptides by treatment of the protein with a specific protease (e.g.,trypsin), and determine the
sequence of each of these. (3) Place the peptides in order by their overlaps. (4) Finally, by a similar
analysis of the original protein without first breaking disulfide bonds, determine the number and
location of —S—S— bridges.
75. The covalent structure ofproteins
Pages: 94–97 Difficulty: 3
You are trying to determine the sequence of a protein that you know is pure. Give the most likely
explanation for each of the following experimental observations. You may use a simple diagram for
your answer.
(a) The Sanger reagent (FDNB,fluorodinitrobenzene) identifies Ala and Leu as amino-
terminal residues, in roughly equal amounts.
(b) Your protein has an apparent Mr of 80,000, as determined by SDS-polyacrylamide gel
electrophoresis. After treatment of the protein with performic acid, the same technique
reveals two proteins of Mr 35,000 and 45,000.
(c) Size-exclusion chromatography (gel filtration) experiments indicate the native protein has
an apparent Mr of 160,000.
Ans: (a) The protein has some multiple of two subunits, with Ala and Leu as the amino-terminal
residues. (b) The protein has two subunits (Mr 35,000 and 45,000), joined by one or more disulfide
bonds. (c) The native protein (Mr 160,000) has two Mr 35,000 subunits and two Mr 40,000 subunits.
66. 76. The covalent structure ofproteins
Page: 101 Difficulty: 2
Describe two major differences between chemical synthesis of polypeptides and synthesis of
polypeptides in the living cell.
38
Chapter 3 Amino Acids, Peptides, and Proteins
Ans: There are many such differences; here are a few. (1) Chemical synthesis proceeds from carboxyl
terminus to amino terminus; in the living cell, the process starts at the amino terminus and ends at the
carboxyl terminus. In the living cell, synthesis occurs under physiological conditions; chemical
synthesis does not. Chemical synthesis is only capable of synthesizing short polypeptides; cells can
produce proteins of severalthousand amino acids.
77. Protein sequences and evolution
Page: 102–104 Difficulty: 2
Distinguish between homologs, paralogs, and orthologs as classes of related proteins.
Ans: Homologs are any members of a particular protein family, paralogs are two homologs present
in the same species,and orthologs are are two homologs present in different species.
78. Protein sequences and evolution
Page: 105 Difficulty: 2
How are “signature sequences” usefulin analyzing groups of functionally related proteins?
Ans: Such sequences are often present in one taxonomic group or shared by closely related
taxonomic groups but are absent in evolutionarily more distant groups. They thus aid in constructing
more elaborate evolutionary trees based on protein sequences.

More Related Content

What's hot

2 amino acids mcq
2 amino acids mcq2 amino acids mcq
2 amino acids mcqdream10f
 
Amino acids
Amino acidsAmino acids
Amino acidsmadhula
 
Amino acids and protein
Amino acids and proteinAmino acids and protein
Amino acids and proteinAbhinav yadav
 
I mbbs carbohyd. chem. tutorial
I mbbs carbohyd. chem. tutorialI mbbs carbohyd. chem. tutorial
I mbbs carbohyd. chem. tutorialMehnaga Vasu
 
5 mcq 1-enzymes
5 mcq 1-enzymes5 mcq 1-enzymes
5 mcq 1-enzymesdream10f
 
Learning Keys , Lehninger Chapter # 3 Amino Acids,Peptides and Proteins
Learning Keys , Lehninger Chapter # 3 Amino Acids,Peptides and ProteinsLearning Keys , Lehninger Chapter # 3 Amino Acids,Peptides and Proteins
Learning Keys , Lehninger Chapter # 3 Amino Acids,Peptides and ProteinsTauqeer Ahmad
 
MCQs on Chemistry of Lipids
MCQs on Chemistry of LipidsMCQs on Chemistry of Lipids
MCQs on Chemistry of LipidsRamesh Gupta
 
Characteristics and Properties of Amino Acids (AA)
Characteristics and Properties of Amino Acids (AA)Characteristics and Properties of Amino Acids (AA)
Characteristics and Properties of Amino Acids (AA)Mohamed Hassanien
 
Monosaccharides by KK Sahu sir
Monosaccharides by KK Sahu sirMonosaccharides by KK Sahu sir
Monosaccharides by KK Sahu sirKAUSHAL SAHU
 
204076503 testbank-4e-ch10
204076503 testbank-4e-ch10204076503 testbank-4e-ch10
204076503 testbank-4e-ch10Majo Romero
 
Chapter 8 nucleotides Biochemistry
Chapter 8 nucleotides BiochemistryChapter 8 nucleotides Biochemistry
Chapter 8 nucleotides BiochemistryAreej Abu Hanieh
 
MCQs on Chemistry of Carbohydrates
MCQs on Chemistry of CarbohydratesMCQs on Chemistry of Carbohydrates
MCQs on Chemistry of CarbohydratesRamesh Gupta
 
Learning Keys , Lehninger's Chapter # 7 Carbohydrates (Polysaccharides)
Learning Keys , Lehninger's Chapter # 7 Carbohydrates (Polysaccharides)Learning Keys , Lehninger's Chapter # 7 Carbohydrates (Polysaccharides)
Learning Keys , Lehninger's Chapter # 7 Carbohydrates (Polysaccharides)Tauqeer Ahmad
 
Presentation on polysaccharides
Presentation on polysaccharidesPresentation on polysaccharides
Presentation on polysaccharidesMainak Chakraborty
 
Protein structure
Protein structureProtein structure
Protein structurenidhiinjbp
 
Class 11 Important Questions for Biology - Biochemistry of Cell
Class 11 Important Questions for Biology - Biochemistry of CellClass 11 Important Questions for Biology - Biochemistry of Cell
Class 11 Important Questions for Biology - Biochemistry of CellInfomatica Academy
 

What's hot (20)

2 amino acids mcq
2 amino acids mcq2 amino acids mcq
2 amino acids mcq
 
Amino acids
Amino acidsAmino acids
Amino acids
 
Amino acids and protein
Amino acids and proteinAmino acids and protein
Amino acids and protein
 
I mbbs carbohyd. chem. tutorial
I mbbs carbohyd. chem. tutorialI mbbs carbohyd. chem. tutorial
I mbbs carbohyd. chem. tutorial
 
5 mcq 1-enzymes
5 mcq 1-enzymes5 mcq 1-enzymes
5 mcq 1-enzymes
 
Learning Keys , Lehninger Chapter # 3 Amino Acids,Peptides and Proteins
Learning Keys , Lehninger Chapter # 3 Amino Acids,Peptides and ProteinsLearning Keys , Lehninger Chapter # 3 Amino Acids,Peptides and Proteins
Learning Keys , Lehninger Chapter # 3 Amino Acids,Peptides and Proteins
 
MCQs on Chemistry of Lipids
MCQs on Chemistry of LipidsMCQs on Chemistry of Lipids
MCQs on Chemistry of Lipids
 
Amino acids
Amino acidsAmino acids
Amino acids
 
Amino acids
Amino acidsAmino acids
Amino acids
 
Characteristics and Properties of Amino Acids (AA)
Characteristics and Properties of Amino Acids (AA)Characteristics and Properties of Amino Acids (AA)
Characteristics and Properties of Amino Acids (AA)
 
Monosaccharides by KK Sahu sir
Monosaccharides by KK Sahu sirMonosaccharides by KK Sahu sir
Monosaccharides by KK Sahu sir
 
204076503 testbank-4e-ch10
204076503 testbank-4e-ch10204076503 testbank-4e-ch10
204076503 testbank-4e-ch10
 
Chapter 8 nucleotides Biochemistry
Chapter 8 nucleotides BiochemistryChapter 8 nucleotides Biochemistry
Chapter 8 nucleotides Biochemistry
 
MCQs on Chemistry of Carbohydrates
MCQs on Chemistry of CarbohydratesMCQs on Chemistry of Carbohydrates
MCQs on Chemistry of Carbohydrates
 
Learning Keys , Lehninger's Chapter # 7 Carbohydrates (Polysaccharides)
Learning Keys , Lehninger's Chapter # 7 Carbohydrates (Polysaccharides)Learning Keys , Lehninger's Chapter # 7 Carbohydrates (Polysaccharides)
Learning Keys , Lehninger's Chapter # 7 Carbohydrates (Polysaccharides)
 
Presentation on polysaccharides
Presentation on polysaccharidesPresentation on polysaccharides
Presentation on polysaccharides
 
Nucleic acid
Nucleic acid Nucleic acid
Nucleic acid
 
Protein structure
Protein structureProtein structure
Protein structure
 
Biochemistry mc qs
Biochemistry mc qsBiochemistry mc qs
Biochemistry mc qs
 
Class 11 Important Questions for Biology - Biochemistry of Cell
Class 11 Important Questions for Biology - Biochemistry of CellClass 11 Important Questions for Biology - Biochemistry of Cell
Class 11 Important Questions for Biology - Biochemistry of Cell
 

Similar to Test Bank for Lehninger Principles of Biochemistry 6e Nelson

Amino acids part 1 - annuja anandaradje
Amino acids part 1 - annuja anandaradjeAmino acids part 1 - annuja anandaradje
Amino acids part 1 - annuja anandaradjeAnnuja Anandaradje
 
PPSC Chemistry Lecturer Preparation (Test # 21)- Malik Xufyan
PPSC Chemistry Lecturer Preparation (Test # 21)- Malik XufyanPPSC Chemistry Lecturer Preparation (Test # 21)- Malik Xufyan
PPSC Chemistry Lecturer Preparation (Test # 21)- Malik XufyanMalik Xufyan
 
معدلة بروتين هام جدا
معدلة  بروتين هام جدامعدلة  بروتين هام جدا
معدلة بروتين هام جداBooshBoosh-yum Yumy
 
Bio110 practice problems chap3 part4
Bio110 practice problems chap3 part4Bio110 practice problems chap3 part4
Bio110 practice problems chap3 part4Evan Lau
 
Basic principles in organic chemistry --exercise with solutions
Basic principles in organic chemistry --exercise with solutionsBasic principles in organic chemistry --exercise with solutions
Basic principles in organic chemistry --exercise with solutionssuresh gdvm
 
Chemistry_Thesis_by_Slidesgo.pptx.pdf
Chemistry_Thesis_by_Slidesgo.pptx.pdfChemistry_Thesis_by_Slidesgo.pptx.pdf
Chemistry_Thesis_by_Slidesgo.pptx.pdfluxasuhi
 
Pass BIOL 2020 Mock Test 1 Winter 2019
Pass BIOL 2020 Mock Test 1 Winter 2019Pass BIOL 2020 Mock Test 1 Winter 2019
Pass BIOL 2020 Mock Test 1 Winter 2019AishaNasim2
 
M.Sc.I Inorganic Chemistry Question paper
M.Sc.I  Inorganic Chemistry   Question paper M.Sc.I  Inorganic Chemistry   Question paper
M.Sc.I Inorganic Chemistry Question paper Shivaji Burungale
 
Aieee 2009 Model Paper 1
Aieee 2009 Model Paper 1Aieee 2009 Model Paper 1
Aieee 2009 Model Paper 1PRERAK
 
UPSEE - Chemistry -2001 Unsolved Paper
UPSEE - Chemistry -2001 Unsolved PaperUPSEE - Chemistry -2001 Unsolved Paper
UPSEE - Chemistry -2001 Unsolved PaperVasista Vinuthan
 
Class 12 Cbse Chemistry Sample Paper 2010 Model-3
Class 12 Cbse Chemistry Sample Paper 2010 Model-3Class 12 Cbse Chemistry Sample Paper 2010 Model-3
Class 12 Cbse Chemistry Sample Paper 2010 Model-3Sunaina Rawat
 
Jee main set B all questions
Jee main set B all questionsJee main set B all questions
Jee main set B all questionsembibe100marks
 
SHS STEM General Chemistry MCT 9. Organic Compounds
SHS STEM General Chemistry MCT 9. Organic CompoundsSHS STEM General Chemistry MCT 9. Organic Compounds
SHS STEM General Chemistry MCT 9. Organic CompoundsEngineerPH EducatorPH
 

Similar to Test Bank for Lehninger Principles of Biochemistry 6e Nelson (20)

Mock test 1 uconn
Mock test 1 uconnMock test 1 uconn
Mock test 1 uconn
 
Amino acids part 1 - annuja anandaradje
Amino acids part 1 - annuja anandaradjeAmino acids part 1 - annuja anandaradje
Amino acids part 1 - annuja anandaradje
 
AMU - Chemistry - 2005
AMU - Chemistry  - 2005AMU - Chemistry  - 2005
AMU - Chemistry - 2005
 
Chemistry.pdf
Chemistry.pdfChemistry.pdf
Chemistry.pdf
 
PPSC Chemistry Lecturer Preparation (Test # 21)- Malik Xufyan
PPSC Chemistry Lecturer Preparation (Test # 21)- Malik XufyanPPSC Chemistry Lecturer Preparation (Test # 21)- Malik Xufyan
PPSC Chemistry Lecturer Preparation (Test # 21)- Malik Xufyan
 
معدلة بروتين هام جدا
معدلة  بروتين هام جدامعدلة  بروتين هام جدا
معدلة بروتين هام جدا
 
Bio110 practice problems chap3 part4
Bio110 practice problems chap3 part4Bio110 practice problems chap3 part4
Bio110 practice problems chap3 part4
 
Basic principles in organic chemistry --exercise with solutions
Basic principles in organic chemistry --exercise with solutionsBasic principles in organic chemistry --exercise with solutions
Basic principles in organic chemistry --exercise with solutions
 
Chemistry_Thesis_by_Slidesgo.pptx.pdf
Chemistry_Thesis_by_Slidesgo.pptx.pdfChemistry_Thesis_by_Slidesgo.pptx.pdf
Chemistry_Thesis_by_Slidesgo.pptx.pdf
 
Pass BIOL 2020 Mock Test 1 Winter 2019
Pass BIOL 2020 Mock Test 1 Winter 2019Pass BIOL 2020 Mock Test 1 Winter 2019
Pass BIOL 2020 Mock Test 1 Winter 2019
 
Alkynes
AlkynesAlkynes
Alkynes
 
M.Sc.I Inorganic Chemistry Question paper
M.Sc.I  Inorganic Chemistry   Question paper M.Sc.I  Inorganic Chemistry   Question paper
M.Sc.I Inorganic Chemistry Question paper
 
Aieee 2009 Model Paper 1
Aieee 2009 Model Paper 1Aieee 2009 Model Paper 1
Aieee 2009 Model Paper 1
 
AIPMT Chemistry 2008
AIPMT Chemistry 2008AIPMT Chemistry 2008
AIPMT Chemistry 2008
 
UPSEE - Chemistry -2001 Unsolved Paper
UPSEE - Chemistry -2001 Unsolved PaperUPSEE - Chemistry -2001 Unsolved Paper
UPSEE - Chemistry -2001 Unsolved Paper
 
Class 12 Cbse Chemistry Sample Paper 2010 Model-3
Class 12 Cbse Chemistry Sample Paper 2010 Model-3Class 12 Cbse Chemistry Sample Paper 2010 Model-3
Class 12 Cbse Chemistry Sample Paper 2010 Model-3
 
IITJEE - Chemistry 2010-i
IITJEE - Chemistry   2010-iIITJEE - Chemistry   2010-i
IITJEE - Chemistry 2010-i
 
Jee main set B all questions
Jee main set B all questionsJee main set B all questions
Jee main set B all questions
 
SHS STEM General Chemistry MCT 9. Organic Compounds
SHS STEM General Chemistry MCT 9. Organic CompoundsSHS STEM General Chemistry MCT 9. Organic Compounds
SHS STEM General Chemistry MCT 9. Organic Compounds
 
Lipid chemistry
Lipid chemistryLipid chemistry
Lipid chemistry
 

Recently uploaded

Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 

Recently uploaded (20)

Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 

Test Bank for Lehninger Principles of Biochemistry 6e Nelson

  • 1. If you are interested in the rest of these chapters, email lauriewest24@gmail.com Chapter 3 Amino Acids, Peptides, and Proteins Multiple Choice Questions 1. Amino acids Page: 72 Difficulty: 1 Ans: C The chirality of an amino acid results from the fact that its α carbon: A) has no net charge. B) is a carboxylic acid. C) is bonded to four different chemical groups. D) is in the L absolute configuration in naturally occurring proteins. E) is symmetric. 2. Amino acids Page: 72 Difficulty: 2 Ans: B Of the 20 standard amino acids, only ___________ is not optically active. The reason is that its side chain ___________. A) alanine; is a simple methyl group B) glycine; is a hydrogen atom C) glycine; is unbranched D) lysine; contains only nitrogen E) proline; forms a covalent bond with the amino group 3. Amino acids Page: 72 Difficulty: 1 Ans: C Two amino acids of the standard 20 contain sulfur atoms. They are: A) cysteine and serine. B) cysteine and threonine. C) methionine and cysteine D) methionine and serine E) threonine and serine. 4. Amino acids Page: 75 Difficulty: 1 Ans: A All of the amino acids that are found in proteins, except for proline, contain a(n): A) amino group. B) carbonyl group. C) carboxyl group. D) ester group. E) thiol group.
  • 2. 22 Chapter 3 Amino Acids, Peptides, and Proteins 5. Amino acids Pages: 75–76 Difficulty: 3 Ans: C Which of the following statements about aromatic amino acids is correct? A) All are strongly hydrophilic. B) Histidine’s ring structure results in its being categorized as aromatic or basic, depending on pH. C) On a molar basis, tryptophan absorbs more ultraviolet light than tyrosine. D) The major contribution to the characteristic absorption of light at 280 nm by proteins is the phenylalanine R group. E) The presence of a ring structure in its R group determines whether or not an amino acid is aromatic. 6. Amino acids Page: 77 Difficulty: 2 Ans: A Which of the following statements about cystine is correct? A) Cystine forms when the —CH2—SH R group is oxidized to form a —CH2—S—S—CH2— disulfide bridge between two cysteines. B) Cystine is an example of a nonstandard amino acid, derived by linking two standard amino acids. C) Cystine is formed by the oxidation of the carboxylic acid group on cysteine. D) Cystine is formed through a peptide linkage between two cysteines. E) Two cystines are released when a —CH2—S—S—CH2—disulfide bridge is reduced to —CH2— SH. 7. Amino acids Page: 77 Difficulty: 2 Ans: A The uncommon amino acid selenocysteine has an R group with the structure —CH2—SeH (pKa ≈ 5). In an aqueous solution, pH = 7.0, selenocysteine would: A) be a fully ionized zwitterion with no net charge. B) be found in proteins as D-selenocysteine. C) never be found in a protein. D) be nonionic. E) not be optically active. 8. Amino acids Page: 78 Difficulty: 2 Ans: E Which two amino acids differ from each other by only one atom? A) Ser and Thr B) Leu and Ile C) Ala and Ser D) Asp and Asn E) Ser and Cys 9. Amino acids Pages: 78–79 Difficulty: 1 Ans: A Amino acids are ampholytes because they can function as either a(n):
  • 3. 23 Chapter 3 Amino Acids, Peptides, and Proteins A) acid or a base. B) neutral molecule or an ion. C) polar or a nonpolar molecule. D) standard or a nonstandard monomer in proteins. E) transparent or a light-absorbing compound. 10. Amino acids Pages: 79–80 Difficulty: 2 Ans: D Titration of valine by a strong base, for example NaOH,reveals two pK’s. The titration reaction occurring at pK2 (pK2 = 9.62) is: A) —COOH + OH– → —COO– + H2O. B) —COOH + —NH2 → —COO– + —NH2 + . C) —COO– + —NH2 + → —COOH + —NH2. D) —NH3 + + OH– → —NH2 + H2O. E) —NH2 + OH– → —NH– + H2O. 11. Amino acids Pages: 79–80 Difficulty: 1 Ans: C In a highly basic solution, pH = 13, the dominant form of glycine is: A) NH2—CH2—COOH. B) NH2—CH2—COO– . C) NH2—CH3 + —COO– . D) NH3 + —CH2—COOH. E) NH3 + —CH2—COO– . 12. Amino acids Pages: 80–81 Difficulty: 2 Ans: B For amino acids with neutral R groups, at any pH below the pI of the amino acid, the population of amino acids in solution will have: A) a net negative charge. B) a net positive charge. C) no charged groups. D) no net charge. E) positive and negative charges in equal concentration. 13. Amino acids Pages: 80–81 Difficulty: 2 Ans: A At pH 7.0, converting a glutamic acid to γ-carboxyglutamate, will have what effect on the overall charge of the protein containing it? A) It will become more negative B) It will become more positive. C) It will stay the same. D) There is not enough information to answer the question. E) The answer depends on the salt concentration.
  • 4. 24 Chapter 3 Amino Acids, Peptides, and Proteins 14. Amino acids Pages: 80–81 Difficulty: 2 Ans: C At pH 7.0, converting a proline to hydroxyproline, will have what effect on the overall charge of the protein containing it? A) It will become more negative B) It will become more positive. C) It will stay the same. D) There is not enough information to answer the question. E) The answer depends on the salt concentration. 15. Amino acids Pages: 80–81 Difficulty: 3 Ans: B What is the approximate charge difference between glutamic acid and α-ketoglutarate at pH 9.5? A) 0 B) ½ C) 1 D) 1½ E) 2 16. Peptides and proteins Page: 82 Difficulty: 1 Ans: B The formation of a peptide bond between two amino acids is an example of a(n) ______________ reaction. A) cleavage B) condensation C) group transfer D) isomerization E) oxidation reduction 17. Peptides and proteins Page: 82 Difficulty: 1 Ans: C The peptide alanylglutamylglycylalanylleucine has: A) a disulfide bridge. B) five peptide bonds. C) four peptide bonds. D) no free carboxyl group. E) two free amino groups. 18. Peptides and proteins Pages: 82–83 Difficulty: 1 Ans: C An octapeptide composed of four repeating glycylalanyl units has: A) one free amino group on an alanyl residue. B) one free amino group on an alanyl residue and one free carboxyl group on a glycyl residue. C) one free amino group on a glycyl residue and one free carboxyl group on an alanyl residue. D) two free amino and two free carboxyl groups. E) two free carboxyl groups, both on glycyl residues.
  • 5. 25 Chapter 3 Amino Acids, Peptides, and Proteins 19. Peptides and proteins Page: 82–83 Difficulty: 1 Ans: C At the isoelectric pH of a tetrapeptide: A) only the amino and carboxyl termini contribute charge. B) the amino and carboxyl termini are not charged. C) the total net charge is zero. D) there are four ionic charges. E) two internal amino acids of the tetrapeptide cannot have ionizable R groups. 20. Peptides and proteins Pages: 83–84 Difficulty: 2 Ans: C Which of the following is correct with respect to the amino acid composition of proteins? A) Larger proteins have a more uniform distribution of amino acids than smaller proteins. B) Proteins contain at least one each of the 20 different standard amino acids. C) Proteins with different functions usually differ significantly in their amino acid composition. D) Proteins with the same molecular weight have the same amino acid composition. E) The average molecular weight of an amino acid in a protein increases with the size of the protein. 21. Peptides and proteins Page: 83 Difficulty: 2 Ans: B The average molecular weight of the 20 standard amino acids is 138, but biochemists use 110 when estimating the number of amino acids in a protein of known molecular weight. Why? A) The number 110 is based on the fact that the average molecular weight of a protein is 110,000 with an average of 1000 amino acids. B) The number 110 reflects the higher proportion of small amino acids in proteins, as well as the loss of water when the peptide bond forms. C) The number 110 reflects the number of amino acids found in the typical small protein, and only small proteins have their molecular weight estimated this way. D) The number 110 takes into account the relatively small size of nonstandard amino acids. E) The number 138 represents the molecular weight of conjugated amino acids. 22. Peptides and proteins Page: 84 Difficulty: 1 Ans: C In a conjugated protein, a prosthetic group is: A) a fibrous region of a globular protein. B) a nonidentical subunit of a protein with many identical subunits. C) a part of the protein that is not composed of amino acids. D) a subunit of an oligomeric protein. E) synonymous with “protomer.”
  • 6. 26 Chapter 3 Amino Acids, Peptides, and Proteins 23. Peptides and proteins Pages: 84–85 Difficulty: 1 Ans: A Prosthetic groups in the class of proteins known as glycoproteins are composed of: A) carbohydrates. B) flavin nucleotides. C) lipids. D) metals . E) phosphates. 24. Working with proteins Page: 85 Difficulty: 1 Ans: E For the study of a protein in detail, an effort is usually made to first: A) conjugate the protein to a known molecule. B) determine its amino acid composition. C) determine its amino acid sequence. D) determine its molecular weight. E) purify the protein. 25. Working with proteins Page: 87 Difficulty: 2 Ans: B In a mixture of the five proteins listed below, which should elute second in size-exclusion (gel- filtration) chromatography? A) cytochrome c Mr = 13,000 B) immunoglobulin G Mr = 145,000 C) ribonuclease A Mr = 13,700 D) RNA polymerase Mr = 450,000 E) serum albumin Mr = 68,500 26. Working with proteins Page: 89 Difficulty: 2 Ans: E By adding SDS (sodium dodecyl sulfate) during the electrophoresis of proteins, it is possible to: A) determine a protein’s isoelectric point. B) determine an enzyme’s specific activity. C) determine the amino acid composition of the protein. D) preserve a protein’s native structure and biological activity. E) separate proteins exclusively on the basis of molecular weight. 27. Working with proteins Page: 90 Difficulty: 2 Ans: B To determine the isoelectric point of a protein, first establish that a gel: A) contains a denaturing detergent that can distribute uniform negative charges over the protein’s surface. B) exhibits a stable pH gradient when ampholytes become distributed in an electric field. C) is washed with an antibody specific to the protein of interest. D) neutralizes all ionic groups on a protein by titrating them with strong bases. E) relates the unknown protein to a series of protein markers with known molecular weights, Mr.
  • 7. 27 Chapter 3 Amino Acids, Peptides, and Proteins 28. Working with proteins Pages: 90–91 Difficulty: 3 Ans: A The first step in two-dimensional gel electrophoresis generates a series of protein bands by isoelectric focusing. In a second step, a strip of this gel is turned 90 degrees,placed on another gel containing SDS, and electric current is again applied. In this second step: A) proteins with similar isoelectric points become further separated according to their molecular weights. B) the individual bands become stained so that the isoelectric focus pattern can be visualized. C) the individual bands become visualized by interacting with protein-specific antibodies in the second gel. D) the individual bands undergo a second, more intense isoelectric focusing. E) the proteins in the bands separate more completely because the second electric current is in the opposite polarity to the first current. 29. Working with proteins Page: 91 Difficulty: 1 Ans: B The term specific activity differs from the term activity in that specific activity: A) is measured only under optimal conditions. B) is the activity (enzyme units) in a milligram of protein. C) is the activity (enzyme units) of a specific protein. D) refers only to a purified protein. E) refers to proteins other than enzymes. 30. Peptides and proteins Page: 92 Difficulty: 1 Ans: B Which of the following refers to particularly stable arrangements of amino acid residues in a protein that give rise to recurring patterns? A) Primary structure B) Secondary structure C) Tertiary structure D) Quaternary structure E) None of the above 31. Peptides and proteins Page: 92 Difficulty: 1 Ans: D Which of the following describes the overall three-dimensional folding of a polypeptide? A) Primary structure B) Secondary structure C) Tertiary structure D) Quaternary structure E) None of the above
  • 8. 28 Chapter 3 Amino Acids, Peptides, and Proteins 32. The covalent structure ofproteins Page: 93 Difficulty: 1 Ans: B The functional differences,as well as differences in three-dimensional structures, between two different enzymes from E. coli result directly from their different: A) affinities for ATP. B) amino acid sequences. C) roles in DNA metabolism. D) roles in the metabolism of E. coli. E) secondary structures. 33. The covalent structure ofproteins Page: 95 Difficulty: 2 Ans: C One method used to prevent disulfide bond interference with protein sequencing procedures is: A) cleaving proteins with proteases that specifically recognize disulfide bonds. B) protecting the disulfide bridge against spontaneous reduction to cysteinyl sulfhydryl groups. C) reducing disulfide bridges and preventing their re-formation by further modifying the —SH groups. D) removing cystines from protein sequences by proteolytic cleavage. E) sequencing proteins that do not contain cysteinyl residues. 34. The covalent structure ofproteins Pages: 96–97 Difficulty: 3 Ans: C A nonapeptide was determined to have the following amino acid composition: (Lys)2, (Gly) 2, (Phe)2, His, Leu, Met. The native peptide was incubated with 1-fluoro-2,4-dinitrobenzene (FDNB) and then hydrolyzed; 2,4-dinitrophenylhistidine was identified by HPLC. When the native peptide was exposed to cyanogen bromide (CNBr),an octapeptide and free glycine were recovered. Incubation of the native peptide with trypsin gave a pentapeptide, a tripeptide, and free Lys. 2,4-Dinitrophenyl- histidine was recovered from the pentapeptide, and 2,4-dinitrophenylphenylalanine was recovered from the tripeptide. Digestion with the enzyme pepsin produced a dipeptide, a tripeptide, and a tetrapeptide. The tetrapeptide was composed of (Lys) 2, Phe, and Gly. The native sequence was determined to be: A) Gly–Phe–Lys–Lys–Gly–Leu–Met–Phe–His. B) His–Leu–Gly–Lys–Lys–Phe–Phe–Gly–Met. C) His–Leu–Phe–Gly–Lys–Lys–Phe–Met–Gly. D) His–Phe–Leu–Gly–Lys–Lys–Phe–Met–Gly. E) Met–Leu–Phe–Lys–Phe–Gly–Gly–Lys–His. 35. The covalent structure ofproteins Pages: 96–97 Difficulty: 1 Ans: C Even when a gene is available and its sequence of nucleotides is known, chemical studies of the protein are still required to determine: A) molecular weight of the protein. B) the amino-terminal amino acid. C) the location of disulfide bonds. D) the number of amino acids in the protein. E) whether the protein has the amino acid methionine in its sequence.
  • 9. 29 Chapter 3 Amino Acids, Peptides, and Proteins 36. The covalent structure ofproteins Page: 100 Difficulty: 1 Ans: C The term “proteome” has been used to describe: A) regions (domains) within proteins. B) regularities in protein structures. C) the complement of proteins expressed by an organism’s genome. D) the structure of a protein-synthesizing ribosome. E) the tertiary structure of a protein. 37. The covalent structure ofproteins Pages: 98–100 Difficulty: 2 Ans: C A major advance in the application of mass spectrometry to macromolecules came with the development of techniques to overcome which of the following problems? A) Macromolecules were insoluble in the solvents used in mass spectrometry. B) Mass spectrometric analyses of macromolecules were too complex to interpret. C) Mass spectrometric analysis involved molecules in the gas phase. D) Most macromolecules could not be purified to the degree required for mass spectrometric analysis. E) The specialized instruments required were prohibitively expensive. 38. The covalent structure ofproteins Pages: 98–100 Difficulty: 3 Ans: C Identify the pair of peptides below that cannot be distinguished by tandem mass spectrometry. A) VTSPLYANEGK and VTCPLYANEGK B) VTSPLYANEGK and VTSPLYADEGK C) VTSPLYANEGK and VTSPIYANEGK D) VTSPLYANEGK and VSTPLYANEGK E) All of the above 39. Protein sequences and evolution Pages: 102–106 Difficulty: 3 Ans: A Compare the following sequences taken from four different proteins, and select the answer that best characterizes their relationships. A B C 1 DVEKGKKIDIMKCS HTVEKGGKHKTGPNLH GLFGRKTGQAPGYSYT 2 DVQRALKIDNNLGQ HTVEKGAKHKTAPNVH GLADRIAYQAKATNEE 3 LVTRPLYIFPNEGQ HTLEKAAKHKTGPNLH ALKSSKDLMFTVINDD 4 FFMNEDALVARSSN HQFAASSIHKNAPQFH NLKDSKTYLKPVISET A) Based only on sequences in column B, protein 4 reveals the greatest evolutionary divergence. B) Comparing proteins 1 and 2 in column A reveals that these two proteins have diverged the most throughout evolution. C) Protein 4 is the protein that shows the greatest overall homology to protein 1. D) Proteins 2 and 3 show a greater evolutionary distance than proteins 1 and 4. E) The portions of amino acid sequence shown suggest that these proteins are completely unrelated.
  • 10. 30 Chapter 3 Amino Acids, Peptides, and Proteins Short Answer Questions 40. Amino acids Page: 72 Difficulty: 1 What are the structural characteristics common to all amino acids found in naturally occurring proteins? Ans: All amino acids found in naturally occurring proteins have an α carbon to which are attached a carboxylic acid, an amine, a hydrogen, and a variable side chain. All the amino acids are also in the L configuration. 41. Amino acids Page: 75 Difficulty: 1 Only one of the common amino acids has no free α-amino group. Name this amino acid and draw its structure. Ans: The amino acid L-proline has no free α-amino group, but rather has an imino group formed by cyclization of the R-group aliphatic chain with the amino group (see Fig. 3-5, p. 79). 42. Amino acids Pages: 74–77 Difficulty: 2 Briefly describe the five major groupings of amino acids. Ans: Amino acids may be categorized by the chemistry of their R groups: (1) nonpolar aliphatics; (2) polar, uncharged; (3) aromatic; (4) positively charged; (5) negatively charged. (See Fig. 3-5, p. 79.) 43. Amino acids Pages: 73–75 Difficulty: 2 A B C D E __________________________________________________________________ Tyr-Lys-Met Gly-Pro-Arg Asp-Trp-Tyr Asp-His-Glu Leu-Val-Phe Which one of the above tripeptides: ____(a) is most negatively charged at pH 7? ____(b) will yield DNP-tyrosine when reacted with l-fluoro-2,4-dinitrobenzene and hydrolyzed in acid? ____(c) contains the largest number of nonpolar R groups? ____(d) contains sulfur? ____(e) will have the greatest light absorbance at 280 nm? Ans: (a) D; (b) A; (c) E; (d) A; (e) C
  • 11. 31 Chapter 3 Amino Acids, Peptides, and Proteins 44. Amino acids Pages: 73–75 Difficulty: 2 Draw the structures of the amino acids phenylalanine and aspartate in the ionization state you would expect at pH 7.0. Why is aspartate very soluble in water,whereas phenylalanine is much less soluble? Ans: Aspartate has a polar (hydrophilic) side chain, which forms hydrogen bonds with water. In contrast, phenylalanine has a nonpolar (hydrophobic) side chain. (See Fig. 3-5, p. 79 for structures.) 45. Amino acids Pages: 77–78 Difficulty: 3 Name two uncommon amino acids that occur in proteins. By what route do they get into proteins? Ans: Some examples are 4-hydroxyproline, 5-hydroxylysine, γ-carboxyglutamate, N-methyllysine, desmosine, and selenocysteine. Uncommon amino acids in proteins (other than selenocysteine) usually result from chemical modifications of standard amino acid R groups after a protein has been synthesized. 46. Amino acids Pages: 78–79 Difficulty: 1 Why do amino acids, when dissolved in water,become zwitterions? Ans: Near pH = 7, the carboxylic acid group (—COOH) will dissociate to become a negatively charged —COO– group, and the —NH2 amino group will attract a proton to become a positively charged —NH3 + group. 47. Amino acids Page: 79 Difficulty: 1 As more OH– equivalents (base) are added to an amino acid solution, what titration reaction will occur around pH = 9.5? Ans: Around pH = 9.5, the —NH3 + group will be titrated according to the reaction: —NH3 + + OH– → —NH2 + H2O. 48. Amino acids Page: 80 Difficulty: 3 In the amino acid glycine, what effect does the positively charged —NH3 + group have on the pKa of an amino acid’s —COOH group? Ans: The positively charged amino group stabilizes the negatively charged ionized form of the carboxyl group, —COO– ,and repels the departing H+ thereby promoting deprotonation. The effect is to lower the pKa of the carboxyl group. (See Fig. 3-11, p. 80.) 49. Amino acids Page: 79 Difficulty: 3 How does the shape of a titration curve confirm the fact that the pH region of greatest buffering power for an amino acid solution is around its pK’s? Ans: In a certain range around the pKa’s of an amino acid, the titration curve levels off. This indicates that for a solution with pH ≈ pK, any given addition of base or acid equivalents will result in the smallest change in pH—which is the definition of a buffer.
  • 12. 32 Chapter 3 Amino Acids, Peptides, and Proteins 50. Amino acids Page: 79 Difficulty: 2 Leucine has two dissociable protons: one with a pKa of 2.3, the other with a pKa of 9.7. Sketch a properly labeled titration curve for leucine titrated with NaOH; indicate where the pH = pK and the region(s) in which buffering occurs. Ans: See the titration curve for glycine in Fig. 3-10, p. 79. 51. Amino acids Page: 80 Difficulty: 2 What is the pI, and how is it determined for amino acids that have nonionizable R groups? Ans: The pI is the isoelectric point. It occurs at a characteristic pH when a molecule has an equal number of positive and negative charges,or no net charge. For amino acids with nonionizable R groups, pI is the arithmetic mean of a molecule’s two pKa values: pI = 1/2 (pK1 + pK2) 52. Amino acids Page: 80 Difficulty: 2 The amino acid histidine has a side chain for which the pKa is 6.0. Calculate what fraction of the histidine side chains will carry a positive charge at pH 5.4. Be sure to show your work. Ans: pH = pKa + log pKa – pH = log antilog (pKa – pH) = antilog (6.0 – 5.4) = 4 = [acid]/[conjugate base],or 4[conjugate base] = [acid] Therefore,at pH 5.4, 4/5 (80%) of the histidine will be in the protonated form. 53. Amino acids Page: 80 Difficulty: 2 The amino acid histidine has three ionizable groups, with pKa values of 1.8, 6.0, and 9.2. (a) Which pKa corresponds to the histidine side chain? (b) In a solution at pH 5.4, what percentage of the histidine side chains will carry a positive charge? Ans: (a) 6.0; (b) 80%. (See the previous problem for expanded solution to this problem.)
  • 13. 33 Chapter 3 Amino Acids, Peptides, and Proteins 54. Amino acids Page: 81 Difficulty: 2 What is the uniquely important acid-base characteristic of the histidine R group? Ans: Only the imidazole ring of the histidine R group has a pKa near physiological pH (pKa = 6.0), which suggests that histidine may provide buffering power in intercellular and intracellular fluids. 55. Peptides and proteins Page: 82 Difficulty: 1 How can a polypeptide have only one free amino group and one free carboxyl group? Ans: This is possible only if the peptide has no side chains with carboxyl or amino groups. Then, with the exception of the single amino-terminal amino acid and the single carboxyl-terminal amino acid, all the other α-amino and carboxyl groups are covalently condensed into peptide bonds. 56. Peptides and proteins Page: 82 Difficulty: 1 Hydrolysis of peptide bonds is an exergonic reaction. Why, then, are peptide bonds quite stable? Ans: Peptide bonds are stable because hydrolysis of peptide (or amide) bonds has a high activation energy and as a result occurs very slowly. 57. Peptides and proteins Page: 82 Difficulty: 2 Draw the structure of Gly–Ala–Glu in the ionic form that predominates at pH 7. Ans: The peptide must have an amino-terminal Gly residue, a carboxyl-terminal Glu residue, and ionized amino and carboxyl groups. 58. Peptides and proteins Page: 82 Difficulty: 2 The artificial sweetener NutraSweet®,also called aspartame,is a simple dipeptide, aspartylphenylalanine methyl ester,on which the free carboxyl of the dipeptide is esterified to methyl alcohol. Draw the structure of aspartame,showing the ionizable groups in the form they have at pH 7. (The ionizable group in the side chain of aspartate has a pKa of 3.96.) Ans: See the structure on p. 83. 59. Peptides and proteins Page: 84 Difficulty: 1 If the average molecular weight of the 20 standard amino acids is 138, why do biochemists divide a protein’s molecular weight by 110 to estimate its number of amino acid residues? Ans: For each peptide bond formed, a molecule of water is lost, bringing the average molecular weight down to 120. To reflect the preponderance of low-molecular-weight amino acids, the average molecular weight is lowered further to 110.
  • 14. 34 Chapter 3 Amino Acids, Peptides, and Proteins 60. Peptides and proteins Page: 84 Difficulty: 2 Lys residues make up 10.5% of the weight of ribonuclease. The ribonuclease molecule contains 10 Lys residues. Calculate the molecular weight of ribonuclease. Ans: From the structure of lysine, we can calculate its molecular weight (146); when it condenses (loses H2O, Mr = 18) to form a peptide bond, the resulting residue contributes 146 – 18 = 128 to the protein’s molecular weight. If 10 Lys residues contribute 10.5% of the protein’s molecular weight, each Lys residue is 1.05%. To calculate the total molecular weight, divide 128 by 1.05% (0.0105); the result is 12,190. (The actual value is 13,700.) 61. Working with proteins Pages: 86–87 Difficulty: 2 Why do smaller molecules elute after large molecules when a mixture of proteins is passed through a size-exclusion (gel filtration) column? Ans: The column matrix is composed of cross-linked polymers with pores of selected sizes. Smaller molecules can enter pores in the polymer beads from which larger molecules would be excluded. Smaller molecules therefore have a larger three-dimensional space in which to diffuse, making their path through the column longer. Larger molecules migrate faster because they pass directly through the column, unhindered by the bead pores. 62. Working with proteins Pages: 86–87 Difficulty: 2 For each of these methods of separating proteins, describe the principle of the method, and tell what property of proteins allows their separation by this technique. (a) ion-exchange chromatography (b) size-exclusion (gel filtration) chromatography (c) affinity chromatography Ans: (a) Ion-exchange chromatography separates proteins on the basis of their charges. (b) Size- exclusion or gel filtration chromatography separates on the basis of size. (c) Affinity chromatography separates proteins with specific, high affinity for some ligand (attached to an inert support) from other proteins with no such affinity. (See Fig. 3-17, p. 87.) 63. Working with proteins Pages: 86–88 Difficulty: 2 A biochemist is attempting to separate a DNA-binding protein (protein X) from other proteins in a solution. Only three other proteins (A, B, and C) are present. The proteins have the following properties: pI (isoelectric Size Bind to point) Mr DNA? –––––––––––––––––––––––––––––––––––––––––– protein A 7.4 82,000 yes protein B 3.8 21,500 yes protein C 7.9 23,000 no protein X 7.8 22,000 yes –––––––––––––––––––––––––––––––––––––––––– What type of protein separation techniques might she use to separate:
  • 15. 35 Chapter 3 Amino Acids, Peptides, and Proteins (a) protein X from protein A? (b) protein X from protein B? (c) protein X from protein C? Ans: (a) Size-exclusion (gel filtration) chromatography to separate on the basis of size; (b) ion- exchange chromatography or isoelectric focusing to separate on the basis of charge; (c) specific affinity chromatography, using immobilized DNA. 64. Working with proteins Pages: 88–89 Difficulty: 2 What factors would make it difficult to interpret the results of a gel electrophoresis of proteins in the absence of sodium dodecyl sulfate (SDS)? Ans: Without SDS, protein migration through a gel would be influenced by the protein’s intrinsic net charge—which could be positive or negative—and its unique three-dimensional shape, in addition to its molecular weight. Thus, it would be difficult to ascertain the difference between proteins based upon a comparison of their mobilities in gel electrophoresis. 65. Working with proteins Pages: 90–91 Difficulty: 2 How can isoelectric focusing be used in conjunction with SDS gel electrophoresis? Ans: Isoelectric focusing can separate proteins of the same molecular weight on the basis of differing isoelectric points. SDS gel electrophoresis can then separate proteins with the same isoelectric points on the basis of differing molecular weights. When combined in two-dimensional electrophoresis, a great resolution of large numbers of proteins can be achieved. 66. Working with proteins Pages: 91–92 Difficulty: 3 You are given a solution containing an enzyme that converts B into A. Describe what you would do to determine the specific activity of this enzyme solution. Ans: First, add a known volume of the enzyme solution (say, 0.01 mL) to a solution of its substrate B and measure the initial rate at which product A is formed, expressed as μmol/mL of enzyme solution/min. Then measure the total protein concentration, expressed as mg/mL. Finally, divide the enzyme activity (μmol/min/mL) by the protein concentration (mg/mL); the quotient is the specific activity. 67. Working with proteins Pages: 91–92 Difficulty: 2 As a protein is purified, both the amount of total protein and the activity of the purified protein decrease. Why,then, does the specific activity of the purified protein increase? Ans: Specific activity is the units of enzyme activity (μmol of product/min) divided by the amount of protein (mg). As the protein is purified, some of it is lost in each step,resulting in a drop in activity. However,other contaminating proteins are lost to a much greater extent. Therefore,with each purification step, the purified protein constitutes a greater proportion of the total, resulting in an increase in specific activity. (See also Table 3-5, p. 88.) 68. Peptides and proteins Page: 84 Difficulty: 1
  • 16. 36 Chapter 3 Amino Acids, Peptides, and Proteins Define the primary structure of a protein. Ans: The primary structure of a protein is its unique sequence of amino acids and any disulfide bridges present in the native structure, that is, its covalent bond structure. 69. The covalent structure ofproteins Pages: 94–100 Difficulty: 2 In one or two sentences,describe the usefulness of each of the following reagents or reactions in the analysis of protein structure: (a) Edman reagent (phenylisothiocyanate) (b) protease (c) reducing agent (dithiothreitol or β-mercaptoethanol) Ans: (a) Used in determination of the amino acid sequence of a peptide, starting at its amino terminus; (b) used to produce specific peptide fragments from a polypeptide; (c) used to break disulfide bonds or “bridges” or to keep them from forming and to keep Cys residues in their reduced form. 70. The covalent structure ofproteins Pages: 96–97 Difficulty: 2 A polypeptide is hydrolyzed, and it is determined that there are 3 Lys residues and 2 Arg residues (as well as other residues). How many peptide fragments can be expected when the native polypeptide is incubated with the proteolytic enzyme trypsin? Ans: Six fragments would be expected, unless the carboxyl-terminal residue is Lys or Arg; in which case there would be five. 71. The covalent structure ofproteins Pages: 94–95 Difficulty: 2 The following reagents are often used in protein chemistry. Match the reagent with the purpose for which it is best suited. Some answers may be used more than once or not at all; more than one reagent may be suitable for a given purpose. (a) CNBr (cyanogen bromide) (e) performic acid (b) Edman reagent (phenylisothiocyanate) (f) chymotrypsin (c) Sanger reagent (FDNB) (g) trypsin (d) reducing agent (dithiothreitol) (h) iodoacetamide ___ hydrolysis of peptide bonds on the carboxyl side of Lys and Arg ___ cleavage of peptide bonds on the carboxyl side of Met ___ breakage of disulfide (—S—S—) bonds ___ modification of sulfhydryl groups of Cys ___ determination of the amino acid sequence of a peptide ___ determining the amino-terminal amino acid in a polypeptide Ans: g; a; d and e; h; b; c 72. The covalent structure ofproteins Pages: 94–97 Difficulty: 2 Conjugated proteins contain chemical substituents in addition to amino acids. List three classes of conjugated proteins and identify the type of prosthetic group associated with each one.
  • 17. 37 Chapter 3 Amino Acids, Peptides, and Proteins Ans: Any of the following are acceptable answers: Lipoproteins, with lipid groups Glycoproteins, with carbohydrate groups Phosphoproteins, with phosphoryl groups Hemoproteins, with heme groups Flavoproteins, with flavin nucleotide groups Metalloproteins, with metal ions (zinc, iron, calcium, etc.) 73. The covalent structure ofproteins Pages: 94–97 Difficulty: 2 Provide a brief definition for a polymorphic protein. Ans: A polymorphic protein is one whose amino acid sequence varies among the human population. The variants have little or no differences in the function or activity of the protein. 74. The covalent structure ofproteins Pages: 94–97 Difficulty: 2 A biochemist wishes to determine the sequence of a protein that contains 123 amino acid residues. After breaking all of the disulfide bonds, the protein is treated with cyanogen bromide (CNBr),and it is determined that that this treatment breaks up the protein into seven conveniently sized peptides, which are separated from each other. It is your turn to take over. Outline the steps you would take to determine, unambiguously, the sequence of amino acid residues in the original protein. Ans: (1) Use Edman degradation to determine the sequence of each peptide. (2) Create a second set of peptides by treatment of the protein with a specific protease (e.g.,trypsin), and determine the sequence of each of these. (3) Place the peptides in order by their overlaps. (4) Finally, by a similar analysis of the original protein without first breaking disulfide bonds, determine the number and location of —S—S— bridges. 75. The covalent structure ofproteins Pages: 94–97 Difficulty: 3 You are trying to determine the sequence of a protein that you know is pure. Give the most likely explanation for each of the following experimental observations. You may use a simple diagram for your answer. (a) The Sanger reagent (FDNB,fluorodinitrobenzene) identifies Ala and Leu as amino- terminal residues, in roughly equal amounts. (b) Your protein has an apparent Mr of 80,000, as determined by SDS-polyacrylamide gel electrophoresis. After treatment of the protein with performic acid, the same technique reveals two proteins of Mr 35,000 and 45,000. (c) Size-exclusion chromatography (gel filtration) experiments indicate the native protein has an apparent Mr of 160,000. Ans: (a) The protein has some multiple of two subunits, with Ala and Leu as the amino-terminal residues. (b) The protein has two subunits (Mr 35,000 and 45,000), joined by one or more disulfide bonds. (c) The native protein (Mr 160,000) has two Mr 35,000 subunits and two Mr 40,000 subunits. 66. 76. The covalent structure ofproteins Page: 101 Difficulty: 2 Describe two major differences between chemical synthesis of polypeptides and synthesis of polypeptides in the living cell.
  • 18. 38 Chapter 3 Amino Acids, Peptides, and Proteins Ans: There are many such differences; here are a few. (1) Chemical synthesis proceeds from carboxyl terminus to amino terminus; in the living cell, the process starts at the amino terminus and ends at the carboxyl terminus. In the living cell, synthesis occurs under physiological conditions; chemical synthesis does not. Chemical synthesis is only capable of synthesizing short polypeptides; cells can produce proteins of severalthousand amino acids. 77. Protein sequences and evolution Page: 102–104 Difficulty: 2 Distinguish between homologs, paralogs, and orthologs as classes of related proteins. Ans: Homologs are any members of a particular protein family, paralogs are two homologs present in the same species,and orthologs are are two homologs present in different species. 78. Protein sequences and evolution Page: 105 Difficulty: 2 How are “signature sequences” usefulin analyzing groups of functionally related proteins? Ans: Such sequences are often present in one taxonomic group or shared by closely related taxonomic groups but are absent in evolutionarily more distant groups. They thus aid in constructing more elaborate evolutionary trees based on protein sequences.