SlideShare a Scribd company logo
1 of 84
Chapter 14
Autoencoders
์ง€ํ›„, ๊ฒฝ์šฑ
Contents
โ€ข ๋จผ์ € ์•Œ๋ฉด ์ข‹์„ ๊ฒƒ๋“ค
โ€ข 14.1 ~ 14.4
โ€ข 14.5 Denoising Autoencoders
โ€ข 14.6 Learning Manifolds with Autoencoders
โ€ข 14.7 Contractive Autoencoders
โ€ข 14.8 Predictive Sparse Decomposition
โ€ข 14.9 Applications of Autoencoders
+ VAE์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ์กฐ๊ธˆ ํ•ด๋ณผ๊นŒ ํ•ฉ๋‹ˆ๋‹ค.. (๊ฐœ์–ด๋ ต)
โ€ป 8,9๋Š” ๊ฐ๊ฐ 1ํŽ˜์ด์ง€ โ†’ ์ดํ•ด ๋ชปํ•จ & ์ฒ ์ง€๋‚œ ์–˜๊ธฐ ๊ฐ™์œผ๋ฏ€๋กœ ๊ทธ๋ƒฅ ์ฝ์–ด๋ณด์‹œ๊ธธ ์ถ”์ฒœ
โ€ป โ€˜์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ - 1/3 (Naver TV)โ€™ ์ถ•์•ฝ์ด๋ผ ์ƒ๊ฐํ•˜์‹œ๋ฉด ๋ฉ๋‹ˆ๋‹ค. ์‹œ๊ฐ„๋˜๋ฉด ๊ผญ ๋ณด์‹œ๊ธธ..
https://tv.naver.com/v/3185672/list/150913
โ€ป โ€˜์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ - 2/3, 3/3โ€™ ์€ ๊ฐœ์–ด๋ ต์Šต๋‹ˆ๋‹ค.
์–ด์„œ์™€, ์˜คํ† ์ธ์ฝ”๋”๋Š” ์ฒ˜์Œ์ด์ง€?
์–ด์„œ์™€, Maximum Likelihood๋Š”
์ฒ˜์Œ์ด ์•„๋‹ˆ์ง€?
์–ด์„œ์™€, Manifold๋„
์ฒ˜์Œ์ด ์•„๋‹ˆ์ง€?
์ฑ… ๋‚ด์šฉ ์‹œ์ž‘..!
Autoencoder: neural network that is trained to attempt to copy its input to its output
hidden layer that describes a code used to represent the input
encoder function
decoder that produces a reconstruction
Intro
input output
code
If an autoencoder succeeds in
simply learning to set everywhere,
Intro
Good? or Bad?
- Then it is not especially useful.
- Autoencoders are designed to be unable to learn to copy perfectly.
- They are restricted in ways that allow them to copy only approximately, and to copy only
input that resembles the training data.
- Because the model is forced to prioritize which aspects of the input should be copied,
it often learns useful properties of the data.
Intro
Traditionally, autoencoders were used for dimensionality reduction or feature learning.
Recently, theoretical connections between autoencoders and latent variable models
have brought autoencoders to the forefront of generative modeling,
as we will see in chapter 20.
Autoencoders? For what?
We hope that training the autoencoder to perform the input copying task
will result in h taking on useful properties.
One way to obtain useful features from the autoencoder is
to constrain h To have a smaller dimension than x.
An autoencoder whose code dimension is less than the input dimensionโ€ฆ
>> Undercomplete Autoencoder
14.1 Undercomplete Autoencoders
14.1 Undercomplete Autoencoders
The learning process is described simply as
minimizing a loss function
where L is a loss function penalizing g(f(x)) for being dissimilar from x
,such as the mean squared error
Quiz. If model is linear & loss function is MSEโ€ฆ?
14.2 Regularized Autoencoders
If the encoder and decoder are given too much capacity,
Undercomplete autoencoders fail to learn anything useful.
A similar problem occurs if the hidden code is allowed to have dimension equal to the input,
and in the overcomplete case in which the hidden code has dimension greater than the input.
Butโ€ฆ
Rather than limiting the model capacity by keeping the encoder
and decoder shallow and the code size small,
Regularized autoencoders use a loss function that encourages the model
to have other properties besides the ability to copy its input to its output.
14.2 Regularized Autoencoders
A regularized autoencoder can be nonlinear and overcomplete
but still learn something useful about the data distribution,
even if the model capacity is great enough to learn a trivial identity function.
14.2 Regularized Autoencoders
1. Sparse Autoencoders
A sparse autoencoder is simply an autoencoder whose training criterion involves
a sparsity penalty โ„ฆ(h) on the code layer h.
Sparse autoencoders are typically used to learn features for another task, such as classi๏ฌcation
An autoencoder that has been regularized to be sparse must respond to unique statistical
features of the dataset it has been trained on, rather than simply acting as an identity function.
14.2 Regularized Autoencoders
1. Sparse Autoencoders
14.2 Regularized Autoencoders
2. Denoising Autoencoders
Rather than adding a penalty โ„ฆ to the cost function, we can obtain an autoencoder
that learns something useful by changing the reconstruction error term of the cost function.
where is a copy of that has been corrupted by some form of noise.
Denoising autoencoders must therefore undo this corruption
rather than simply copying their input. To be continued in 14.5.
14.2 Regularized Autoencoders
Another strategy for regularizing an autoencoder is to use a penalty โ„ฆ, as in sparse autoencoders
but with a di๏ฌ€erent form of โ„ฆ
An autoencoder regularized in this way is called a contractive autoencoder, or CAE.
The CAE is described in more detail in section 14.7
3. Regularizing by Penalizing Derivatives
14.3 Representational Power, Layer Size and Depth
Autoencoders are often trained with only a single layer encoder and a single layer decoder.
However, this is not a requirement.
In fact, using deep encoders and decoders o๏ฌ€ers many advantages.
Recall from section 6.4.1 that there are many advantages to depth in a feedforward network.
Because autoencoders are feedforward networks, these advantages also apply to autoencoders
Depth can exponentially reduce the computational cost of representing some functions.
Depth can exponentially decrease the amount of training data needed to learn some functions.
(Right) Another repeating pattern can
be folded on top of the ๏ฌrst (by
another downstream unit) to obtain
another symmetry (which is now
repeated four times, with two hidden
layers)
Figure 6.5: An intuitive, geometric explanation of the exponential advantage of deeper recti๏ฌer networks
(Left) An absolute value recti๏ฌcation
unit has the same output for every pair of
mirror points in its input. The mirror axis
of symmetry is given by the hyperplane
de๏ฌned by the weights and bias of the unit.
A function computed on top of that unit
(the green decision surface) will be a mirror
image of a simpler pattern across that axis
of symmetry.
(Center) The function can be obtained
by folding the space around the axis of
symmetry.
Autoencoders are just feedforward networks.
The same loss functions and output unit types that can be used for
traditional feedforward networks are also used for autoencoders.
14.4 Stochastic Encoders and Decoders
As described in section 6.2.2.4, a general strategy for designing the output units
and the loss function of a feedforward network is to de๏ฌne an output distribution
p(y|x) and minimize the negative log-likelihood -log p(y|x).
In that setting, y is a vector of targets, such as class labels.
In an autoencoder, x is now the target as well as the input.
14.4 Stochastic Encoders and Decoders
Given a hidden code h, we may think of the decoder as providing
a conditional distribution .
We may then train the autoencoder by minimizing .
As with traditional feedforward networks, we usually use linear output units to parametrize
the mean of a Gaussian distribution if x is real valued.
In that case, the negative log-likelihood yields a mean squared error criterion.
Similarly, binary x values correspond to a Bernoulli distribution whose parameters are
given by a sigmoid output unit, discrete x values correspond to a softmax distribution,
and so on.
14.4 Stochastic Encoders and Decoders
We can also generalize the notion of an encoding function
to an encoding distribution
14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
DAE๋Š” ์†์ƒ๋œ ์ž๋ฃŒ์ ์ด ์ž…๋ ฅ๋˜์—ˆ์„ ๋•Œ ์†์ƒ๋˜์ง€ ์•Š์€ ์›๋ž˜์˜ ์ž๋ฃŒ์ ์„ ์ถœ๋ ฅํ•˜๋„๋ก ํ›ˆ๋ จ๋˜๋Š” ์ž๋™๋ถ€ํ˜ธ๊ธฐ์ด๋‹ค.
๊ทธ๋ฆผ 14.3
์†์ƒ๋œ ์ž๋ฃŒ์ 
1. ํ›ˆ๋ จ ์ž๋ฃŒ์—์„œ ํ›ˆ๋ จ ๊ฒฌ๋ณธ x๋ฅผ ์ถ”์ถœํ•œ๋‹ค.
2. ๐ถ( ๐‘ฅ|๐‘ฅ = ๐‘ฅ)๋กœ๋ถ€ํ„ฐ ์†์ƒ๋œ ๋ฒ„์ „ ๐‘ฅ๋ฅผ ์ถ”์ถœํ•œ๋‹ค.
3. (๐‘ฅ, ๐‘ฅ)๋ฅผ ํ•˜๋‚˜์˜ ํ›ˆ๋ จ ๊ฒฌ๋ณธ์œผ๋กœ ์‚ฌ์šฉํ•ด์„œ ์ž๋™๋ถ€ํ˜ธ๊ธฐ ์žฌ๊ตฌ์ถ• ๋ถ„ํฌ๋ฅผ ์ถ”์ •ํ•œ๋‹ค.
๊ฐ์ด ์˜ฌ ๊ฒƒ ๊ฐ™์œผ๋ฉด์„œ๋„ ์˜ค์ง€ ์•Š์•„.
14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
๋‹ค์‹œ ๋Œ์•„๊ฐ€์„œ..Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
๋‹ค์‹œ ๋Œ์•„์˜ค๋ฉด..
์‚ฌ๋žŒ์ด ์ƒ๊ฐํ–ˆ์„ ๋•Œ ๋˜‘๊ฐ™๋‹ค๋ผ๊ณ  ์ƒ๊ฐํ• ๋งŒํผ์˜ ๋…ธ์ด์ฆˆ๋ฅผ ์ค€๋‹ค.
์•„ -> ๋…ธ์ด์ฆˆ ์•„ -> ๊ฐ™์€ ๊ฑฐ๋„ค
14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
๊ทธ๋ฆผ 14.4
Source : ์ฑ…
์†์ƒ๋œ ์ž๋ฃŒ์ 
์†์ƒ ๊ณผ์ •
Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
14.7 Contractive Autoencoders
Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
14.7 Contractive Autoencoders
๊ฐœ์„ ๋จ์„ ๋ณด์—ฌ์คฌ์ง€๋งŒ ์ œ๊ฐ€ ๋ดค์„ ๋• ์ž˜ ๋ชจ๋ฅด๊ฒ ๊ตฌ์š” ใ…Ž
(์‹ค์ œ๋กœ ์˜์ƒ์—์„œ ํ•œ ๋ง)
14.6 Learning Manifolds with Autoencoders (์ž๋™๋ถ€ํ˜ธ๊ธฐ๋กœ ๋‹ค์–‘์ฒด ๋ฐฐ์šฐ๊ธฐ)
๊ทธ๋ฆผ 14.6
14.6 Learning Manifolds with Autoencoders (์ž๋™๋ถ€ํ˜ธ๊ธฐ๋กœ ๋‹ค์–‘์ฒด ๋ฐฐ์šฐ๊ธฐ)
Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
14.6 Learning Manifolds with Autoencoders (์ž๋™๋ถ€ํ˜ธ๊ธฐ๋กœ ๋‹ค์–‘์ฒด ๋ฐฐ์šฐ๊ธฐ)
Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
14.6 Learning Manifolds with Autoencoders (์ž๋™๋ถ€ํ˜ธ๊ธฐ๋กœ ๋‹ค์–‘์ฒด ๋ฐฐ์šฐ๊ธฐ)
๋ชจ๋“  ์ž๋™๋ถ€ํ˜ธ๊ธฐ ํ›ˆ๋ จ ์ ˆ์ฐจ๋Š” ๋‹ค์Œ ๋‘ ์š”์ธ์˜ ์ ˆ์ถฉ์ด ๊ด€์—ฌํ•œ๋‹ค.
1. ํ›ˆ๋ จ ๊ฒฌ๋ณธ์ด x์ด๊ณ  ๊ทธ๊ฒƒ์˜ ํ‘œํ˜„์ด h๋ผ๊ณ  ํ•  ๋•Œ, ๋ณตํ˜ธ๊ธฐ๋ฅผ ์ด์šฉํ•ด์„œ h๋กœ๋ถ€ํ„ฐ x๋ฅผ ๋ณต์›ํ•˜๋Š” ๋ฐฉ๋ฒ•์˜ ํ•™์Šต.
์ด๋•Œ x๊ฐ€ ํ›ˆ๋ จ ์ž๋ฃŒ์—์„œ ์ถ”์ถœํ•œ ๊ฒƒ์ด๋ผ๋Š” ์‚ฌ์‹ค์ด ์•„์ฃผ ์ค‘์š”ํ•˜๋‹ค.
์ด๋Š” ์ž๋™๋ถ€ํ˜ธ๊ธฐ๊ฐ€ ์ž๋ฃŒ ์ƒ์„ฑ ๋ถ„ํฌ๋กœ๋ถ€ํ„ฐ ๋‚˜์˜ฌ ๊ฐ€๋Šฅ์„ฑ์ด ์—†๋Š” ์ž…๋ ฅ๋“ค์„ ์„ฑ๊ณต์ ์œผ๋กœ ์žฌ๊ตฌ์ถ•ํ•  ํ•„์š”๊ฐ€ ์—†์Œ์„
๋œปํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.
2. ์ œ์•ฝ ๋˜๋Š” ์ •์น™ํ™” ๋ฒŒ์ ์˜ ์ถฉ์กฑ.
์—ฌ๊ธฐ์„œ ์ œ์•ฝ ๋˜๋Š” ์ •์น™ํ™” ๋ฒŒ์ ์€ ์ž๋™๋ถ€ํ˜ธ๊ธฐ์˜ ์ˆ˜์šฉ๋ ฅ์„ ์ œํ•œํ•˜๋Š” ์•„ํ‚คํ…์ฒ˜์  ์ œ์•ฝ์ผ ์ˆ˜๋„ ์žˆ๊ณ 
์žฌ๊ตฌ์ถ• ๋น„์šฉ์— ์ถ”๊ฐ€๋˜๋Š” ์ •์น™ํ™” ํ•ญ์ผ ์ˆ˜๋„ ์žˆ๋‹ค.
1 Page ์งœ๋ฆฌ ๋…ธ์ดํ•ด
14.8 Predictive Sparse Decomposition
๋”ฐ๋ผ์„œ Skip
14.9 Applications of Autoencoders (์ž๋™๋ถ€ํ˜ธ๊ธฐ์˜ ์‘์šฉ)
? ์ •๋ณด ๊ฒ€์ƒ‰์ด์š”..?
์ฐจ์›์ถ•์†Œ (๋‹น์—ฐํ•œ๋ง)
? ์˜๋ฏธ ํ•ด์‹ฑ์ด์š”..?
14.9 Applications of Autoencoders (์ž๋™๋ถ€ํ˜ธ๊ธฐ์˜ ์‘์šฉ)

More Related Content

What's hot

Variational Autoencoder
Variational AutoencoderVariational Autoencoder
Variational AutoencoderMark Chang
ย 
Autoencoder
AutoencoderAutoencoder
AutoencoderHARISH R
ย 
Variational inference intro. (korean ver.)
Variational inference intro. (korean ver.)Variational inference intro. (korean ver.)
Variational inference intro. (korean ver.)Kiho Hong
ย 
1์‹œ๊ฐ„๋งŒ์— GAN(Generative Adversarial Network) ์™„์ „ ์ •๋ณตํ•˜๊ธฐ
1์‹œ๊ฐ„๋งŒ์— GAN(Generative Adversarial Network) ์™„์ „ ์ •๋ณตํ•˜๊ธฐ1์‹œ๊ฐ„๋งŒ์— GAN(Generative Adversarial Network) ์™„์ „ ์ •๋ณตํ•˜๊ธฐ
1์‹œ๊ฐ„๋งŒ์— GAN(Generative Adversarial Network) ์™„์ „ ์ •๋ณตํ•˜๊ธฐNAVER Engineering
ย 
Optimization/Gradient Descent
Optimization/Gradient DescentOptimization/Gradient Descent
Optimization/Gradient Descentkandelin
ย 
Gradient descent optimizer
Gradient descent optimizerGradient descent optimizer
Gradient descent optimizerHojin Yang
ย 
Object detection with deep learning
Object detection with deep learningObject detection with deep learning
Object detection with deep learningSushant Shrivastava
ย 
Object Detection Using R-CNN Deep Learning Framework
Object Detection Using R-CNN Deep Learning FrameworkObject Detection Using R-CNN Deep Learning Framework
Object Detection Using R-CNN Deep Learning FrameworkNader Karimi
ย 
Introduction to Autoencoders
Introduction to AutoencodersIntroduction to Autoencoders
Introduction to AutoencodersYan Xu
ย 
03 Machine Learning Linear Algebra
03 Machine Learning Linear Algebra03 Machine Learning Linear Algebra
03 Machine Learning Linear AlgebraAndres Mendez-Vazquez
ย 
Back propagation method
Back propagation methodBack propagation method
Back propagation methodProf. Neeta Awasthy
ย 
[PR12] Generative Models as Distributions of Functions
[PR12] Generative Models as Distributions of Functions[PR12] Generative Models as Distributions of Functions
[PR12] Generative Models as Distributions of FunctionsJaeJun Yoo
ย 
Object Detection using Deep Neural Networks
Object Detection using Deep Neural NetworksObject Detection using Deep Neural Networks
Object Detection using Deep Neural NetworksUsman Qayyum
ย 
07 regularization
07 regularization07 regularization
07 regularizationRonald Teo
ย 
Bayseian decision theory
Bayseian decision theoryBayseian decision theory
Bayseian decision theorysia16
ย 
PR-132: SSD: Single Shot MultiBox Detector
PR-132: SSD: Single Shot MultiBox DetectorPR-132: SSD: Single Shot MultiBox Detector
PR-132: SSD: Single Shot MultiBox DetectorJinwon Lee
ย 
Machine Learning - Ensemble Methods
Machine Learning - Ensemble MethodsMachine Learning - Ensemble Methods
Machine Learning - Ensemble MethodsAndrew Ferlitsch
ย 
Optimization in Deep Learning
Optimization in Deep LearningOptimization in Deep Learning
Optimization in Deep LearningYan Xu
ย 
Gradient descent method
Gradient descent methodGradient descent method
Gradient descent methodSanghyuk Chun
ย 

What's hot (20)

Variational Autoencoder
Variational AutoencoderVariational Autoencoder
Variational Autoencoder
ย 
Autoencoder
AutoencoderAutoencoder
Autoencoder
ย 
Variational inference intro. (korean ver.)
Variational inference intro. (korean ver.)Variational inference intro. (korean ver.)
Variational inference intro. (korean ver.)
ย 
Density based clustering
Density based clusteringDensity based clustering
Density based clustering
ย 
1์‹œ๊ฐ„๋งŒ์— GAN(Generative Adversarial Network) ์™„์ „ ์ •๋ณตํ•˜๊ธฐ
1์‹œ๊ฐ„๋งŒ์— GAN(Generative Adversarial Network) ์™„์ „ ์ •๋ณตํ•˜๊ธฐ1์‹œ๊ฐ„๋งŒ์— GAN(Generative Adversarial Network) ์™„์ „ ์ •๋ณตํ•˜๊ธฐ
1์‹œ๊ฐ„๋งŒ์— GAN(Generative Adversarial Network) ์™„์ „ ์ •๋ณตํ•˜๊ธฐ
ย 
Optimization/Gradient Descent
Optimization/Gradient DescentOptimization/Gradient Descent
Optimization/Gradient Descent
ย 
Gradient descent optimizer
Gradient descent optimizerGradient descent optimizer
Gradient descent optimizer
ย 
Object detection with deep learning
Object detection with deep learningObject detection with deep learning
Object detection with deep learning
ย 
Object Detection Using R-CNN Deep Learning Framework
Object Detection Using R-CNN Deep Learning FrameworkObject Detection Using R-CNN Deep Learning Framework
Object Detection Using R-CNN Deep Learning Framework
ย 
Introduction to Autoencoders
Introduction to AutoencodersIntroduction to Autoencoders
Introduction to Autoencoders
ย 
03 Machine Learning Linear Algebra
03 Machine Learning Linear Algebra03 Machine Learning Linear Algebra
03 Machine Learning Linear Algebra
ย 
Back propagation method
Back propagation methodBack propagation method
Back propagation method
ย 
[PR12] Generative Models as Distributions of Functions
[PR12] Generative Models as Distributions of Functions[PR12] Generative Models as Distributions of Functions
[PR12] Generative Models as Distributions of Functions
ย 
Object Detection using Deep Neural Networks
Object Detection using Deep Neural NetworksObject Detection using Deep Neural Networks
Object Detection using Deep Neural Networks
ย 
07 regularization
07 regularization07 regularization
07 regularization
ย 
Bayseian decision theory
Bayseian decision theoryBayseian decision theory
Bayseian decision theory
ย 
PR-132: SSD: Single Shot MultiBox Detector
PR-132: SSD: Single Shot MultiBox DetectorPR-132: SSD: Single Shot MultiBox Detector
PR-132: SSD: Single Shot MultiBox Detector
ย 
Machine Learning - Ensemble Methods
Machine Learning - Ensemble MethodsMachine Learning - Ensemble Methods
Machine Learning - Ensemble Methods
ย 
Optimization in Deep Learning
Optimization in Deep LearningOptimization in Deep Learning
Optimization in Deep Learning
ย 
Gradient descent method
Gradient descent methodGradient descent method
Gradient descent method
ย 

Similar to Chapter 14 AutoEncoder

Improving Code Quality Through Effective Review Process
Improving Code Quality Through Effective  Review ProcessImproving Code Quality Through Effective  Review Process
Improving Code Quality Through Effective Review ProcessDr. Syed Hassan Amin
ย 
Ds03 part i algorithms by jyoti lakhani
Ds03 part i algorithms   by jyoti lakhaniDs03 part i algorithms   by jyoti lakhani
Ds03 part i algorithms by jyoti lakhanijyoti_lakhani
ย 
PHP Mega Meetup, Sep, 2020, Anti patterns in php
PHP Mega Meetup, Sep, 2020, Anti patterns in phpPHP Mega Meetup, Sep, 2020, Anti patterns in php
PHP Mega Meetup, Sep, 2020, Anti patterns in phpAhmed Abdou
ย 
First fare 2013 basic-labview
First fare 2013   basic-labviewFirst fare 2013   basic-labview
First fare 2013 basic-labviewOregon FIRST Robotics
ย 
CUDA by Example : Introduction to CUDA C : Notes
CUDA by Example : Introduction to CUDA C : NotesCUDA by Example : Introduction to CUDA C : Notes
CUDA by Example : Introduction to CUDA C : NotesSubhajit Sahu
ย 
Analysis of Godot Engine's Source Code
Analysis of Godot Engine's Source CodeAnalysis of Godot Engine's Source Code
Analysis of Godot Engine's Source CodePVS-Studio
ย 
Atmega tutorial
Atmega tutorialAtmega tutorial
Atmega tutorialRajan Gautam
ย 
Interview Questions C.docx
Interview Questions C.docxInterview Questions C.docx
Interview Questions C.docxSergiuMatei7
ย 
arduino
arduinoarduino
arduinomurbz
ย 
[Apostila] programaรงรฃo arduรญno brian w. evans
[Apostila] programaรงรฃo arduรญno   brian w. evans[Apostila] programaรงรฃo arduรญno   brian w. evans
[Apostila] programaรงรฃo arduรญno brian w. evansWeb-Desegner
ย 
Deblurring, Localization and Geometry Correction of 2D QR Bar Codes Using Ric...
Deblurring, Localization and Geometry Correction of 2D QR Bar Codes Using Ric...Deblurring, Localization and Geometry Correction of 2D QR Bar Codes Using Ric...
Deblurring, Localization and Geometry Correction of 2D QR Bar Codes Using Ric...IJERA Editor
ย 
Consequences of using the Copy-Paste method in C++ programming and how to dea...
Consequences of using the Copy-Paste method in C++ programming and how to dea...Consequences of using the Copy-Paste method in C++ programming and how to dea...
Consequences of using the Copy-Paste method in C++ programming and how to dea...Andrey Karpov
ย 
Itroduction about java
Itroduction about javaItroduction about java
Itroduction about javasrmohan06
ย 
Inside AOStA
Inside AOStAInside AOStA
Inside AOStAESUG
ย 

Similar to Chapter 14 AutoEncoder (20)

Introduction to Parallelization and performance optimization
Introduction to Parallelization and performance optimizationIntroduction to Parallelization and performance optimization
Introduction to Parallelization and performance optimization
ย 
UNIT-4.pdf
UNIT-4.pdfUNIT-4.pdf
UNIT-4.pdf
ย 
UNIT-4.pdf
UNIT-4.pdfUNIT-4.pdf
UNIT-4.pdf
ย 
Improving Code Quality Through Effective Review Process
Improving Code Quality Through Effective  Review ProcessImproving Code Quality Through Effective  Review Process
Improving Code Quality Through Effective Review Process
ย 
UNIT-4.pptx
UNIT-4.pptxUNIT-4.pptx
UNIT-4.pptx
ย 
Ds03 part i algorithms by jyoti lakhani
Ds03 part i algorithms   by jyoti lakhaniDs03 part i algorithms   by jyoti lakhani
Ds03 part i algorithms by jyoti lakhani
ย 
PHP Mega Meetup, Sep, 2020, Anti patterns in php
PHP Mega Meetup, Sep, 2020, Anti patterns in phpPHP Mega Meetup, Sep, 2020, Anti patterns in php
PHP Mega Meetup, Sep, 2020, Anti patterns in php
ย 
First fare 2013 basic-labview
First fare 2013   basic-labviewFirst fare 2013   basic-labview
First fare 2013 basic-labview
ย 
CUDA by Example : Introduction to CUDA C : Notes
CUDA by Example : Introduction to CUDA C : NotesCUDA by Example : Introduction to CUDA C : Notes
CUDA by Example : Introduction to CUDA C : Notes
ย 
Analysis of Godot Engine's Source Code
Analysis of Godot Engine's Source CodeAnalysis of Godot Engine's Source Code
Analysis of Godot Engine's Source Code
ย 
Atmega tutorial
Atmega tutorialAtmega tutorial
Atmega tutorial
ย 
Interview Questions C.docx
Interview Questions C.docxInterview Questions C.docx
Interview Questions C.docx
ย 
DAA Unit 1.pdf
DAA Unit 1.pdfDAA Unit 1.pdf
DAA Unit 1.pdf
ย 
arduino
arduinoarduino
arduino
ย 
[Apostila] programaรงรฃo arduรญno brian w. evans
[Apostila] programaรงรฃo arduรญno   brian w. evans[Apostila] programaรงรฃo arduรญno   brian w. evans
[Apostila] programaรงรฃo arduรญno brian w. evans
ย 
Deblurring, Localization and Geometry Correction of 2D QR Bar Codes Using Ric...
Deblurring, Localization and Geometry Correction of 2D QR Bar Codes Using Ric...Deblurring, Localization and Geometry Correction of 2D QR Bar Codes Using Ric...
Deblurring, Localization and Geometry Correction of 2D QR Bar Codes Using Ric...
ย 
Consequences of using the Copy-Paste method in C++ programming and how to dea...
Consequences of using the Copy-Paste method in C++ programming and how to dea...Consequences of using the Copy-Paste method in C++ programming and how to dea...
Consequences of using the Copy-Paste method in C++ programming and how to dea...
ย 
Introduction to Blackfin BF532 DSP
Introduction to Blackfin BF532 DSPIntroduction to Blackfin BF532 DSP
Introduction to Blackfin BF532 DSP
ย 
Itroduction about java
Itroduction about javaItroduction about java
Itroduction about java
ย 
Inside AOStA
Inside AOStAInside AOStA
Inside AOStA
ย 

More from KyeongUkJang

Photo wake up - 3d character animation from a single photo
Photo wake up - 3d character animation from a single photoPhoto wake up - 3d character animation from a single photo
Photo wake up - 3d character animation from a single photoKyeongUkJang
ย 
AlphagoZero
AlphagoZeroAlphagoZero
AlphagoZeroKyeongUkJang
ย 
GoogLenet
GoogLenetGoogLenet
GoogLenetKyeongUkJang
ย 
GAN - Generative Adversarial Nets
GAN - Generative Adversarial NetsGAN - Generative Adversarial Nets
GAN - Generative Adversarial NetsKyeongUkJang
ย 
Distilling the knowledge in a neural network
Distilling the knowledge in a neural networkDistilling the knowledge in a neural network
Distilling the knowledge in a neural networkKyeongUkJang
ย 
Latent Dirichlet Allocation
Latent Dirichlet AllocationLatent Dirichlet Allocation
Latent Dirichlet AllocationKyeongUkJang
ย 
Gaussian Mixture Model
Gaussian Mixture ModelGaussian Mixture Model
Gaussian Mixture ModelKyeongUkJang
ย 
CNN for sentence classification
CNN for sentence classificationCNN for sentence classification
CNN for sentence classificationKyeongUkJang
ย 
Visualizing data using t-SNE
Visualizing data using t-SNEVisualizing data using t-SNE
Visualizing data using t-SNEKyeongUkJang
ย 
Playing atari with deep reinforcement learning
Playing atari with deep reinforcement learningPlaying atari with deep reinforcement learning
Playing atari with deep reinforcement learningKyeongUkJang
ย 
Chapter 20 - GAN
Chapter 20 - GANChapter 20 - GAN
Chapter 20 - GANKyeongUkJang
ย 
Chapter 20 - VAE
Chapter 20 - VAEChapter 20 - VAE
Chapter 20 - VAEKyeongUkJang
ย 
Chapter 20 Deep generative models
Chapter 20 Deep generative modelsChapter 20 Deep generative models
Chapter 20 Deep generative modelsKyeongUkJang
ย 
Chapter 19 Variational Inference
Chapter 19 Variational InferenceChapter 19 Variational Inference
Chapter 19 Variational InferenceKyeongUkJang
ย 
Natural Language Processing(NLP) - basic 2
Natural Language Processing(NLP) - basic 2Natural Language Processing(NLP) - basic 2
Natural Language Processing(NLP) - basic 2KyeongUkJang
ย 
Natural Language Processing(NLP) - Basic
Natural Language Processing(NLP) - BasicNatural Language Processing(NLP) - Basic
Natural Language Processing(NLP) - BasicKyeongUkJang
ย 
Chapter 17 monte carlo methods
Chapter 17 monte carlo methodsChapter 17 monte carlo methods
Chapter 17 monte carlo methodsKyeongUkJang
ย 
Chapter 16 structured probabilistic models for deep learning - 2
Chapter 16 structured probabilistic models for deep learning - 2Chapter 16 structured probabilistic models for deep learning - 2
Chapter 16 structured probabilistic models for deep learning - 2KyeongUkJang
ย 
Chapter 16 structured probabilistic models for deep learning - 1
Chapter 16 structured probabilistic models for deep learning - 1Chapter 16 structured probabilistic models for deep learning - 1
Chapter 16 structured probabilistic models for deep learning - 1KyeongUkJang
ย 

More from KyeongUkJang (20)

Photo wake up - 3d character animation from a single photo
Photo wake up - 3d character animation from a single photoPhoto wake up - 3d character animation from a single photo
Photo wake up - 3d character animation from a single photo
ย 
YOLO
YOLOYOLO
YOLO
ย 
AlphagoZero
AlphagoZeroAlphagoZero
AlphagoZero
ย 
GoogLenet
GoogLenetGoogLenet
GoogLenet
ย 
GAN - Generative Adversarial Nets
GAN - Generative Adversarial NetsGAN - Generative Adversarial Nets
GAN - Generative Adversarial Nets
ย 
Distilling the knowledge in a neural network
Distilling the knowledge in a neural networkDistilling the knowledge in a neural network
Distilling the knowledge in a neural network
ย 
Latent Dirichlet Allocation
Latent Dirichlet AllocationLatent Dirichlet Allocation
Latent Dirichlet Allocation
ย 
Gaussian Mixture Model
Gaussian Mixture ModelGaussian Mixture Model
Gaussian Mixture Model
ย 
CNN for sentence classification
CNN for sentence classificationCNN for sentence classification
CNN for sentence classification
ย 
Visualizing data using t-SNE
Visualizing data using t-SNEVisualizing data using t-SNE
Visualizing data using t-SNE
ย 
Playing atari with deep reinforcement learning
Playing atari with deep reinforcement learningPlaying atari with deep reinforcement learning
Playing atari with deep reinforcement learning
ย 
Chapter 20 - GAN
Chapter 20 - GANChapter 20 - GAN
Chapter 20 - GAN
ย 
Chapter 20 - VAE
Chapter 20 - VAEChapter 20 - VAE
Chapter 20 - VAE
ย 
Chapter 20 Deep generative models
Chapter 20 Deep generative modelsChapter 20 Deep generative models
Chapter 20 Deep generative models
ย 
Chapter 19 Variational Inference
Chapter 19 Variational InferenceChapter 19 Variational Inference
Chapter 19 Variational Inference
ย 
Natural Language Processing(NLP) - basic 2
Natural Language Processing(NLP) - basic 2Natural Language Processing(NLP) - basic 2
Natural Language Processing(NLP) - basic 2
ย 
Natural Language Processing(NLP) - Basic
Natural Language Processing(NLP) - BasicNatural Language Processing(NLP) - Basic
Natural Language Processing(NLP) - Basic
ย 
Chapter 17 monte carlo methods
Chapter 17 monte carlo methodsChapter 17 monte carlo methods
Chapter 17 monte carlo methods
ย 
Chapter 16 structured probabilistic models for deep learning - 2
Chapter 16 structured probabilistic models for deep learning - 2Chapter 16 structured probabilistic models for deep learning - 2
Chapter 16 structured probabilistic models for deep learning - 2
ย 
Chapter 16 structured probabilistic models for deep learning - 1
Chapter 16 structured probabilistic models for deep learning - 1Chapter 16 structured probabilistic models for deep learning - 1
Chapter 16 structured probabilistic models for deep learning - 1
ย 

Recently uploaded

๐Ÿฌ The future of MySQL is Postgres ๐Ÿ˜
๐Ÿฌ  The future of MySQL is Postgres   ๐Ÿ˜๐Ÿฌ  The future of MySQL is Postgres   ๐Ÿ˜
๐Ÿฌ The future of MySQL is Postgres ๐Ÿ˜RTylerCroy
ย 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
ย 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
ย 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
ย 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
ย 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsRoshan Dwivedi
ย 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
ย 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
ย 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilV3cube
ย 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
ย 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
ย 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
ย 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
ย 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
ย 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
ย 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
ย 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
ย 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
ย 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
ย 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
ย 

Recently uploaded (20)

๐Ÿฌ The future of MySQL is Postgres ๐Ÿ˜
๐Ÿฌ  The future of MySQL is Postgres   ๐Ÿ˜๐Ÿฌ  The future of MySQL is Postgres   ๐Ÿ˜
๐Ÿฌ The future of MySQL is Postgres ๐Ÿ˜
ย 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
ย 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
ย 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
ย 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
ย 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
ย 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
ย 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
ย 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
ย 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
ย 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
ย 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
ย 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
ย 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
ย 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
ย 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
ย 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
ย 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
ย 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
ย 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
ย 

Chapter 14 AutoEncoder

  • 2. Contents โ€ข ๋จผ์ € ์•Œ๋ฉด ์ข‹์„ ๊ฒƒ๋“ค โ€ข 14.1 ~ 14.4 โ€ข 14.5 Denoising Autoencoders โ€ข 14.6 Learning Manifolds with Autoencoders โ€ข 14.7 Contractive Autoencoders โ€ข 14.8 Predictive Sparse Decomposition โ€ข 14.9 Applications of Autoencoders + VAE์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ์กฐ๊ธˆ ํ•ด๋ณผ๊นŒ ํ•ฉ๋‹ˆ๋‹ค.. (๊ฐœ์–ด๋ ต) โ€ป 8,9๋Š” ๊ฐ๊ฐ 1ํŽ˜์ด์ง€ โ†’ ์ดํ•ด ๋ชปํ•จ & ์ฒ ์ง€๋‚œ ์–˜๊ธฐ ๊ฐ™์œผ๋ฏ€๋กœ ๊ทธ๋ƒฅ ์ฝ์–ด๋ณด์‹œ๊ธธ ์ถ”์ฒœ โ€ป โ€˜์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ - 1/3 (Naver TV)โ€™ ์ถ•์•ฝ์ด๋ผ ์ƒ๊ฐํ•˜์‹œ๋ฉด ๋ฉ๋‹ˆ๋‹ค. ์‹œ๊ฐ„๋˜๋ฉด ๊ผญ ๋ณด์‹œ๊ธธ.. https://tv.naver.com/v/3185672/list/150913 โ€ป โ€˜์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ - 2/3, 3/3โ€™ ์€ ๊ฐœ์–ด๋ ต์Šต๋‹ˆ๋‹ค.
  • 4.
  • 5.
  • 6.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 47. Autoencoder: neural network that is trained to attempt to copy its input to its output hidden layer that describes a code used to represent the input encoder function decoder that produces a reconstruction Intro input output code
  • 48. If an autoencoder succeeds in simply learning to set everywhere, Intro Good? or Bad? - Then it is not especially useful. - Autoencoders are designed to be unable to learn to copy perfectly. - They are restricted in ways that allow them to copy only approximately, and to copy only input that resembles the training data. - Because the model is forced to prioritize which aspects of the input should be copied, it often learns useful properties of the data.
  • 49. Intro Traditionally, autoencoders were used for dimensionality reduction or feature learning. Recently, theoretical connections between autoencoders and latent variable models have brought autoencoders to the forefront of generative modeling, as we will see in chapter 20. Autoencoders? For what?
  • 50. We hope that training the autoencoder to perform the input copying task will result in h taking on useful properties. One way to obtain useful features from the autoencoder is to constrain h To have a smaller dimension than x. An autoencoder whose code dimension is less than the input dimensionโ€ฆ >> Undercomplete Autoencoder 14.1 Undercomplete Autoencoders
  • 51. 14.1 Undercomplete Autoencoders The learning process is described simply as minimizing a loss function where L is a loss function penalizing g(f(x)) for being dissimilar from x ,such as the mean squared error Quiz. If model is linear & loss function is MSEโ€ฆ?
  • 52. 14.2 Regularized Autoencoders If the encoder and decoder are given too much capacity, Undercomplete autoencoders fail to learn anything useful. A similar problem occurs if the hidden code is allowed to have dimension equal to the input, and in the overcomplete case in which the hidden code has dimension greater than the input. Butโ€ฆ
  • 53. Rather than limiting the model capacity by keeping the encoder and decoder shallow and the code size small, Regularized autoencoders use a loss function that encourages the model to have other properties besides the ability to copy its input to its output. 14.2 Regularized Autoencoders A regularized autoencoder can be nonlinear and overcomplete but still learn something useful about the data distribution, even if the model capacity is great enough to learn a trivial identity function.
  • 54. 14.2 Regularized Autoencoders 1. Sparse Autoencoders A sparse autoencoder is simply an autoencoder whose training criterion involves a sparsity penalty โ„ฆ(h) on the code layer h. Sparse autoencoders are typically used to learn features for another task, such as classi๏ฌcation An autoencoder that has been regularized to be sparse must respond to unique statistical features of the dataset it has been trained on, rather than simply acting as an identity function.
  • 55. 14.2 Regularized Autoencoders 1. Sparse Autoencoders
  • 56. 14.2 Regularized Autoencoders 2. Denoising Autoencoders Rather than adding a penalty โ„ฆ to the cost function, we can obtain an autoencoder that learns something useful by changing the reconstruction error term of the cost function. where is a copy of that has been corrupted by some form of noise. Denoising autoencoders must therefore undo this corruption rather than simply copying their input. To be continued in 14.5.
  • 57. 14.2 Regularized Autoencoders Another strategy for regularizing an autoencoder is to use a penalty โ„ฆ, as in sparse autoencoders but with a di๏ฌ€erent form of โ„ฆ An autoencoder regularized in this way is called a contractive autoencoder, or CAE. The CAE is described in more detail in section 14.7 3. Regularizing by Penalizing Derivatives
  • 58. 14.3 Representational Power, Layer Size and Depth Autoencoders are often trained with only a single layer encoder and a single layer decoder. However, this is not a requirement. In fact, using deep encoders and decoders o๏ฌ€ers many advantages. Recall from section 6.4.1 that there are many advantages to depth in a feedforward network. Because autoencoders are feedforward networks, these advantages also apply to autoencoders Depth can exponentially reduce the computational cost of representing some functions. Depth can exponentially decrease the amount of training data needed to learn some functions.
  • 59. (Right) Another repeating pattern can be folded on top of the ๏ฌrst (by another downstream unit) to obtain another symmetry (which is now repeated four times, with two hidden layers) Figure 6.5: An intuitive, geometric explanation of the exponential advantage of deeper recti๏ฌer networks (Left) An absolute value recti๏ฌcation unit has the same output for every pair of mirror points in its input. The mirror axis of symmetry is given by the hyperplane de๏ฌned by the weights and bias of the unit. A function computed on top of that unit (the green decision surface) will be a mirror image of a simpler pattern across that axis of symmetry. (Center) The function can be obtained by folding the space around the axis of symmetry.
  • 60. Autoencoders are just feedforward networks. The same loss functions and output unit types that can be used for traditional feedforward networks are also used for autoencoders. 14.4 Stochastic Encoders and Decoders As described in section 6.2.2.4, a general strategy for designing the output units and the loss function of a feedforward network is to de๏ฌne an output distribution p(y|x) and minimize the negative log-likelihood -log p(y|x). In that setting, y is a vector of targets, such as class labels. In an autoencoder, x is now the target as well as the input.
  • 61. 14.4 Stochastic Encoders and Decoders Given a hidden code h, we may think of the decoder as providing a conditional distribution . We may then train the autoencoder by minimizing . As with traditional feedforward networks, we usually use linear output units to parametrize the mean of a Gaussian distribution if x is real valued. In that case, the negative log-likelihood yields a mean squared error criterion. Similarly, binary x values correspond to a Bernoulli distribution whose parameters are given by a sigmoid output unit, discrete x values correspond to a softmax distribution, and so on.
  • 62. 14.4 Stochastic Encoders and Decoders We can also generalize the notion of an encoding function to an encoding distribution
  • 63. 14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ) DAE๋Š” ์†์ƒ๋œ ์ž๋ฃŒ์ ์ด ์ž…๋ ฅ๋˜์—ˆ์„ ๋•Œ ์†์ƒ๋˜์ง€ ์•Š์€ ์›๋ž˜์˜ ์ž๋ฃŒ์ ์„ ์ถœ๋ ฅํ•˜๋„๋ก ํ›ˆ๋ จ๋˜๋Š” ์ž๋™๋ถ€ํ˜ธ๊ธฐ์ด๋‹ค. ๊ทธ๋ฆผ 14.3 ์†์ƒ๋œ ์ž๋ฃŒ์  1. ํ›ˆ๋ จ ์ž๋ฃŒ์—์„œ ํ›ˆ๋ จ ๊ฒฌ๋ณธ x๋ฅผ ์ถ”์ถœํ•œ๋‹ค. 2. ๐ถ( ๐‘ฅ|๐‘ฅ = ๐‘ฅ)๋กœ๋ถ€ํ„ฐ ์†์ƒ๋œ ๋ฒ„์ „ ๐‘ฅ๋ฅผ ์ถ”์ถœํ•œ๋‹ค. 3. (๐‘ฅ, ๐‘ฅ)๋ฅผ ํ•˜๋‚˜์˜ ํ›ˆ๋ จ ๊ฒฌ๋ณธ์œผ๋กœ ์‚ฌ์šฉํ•ด์„œ ์ž๋™๋ถ€ํ˜ธ๊ธฐ ์žฌ๊ตฌ์ถ• ๋ถ„ํฌ๋ฅผ ์ถ”์ •ํ•œ๋‹ค. ๊ฐ์ด ์˜ฌ ๊ฒƒ ๊ฐ™์œผ๋ฉด์„œ๋„ ์˜ค์ง€ ์•Š์•„.
  • 64. 14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ) ๋‹ค์‹œ ๋Œ์•„๊ฐ€์„œ..Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
  • 65. 14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ) Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
  • 66. 14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ) Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
  • 67. 14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ) Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
  • 68. 14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ) Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
  • 69. 14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ) Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
  • 70. 14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ) Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209 ๋‹ค์‹œ ๋Œ์•„์˜ค๋ฉด.. ์‚ฌ๋žŒ์ด ์ƒ๊ฐํ–ˆ์„ ๋•Œ ๋˜‘๊ฐ™๋‹ค๋ผ๊ณ  ์ƒ๊ฐํ• ๋งŒํผ์˜ ๋…ธ์ด์ฆˆ๋ฅผ ์ค€๋‹ค. ์•„ -> ๋…ธ์ด์ฆˆ ์•„ -> ๊ฐ™์€ ๊ฑฐ๋„ค
  • 71. 14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ) ๊ทธ๋ฆผ 14.4 Source : ์ฑ… ์†์ƒ๋œ ์ž๋ฃŒ์  ์†์ƒ ๊ณผ์ •
  • 72. Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209 14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
  • 73. Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209 14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
  • 74. Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209 14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
  • 75. Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209 14.5 Denoising Autoencoder(์žก์Œ ์ œ๊ฑฐ ์ž๋™๋ถ€ํ˜ธ๊ธฐ)
  • 76. Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209 14.7 Contractive Autoencoders
  • 77. Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209 14.7 Contractive Autoencoders ๊ฐœ์„ ๋จ์„ ๋ณด์—ฌ์คฌ์ง€๋งŒ ์ œ๊ฐ€ ๋ดค์„ ๋• ์ž˜ ๋ชจ๋ฅด๊ฒ ๊ตฌ์š” ใ…Ž (์‹ค์ œ๋กœ ์˜์ƒ์—์„œ ํ•œ ๋ง)
  • 78. 14.6 Learning Manifolds with Autoencoders (์ž๋™๋ถ€ํ˜ธ๊ธฐ๋กœ ๋‹ค์–‘์ฒด ๋ฐฐ์šฐ๊ธฐ) ๊ทธ๋ฆผ 14.6
  • 79. 14.6 Learning Manifolds with Autoencoders (์ž๋™๋ถ€ํ˜ธ๊ธฐ๋กœ ๋‹ค์–‘์ฒด ๋ฐฐ์šฐ๊ธฐ) Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
  • 80. 14.6 Learning Manifolds with Autoencoders (์ž๋™๋ถ€ํ˜ธ๊ธฐ๋กœ ๋‹ค์–‘์ฒด ๋ฐฐ์šฐ๊ธฐ) Source : ์˜คํ† ์ธ์ฝ”๋”์˜ ๋ชจ๋“  ๊ฒƒ https://www.slideshare.net/NaverEngineering/ss-96581209
  • 81. 14.6 Learning Manifolds with Autoencoders (์ž๋™๋ถ€ํ˜ธ๊ธฐ๋กœ ๋‹ค์–‘์ฒด ๋ฐฐ์šฐ๊ธฐ) ๋ชจ๋“  ์ž๋™๋ถ€ํ˜ธ๊ธฐ ํ›ˆ๋ จ ์ ˆ์ฐจ๋Š” ๋‹ค์Œ ๋‘ ์š”์ธ์˜ ์ ˆ์ถฉ์ด ๊ด€์—ฌํ•œ๋‹ค. 1. ํ›ˆ๋ จ ๊ฒฌ๋ณธ์ด x์ด๊ณ  ๊ทธ๊ฒƒ์˜ ํ‘œํ˜„์ด h๋ผ๊ณ  ํ•  ๋•Œ, ๋ณตํ˜ธ๊ธฐ๋ฅผ ์ด์šฉํ•ด์„œ h๋กœ๋ถ€ํ„ฐ x๋ฅผ ๋ณต์›ํ•˜๋Š” ๋ฐฉ๋ฒ•์˜ ํ•™์Šต. ์ด๋•Œ x๊ฐ€ ํ›ˆ๋ จ ์ž๋ฃŒ์—์„œ ์ถ”์ถœํ•œ ๊ฒƒ์ด๋ผ๋Š” ์‚ฌ์‹ค์ด ์•„์ฃผ ์ค‘์š”ํ•˜๋‹ค. ์ด๋Š” ์ž๋™๋ถ€ํ˜ธ๊ธฐ๊ฐ€ ์ž๋ฃŒ ์ƒ์„ฑ ๋ถ„ํฌ๋กœ๋ถ€ํ„ฐ ๋‚˜์˜ฌ ๊ฐ€๋Šฅ์„ฑ์ด ์—†๋Š” ์ž…๋ ฅ๋“ค์„ ์„ฑ๊ณต์ ์œผ๋กœ ์žฌ๊ตฌ์ถ•ํ•  ํ•„์š”๊ฐ€ ์—†์Œ์„ ๋œปํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. 2. ์ œ์•ฝ ๋˜๋Š” ์ •์น™ํ™” ๋ฒŒ์ ์˜ ์ถฉ์กฑ. ์—ฌ๊ธฐ์„œ ์ œ์•ฝ ๋˜๋Š” ์ •์น™ํ™” ๋ฒŒ์ ์€ ์ž๋™๋ถ€ํ˜ธ๊ธฐ์˜ ์ˆ˜์šฉ๋ ฅ์„ ์ œํ•œํ•˜๋Š” ์•„ํ‚คํ…์ฒ˜์  ์ œ์•ฝ์ผ ์ˆ˜๋„ ์žˆ๊ณ  ์žฌ๊ตฌ์ถ• ๋น„์šฉ์— ์ถ”๊ฐ€๋˜๋Š” ์ •์น™ํ™” ํ•ญ์ผ ์ˆ˜๋„ ์žˆ๋‹ค.
  • 82. 1 Page ์งœ๋ฆฌ ๋…ธ์ดํ•ด 14.8 Predictive Sparse Decomposition ๋”ฐ๋ผ์„œ Skip
  • 83. 14.9 Applications of Autoencoders (์ž๋™๋ถ€ํ˜ธ๊ธฐ์˜ ์‘์šฉ) ? ์ •๋ณด ๊ฒ€์ƒ‰์ด์š”..? ์ฐจ์›์ถ•์†Œ (๋‹น์—ฐํ•œ๋ง) ? ์˜๋ฏธ ํ•ด์‹ฑ์ด์š”..?
  • 84. 14.9 Applications of Autoencoders (์ž๋™๋ถ€ํ˜ธ๊ธฐ์˜ ์‘์šฉ)

Editor's Notes

  1. - ์ž…๋ ฅ๊ณผ ์ถœ๋ ฅ์ด ๋™์ผํ•œ ๊ฐ’์„ ๊ฐ€์ง€๋„๋ก ๋งŒ๋“œ๋Š” ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉด > Autoencoder - ํ•™์Šตํ•  ๋•Œ, Unsupervised Learning์œผ๋กœ ํ•จ - ํ•™์Šตํ•  ๋•Œ, Loss function์„ ์ •์˜ํ•˜๊ณ  ์ตœ์†Œํ™”ํ•˜๊ธฐ ๋•Œ๋ฌธ์— maximum likelihood์— negative(์Œ์˜ ๋ถ€ํ˜ธ) - Dimensionality Reduction = Manifold Learning = Feature extraction = Representation learning = Efficient coding learning
  2. ์ด๊ฑธ ์™œ ํ•˜๋‚˜๋ฉด DNN์ด๋ž‘ ML Estimation์ด๋ž‘ ๊ฐ™์€ ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ๊ธฐ ์œ„ํ•ด
  3. - ๋ฐ์ดํ„ฐ์—์„œ ์ข€ ๋” ์ถ”์ƒํ™”๋œ ์ •๋ณด๋ฅผ ๋ฝ‘๊ณ  ์‹ถ์Œ (ex.์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์—์„œ ์–ผ๊ตด์˜ ์œ„์น˜๋ฅผ ์•Œ๊ณ  ์‹ถ์„ ๋•Œ) - ์šฐ๋ฆฌ๊ฐ€ ์ˆ˜์ง‘ํ•œ ๋ฐ์ดํ„ฐ(x)์™€ ๊ฑฐ๊ธฐ์„œ ์ถ”์ถœ๋œ ์ •๋ณด(y)์˜ ์Œ(D) - ๋ชจ๋ธ(ex. SVM, Random Forest ๋“ฑ๋“ฑ)์„ ์ •ํ•ด ๋†“๊ณ  ๊ทธ ๋ชจ๋ธ์„ ๊ฒฐ์ •์ง“๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ •ํ•ด์•ผ ํ•œ๋‹ค > ์ด๋ ‡๊ฒŒ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๊ณผ์ •์ด โ€˜ํ•™์Šตโ€™ - ํŒŒ๋ผ๋ฏธํ„ฐ ฮธ๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด์„œ, ฮธ์— ์˜ํ•œ ๋„คํŠธ์›Œํฌ ์ถœ๋ ฅ๊ฐ’(fฮธ(x))๊ณผ, ์ •๋‹ต(y)์ด ๋‹ค๋ฅธ ์ •๋„ > Loss - ๋ชจ๋“  training set์— ๋Œ€ํ•ด loss๊ฐ€ ์ตœ์†Œ๊ฐ€ ๋˜๋Š” ฮธ๋ฅผ ์ฐพ์•„์„œ ๋ชจ๋ธ์„ ๊ฒฐ์ •์ง“๊ณ  ์ƒˆ๋กœ์šด ๊ฐ’์— ๋Œ€ํ•ด ์˜ˆ์ธก
  4. - ๋ชจ๋ธ์ด DNN์ด๋ฉด, ํ•™์Šตํ•ด์•ผ ํ•  ํŒŒ๋ผ๋ฏธํ„ฐ ฮธ๋Š” weight์™€ bias - ๋”ฅ๋Ÿฌ๋‹์—์„œ Loss function์œผ๋กœ ์•„๋ฌด๊ฑฐ๋‚˜ ๋ง‰ ์“ธ ์ˆ˜ ์—†๋‹ค (MSE or Cross-Entropy) Back-propagation์—์„œ loss function์— ๋Œ€ํ•œ ๊ฐ€์ •์ด 2๊ฐ€์ง€ ์žˆ์Œ 1. Training samples์˜ ์ „์ฒด loss๋Š” ๊ฐ๊ฐ์˜ training sample์˜ loss์˜ โ€˜ํ•ฉ(sum)โ€˜ 2. Loss function์˜ ๊ตฌ์„ฑ์€ โ€˜์ •๋‹ตโ€™, โ€˜๋„คํŠธ์›Œํฌ์˜ ์ข…๋‹จ์˜ ์ถœ๋ ฅ๊ฐ’โ€™ (๋„คํŠธ์›Œํฌ์˜ ์ค‘๊ฐ„๊ฐ’์„ ๊ฐ€์ ธ์™€์„œ loss function ๊ตฌ์„ฑํ•  ์ˆ˜ ์—†์Œ)
  5. - Optimal Theory์—์„œ ๊ฐ€์žฅ ๊ฐ„๋‹จํ•œ ๋ชจ๋ธ > Gradient Descent - Iterative Method > ์ ์ฐจ ์ฐพ์•„๊ฐ€๋Š” ๋ฐฉ๋ฒ• - ์ฒซ๋ฒˆ์งธ ์งˆ๋ฌธ, ํŒŒ๋ผ๋ฏธํ„ฐ ฮธ๋ฅผ ์–ด๋–ป๊ฒŒ ์—…๋ฐ์ดํŠธ ํ•  ๊ฒƒ์ด๋ƒ (loss๊ฐ’ ์ค„์–ด๋“ค๋ฉด ๊ทธ ๋ฐฉํ–ฅ์œผ๋กœ ์—…๋ฐ์ดํŠธ) - ๋‘๋ฒˆ์งธ ์งˆ๋ฌธ, ์–ธ์ œ ๋ฉˆ์ถœ ๊ฒƒ์ด๋ƒ (๋” ์ด์ƒ ๋ณ€ํ™”๊ฐ€ ์—†์„ ๋•Œ ๋ฉˆ์ถค)
  6. - ์„ธ๋ฒˆ์งธ ์งˆ๋ฌธ, ฮธ๋ฅผ ์–ผ๋งŒํผ ๋ณ€ํ™”์‹œํ‚ฌ ๊ฒƒ์ธ๊ฐ€?
  7. - ๋ชจ๋“  training DB์— ๋Œ€ํ•œ loss๋Š” ๊ฐ ์ƒ˜ํ”Œ์˜ loss์˜ ํ•ฉ๊ณผ ๊ฐ™์Œ - Optimization Problem์ด๋ผ์„œ ์ƒ์ˆ˜๋ฐฐํ•ด๋„ ๊ฒฐ๊ณผ๋Š” ๊ฐ™์Œ (ํ•ฉ์ด๋‚˜ ํ‰๊ท ์ด๋‚˜ ์ตœ์ ํ™” ๊ฒฐ๊ณผ๋Š” ๊ฐ™์Œ) - /N ํ•ด์ฃผ๋ฉด ์ƒ˜ํ”Œ๋ณ„ ํ‰๊ท  gradient๊ฐ€ ๋˜๋Š” ๊ฒƒ - ์ƒ˜ํ”Œ ์ˆ˜๊ฐ€ ์›Œ๋‚™ ๋งŽ๋‹ค ๋ณด๋‹ˆ ์ „์ฒด DB์—์„œ ๊ตฌํ•˜๋Š”๊ฒŒ ์•„๋‹ˆ๋ผ, batch๋ฅผ ์ด์šฉ (์ „์ฒด๋‚˜ ๋ฐฐ์น˜๋‚˜ ๊ฐ™์„ ๊ฒƒ) - ์›๋ž˜๋Š” ๋ชจ๋“  DB ๋‹ค ๋Œ๊ณ (1 epoch) ์—…๋ฐ์ดํŠธ ํ•ด์•ผํ•˜๋Š”๋ฐ, ๋ฐฐ์น˜ ํ•˜๋‚˜์— ๋Œ€ํ•ด (step) ์—…๋ฐ์ดํŠธ
  8. BP๊ด€์  ํ™œ์„ฑํ™”ํ•จ์ˆ˜์˜ ๋ฏธ๋ถ„๊ฐ’์ด ๋“ค์–ด์žˆ์–ด์„œ sigmoid ์‚ฌ์šฉํ•˜๋ฉด ์ดˆ๊ธฐ๊ฐ’์ด 0์—์„œ ๋ฉ€์–ด์„œ ๋ฏธ๋ถ„๊ฐ’์ด 0์— ๊ฐ€๊นŒ์šฐ๋ฉด ์•ž๋‹จ๊นŒ์ง€ ํ•™์Šต์ด ์•ˆ๋œ๋‹ค > Vanishing Gradient ๋ฌธ์ œ > ๊ทธ๋ž˜์„œ ReLU ์”€(๋ฏธ๋ถ„๊ฐ’์ด 1๋กœ ์‚ด์•„์žˆ์œผ๋‹ˆ๊นŒ) CE์‹์„ ์ด์šฉํ•ด์„œ ๊ณ„์‚ฐํ•ด๋ณด๋ฉด ํ™œ์„ฑํ™”ํ•จ์ˆ˜๋ฏธ๋ถ„ ๋ถ€๋ถ„์ด ์—†๋‹ค ๊ทธ๋ž˜์„œ BP๊ด€์ ์—์„œ๋Š” MSE๋ณด๋‹ค CE ์“ฐ๋Š”๊ฒŒ ์ข‹๋‹ค๊ณ  ํ•ด์„ํ• ์ˆ˜์žˆ๋‹ค
  9. ML๊ด€์  ๋„คํŠธ์›Œํฌ ๊ฒฐ๊ณผ๊ฐ’์ด ์ •๋‹ต๊ณผ ๊ฐ€๊น๊ธฐ๋ฅผ ๋ฐ”๋ž˜์„œ ๋‹ค๋ฅธ์ •๋„๋ฅผ loss function์œผ๋กœ ๋‘๊ณ  ํ’€์—ˆ๋Š”๋ฐ, ๋˜‘๊ฐ™์€ ์–˜๊ธฐ์ธ๋ฐ ๋‹ค๋ฅด๊ฒŒ ํ•ด์„๊ฐ€๋Šฅ ๋„คํŠธ์›Œํฌ ์ถœ๋ ฅ๊ฐ’์ด given์ผ๋•Œ, ์šฐ๋ฆฌ๊ฐ€ ์›ํ•˜๋Š” ์ •๋‹ต์ด ๋‚˜์˜ฌ ํ™•๋ฅ ์ด ๋†’๊ธธ ๋ฐ”๋ž€๋‹ค(ํ™•๋ฅ ๋ถ„ํฌ์— ๋Œ€ํ•œ likelihood๊ฐ’์ด ์ตœ๋Œ€๊ฐ€ ๋˜๊ธธ ๋ฐ”๋ž€๋‹ค) > ํ™•๋ฅ ๋ถ„ํฌ๋ฅผ ์ •ํ•˜๊ณ  ๊ฐ€์•ผํ•œ๋‹ค ์ด ์กฐ๊ฑด๋ถ€ํ™•๋ฅ  ๋ฌด์Šจ ๋ถ„ํฌ์ธ์ง€ ์ •ํ•˜๊ณ ๊ฐ„๋‹ค(๊ฐ€์šฐ์‹œ์•ˆ, ๋ฒ ๋ฅด๋ˆ„์ด) ์‚ฌ์‹ค ์—ฌ๊ธฐ์„œ ๋„คํŠธ์›Œํฌ ์ถœ๋ ฅ๊ฐ’์€ ํ™•๋ฅ ๋ถ„ํฌ๋ฅผ ์ •์˜ํ•˜๊ธฐ ์œ„ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ •ํ•˜๋Š”๊ฒƒ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ๋ผ๊ณ  ์น˜๋ฉด ๊ทธ ๋ถ„ํฌ๋ฅผ ์ •์˜ํ•˜๊ธฐ ์œ„ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ์ธ ํ‰๊ท ๊ฐ’์ด given์ผ๋•Œ y๊ฐ€ ๋‚˜์˜ฌ ํ™•๋ฅ ์ธ ๊ฒƒ 2๋ณด๋‹ค 1์ด ํ‰๊ท ๊ฐ’์ด y์™€ ๋” ๊ฐ€๊น๊ณ  likelihood๊ฐ’์ด ๋” ํฌ๋‹ค ํ‰๊ท ๊ฐ’์ด y์™€ ๊ฐ™์•„์งˆ๋•Œ maximum likelihood Loss function์—์„œ ๋งˆ์ด๋„ˆ์Šค ๋ถ™์€ ์ด์œ ๋Š” loss๋‹ˆ๊นŒ ์ตœ๋Œ€ํ™”์‹œํ‚ค๋Š” ๋ฌธ์ œ๋ฅผ ์ตœ์†Œํ™”๋กœ ๋ฐ”๊ฟ”์ฃผ๋Š”๊ฒƒ log ๋ถ™์€ ์ด์œ ๋Š” bpํ•˜๊ธฐ์œ„ํ•œ loss์— ๋Œ€ํ•œ ๊ฐ€์ • ์ถฉ์กฑ์‹œํ‚ค๊ธฐ์œ„ํ•ด(sum) Negative log likelihood๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ฐพ์œผ๋ฉด = maximum likelihood ํŒŒ๋ผ๋ฏธํ„ฐ ๊ทธ๋ ‡๊ฒŒํ•ด์„œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ฐพ์œผ๋ฉด ์•ž์—์™€ ๋‹ค๋ฅธ๊ฒƒ์€ ํ™•๋ฅ ๋ถ„ํฌ๋ชจ๋ธ์„ ์ฐพ์€๊ฒƒ ์ถœ๋ ฅ์ด ๊ณ ์ •์ด ์•„๋‹ˆ๋ผ ๊ทธ ์„ฑํ–ฅ์„ ๋”ฐ๋ฅด๋Š” sampling์ด ๊ฐ€๋Šฅ ์˜ˆ๋ฅผ ๋“ค์–ด ๊ฐœ ์ด๋ฏธ์ง€๋กœ ํ•™์Šต์„ ํ–ˆ๋Š”๋ฐ ์ถœ๋ ฅ์œผ๋กœ ๋˜‘๊ฐ™์€ ๋ชจ์–‘์˜ ๊ฐœ๊ฐ€ ๋‚˜์˜ค๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ์„œ๋กœ ๋‹ค๋ฅธ ๊ฐœ๋“ค์ด ๋‚˜์˜ค๋ฉด ๊ฐœ์— ๋Œ€ํ•ด์„œ ์ž˜ ์ดํ•ดํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ
  10. iid condition 1. Independece 2. Identical distribution BP๋ฅผ ์œ„ํ•œ loss function์˜ ๋‘ ๊ฐ€์ •์„ ๋งŒ์กฑ
  11. ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ๋ผ๊ณ  ํ•˜๊ณ  ์ˆ˜์‹์„ ์ญ‰ ํ’€์–ด๋ณด๋ฉด MSE์™€ ๊ฐ™๋‹ค ๋ฒ ๋ฅด๋ˆ„์ด ๋ถ„ํฌ๋ผ๊ณ  ํ•˜๊ณ  ์ˆ˜์‹์„ ํ’€์–ด๋ณด๋ฉด Cross Entropy์™€ ๊ฐ™๋‹ค ๋„คํŠธ์›Œํฌ ์ถœ๋ ฅ๊ฐ’์˜ ๋ถ„ํฌ๊ฐ€ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ์— ๊ฐ€๊นŒ์šฐ๋ฉด ๊ฐ€์šฐ์‹œ์•ˆ ์“ด๋‹ค Continuous value์— ๋Œ€ํ•œ loss function์œผ๋กœ mse ์“ฐ๋Š” ์ด์œ ๋Š” ๋„คํŠธ์›Œํฌ ์ถœ๋ ฅ๊ฐ’์˜ ๋ถ„ํฌ๊ฐ€ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅผ๊ฑฐ๋ผ๊ณ  ๊ฐ€์ •ํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋ผ๊ณ  ๋งํ•  ์ˆ˜ ์žˆ๋‹ค Classification ์ฒ˜๋Ÿผ Discrete value์— ๋Œ€ํ•ด์„œ ๋ฒ ๋ฅด๋ˆ„์ด ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅผ๊ฑฐ๋ผ๊ณ  ๊ฐ€์ •ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— loss functio์œผ๋กœ cross-entropy ์‚ฌ์šฉํ•œ๋‹ค๊ณ  ๋งํ•  ์ˆ˜ ์žˆ๋‹ค
  12. Likelihood๊ฐ’์„ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ Likelihood์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’์„ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ (๊ฐ€์šฐ์‹œ์•ˆ์—์„œ ํ‰๊ท ๊ฐ’, ๋ฒ ๋ฅด๋ˆ„์ด์˜ ํ™•๋ฅ ๊ฐ’)
  13. ์šฐ๋ฆฌ์—๊ฒŒ๋Š” ๋‘๊ฐ€์ง€ loss function ์ด ์žˆ์Œ Autoencoder๋Š” ์ž…๋ ฅ๊ณผ ์ถœ๋ ฅ์ด ๋‘˜ ๋‹ค x์ธ ์ €๋Ÿฐ probability๋ฅผ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ VAE๋Š” given์ด ์—†๊ณ  training DB์— ์žˆ๋Š” ํ™•๋ฅ  ๊ทธ ์ž์ฒด๋ฅผ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ
  14. ์‹ค์ œ๋กœ๋Š” ์—„์ฒญ๋‚œ ๊ณ ์ฐจ์›์ธ๋ฐ Visualization์˜ ํŽธ์˜์„ฑ์„ ์œ„ํ•ด์„œ 3์ฐจ์›์„ ๊ณ ์ฐจ์›์ด๋ผ๊ณ  ํ•˜๊ณ  ์ถ•์†Œ๋œ ์ฐจ์›์„ 2์ฐจ์›์ด๋ผ๊ณ  ์น˜๊ณ (์›๋ž˜๋Š” ๋ช‡ ๋งŒ ์ฐจ์›์„ 2d๋กœ) ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ๋Š” training DB ์ž์ฒด์˜ ์ฐจ์› (์˜ˆ๋ฅผ ๋“ค์–ด์„œ, ์ด๋ฏธ์ง€๋Š” 256 x 256 x 3) Manifold๋Š” ์ด ์ ๋“ค์„ ์—๋Ÿฌ์—†์ด ์ž˜ ์•„์šฐ๋ฅด๋Š” ์–ด๋–ค subspace Manifold๋ฅผ ์ฐพ์•„์„œ projection ์‹œํ‚ค๋ฉด ์ฐจ์›์„ ์ถ•์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค
  15. ์ฐจ์›์„ ์ค„์ด๊ณ  ์‹ถ์€๋ฐ ์ž˜ ์ค„์ด๊ณ  ์‹ถ์€ ๊ฒƒ ๊ทธ๋ƒฅ ์•ž์— ๋‘๊ฐœ๋งŒ ์จ๋„ ์ฐจ์›์ถ•์†Œ์ด์ง€๋งŒ ๋ฐ์ดํ„ฐ๋ฅผ ์ž˜ ์„ค๋ช…ํ•˜๋ฉด์„œ ์ฐจ์›์„ ์ถ•์†Œํ•˜๊ณ  ์‹ถ์€ ๊ฒƒ
  16. ์šฐ๋ฆฌ๊ฐ€ ํ”ํžˆ ๋ณด๋Š” ์ด๋ฏธ์ง€๋“ค์ด ๊ณ ์ฐจ์› ๊ณต๊ฐ„ ์ƒ์— uniformํ•˜๊ฒŒ ๋ถ„ํฌ๋˜์–ด ์žˆ๋‹ค๋ฉด(๋ชฐ๋ ค์žˆ์„๊ฑฐ๋ผ๋Š” manifold ๊ฐ€์ •์ด๋ž‘ ๋‹ค๋ฅธ ๊ฒƒ) Uniform sampleing์„ ํ•˜๋ฉด ์šฐ๋ฆฌ๊ฐ€ ๋ณผ๋งŒํ•œ ์ด๋ฏธ์ง€๊ฐ€ ๋‚˜์™€์•ผํ•˜๋Š”๋ฐ ์ด๋Ÿฐ noise๋งŒ ๋‚˜์˜จ๋‹ค
  17. ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ„ํฌ๋˜์–ด ์žˆ๊ณ  ๋ฐ์ดํ„ฐ๋“ค์„ ์ž˜ ์•„์šฐ๋ฅด๋Š” subspace์ธ manifold๋ฅผ ์ฐพ์•˜๋‹ค๋ฉด ์ฐจ์›์ถ•์†Œ๋ฅผ ๊ทธ๋ƒฅ ํ–ˆ๋Š”๋ฐ ์ €๋Ÿฐ ์˜๋ฏธ(thickness, rotation, size)๊ฐ€ ์ž๋™์œผ๋กœ ์ฐพ์•„์ง„๋‹ค (unsupervised learning, feature extraction)
  18. ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค๊ณผ autoencoder์˜ ์ฐจ์ด์  > ๊ธฐ์กด๋ฐฉ๋ฒ•์€ neighborhood based ๊ฐ€๊น๋‹ค๊ณ  ์ƒ๊ฐํ•œ ์–˜๋“ค์ด ๊ฐ€๊น์ง€ ์•Š๋‹ค (์ด์›ƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ–ˆ๋Š”๋ฐ ์—ฐ์‡„์‚ด์ธ๋ฒ”์ธ ๊ฒƒ) Autoencoder๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ๋งŽ์„์ˆ˜๋ก, ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ์ผ์ˆ˜๋ก ์“ฐ๋ฉด ์ข‹๋‹ค
  19. ๊ฐ€์šด๋ฐ ์ฐจ์›์ด ์—„์ฒญ ๋Š˜์–ด๋‚จ, ๋Œ€์‹  ๋…ธ๋“œ๋ณ„๋กœ sparsity๋ฅผ ๋ช…์‹œํ•ด์„œ ๊ฒฐ๊ตญ ์ค„์–ด๋“œ๋Š” ๊ฒƒ Andrew Ng ๊ต์ˆ˜๊ฐ€ ํ•œ์ฐฝ ๋ฐ€์—ˆ๋‹ค๊ฐ€ ๋งํ–ˆ์Œ
  20. ์‚ฌ๋žŒ์ด ์ƒ๊ฐํ–ˆ์„ ๋•Œ ๋˜‘๊ฐ™๋‹ค๋ผ๊ณ  ์ƒ๊ฐํ• ๋งŒํผ ๋…ธ์ด์ฆˆ๋ฅผ ์ค€๋‹ค. ์•„ -> ๋…ธ์ด์ฆˆ ์•„ -> ๊ฐ™์€ ๊ฑฐ๋„ค ๋…ธ์ด์ฆˆ ์ถ”๊ฐ€ํ•œ 1000๊ฐœ์˜ ์ƒ˜ํ”Œ -> latent vector์— ๊ฐ”์„ ๋•Œ ๊ฐ™์€ ๋งค๋‹ˆํด๋“œ๋กœ ๊ฐ€์•ผํ•จ(์˜๋ฏธ์ ์œผ๋กœ๋งŒ ๋˜‘๊ฐ™์€ ๋ฐ์ดํ„ฐ(๋…ธ์ด์ฆˆ๊ฐ€ ์ถ”๊ฐ€๋œ ๋ฐ์ดํ„ฐ์ž„)) - ์‚ฌ์‹ค ์›๋ฐ์ดํ„ฐ ๊ณต๊ฐ„์—์„œ๋Š” ๋‹ค๋ฅธ ์• ๋“ค์ž„ -> ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋…ธ์ด์ฆˆ ์ถ”๊ฐ€ํ•˜๊ธฐ ์ „์˜ ouput์ด๋ž‘ ๊ฐ™์•„์•ผ ํ•จ
  21. Denosing์˜ ์ฒ ํ•™์„ ์–ด๋–ป๊ฒŒ ์ˆ˜์‹์ ์œผ๋กœ ๋…น์•„๋“ค์–ด์กŒ๋ƒ์˜ ๋ฌธ์ œ ๋…ธ์ด์ฆˆ๋ฅผ ์ถ”๊ฐ€ํ•œ ์ด์œ  -> ์˜๋ฏธ์ ์œผ๋กœ๋Š” ๊ฐ™์ง€๋งŒ ์›๋ž˜ ๋ฐ์ดํ„ฐ ๊ณต๊ฐ„์—์„œ๋Š” ๋‹ค๋ฅธ ์• ๋“ค์„ ๋งŒ๋“ค์–ด์ฃผ๋Š”๊ฒŒ DAE์˜ ์ฒ ํ•™ -> ๊ทธ๋ ‡๊ฒŒ '๋…ธ์ด์ฆˆ๋ฅผ ์ถ”๊ฐ€ํ–ˆ์„ ๋•Œ ๋งค๋‹ˆํด๋“œ ๊ณต๊ฐ„์ƒ์—์„œ ๊ฐ™์€ ์œ„์น˜์— ๋งคํ•‘๋˜์–ด์•ผ ํ•œ๋‹ค'๊ณ  ํ–ˆ์Œ -> ๊ทธ '๊ฐ™์€ ์œ„์น˜์— ๋งคํ•‘ํ•ด์ค˜'๋ฅผ ๊ทธ๋ƒฅ regularizer๋กœ ๋„ฃ์€ ๊ฒƒ -> SCAE ๋…ธ์ด์ฆˆ ํ‰๊ท ์„ ๋‹ค์–‘ํ•˜๊ฒŒ ๊ตฌํ•ด์•ผํ•˜๋Š”๋ฐ ๊ท€์ฐฎ์Œ -> Taylor Expansion ์จ์„œ ์ˆ˜์‹์„ deterministicํ•˜๊ฒŒ norm ํ˜•ํƒœ๋กœ ๋ฐ”๊ฟ”์„œ ๊ฐœ์„ ์„ ํ•œ๊ฒŒ CAE ๋„ฃ์Œ ๊ทผ๋ฐ CAE๋„ ์š”์ƒˆ ์ž˜ ์•ˆ์”€ -> AE, DAE, VAE๋ฅผ ์š”์ƒˆ(2017๋…„๋„) ์”€ DAE๋ž‘ CAE๋ž‘ ์ฒ ํ•™์ ์œผ๋กœ๋Š” ๊ฐ™์€๋ฐ ์ˆ˜์‹์ ์œผ๋กœ ์–ด๋–ป๊ฒŒ ์ผ๋ƒ์˜ ์ฐจ์ด
  22. ๊ฐœ์„ ๋จ์„ ๋ณด์—ฌ์คฌ์ง€๋งŒ ์ œ๊ฐ€ ๋ดค์„ ๋• ์ž˜ ๋ชจ๋ฅด๊ฒ ๊ตฌ์š” ใ…Ž