SlideShare a Scribd company logo
1 of 1
B.E.T	
  Surface	
  Area	
  
	
  
	
  
	
  
	
  
•  Results	
  when	
  compared	
  to	
  literature	
  shows	
  that	
  the	
  pump	
  
flow	
  rate	
  and	
  the	
  choice	
  of	
  the	
  templa;ng	
  agents	
  greatly	
  
affects	
  the	
  porosity	
  of	
  powders,	
  as	
  expected.	
  
	
  
	
  
	
  
	
  
•  Glucose	
   at	
   25%	
   (8	
   mL/min)	
   pump	
   flow	
   rate	
   is	
   highly	
  
responsive	
  as	
  it	
  has	
  the	
  greatest	
  rate	
  of	
  change,	
  11	
  m2/g	
  
(from	
  13	
  ±	
  3	
  m2/g	
  to	
  24	
  ±	
  2	
  m2/g)	
  over	
  a	
  20°C	
  temperature	
  
change.	
  
•  Sucrose	
   at	
   5%	
   (1.6	
   mL/min)	
   pump	
   flow	
   rate	
   has	
   a	
   slow	
  
response	
  ;me	
  as	
  it	
  has	
  the	
  lowest	
  rate	
  of	
  change,	
  2	
  m2/g	
  
(from	
  34	
  ±	
  2	
  m2/g	
  to	
  36	
  ±	
  2	
  m2/g)	
  over	
  a	
  60°C	
  temperature	
  
change.	
  
•  Sucrose	
   had	
   the	
   lowest	
   varia;on	
   of	
   B.E.T	
   surface	
   area	
  
sugges;ng	
   insignificant	
   change	
   from	
   110	
   ±	
   1°C	
   to	
   170	
   ±	
  
1°C,	
  while	
  glucose	
  showed	
  significant	
  varia;on	
  from	
  150	
  ±	
  
1°C	
  to	
  170	
  ±	
  1°C.	
  	
  
•  Choice	
  of	
  the	
  templa;ng	
  agents	
  affect	
  the	
  total	
  maximum	
  
stacking	
  energy	
  and	
  the	
  minimised	
  unit	
  cell	
  due	
  to	
  different	
  
self-­‐assembly	
  mechanisms	
  of	
  par;cles.	
  
The	
  Glass-­‐Transi;on	
  Temperature	
  (Tg)	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
•  Order	
  of	
  temperatures	
  does	
  not	
  decrease	
  numerical	
  as	
  expected.	
  
•  Par;al	
  templa;ng	
  of	
  crystalline	
  structure.	
  
•  Couchman-­‐Karasz	
  equa;on	
  es;mates	
  Tg	
  reasonable	
  well.	
  
	
  
	
  
	
  
	
  
	
  
The	
  Yield	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
•  Similar	
  trends	
  to	
  binary	
  mixtures	
  (Bhandari,	
  et	
  al.,	
  2013).	
  
•  Different	
  pump	
  flow	
  rates	
  and	
  templa;ng	
  agent	
  combina;ons	
  
produce	
  different	
  yields.	
  
•  Highest	
  yields	
  obtained	
  are	
  at	
  130	
  ±	
  1°C	
  to	
  150	
  ±	
  1°C	
  with	
  yields	
  
of	
  79	
  ±	
  4%	
  and	
  79	
  ±	
  1%	
  for	
  sucrose.	
  
The	
  Moisture	
  Content	
  
Moisture	
  Content	
  
•  Lowest	
   moisture	
   at	
   170	
   ±	
   1°C	
   indicates	
   the	
   highest	
  
crystallinity.	
  
•  Increase	
  in	
  moisture	
  content	
  from	
  190	
  ±	
  1°C	
  to	
  210	
  ±	
  1°C	
  due	
  
to	
   hygroscopic	
   affects	
   and	
   small	
   yields	
   obtained	
   at	
   these	
  
temperatures.	
  
	
  
	
  
The	
  Degree	
  of	
  Crystallinity	
  
	
  
	
  
	
  
	
  
	
  
•  Highest	
  degree	
  of	
  crystallinity	
  occurs	
  at	
  170	
  ±	
  1°C.	
  
•  Suggests	
  good	
  powder	
  to	
  test	
  for	
  B.E.T	
  surface	
  area.	
  
•  Limita;on	
   to	
   the	
   degree	
   of	
   crystallinity	
   due	
   to	
   moisture	
  
content,	
  hygroscopic	
  effects	
  and	
  crystal	
  self-­‐assembly.	
  
	
  
	
  
How and why do operating conditions
affect the surface areas of highly-porous
food powders?
Kierin van Berkel, Prof. Timothy Langrish, Ph.D.
Amirali Ebrahimi Ghadi & Ph.D. Morteza Saffari
School of Biomolecular
& Chemical Engineering
Background	
  
•  Highly-­‐porous	
   powders	
   have	
   significant	
   applica;ons	
   for	
   agricultural,	
  
food	
  and	
  pharmaceu;cal	
  industries	
  such	
  as	
  reduc;on	
  in	
  transport	
  costs,	
  
increased	
  drug	
  delivery/loading	
  and	
  increased	
  shelf-­‐life.	
  
•  Significant	
  research	
  has	
  been	
  done	
  for	
  binary	
  mixtures,	
  however	
  mul;-­‐
component	
  mixtures	
  have	
  been	
  overlooked.	
  
•  Possible	
  improvements	
  to	
  the	
  yield,	
  degree	
  of	
  crystallinity	
  and	
  the	
  B.E.T	
  
surface	
  area	
  can	
  be	
  made.	
  
Aim	
  
•  How	
  and	
  why	
  do	
  opera;ng	
  condi;ons	
  affect	
  the	
  surface	
  areas	
  of	
  highly-­‐
porous	
  food	
  powders.	
  
•  Analysing	
  the	
  final	
  product	
  through	
  the	
  yield,	
  moisture	
  content	
  analysis,	
  
sorp;on	
   analysis,	
   Differen;al	
   Scanning	
   Calorimetry	
   (DSC),	
   and	
   B.E.T	
  
surface	
  area.	
  
	
  
	
  	
  	
  Method	
  &	
  Theory	
  
Areas	
  Interest	
  
•  Parameters	
  of	
  interest	
  include	
  the	
  yield,	
  the	
  degree	
  of	
  
crystallinity,	
   the	
   glass-­‐transi;on	
   temperature	
   and	
   the	
  
B.E.T	
  surface	
  area.	
  
•  Condi;ons	
  analysed	
  include	
  the	
  inlet	
  temperature,	
  the	
  
liquid	
  pump	
  flow	
  rate	
  and	
  the	
  templa;ng	
  agent.	
  
Spray-­‐drying	
  Produc;on	
  
•  10%	
   w/v	
   Lactose,	
   1%	
   w/v	
   Sucrose,	
   and	
   89%	
   w/v	
  
dis;lled	
   water	
   spray	
   dried	
   from	
   110°C	
   to	
   210°C,	
   5%	
  
pump	
   flowrate	
   (1.6	
   mL/min),	
   aspira;on	
   of	
   100%	
   and	
  
nozzle	
  pulsa;on	
  of	
  5.	
  
•  Method	
  was	
  repeated	
  for	
  glucose	
  in	
  place	
  of	
  sucrose,	
  
however	
  at	
  25%	
  pump	
  flowrate	
  (8	
  mL/min).	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Highly	
  Porous	
  Powder	
  Characterisa;on	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Pr	
  
Produc;on	
  of	
  Highly	
  Porous	
  Powders	
  
•  Templa;ng	
   agent	
   is	
   crystallised	
   with	
   the	
   desired	
  
par;cle	
  forming	
  a	
  composite	
  par;cle.	
  
•  Ethanol	
  is	
  mixed	
  and	
  s;rred	
  over	
  two	
  24	
  hour	
  cycles	
  to	
  
fully	
   dissolve	
   the	
   templa;ng	
   agent	
   (Saffari,	
   Ebrahimi	
  
and	
  Langrish,	
  2015).	
  
•  Highly	
   crystallised	
   and	
   porous	
   powder	
   are	
   lec	
   as	
   a	
  
result.	
  
	
  
	
   	
  
	
  
	
  
Referenced	
  from	
  Iskander,	
  et	
  al.,	
  (2009).	
  
	
  
	
  
	
  
	
  
	
  
Stage	
  1	
  	
  
• Spray-­‐Drying	
  
• Determines	
  the	
  yield	
  &	
  moisture	
  content.	
  
Stage	
  2	
  
• Sorp4on	
  Analysis	
  
• Determines	
  the	
  degree	
  of	
  crystallinity.	
  
Stage	
  3	
  
• Brunauer,	
  Emme=	
  and	
  Teller	
  (B.E.T)	
  
• Determines	
  the	
  porosity	
  &	
  surface	
  area	
  through	
  5-­‐point	
  
B.E.T	
  surface	
  analysis.	
  
Stage	
  4	
  
• Differen4al	
  Scanning	
  Calorimetry	
  
• Determine	
  the	
  s;ckiness	
  factor	
  &	
  bulk	
  crystallisa;on	
  
when	
  compared	
  to	
  the	
  Couchmann-­‐Karasz	
  Equa;on.	
  
110°C
130°C
150°C
170°C
190°C
210°C
20
25
30
35
40
45
50
55
60
65
70
0.02 0.03 0.04 0.05 0.06 0.07 0.08
Glass-transitionTemperature(°C)
Water Mass Fraction
Effect of Temperature on the glass transition
temperature for Sucrose & Lactose at 5% pump
flowrate
Couchmann-Karasz Estimation 1st Transition - Differential Scanning Calorimetry
0
1
2
3
4
5
6
7
8
0 100 200 300 400 500 600 700 800
MoistureContent%
Time (Mins)
Effect of Temperature on the Degree of Crystallinity
for Sucrose & Lactose at 5% pump flowrate
110°C
130°C
150°C
170°C
190°C
210°C
Highest crystallinity peak
Lowest crystallinity peak
Resolution
Late nucleation phase
	
  	
  
Opera4ng	
  
Temperature	
  at	
  
110°C	
  &	
  150°C,	
  
respec4vely	
  
Temperature	
  at	
  170°C	
  
Sucrose	
  (Pump	
  
Flowrate	
  5%,	
  1.6	
  
mL/min)	
  
34	
  ±	
  2	
  m2/g	
   36	
  ±	
  2	
  m2/g	
  
32	
  ,	
  33	
  &	
  37	
   33,	
  35,	
  38	
  &	
  38	
  
Glucose	
  (Pump	
  
Flowrate	
  25%,	
  8	
  
mL/min)	
  
13	
  ±	
  3	
  m2/g	
   24	
  ±	
  2	
  m2/g	
  
11,	
  13	
  &	
  15	
   23,	
  23	
  &	
  25	
  
	
  	
  	
  Results	
  &	
  Discussion	
  
	
  	
  	
  Conclusion,	
  Recommenda4ons	
  &	
  Acknowledgements	
  
Conclusion	
  
1.  The	
  B.E.T	
  surface	
  area	
  is	
  greatly	
  affected	
  by	
  
the	
   temperature,	
   pump	
   flow	
   rate	
   and	
  
templa;ng	
  agent.	
  
2.  Surface	
   area	
   limita;on	
   exists	
   due	
   to	
  
molecular	
  and	
  physical	
  proper;es	
  caused	
  by	
  
the	
   s;ckiness	
   factor,	
   moisture	
   content	
   and	
  
the	
  degree	
  of	
  crystallinity.	
  
Recommenda;ons	
  
•  The	
   amount	
   of	
   infusion	
   occurring	
   between	
  
templa;ng	
  agent	
  and	
  lactose.	
  
•  Addi;onal	
   study	
   for	
   the	
   B.E.T	
   surface	
   area	
  
range	
  	
  from	
  110	
  ±	
  1°C	
  to	
  210	
  ±	
  1°C.	
  
•  The	
   affect	
   of	
   ethanol	
   washing	
   cycle	
   on	
   the	
  
porosity	
  of	
  powders.	
  
	
  
	
  
Acknowledgements	
  
•  School	
   of	
   Biomolecular	
   and	
   Chemical	
  
Engineering	
  at	
  the	
  University	
  of	
  Sydney.	
  
•  Prof.	
   Timothy	
   Langrish,	
   Ph.D.	
   supervisors,	
  
Amirali	
  Ebrahimi	
  Ghadi	
  and	
  Morteza	
  Saffari.	
  
	
  
	
  
References	
  
Bhandari,	
  B.,	
  Nidhi,	
  B.,	
  Min,	
  Z.	
  &	
  Pierre,	
  S.,	
  2013.	
  Process	
  and	
  Properi;es	
  -­‐	
  Limita;on	
  of	
  
the	
  Solid-­‐Phase	
  Crystallisa;on	
  Model.	
  s.l.:Woodhead	
  Publishing.	
  
	
  
Im;az-­‐Ul-­‐Islam,	
  M.	
  &	
  Langrish,	
  T.,	
  2009.	
  Comparing	
  the	
  crystallisa;on	
  of	
  sucrose	
  and	
  
lactose	
  in	
  spray	
  dryers.	
  Food	
  and	
  Bioproducts	
  Processing,	
  Issue	
  87,	
  pp.	
  87-­‐95.	
  
	
  
Iskandar,	
  F.	
  et	
  al.,	
  2009.	
  Produc;on	
  of	
  morphology-­‐controllable	
  porous	
  hyaluronic	
  acid	
  
par;cles	
  using	
  a	
  spray-­‐drying	
  method.	
  Acta	
  Biomaterialia,	
  Issue	
  5,	
  pp.	
  1027-­‐1034.	
  
	
  
Saffari,	
   M.,	
   Ebrahimi,	
   A.	
   &	
   Langrish,	
   T.,	
   2015.	
   Highly-­‐porous	
   mannitol	
   par;cle	
  
produc;on	
  using	
  a	
  new	
  templa;ng	
  approach.	
  Food	
  research	
  interna;onal,	
  Issue	
  67,	
  
pp.	
  44-­‐51.	
  
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
60 80 100 120 140 160 180 200 220
Yield%
Temperature (°C)
Effect of Temperature on the Yield for Sucrose &
Lactose at 5% pump flow rate
Inlet
Temperature
Outlet
Temperature
Approaching the
stickiness barrier
Vertex of the yield
0%
1%
2%
3%
4%
5%
6%
7%
8%
60 80 100 120 140 160 180 200 220
MoistureContent%
Temperature (°C)
Effect of Temperature on the Moisture Content for
Sucrose & Lactose at 5% pump flow rate
Inlet
Temperatur
e
Outlet
Temperatur
e
Lowest moisture content
Abnormal moisture
content

More Related Content

What's hot

Proctor compaction test
Proctor compaction testProctor compaction test
Proctor compaction testKHK karimi
 
Modified Methylene Blue (MMB) Test Procedure
Modified Methylene Blue (MMB) Test ProcedureModified Methylene Blue (MMB) Test Procedure
Modified Methylene Blue (MMB) Test ProcedureYasin Engin
 
Stabilization of black cotton soil by using plastic rf
Stabilization of black cotton soil by using plastic rfStabilization of black cotton soil by using plastic rf
Stabilization of black cotton soil by using plastic rfAnurupJena1
 
Drilling Lab - Mud Dilution
Drilling Lab - Mud DilutionDrilling Lab - Mud Dilution
Drilling Lab - Mud DilutionMuhammadSRaniYah
 
Mud weight and density test ex.no(1)
Mud weight and density test ex.no(1)Mud weight and density test ex.no(1)
Mud weight and density test ex.no(1)chian zaxo
 
Plasticizers (solid content, expose chloride, etc.)
Plasticizers (solid content, expose chloride, etc.) Plasticizers (solid content, expose chloride, etc.)
Plasticizers (solid content, expose chloride, etc.) Hafizullah Sadat
 
Mud weight density1
Mud weight density1Mud weight density1
Mud weight density1HazharDuhoki
 
Drilling fluid dilution
Drilling fluid  dilution  Drilling fluid  dilution
Drilling fluid dilution SARWAR SALAM
 
CON 124 - Session 5 - Examples of Concrete Proportioning
CON 124 - Session 5 - Examples of Concrete ProportioningCON 124 - Session 5 - Examples of Concrete Proportioning
CON 124 - Session 5 - Examples of Concrete Proportioningalpenaccedu
 
Identification of dispersive soils
Identification of dispersive soilsIdentification of dispersive soils
Identification of dispersive soilsRizwan Samor
 
Ex 5 consistency limits
Ex 5 consistency limitsEx 5 consistency limits
Ex 5 consistency limitsbhimaji40
 
Influence of thermal treatment on the morphology of nanostructured hydroxyapa...
Influence of thermal treatment on the morphology of nanostructured hydroxyapa...Influence of thermal treatment on the morphology of nanostructured hydroxyapa...
Influence of thermal treatment on the morphology of nanostructured hydroxyapa...Grupo de Pesquisa em Nanoneurobiofisica
 
Foundation Engineering Lab Manual
Foundation Engineering Lab ManualFoundation Engineering Lab Manual
Foundation Engineering Lab ManualErankajKumar
 

What's hot (20)

Proctor compaction test
Proctor compaction testProctor compaction test
Proctor compaction test
 
Modified Methylene Blue (MMB) Test Procedure
Modified Methylene Blue (MMB) Test ProcedureModified Methylene Blue (MMB) Test Procedure
Modified Methylene Blue (MMB) Test Procedure
 
Stabilization of black cotton soil by using plastic rf
Stabilization of black cotton soil by using plastic rfStabilization of black cotton soil by using plastic rf
Stabilization of black cotton soil by using plastic rf
 
Afes seminar april_2021_craig
Afes seminar april_2021_craigAfes seminar april_2021_craig
Afes seminar april_2021_craig
 
Exp2 mud weight
Exp2 mud weightExp2 mud weight
Exp2 mud weight
 
Drilling Lab - Mud Dilution
Drilling Lab - Mud DilutionDrilling Lab - Mud Dilution
Drilling Lab - Mud Dilution
 
Mud weight and density test ex.no(1)
Mud weight and density test ex.no(1)Mud weight and density test ex.no(1)
Mud weight and density test ex.no(1)
 
Plasticizers (solid content, expose chloride, etc.)
Plasticizers (solid content, expose chloride, etc.) Plasticizers (solid content, expose chloride, etc.)
Plasticizers (solid content, expose chloride, etc.)
 
Mud weight density1
Mud weight density1Mud weight density1
Mud weight density1
 
Phd Defense | Ricardo Correia dos Santos
Phd Defense | Ricardo Correia dos SantosPhd Defense | Ricardo Correia dos Santos
Phd Defense | Ricardo Correia dos Santos
 
Drilling fluid dilution
Drilling fluid  dilution  Drilling fluid  dilution
Drilling fluid dilution
 
Dilution
 Dilution  Dilution
Dilution
 
CON 124 - Session 5 - Examples of Concrete Proportioning
CON 124 - Session 5 - Examples of Concrete ProportioningCON 124 - Session 5 - Examples of Concrete Proportioning
CON 124 - Session 5 - Examples of Concrete Proportioning
 
Identification of dispersive soils
Identification of dispersive soilsIdentification of dispersive soils
Identification of dispersive soils
 
Mud Filtration Test
Mud Filtration TestMud Filtration Test
Mud Filtration Test
 
Ex 5 consistency limits
Ex 5 consistency limitsEx 5 consistency limits
Ex 5 consistency limits
 
A046050106
A046050106A046050106
A046050106
 
Influence of thermal treatment on the morphology of nanostructured hydroxyapa...
Influence of thermal treatment on the morphology of nanostructured hydroxyapa...Influence of thermal treatment on the morphology of nanostructured hydroxyapa...
Influence of thermal treatment on the morphology of nanostructured hydroxyapa...
 
Soil ppt (1)
Soil ppt (1)Soil ppt (1)
Soil ppt (1)
 
Foundation Engineering Lab Manual
Foundation Engineering Lab ManualFoundation Engineering Lab Manual
Foundation Engineering Lab Manual
 

Similar to How operating conditions affect surface areas of highly porous food powders

Chapter 3 aggregates (part-2)
Chapter 3  aggregates (part-2)Chapter 3  aggregates (part-2)
Chapter 3 aggregates (part-2)Manoj Sharma
 
CPPR Sublimation Rate Poster 2008
CPPR Sublimation Rate Poster 2008CPPR Sublimation Rate Poster 2008
CPPR Sublimation Rate Poster 2008Steven Smith
 
solid layer.pptx
solid layer.pptxsolid layer.pptx
solid layer.pptxNagen87
 
Advanced granulation technologies
Advanced granulation technologies Advanced granulation technologies
Advanced granulation technologies doll969
 
Membrane based water purification technology(ultra filteration,dialysis and e...
Membrane based water purification technology(ultra filteration,dialysis and e...Membrane based water purification technology(ultra filteration,dialysis and e...
Membrane based water purification technology(ultra filteration,dialysis and e...Sanjeev Singh
 
Applications Of Headspace Moisture Analysis
Applications Of Headspace Moisture AnalysisApplications Of Headspace Moisture Analysis
Applications Of Headspace Moisture AnalysisBTL
 
Effect and Optimization of Silica Fume in Pervious Concrete
Effect and Optimization of Silica Fume in Pervious ConcreteEffect and Optimization of Silica Fume in Pervious Concrete
Effect and Optimization of Silica Fume in Pervious ConcreteDale Fisher
 
Unit-1-Preformultion Studies.pptx
Unit-1-Preformultion Studies.pptxUnit-1-Preformultion Studies.pptx
Unit-1-Preformultion Studies.pptxbrahmaiahmph
 
Mastering Moisture in Powders: Flowability and Beyond
Mastering Moisture in Powders: Flowability and BeyondMastering Moisture in Powders: Flowability and Beyond
Mastering Moisture in Powders: Flowability and BeyondMETER Group, Inc. USA
 
Formulation-design-for-optimal-high-shear
Formulation-design-for-optimal-high-shearFormulation-design-for-optimal-high-shear
Formulation-design-for-optimal-high-shearMarianna Machin
 
Plate and Frame Filter Press Lab 1 Report
Plate and Frame Filter Press Lab 1 ReportPlate and Frame Filter Press Lab 1 Report
Plate and Frame Filter Press Lab 1 ReportNicely Jane Eleccion
 
inprocess quality control test
inprocess quality control testinprocess quality control test
inprocess quality control testDurgaLakshmi24
 
inprocess quality control test
inprocess quality control testinprocess quality control test
inprocess quality control testDurgaLakshmi24
 
Osmotic dehydration of fruits
Osmotic dehydration of fruitsOsmotic dehydration of fruits
Osmotic dehydration of fruitsMaya Sharma
 
IRJET- Preparation of Activated Carbon from Polystyrene
IRJET- Preparation of Activated Carbon from PolystyreneIRJET- Preparation of Activated Carbon from Polystyrene
IRJET- Preparation of Activated Carbon from PolystyreneIRJET Journal
 
IRJET- Preparation of Activated Carbon from Polystyrene
IRJET- Preparation of Activated Carbon from PolystyreneIRJET- Preparation of Activated Carbon from Polystyrene
IRJET- Preparation of Activated Carbon from PolystyreneIRJET Journal
 

Similar to How operating conditions affect surface areas of highly porous food powders (20)

Chapter 3 aggregates (part-2)
Chapter 3  aggregates (part-2)Chapter 3  aggregates (part-2)
Chapter 3 aggregates (part-2)
 
CPPR Sublimation Rate Poster 2008
CPPR Sublimation Rate Poster 2008CPPR Sublimation Rate Poster 2008
CPPR Sublimation Rate Poster 2008
 
solid layer.pptx
solid layer.pptxsolid layer.pptx
solid layer.pptx
 
Advanced granulation technologies
Advanced granulation technologies Advanced granulation technologies
Advanced granulation technologies
 
Membrane based water purification technology(ultra filteration,dialysis and e...
Membrane based water purification technology(ultra filteration,dialysis and e...Membrane based water purification technology(ultra filteration,dialysis and e...
Membrane based water purification technology(ultra filteration,dialysis and e...
 
Applications Of Headspace Moisture Analysis
Applications Of Headspace Moisture AnalysisApplications Of Headspace Moisture Analysis
Applications Of Headspace Moisture Analysis
 
Effect and Optimization of Silica Fume in Pervious Concrete
Effect and Optimization of Silica Fume in Pervious ConcreteEffect and Optimization of Silica Fume in Pervious Concrete
Effect and Optimization of Silica Fume in Pervious Concrete
 
Kelechukwu et al
Kelechukwu et alKelechukwu et al
Kelechukwu et al
 
Ionic Liquid Pretreatment
Ionic Liquid PretreatmentIonic Liquid Pretreatment
Ionic Liquid Pretreatment
 
Unit-1-Preformultion Studies.pptx
Unit-1-Preformultion Studies.pptxUnit-1-Preformultion Studies.pptx
Unit-1-Preformultion Studies.pptx
 
Mastering Moisture in Powders: Flowability and Beyond
Mastering Moisture in Powders: Flowability and BeyondMastering Moisture in Powders: Flowability and Beyond
Mastering Moisture in Powders: Flowability and Beyond
 
Formulation-design-for-optimal-high-shear
Formulation-design-for-optimal-high-shearFormulation-design-for-optimal-high-shear
Formulation-design-for-optimal-high-shear
 
Civil final project
Civil final projectCivil final project
Civil final project
 
Poster presentation
Poster presentationPoster presentation
Poster presentation
 
Plate and Frame Filter Press Lab 1 Report
Plate and Frame Filter Press Lab 1 ReportPlate and Frame Filter Press Lab 1 Report
Plate and Frame Filter Press Lab 1 Report
 
inprocess quality control test
inprocess quality control testinprocess quality control test
inprocess quality control test
 
inprocess quality control test
inprocess quality control testinprocess quality control test
inprocess quality control test
 
Osmotic dehydration of fruits
Osmotic dehydration of fruitsOsmotic dehydration of fruits
Osmotic dehydration of fruits
 
IRJET- Preparation of Activated Carbon from Polystyrene
IRJET- Preparation of Activated Carbon from PolystyreneIRJET- Preparation of Activated Carbon from Polystyrene
IRJET- Preparation of Activated Carbon from Polystyrene
 
IRJET- Preparation of Activated Carbon from Polystyrene
IRJET- Preparation of Activated Carbon from PolystyreneIRJET- Preparation of Activated Carbon from Polystyrene
IRJET- Preparation of Activated Carbon from Polystyrene
 

How operating conditions affect surface areas of highly porous food powders

  • 1. B.E.T  Surface  Area           •  Results  when  compared  to  literature  shows  that  the  pump   flow  rate  and  the  choice  of  the  templa;ng  agents  greatly   affects  the  porosity  of  powders,  as  expected.           •  Glucose   at   25%   (8   mL/min)   pump   flow   rate   is   highly   responsive  as  it  has  the  greatest  rate  of  change,  11  m2/g   (from  13  ±  3  m2/g  to  24  ±  2  m2/g)  over  a  20°C  temperature   change.   •  Sucrose   at   5%   (1.6   mL/min)   pump   flow   rate   has   a   slow   response  ;me  as  it  has  the  lowest  rate  of  change,  2  m2/g   (from  34  ±  2  m2/g  to  36  ±  2  m2/g)  over  a  60°C  temperature   change.   •  Sucrose   had   the   lowest   varia;on   of   B.E.T   surface   area   sugges;ng   insignificant   change   from   110   ±   1°C   to   170   ±   1°C,  while  glucose  showed  significant  varia;on  from  150  ±   1°C  to  170  ±  1°C.     •  Choice  of  the  templa;ng  agents  affect  the  total  maximum   stacking  energy  and  the  minimised  unit  cell  due  to  different   self-­‐assembly  mechanisms  of  par;cles.   The  Glass-­‐Transi;on  Temperature  (Tg)                         •  Order  of  temperatures  does  not  decrease  numerical  as  expected.   •  Par;al  templa;ng  of  crystalline  structure.   •  Couchman-­‐Karasz  equa;on  es;mates  Tg  reasonable  well.             The  Yield                         •  Similar  trends  to  binary  mixtures  (Bhandari,  et  al.,  2013).   •  Different  pump  flow  rates  and  templa;ng  agent  combina;ons   produce  different  yields.   •  Highest  yields  obtained  are  at  130  ±  1°C  to  150  ±  1°C  with  yields   of  79  ±  4%  and  79  ±  1%  for  sucrose.   The  Moisture  Content   Moisture  Content   •  Lowest   moisture   at   170   ±   1°C   indicates   the   highest   crystallinity.   •  Increase  in  moisture  content  from  190  ±  1°C  to  210  ±  1°C  due   to   hygroscopic   affects   and   small   yields   obtained   at   these   temperatures.       The  Degree  of  Crystallinity             •  Highest  degree  of  crystallinity  occurs  at  170  ±  1°C.   •  Suggests  good  powder  to  test  for  B.E.T  surface  area.   •  Limita;on   to   the   degree   of   crystallinity   due   to   moisture   content,  hygroscopic  effects  and  crystal  self-­‐assembly.       How and why do operating conditions affect the surface areas of highly-porous food powders? Kierin van Berkel, Prof. Timothy Langrish, Ph.D. Amirali Ebrahimi Ghadi & Ph.D. Morteza Saffari School of Biomolecular & Chemical Engineering Background   •  Highly-­‐porous   powders   have   significant   applica;ons   for   agricultural,   food  and  pharmaceu;cal  industries  such  as  reduc;on  in  transport  costs,   increased  drug  delivery/loading  and  increased  shelf-­‐life.   •  Significant  research  has  been  done  for  binary  mixtures,  however  mul;-­‐ component  mixtures  have  been  overlooked.   •  Possible  improvements  to  the  yield,  degree  of  crystallinity  and  the  B.E.T   surface  area  can  be  made.   Aim   •  How  and  why  do  opera;ng  condi;ons  affect  the  surface  areas  of  highly-­‐ porous  food  powders.   •  Analysing  the  final  product  through  the  yield,  moisture  content  analysis,   sorp;on   analysis,   Differen;al   Scanning   Calorimetry   (DSC),   and   B.E.T   surface  area.          Method  &  Theory   Areas  Interest   •  Parameters  of  interest  include  the  yield,  the  degree  of   crystallinity,   the   glass-­‐transi;on   temperature   and   the   B.E.T  surface  area.   •  Condi;ons  analysed  include  the  inlet  temperature,  the   liquid  pump  flow  rate  and  the  templa;ng  agent.   Spray-­‐drying  Produc;on   •  10%   w/v   Lactose,   1%   w/v   Sucrose,   and   89%   w/v   dis;lled   water   spray   dried   from   110°C   to   210°C,   5%   pump   flowrate   (1.6   mL/min),   aspira;on   of   100%   and   nozzle  pulsa;on  of  5.   •  Method  was  repeated  for  glucose  in  place  of  sucrose,   however  at  25%  pump  flowrate  (8  mL/min).                             Highly  Porous  Powder  Characterisa;on                                               Pr   Produc;on  of  Highly  Porous  Powders   •  Templa;ng   agent   is   crystallised   with   the   desired   par;cle  forming  a  composite  par;cle.   •  Ethanol  is  mixed  and  s;rred  over  two  24  hour  cycles  to   fully   dissolve   the   templa;ng   agent   (Saffari,   Ebrahimi   and  Langrish,  2015).   •  Highly   crystallised   and   porous   powder   are   lec   as   a   result.             Referenced  from  Iskander,  et  al.,  (2009).             Stage  1     • Spray-­‐Drying   • Determines  the  yield  &  moisture  content.   Stage  2   • Sorp4on  Analysis   • Determines  the  degree  of  crystallinity.   Stage  3   • Brunauer,  Emme=  and  Teller  (B.E.T)   • Determines  the  porosity  &  surface  area  through  5-­‐point   B.E.T  surface  analysis.   Stage  4   • Differen4al  Scanning  Calorimetry   • Determine  the  s;ckiness  factor  &  bulk  crystallisa;on   when  compared  to  the  Couchmann-­‐Karasz  Equa;on.   110°C 130°C 150°C 170°C 190°C 210°C 20 25 30 35 40 45 50 55 60 65 70 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Glass-transitionTemperature(°C) Water Mass Fraction Effect of Temperature on the glass transition temperature for Sucrose & Lactose at 5% pump flowrate Couchmann-Karasz Estimation 1st Transition - Differential Scanning Calorimetry 0 1 2 3 4 5 6 7 8 0 100 200 300 400 500 600 700 800 MoistureContent% Time (Mins) Effect of Temperature on the Degree of Crystallinity for Sucrose & Lactose at 5% pump flowrate 110°C 130°C 150°C 170°C 190°C 210°C Highest crystallinity peak Lowest crystallinity peak Resolution Late nucleation phase     Opera4ng   Temperature  at   110°C  &  150°C,   respec4vely   Temperature  at  170°C   Sucrose  (Pump   Flowrate  5%,  1.6   mL/min)   34  ±  2  m2/g   36  ±  2  m2/g   32  ,  33  &  37   33,  35,  38  &  38   Glucose  (Pump   Flowrate  25%,  8   mL/min)   13  ±  3  m2/g   24  ±  2  m2/g   11,  13  &  15   23,  23  &  25        Results  &  Discussion        Conclusion,  Recommenda4ons  &  Acknowledgements   Conclusion   1.  The  B.E.T  surface  area  is  greatly  affected  by   the   temperature,   pump   flow   rate   and   templa;ng  agent.   2.  Surface   area   limita;on   exists   due   to   molecular  and  physical  proper;es  caused  by   the   s;ckiness   factor,   moisture   content   and   the  degree  of  crystallinity.   Recommenda;ons   •  The   amount   of   infusion   occurring   between   templa;ng  agent  and  lactose.   •  Addi;onal   study   for   the   B.E.T   surface   area   range    from  110  ±  1°C  to  210  ±  1°C.   •  The   affect   of   ethanol   washing   cycle   on   the   porosity  of  powders.       Acknowledgements   •  School   of   Biomolecular   and   Chemical   Engineering  at  the  University  of  Sydney.   •  Prof.   Timothy   Langrish,   Ph.D.   supervisors,   Amirali  Ebrahimi  Ghadi  and  Morteza  Saffari.       References   Bhandari,  B.,  Nidhi,  B.,  Min,  Z.  &  Pierre,  S.,  2013.  Process  and  Properi;es  -­‐  Limita;on  of   the  Solid-­‐Phase  Crystallisa;on  Model.  s.l.:Woodhead  Publishing.     Im;az-­‐Ul-­‐Islam,  M.  &  Langrish,  T.,  2009.  Comparing  the  crystallisa;on  of  sucrose  and   lactose  in  spray  dryers.  Food  and  Bioproducts  Processing,  Issue  87,  pp.  87-­‐95.     Iskandar,  F.  et  al.,  2009.  Produc;on  of  morphology-­‐controllable  porous  hyaluronic  acid   par;cles  using  a  spray-­‐drying  method.  Acta  Biomaterialia,  Issue  5,  pp.  1027-­‐1034.     Saffari,   M.,   Ebrahimi,   A.   &   Langrish,   T.,   2015.   Highly-­‐porous   mannitol   par;cle   produc;on  using  a  new  templa;ng  approach.  Food  research  interna;onal,  Issue  67,   pp.  44-­‐51.   0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 60 80 100 120 140 160 180 200 220 Yield% Temperature (°C) Effect of Temperature on the Yield for Sucrose & Lactose at 5% pump flow rate Inlet Temperature Outlet Temperature Approaching the stickiness barrier Vertex of the yield 0% 1% 2% 3% 4% 5% 6% 7% 8% 60 80 100 120 140 160 180 200 220 MoistureContent% Temperature (°C) Effect of Temperature on the Moisture Content for Sucrose & Lactose at 5% pump flow rate Inlet Temperatur e Outlet Temperatur e Lowest moisture content Abnormal moisture content