SlideShare a Scribd company logo
1 of 50
Low Current ElectrochemicalLow Current Electrochemical
Measurement for BiotechnolgyMeasurement for Biotechnolgy
ApplicationsApplications
Kevin W. GlassKevin W. Glass
Advisor: Dr. AlleeAdvisor: Dr. Allee
Co-Advisor: Dr. SongCo-Advisor: Dr. Song
AgendaAgenda
 Electrochemical Measurement BasicsElectrochemical Measurement Basics
 Example Low Current MeasurementExample Low Current Measurement
SystemsSystems
 A/D Converter SelectionA/D Converter Selection
 Opamp SelectionOpamp Selection
 Review of Current Opamp DesignsReview of Current Opamp Designs
 SummarySummary
ElectrochemicalElectrochemical
Measurement BasicsMeasurement Basics
Three Terminal Electrochemical Cell with PotentiostatThree Terminal Electrochemical Cell with Potentiostat
for Current Measurement [3].for Current Measurement [3].     
Counter/
Counter/
Potetentiostat and Cell Measurement BasicsPotetentiostat and Cell Measurement Basics
 Working Electrode is the electrode where the potential is controlled and where the Working Electrode is the electrode where the potential is controlled and where the 
current is measured. It’s where the electrochemical reaction takes place.current is measured. It’s where the electrochemical reaction takes place.
 The Reference Electrode is used in measuring the working electrode potential. A The Reference Electrode is used in measuring the working electrode potential. A 
reference electrode should have a constant electrochemical potential with no current reference electrode should have a constant electrochemical potential with no current 
flowing through it. flowing through it. 
 The Counter (Auxiliary) Electrode is a conductor that completes the cell circuit. The The Counter (Auxiliary) Electrode is a conductor that completes the cell circuit. The 
current that flows into the solution via the Working Electrode leaves the solution via current that flows into the solution via the Working Electrode leaves the solution via 
the Counter Electrode.the Counter Electrode.
 A potentiostat is an electronic circuit that controls the voltage difference between the A potentiostat is an electronic circuit that controls the voltage difference between the 
working electrode and the reference electrode. The potentiostat implements this working electrode and the reference electrode. The potentiostat implements this 
control by sourcing current into the cell through the counter electrode. In almost all control by sourcing current into the cell through the counter electrode. In almost all 
applications, the potentiostat measures the current flow between the working and applications, the potentiostat measures the current flow between the working and 
counter electrodes. The controlled variable in a potentiostat is the cell potential and counter electrodes. The controlled variable in a potentiostat is the cell potential and 
the measured variable is the cell current.the measured variable is the cell current.
 The potentiostat becomes a galvanostat when the feedback is switched from a cell The potentiostat becomes a galvanostat when the feedback is switched from a cell 
voltage control amplifier input signal, to a working electrode cell current input signal. voltage control amplifier input signal, to a working electrode cell current input signal. 
The instrument then controls the cell current rather than the cell voltage. The The instrument then controls the cell current rather than the cell voltage. The 
electrometer output can still be used to measure the cell voltage.electrometer output can still be used to measure the cell voltage.
 Coulometry is the complete electrolysis of a solution at an electrode and the Coulometry is the complete electrolysis of a solution at an electrode and the 
measure of the total Coulombs of change produced under Faraday’s Law.measure of the total Coulombs of change produced under Faraday’s Law.
AC small signal model of electrode solution interface [2].AC small signal model of electrode solution interface [2].
Example of process cross-section of a typical 
UME array device [4].
SEM images of typical micro-fabricated array designs.
 Left) A “honeycomb” pattern of 564 10um diameter UMEs. 
Center) A “ring” design with 40 10um diameter UMEs. Outer and inner rings are on-chip 
counter and reference electrodes, respectively. 
Right) A “bicycle” design of 20 10um diameter UMEs, each surrounded by a ring 
counter/reference electrode [4].
Example Low CurrentExample Low Current
Measurement SystemsMeasurement Systems
System Diagrams of Potentiostat Chip Set Designed at Stanford.
Left - Top level systems diagram of the electrochemical analysis system [11].
Right – More detailed top level diagram of the potentiostat [12].
Switch implementation approaches.
Left – Conventional nMOS transfer gate switch [10].
Right – Low junction leakage alternative. pMOS used with
n well tied to reference supply (Gnd) to Vcc/Vss.
Inputs to be measured are maintained very close to Gnd,
so the voltage from p+ source/drain to n well is ~0V with negligible leakage
Block Diagram of A/D converter integrator.
Switches with dashes are low junction leakage
p channels with n wells connected to gnd [10].
Iin = (T2 / T1 ) Iref
Left – Top level conceptual schematic of offset cancellation for dual input
opamp [10].
Right – Circuit implementation of dual input opamp with
dedicated offset cancellation input [11].
Standard single ended potentiostat circuit, fabricated 
with the new differential design in TSMC 0.18um. 
Designed at University of Michigan [8].     
New low voltage differential potentiostat
circuit, fabricated in TSMC 0.18um. 
Designed at University of Michigan [8].
Differential opamp used in new low voltage potentiostat circuit, 
fabricated in TSMC 0.18um. Constant gm biasing not shown. 
Device sizes in um. Designed at University of Michigan [8].
Burr Brown Precision Switched Integrator Transimpedance Amplifier.
This can be used as a building block for an integrating A/D converter [13]
IC1
is a self-contained transimpedance amplifier with an internal feedback capacitor, a hold switch,
a reset switch, and a precision op amp (laser trimmed to compensate for offset and drift errors).
This amplifier forms the input block for along with the 30-pF internal capacitor
This capacitance, along with the integration time set by the 555 timer, scales the
I/V output by the transfer equation, Vout=-Iin*Integration Time/Feedback Capacitance=-50mV/pA
Burr Brown Picoammeter Reference Design Board
A/D Converter SelectionA/D Converter Selection
A/D Converted SelectionA/D Converted Selection
 Desired goal was to have a converter with 16 bits resolution. The application
frequency range is very low, so conversion speed is not an issue. Low noise is a
major issue since our goal is to measure currents possibly as low as 1pA, and if
possible, 0.1pA
 Typical resistive ladder, ratioed capacitor, or cyclic converters did not meet the
requirements because of resolution limitations from component matching, and noise
issues.
 Sigma-Delta converters possibility - employed in some of the prior work reviewed.
Resolution of these types of converters can be very high with large over sampling
ratios. The application of Sigma-Delta converters can have issues for DC
measurements. For signals that are not varying with time, they can develop output
tones or instabilities. A low noise front end amplifier and low pass filter are still
required.
 Integrating A/D converters have been used for precision current measurement
instruments, in particular, the dual slope A/D converter. This converter employs a
low noise operational amplifier in an inverting configuration with a capacitor feeding
from the output to the inverting input to form a miller integrator
 The integrator in combination with the input signal forms a low pass filter, bandThe integrator in combination with the input signal forms a low pass filter, band
limiting and attenuating higher frequency noise.limiting and attenuating higher frequency noise.
 To adjust for different voltage or current ranges, the integration time can be varied.To adjust for different voltage or current ranges, the integration time can be varied.
The lower the current range measured, the longer the integration time. For dualThe lower the current range measured, the longer the integration time. For dual
slope - Iin = (T2 / T1 ) Iref.slope - Iin = (T2 / T1 ) Iref.
 Modifications can be made to the dual slope technique to account for opamp offset,Modifications can be made to the dual slope technique to account for opamp offset,
switch charge injection and other non-idealities.switch charge injection and other non-idealities.
 Integrating A/D can be viewed as integrate and dump matched filter - SNR=CVIntegrating A/D can be viewed as integrate and dump matched filter - SNR=CV22
/N/N00
Left - Basic Auto Zero (AZ) amplifier block diagram [16].
Right - The effect of the AZ process on a first order low-pass filtered
1/f noise having a bandwidth 5 times larger than the sampling frequency [16].
High Level Block Diagram of Electrochemical Measurement System
under development at ASU.
Opamp SelectionOpamp Selection
Opamp SelectionOpamp Selection
 2 stage active load – noise from active loads, compensation2 stage active load – noise from active loads, compensation
 OTA (e.g. U of Utah) – noise from diode loaded input, lowOTA (e.g. U of Utah) – noise from diode loaded input, low
gain first stagegain first stage
 Telescopic – noise from active loads, low output swingTelescopic – noise from active loads, low output swing
 Gain Boost – Possible to be added to current designsGain Boost – Possible to be added to current designs
 Lateral bipolar inputs - low beta causes high base currents,Lateral bipolar inputs - low beta causes high base currents,
which increases the base thermal noise. Higher 1/f noisewhich increases the base thermal noise. Higher 1/f noise
because of the surface states. No device models existed forbecause of the surface states. No device models existed for
process.process.
 Chopper Stabilized – Too much complexity for 1Chopper Stabilized – Too much complexity for 1stst
pass. Willpass. Will
revisit because technically superior.revisit because technically superior.
 Decided on folded cascode – high gain in 1 stage.Decided on folded cascode – high gain in 1 stage.
 Decided on some new design with resistor loads on input.Decided on some new design with resistor loads on input.
Left – Schematic of CMOS opamp using lateral PNP transistors
[19].
Right- Layout of the lateral bipolar PNP input transistor [19].
Top – the chopper amplifier principal [16].
Bottom – Waveforms appearing along the chopper amplifier
for a DC input and an amplifier bandwidth limited to twice the
chopper frequency [16].
Left – Chopper Modulated white noise at zero frequency as
a function of the original bandwidth [16].
Right- Chopper output PSD for 1/f noise [16].
Crystal Semiconductors Chopper Stabilized Opamp [20].
Amplifier input stage simplified schematic.
Review of Current OpampReview of Current Opamp
DesignsDesigns
Actest1a
AC test fixture with offset cancellation used for most of the AC simulations.
Cadence schematic with device sizes and values for the
self biased folded cascode opamp (selfbfcascode)
Gain/Phase simulations of selfbfcascode opamp using testbench actest1a.Gain/Phase simulations of selfbfcascode opamp using testbench actest1a.
Overlaid plots of 7 corners: Nominal, 27Overlaid plots of 7 corners: Nominal, 27oo
C (Vcc=2V, 2.5V,3V); Nominal, 27C (Vcc=2V, 2.5V,3V); Nominal, 27oo
CC
(R=+30%,-30%); Slow, 125(R=+30%,-30%); Slow, 125oo
C; Fast -15C; Fast -15oo
C. Cload=35pF, PM≈60C. Cload=35pF, PM≈60oo
Input referred noise voltage squared for selfbfcascode opamp using
testbench actest1a. Kf =6(10)-27 (pMOS), Kf =3(10)-25 (nMOS),
Model Level=11, Nominal process, 27o
C, Vcc=2.5V, Cload=35pF, PM=60o
.
Transient simulation of selfbfcascode opamp using trantest1test bench,
+/- 2.5V input, 1us rise and fall times. Nominal process, 27o
C, Vcc=2.5V
Cadence schematic with device sizes and values for the low noise
self biased folded cascode opamp (lnselfbfcascode). IP24=216uA, and
IP3=105uA, IP2=212uA. Nominal process, temperature, and Vcc=2.5V.
Cadence schematic with device sizes and node voltages and for the self biased folded
cascode opamp with compensation (selfbfcascodecmp).This is the output of
lnselfbfcascode.This opamp is identical to selfbfcascode in Figure 21, with the addition
of P20 (100u/20u*60) for a comp. cap. IP2=83.4uA, and IP3=IP4=82.0uA,
nominal process and temperature, Vcc=2.5V.
Gain/Phase simulations of lnselfbfcascode opamp using testbench actest1a.
Overlaid plots of 7 corners: Nominal, 27o
C (Vcc=2V, 2.5V, 3V); Nominal,
27o
C (R=+30%,-30%); Slow, 125o
C; Fast -15o
C. Cload=30pF, PM≈75o
Input referred noise voltage squared for lnselfbfcascode opamp using test
bench actest1a. Kf =6(10)-27 (pMOS), Kf =3(10)-25 (nMOS),
Model Level=11, Nominal process, 27o
C, Vcc=2.5V, Cload=30pF, PM=75o
Transient simulation of lnselfbfcascode opamp using trantest1 test bench.
+/- 2.5V input, 1us rise and fall times. Nominal process, 27o
C, Vcc=2.5V.
Includes internal nodes-vinvplus and vinvminus–output of diff. pair.
Cadence schematic with device sizes, values and node voltages for the
high gain - low noise, opamp (hglnopaa). P31 and P26 are used as compensation
capacitors with sizes of (100u/20u*24) and (100u/20u*38) respectively.
IP4=48uA, and IP2=187uA, IN10=19uA, IP6=IP7=111uA, IP51=67uA.
Nominal process, 27o
C, and Vcc=2.5V.
Gain/Phase simulations of hglnoppa opamp using testbench actest1a.
Overlaid plots of 9 corners: Nominal (-25o
C, 27o
C, 125o
C), Vcc=2.5V;
Nominal, 27o
C, (Vcc=2V, 2.5V, 3V); Nominal, 27o
C, (R=+30%,-30%);
Slow, 27o
C, Vcc=2.5V; Fast, 27o
C, Vcc=2.5V. Cload=30pF, PM≈90o
.
System level diagram for common modeSystem level diagram for common mode
feedback circuit for hglnopaa opamp.feedback circuit for hglnopaa opamp.
Opamp hglnopaa common mode feedback loop magnitude response.
Overlaid plots with and without capacitor CP44. Simulations using test
bench similar to actest1a. Top blue curve - opamp gain response for reference.
Second from top red curve – Differential input stage gain response.
Third from top – vcommon gain response. Bottom curve - vcmfb gain response.
Nominal process, 27o
C, Vcc=2.5V.
Input referred noise voltage for hglnopaa opamp using test bench actest1a.
Kf =6(10)-27
(pMOS), Kf =3(10)-25
(nMOS), Model Level=11,
Nominal process, 27o
C, Vcc=2.5V, Cload=30pF, PM=90o
.
Cadence schematic with device sizes and values for high gain - low noise, opamp with
W for P0 and P1 input transistors increased to 2000u. (hglnopaa2). Compensation
Source follower sizes increased 50% to W=150u for P50 and W=300u for P51.
Associated current increased from 67uA to 100uA. P31 andP26 compensation capacitor
sizes remain the same at (100u/20u*24) and (100u/20u*38) respectively.
Input referred noise voltage for hglnopaa2 opamp (W=2000u input transistor)
using test bench actest1a. Kf =6(10)-27
(pMOS), Kf =3(10)-25
(nMOS),
Model Level=11, Nominal process, 27o
C, Vcc=2.5V, Cload=30pF, PM=90o
.
Gain/Phase simulations of hglnoppa2 opamp using test bench actest1a.
Overlaid plots of 9 corners: Nominal, 27o
C, (Vcc=2V, 2.5V, 3V), (R=+30%,-30%);
Slow, 125o
C, Vcc=2.5V; Fast, -25o
C, Vcc=2.5V. Cload=30pF, PM≈65o
.
Transient simulation of hglnopaa opamp using trantest1 test bench.
+/- 2.5V input, 1us rise and fall times. Nominal process, 27o
C, Vcc=2.5V.
Includes internal nodes-vinvplus and vinvminus–output of diff. pair.
Also includes internal nodes of common mode feedback circuit – vcmfb,
vdiffbias, and vcommon.
Summary of ResultsSummary of Results
Comparison of Opamp Input Referred Noise RelationsComparison of Opamp Input Referred Noise Relations
 Self Biased Folded CascodeSelf Biased Folded Cascode
vv22
totaltotal={4kT[(4/3)/g={4kT[(4/3)/gmP1mP1)+1/g)+1/gmP3mP3+1/g+1/gmN1mN1]+]+
[(2K[(2KfPfP+3K+3KfNfN)/6000u)/6000u22
CC00](1/f )}∆f (36)](1/f )}∆f (36)
 Low Noise Self Biased Folded CascodeLow Noise Self Biased Folded Cascode
vv22
totaltotal={4kT[(4/3/g={4kT[(4/3/gmP0LNmP0LN)+(1/g)+(1/g22
mP0LNmP0LNRR11)]+)]+
(K(KfPfP/20000u/20000u22
CC00)(1/f)}∆f (63))(1/f)}∆f (63)
 High Gain Low NoiseHigh Gain Low Noise
vv22
totaltotal={4kT[(4/3/g={4kT[(4/3/gmP0mP0)+(1/g)+(1/g22
mP0mP0RR11)]+)]+
(K(KfPfP/10000u/10000u22
CC00)(1/f)}∆f (80))(1/f)}∆f (80)
 High Gain Low Noise opa2High Gain Low Noise opa2
vv22
totaltotal={4kT[(4/3/g={4kT[(4/3/gmP0mP0)+(1/g)+(1/g22
mP0mP0RR11)]+)]+
(K(KfPfP/20000u/20000u22
CC00)(1/f)}∆f)(1/f)}∆f
Comaparison of Opamp CharateristicsComaparison of Opamp Charateristics
AV 1dB W PM I In off. In Offset 5%mm In Ref. Noise Volts Noise V @1kHz
CMR
R
PSR
R
dB MHz deg mA uV uV uVrms uV./sqrt(Hz) dB dB
selfbfcascode 95 4.40 55 0.25 0.470 10.2 100 1 85 95
lnselfbfcascode 117 2.25 75 0.78 0.278 11.5 7.12 0.1 86 112
hglnopaa 117 1.74 90 0.55 0.356 7.6 14 0.2 97 107
hglnopaa2 120 1.65 65 0.58 0.258 10.7 6 0.1 97 107
Future PlansFuture Plans
 Verify Noise ModelVerify Noise Model
 Layout opampsLayout opamps
 Have Idea for one transistor opamp – exploreHave Idea for one transistor opamp – explore
 Design integrating A/DDesign integrating A/D
 Layout and tape out test chipLayout and tape out test chip
 Look at chopper stabilized amplifier and lock in amplifierLook at chopper stabilized amplifier and lock in amplifier
Low noise neural recording amplifier developed at the University of Utah.Low noise neural recording amplifier developed at the University of Utah.
Left schematic shows the top level. Right schematic shows the OTALeft schematic shows the top level. Right schematic shows the OTA
opamp used in the design. Device is fabricated in AMI 1.6um technologyopamp used in the design. Device is fabricated in AMI 1.6um technology
[9].[9].

More Related Content

What's hot

Integrator and differentiator op amp
Integrator and differentiator op ampIntegrator and differentiator op amp
Integrator and differentiator op ampArsalan Qureshi
 
Design and Analysis of CMOS Instrumentation Amplifier
Design and Analysis of CMOS Instrumentation AmplifierDesign and Analysis of CMOS Instrumentation Amplifier
Design and Analysis of CMOS Instrumentation AmplifierIJEEE
 
The operational amplifier (part 1)
The operational amplifier (part 1)The operational amplifier (part 1)
The operational amplifier (part 1)Jamil Ahmed
 
7.instrumentation amplifier
7.instrumentation amplifier7.instrumentation amplifier
7.instrumentation amplifierINDIAN NAVY
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9Shiwam Isrie
 
Bjt+and+jfet+frequency+response
Bjt+and+jfet+frequency+responseBjt+and+jfet+frequency+response
Bjt+and+jfet+frequency+responseStudent
 
Audio power amplifier
Audio power amplifierAudio power amplifier
Audio power amplifierAndri Haryono
 
Class e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qroClass e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qroDavid Cripe
 
EE375 Electronics 1: lab 3
EE375   Electronics 1: lab 3EE375   Electronics 1: lab 3
EE375 Electronics 1: lab 3Loren Schwappach
 
High Gain, Low Noise Instrumentation Amplifier Using Three Operational Amplif...
High Gain, Low Noise Instrumentation Amplifier Using Three Operational Amplif...High Gain, Low Noise Instrumentation Amplifier Using Three Operational Amplif...
High Gain, Low Noise Instrumentation Amplifier Using Three Operational Amplif...IJEEE
 
Neutralization Technique in EDC
Neutralization Technique in EDCNeutralization Technique in EDC
Neutralization Technique in EDCvimaladevi s
 
Positive feedback: Oscillators
Positive feedback: OscillatorsPositive feedback: Oscillators
Positive feedback: OscillatorsYeshudas Muttu
 
Exp. no. 4 setb118 Analog electronics
Exp. no. 4  setb118  Analog electronicsExp. no. 4  setb118  Analog electronics
Exp. no. 4 setb118 Analog electronicsOmkar Rane
 

What's hot (19)

Integrator and differentiator op amp
Integrator and differentiator op ampIntegrator and differentiator op amp
Integrator and differentiator op amp
 
Design and Analysis of CMOS Instrumentation Amplifier
Design and Analysis of CMOS Instrumentation AmplifierDesign and Analysis of CMOS Instrumentation Amplifier
Design and Analysis of CMOS Instrumentation Amplifier
 
The operational amplifier (part 1)
The operational amplifier (part 1)The operational amplifier (part 1)
The operational amplifier (part 1)
 
D04462128
D04462128D04462128
D04462128
 
7.instrumentation amplifier
7.instrumentation amplifier7.instrumentation amplifier
7.instrumentation amplifier
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-9
 
Bjt+and+jfet+frequency+response
Bjt+and+jfet+frequency+responseBjt+and+jfet+frequency+response
Bjt+and+jfet+frequency+response
 
Instrumentation amplifiers
Instrumentation amplifiersInstrumentation amplifiers
Instrumentation amplifiers
 
Lingad3
Lingad3Lingad3
Lingad3
 
Audio power amplifier
Audio power amplifierAudio power amplifier
Audio power amplifier
 
Amplifiers, filters and digital recording systems
Amplifiers, filters and digital recording systemsAmplifiers, filters and digital recording systems
Amplifiers, filters and digital recording systems
 
EEG Amplifiers
EEG AmplifiersEEG Amplifiers
EEG Amplifiers
 
Class e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qroClass e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qro
 
EE375 Electronics 1: lab 3
EE375   Electronics 1: lab 3EE375   Electronics 1: lab 3
EE375 Electronics 1: lab 3
 
High Gain, Low Noise Instrumentation Amplifier Using Three Operational Amplif...
High Gain, Low Noise Instrumentation Amplifier Using Three Operational Amplif...High Gain, Low Noise Instrumentation Amplifier Using Three Operational Amplif...
High Gain, Low Noise Instrumentation Amplifier Using Three Operational Amplif...
 
Neutralization Technique in EDC
Neutralization Technique in EDCNeutralization Technique in EDC
Neutralization Technique in EDC
 
Positive feedback: Oscillators
Positive feedback: OscillatorsPositive feedback: Oscillators
Positive feedback: Oscillators
 
Exp. no. 4 setb118 Analog electronics
Exp. no. 4  setb118  Analog electronicsExp. no. 4  setb118  Analog electronics
Exp. no. 4 setb118 Analog electronics
 
Agdon2
Agdon2Agdon2
Agdon2
 

Viewers also liked (14)

Mazdak Abtin Technique
Mazdak Abtin TechniqueMazdak Abtin Technique
Mazdak Abtin Technique
 
QX1401 VDL(H) spec.
QX1401 VDL(H) spec.QX1401 VDL(H) spec.
QX1401 VDL(H) spec.
 
Thrive Blog exerpts
Thrive Blog exerptsThrive Blog exerpts
Thrive Blog exerpts
 
22 Reli Voicu - CAVALER AL CETATII
22 Reli Voicu - CAVALER AL CETATII22 Reli Voicu - CAVALER AL CETATII
22 Reli Voicu - CAVALER AL CETATII
 
SFIABC_Factsheet
SFIABC_FactsheetSFIABC_Factsheet
SFIABC_Factsheet
 
Ebolter - Ebola testing kit
Ebolter - Ebola testing kitEbolter - Ebola testing kit
Ebolter - Ebola testing kit
 
mobi rider - Livre Blanc
mobi rider - Livre Blancmobi rider - Livre Blanc
mobi rider - Livre Blanc
 
Mazdak Abtin Roles
Mazdak Abtin RolesMazdak Abtin Roles
Mazdak Abtin Roles
 
танин мэдэхүйн-түвшний-даалгавар
танин мэдэхүйн-түвшний-даалгавартанин мэдэхүйн-түвшний-даалгавар
танин мэдэхүйн-түвшний-даалгавар
 
cv.doc.doc.doc
cv.doc.doc.doccv.doc.doc.doc
cv.doc.doc.doc
 
υγιεινη διατροφη
υγιεινη διατροφηυγιεινη διατροφη
υγιεινη διατροφη
 
Perforación duodenal post cpre
Perforación duodenal post cprePerforación duodenal post cpre
Perforación duodenal post cpre
 
сэтгэхүй ба хэл яриа
сэтгэхүй ба хэл яриасэтгэхүй ба хэл яриа
сэтгэхүй ба хэл яриа
 
Leg13.2
Leg13.2Leg13.2
Leg13.2
 

Similar to Qualprez

Analog & Digital Integrated Circuits - Material (Short Answers)
Analog & Digital Integrated Circuits -  Material (Short Answers) Analog & Digital Integrated Circuits -  Material (Short Answers)
Analog & Digital Integrated Circuits - Material (Short Answers) Mathankumar S
 
Unit-I Characteristics of opamp
Unit-I Characteristics of opampUnit-I Characteristics of opamp
Unit-I Characteristics of opampDr.Raja R
 
OP amp parameters
OP amp parametersOP amp parameters
OP amp parametersOmkar Rane
 
Design of Ota-C Filter for Biomedical Applications
Design of Ota-C Filter for Biomedical ApplicationsDesign of Ota-C Filter for Biomedical Applications
Design of Ota-C Filter for Biomedical ApplicationsIOSR Journals
 
Negitive Feedback in Analog IC Design 02 April 2020
Negitive Feedback in Analog IC Design 02 April 2020  Negitive Feedback in Analog IC Design 02 April 2020
Negitive Feedback in Analog IC Design 02 April 2020 Javed G S, PhD
 
Application of operational amplifier
Application of operational amplifierApplication of operational amplifier
Application of operational amplifierAhmad Raza
 
Design of Low Power & High Speed Comparator with 0.18μm Technology for ADC Ap...
Design of Low Power & High Speed Comparator with 0.18μm Technology for ADC Ap...Design of Low Power & High Speed Comparator with 0.18μm Technology for ADC Ap...
Design of Low Power & High Speed Comparator with 0.18μm Technology for ADC Ap...IJERA Editor
 
Ece 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampEce 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampKarthik Rathinavel
 
OPAMP integrator & differentiator.pptx
OPAMP integrator  & differentiator.pptxOPAMP integrator  & differentiator.pptx
OPAMP integrator & differentiator.pptxJatinMahato1
 
Design of low power operational
Design of low power operationalDesign of low power operational
Design of low power operationalijaceeejournal
 
Common emitter amplifier by YEASIN NEWAJ
Common emitter amplifier by YEASIN NEWAJCommon emitter amplifier by YEASIN NEWAJ
Common emitter amplifier by YEASIN NEWAJYeasinNewaj
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Project_Kaveh & Mohammad
Project_Kaveh & MohammadProject_Kaveh & Mohammad
Project_Kaveh & MohammadKaveh Dehno
 
Differentiator OP Amp
Differentiator OP AmpDifferentiator OP Amp
Differentiator OP AmpDr.Raja R
 

Similar to Qualprez (20)

Analog & Digital Integrated Circuits - Material (Short Answers)
Analog & Digital Integrated Circuits -  Material (Short Answers) Analog & Digital Integrated Circuits -  Material (Short Answers)
Analog & Digital Integrated Circuits - Material (Short Answers)
 
Arvi
ArviArvi
Arvi
 
Unit-I Characteristics of opamp
Unit-I Characteristics of opampUnit-I Characteristics of opamp
Unit-I Characteristics of opamp
 
OP amp parameters
OP amp parametersOP amp parameters
OP amp parameters
 
Design of Ota-C Filter for Biomedical Applications
Design of Ota-C Filter for Biomedical ApplicationsDesign of Ota-C Filter for Biomedical Applications
Design of Ota-C Filter for Biomedical Applications
 
Negitive Feedback in Analog IC Design 02 April 2020
Negitive Feedback in Analog IC Design 02 April 2020  Negitive Feedback in Analog IC Design 02 April 2020
Negitive Feedback in Analog IC Design 02 April 2020
 
ADC An Introduction
ADC An IntroductionADC An Introduction
ADC An Introduction
 
Mba ebooks
Mba ebooksMba ebooks
Mba ebooks
 
Audio amplifier
Audio amplifier Audio amplifier
Audio amplifier
 
Application of operational amplifier
Application of operational amplifierApplication of operational amplifier
Application of operational amplifier
 
Design of Low Power & High Speed Comparator with 0.18μm Technology for ADC Ap...
Design of Low Power & High Speed Comparator with 0.18μm Technology for ADC Ap...Design of Low Power & High Speed Comparator with 0.18μm Technology for ADC Ap...
Design of Low Power & High Speed Comparator with 0.18μm Technology for ADC Ap...
 
ArvindP2
ArvindP2ArvindP2
ArvindP2
 
Ece 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op ampEce 523 project – fully differential two stage telescopic op amp
Ece 523 project – fully differential two stage telescopic op amp
 
OPAMP integrator & differentiator.pptx
OPAMP integrator  & differentiator.pptxOPAMP integrator  & differentiator.pptx
OPAMP integrator & differentiator.pptx
 
Design of low power operational
Design of low power operationalDesign of low power operational
Design of low power operational
 
Common emitter amplifier by YEASIN NEWAJ
Common emitter amplifier by YEASIN NEWAJCommon emitter amplifier by YEASIN NEWAJ
Common emitter amplifier by YEASIN NEWAJ
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Review paper
Review paperReview paper
Review paper
 
Project_Kaveh & Mohammad
Project_Kaveh & MohammadProject_Kaveh & Mohammad
Project_Kaveh & Mohammad
 
Differentiator OP Amp
Differentiator OP AmpDifferentiator OP Amp
Differentiator OP Amp
 

Recently uploaded

Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsPrecisely
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDGMarianaLemus7
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 

Recently uploaded (20)

Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power Systems
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDG
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 

Qualprez

  • 1. Low Current ElectrochemicalLow Current Electrochemical Measurement for BiotechnolgyMeasurement for Biotechnolgy ApplicationsApplications Kevin W. GlassKevin W. Glass Advisor: Dr. AlleeAdvisor: Dr. Allee Co-Advisor: Dr. SongCo-Advisor: Dr. Song
  • 2. AgendaAgenda  Electrochemical Measurement BasicsElectrochemical Measurement Basics  Example Low Current MeasurementExample Low Current Measurement SystemsSystems  A/D Converter SelectionA/D Converter Selection  Opamp SelectionOpamp Selection  Review of Current Opamp DesignsReview of Current Opamp Designs  SummarySummary
  • 4. Three Terminal Electrochemical Cell with PotentiostatThree Terminal Electrochemical Cell with Potentiostat for Current Measurement [3].for Current Measurement [3].      Counter/ Counter/
  • 5. Potetentiostat and Cell Measurement BasicsPotetentiostat and Cell Measurement Basics  Working Electrode is the electrode where the potential is controlled and where the Working Electrode is the electrode where the potential is controlled and where the  current is measured. It’s where the electrochemical reaction takes place.current is measured. It’s where the electrochemical reaction takes place.  The Reference Electrode is used in measuring the working electrode potential. A The Reference Electrode is used in measuring the working electrode potential. A  reference electrode should have a constant electrochemical potential with no current reference electrode should have a constant electrochemical potential with no current  flowing through it. flowing through it.   The Counter (Auxiliary) Electrode is a conductor that completes the cell circuit. The The Counter (Auxiliary) Electrode is a conductor that completes the cell circuit. The  current that flows into the solution via the Working Electrode leaves the solution via current that flows into the solution via the Working Electrode leaves the solution via  the Counter Electrode.the Counter Electrode.  A potentiostat is an electronic circuit that controls the voltage difference between the A potentiostat is an electronic circuit that controls the voltage difference between the  working electrode and the reference electrode. The potentiostat implements this working electrode and the reference electrode. The potentiostat implements this  control by sourcing current into the cell through the counter electrode. In almost all control by sourcing current into the cell through the counter electrode. In almost all  applications, the potentiostat measures the current flow between the working and applications, the potentiostat measures the current flow between the working and  counter electrodes. The controlled variable in a potentiostat is the cell potential and counter electrodes. The controlled variable in a potentiostat is the cell potential and  the measured variable is the cell current.the measured variable is the cell current.  The potentiostat becomes a galvanostat when the feedback is switched from a cell The potentiostat becomes a galvanostat when the feedback is switched from a cell  voltage control amplifier input signal, to a working electrode cell current input signal. voltage control amplifier input signal, to a working electrode cell current input signal.  The instrument then controls the cell current rather than the cell voltage. The The instrument then controls the cell current rather than the cell voltage. The  electrometer output can still be used to measure the cell voltage.electrometer output can still be used to measure the cell voltage.  Coulometry is the complete electrolysis of a solution at an electrode and the Coulometry is the complete electrolysis of a solution at an electrode and the  measure of the total Coulombs of change produced under Faraday’s Law.measure of the total Coulombs of change produced under Faraday’s Law.
  • 8. Example Low CurrentExample Low Current Measurement SystemsMeasurement Systems
  • 9. System Diagrams of Potentiostat Chip Set Designed at Stanford. Left - Top level systems diagram of the electrochemical analysis system [11]. Right – More detailed top level diagram of the potentiostat [12].
  • 10. Switch implementation approaches. Left – Conventional nMOS transfer gate switch [10]. Right – Low junction leakage alternative. pMOS used with n well tied to reference supply (Gnd) to Vcc/Vss. Inputs to be measured are maintained very close to Gnd, so the voltage from p+ source/drain to n well is ~0V with negligible leakage
  • 11. Block Diagram of A/D converter integrator. Switches with dashes are low junction leakage p channels with n wells connected to gnd [10]. Iin = (T2 / T1 ) Iref
  • 12. Left – Top level conceptual schematic of offset cancellation for dual input opamp [10]. Right – Circuit implementation of dual input opamp with dedicated offset cancellation input [11].
  • 14. Burr Brown Precision Switched Integrator Transimpedance Amplifier. This can be used as a building block for an integrating A/D converter [13]
  • 15. IC1 is a self-contained transimpedance amplifier with an internal feedback capacitor, a hold switch, a reset switch, and a precision op amp (laser trimmed to compensate for offset and drift errors). This amplifier forms the input block for along with the 30-pF internal capacitor This capacitance, along with the integration time set by the 555 timer, scales the I/V output by the transfer equation, Vout=-Iin*Integration Time/Feedback Capacitance=-50mV/pA Burr Brown Picoammeter Reference Design Board
  • 16. A/D Converter SelectionA/D Converter Selection
  • 17. A/D Converted SelectionA/D Converted Selection  Desired goal was to have a converter with 16 bits resolution. The application frequency range is very low, so conversion speed is not an issue. Low noise is a major issue since our goal is to measure currents possibly as low as 1pA, and if possible, 0.1pA  Typical resistive ladder, ratioed capacitor, or cyclic converters did not meet the requirements because of resolution limitations from component matching, and noise issues.  Sigma-Delta converters possibility - employed in some of the prior work reviewed. Resolution of these types of converters can be very high with large over sampling ratios. The application of Sigma-Delta converters can have issues for DC measurements. For signals that are not varying with time, they can develop output tones or instabilities. A low noise front end amplifier and low pass filter are still required.  Integrating A/D converters have been used for precision current measurement instruments, in particular, the dual slope A/D converter. This converter employs a low noise operational amplifier in an inverting configuration with a capacitor feeding from the output to the inverting input to form a miller integrator  The integrator in combination with the input signal forms a low pass filter, bandThe integrator in combination with the input signal forms a low pass filter, band limiting and attenuating higher frequency noise.limiting and attenuating higher frequency noise.  To adjust for different voltage or current ranges, the integration time can be varied.To adjust for different voltage or current ranges, the integration time can be varied. The lower the current range measured, the longer the integration time. For dualThe lower the current range measured, the longer the integration time. For dual slope - Iin = (T2 / T1 ) Iref.slope - Iin = (T2 / T1 ) Iref.  Modifications can be made to the dual slope technique to account for opamp offset,Modifications can be made to the dual slope technique to account for opamp offset, switch charge injection and other non-idealities.switch charge injection and other non-idealities.  Integrating A/D can be viewed as integrate and dump matched filter - SNR=CVIntegrating A/D can be viewed as integrate and dump matched filter - SNR=CV22 /N/N00
  • 18. Left - Basic Auto Zero (AZ) amplifier block diagram [16]. Right - The effect of the AZ process on a first order low-pass filtered 1/f noise having a bandwidth 5 times larger than the sampling frequency [16].
  • 19. High Level Block Diagram of Electrochemical Measurement System under development at ASU.
  • 21. Opamp SelectionOpamp Selection  2 stage active load – noise from active loads, compensation2 stage active load – noise from active loads, compensation  OTA (e.g. U of Utah) – noise from diode loaded input, lowOTA (e.g. U of Utah) – noise from diode loaded input, low gain first stagegain first stage  Telescopic – noise from active loads, low output swingTelescopic – noise from active loads, low output swing  Gain Boost – Possible to be added to current designsGain Boost – Possible to be added to current designs  Lateral bipolar inputs - low beta causes high base currents,Lateral bipolar inputs - low beta causes high base currents, which increases the base thermal noise. Higher 1/f noisewhich increases the base thermal noise. Higher 1/f noise because of the surface states. No device models existed forbecause of the surface states. No device models existed for process.process.  Chopper Stabilized – Too much complexity for 1Chopper Stabilized – Too much complexity for 1stst pass. Willpass. Will revisit because technically superior.revisit because technically superior.  Decided on folded cascode – high gain in 1 stage.Decided on folded cascode – high gain in 1 stage.  Decided on some new design with resistor loads on input.Decided on some new design with resistor loads on input.
  • 22. Left – Schematic of CMOS opamp using lateral PNP transistors [19]. Right- Layout of the lateral bipolar PNP input transistor [19].
  • 23. Top – the chopper amplifier principal [16]. Bottom – Waveforms appearing along the chopper amplifier for a DC input and an amplifier bandwidth limited to twice the chopper frequency [16].
  • 24. Left – Chopper Modulated white noise at zero frequency as a function of the original bandwidth [16]. Right- Chopper output PSD for 1/f noise [16].
  • 25. Crystal Semiconductors Chopper Stabilized Opamp [20]. Amplifier input stage simplified schematic.
  • 26. Review of Current OpampReview of Current Opamp DesignsDesigns
  • 27. Actest1a AC test fixture with offset cancellation used for most of the AC simulations.
  • 28. Cadence schematic with device sizes and values for the self biased folded cascode opamp (selfbfcascode)
  • 29. Gain/Phase simulations of selfbfcascode opamp using testbench actest1a.Gain/Phase simulations of selfbfcascode opamp using testbench actest1a. Overlaid plots of 7 corners: Nominal, 27Overlaid plots of 7 corners: Nominal, 27oo C (Vcc=2V, 2.5V,3V); Nominal, 27C (Vcc=2V, 2.5V,3V); Nominal, 27oo CC (R=+30%,-30%); Slow, 125(R=+30%,-30%); Slow, 125oo C; Fast -15C; Fast -15oo C. Cload=35pF, PM≈60C. Cload=35pF, PM≈60oo
  • 30. Input referred noise voltage squared for selfbfcascode opamp using testbench actest1a. Kf =6(10)-27 (pMOS), Kf =3(10)-25 (nMOS), Model Level=11, Nominal process, 27o C, Vcc=2.5V, Cload=35pF, PM=60o .
  • 31. Transient simulation of selfbfcascode opamp using trantest1test bench, +/- 2.5V input, 1us rise and fall times. Nominal process, 27o C, Vcc=2.5V
  • 32. Cadence schematic with device sizes and values for the low noise self biased folded cascode opamp (lnselfbfcascode). IP24=216uA, and IP3=105uA, IP2=212uA. Nominal process, temperature, and Vcc=2.5V.
  • 33. Cadence schematic with device sizes and node voltages and for the self biased folded cascode opamp with compensation (selfbfcascodecmp).This is the output of lnselfbfcascode.This opamp is identical to selfbfcascode in Figure 21, with the addition of P20 (100u/20u*60) for a comp. cap. IP2=83.4uA, and IP3=IP4=82.0uA, nominal process and temperature, Vcc=2.5V.
  • 34. Gain/Phase simulations of lnselfbfcascode opamp using testbench actest1a. Overlaid plots of 7 corners: Nominal, 27o C (Vcc=2V, 2.5V, 3V); Nominal, 27o C (R=+30%,-30%); Slow, 125o C; Fast -15o C. Cload=30pF, PM≈75o
  • 35. Input referred noise voltage squared for lnselfbfcascode opamp using test bench actest1a. Kf =6(10)-27 (pMOS), Kf =3(10)-25 (nMOS), Model Level=11, Nominal process, 27o C, Vcc=2.5V, Cload=30pF, PM=75o
  • 36. Transient simulation of lnselfbfcascode opamp using trantest1 test bench. +/- 2.5V input, 1us rise and fall times. Nominal process, 27o C, Vcc=2.5V. Includes internal nodes-vinvplus and vinvminus–output of diff. pair.
  • 37. Cadence schematic with device sizes, values and node voltages for the high gain - low noise, opamp (hglnopaa). P31 and P26 are used as compensation capacitors with sizes of (100u/20u*24) and (100u/20u*38) respectively. IP4=48uA, and IP2=187uA, IN10=19uA, IP6=IP7=111uA, IP51=67uA. Nominal process, 27o C, and Vcc=2.5V.
  • 38. Gain/Phase simulations of hglnoppa opamp using testbench actest1a. Overlaid plots of 9 corners: Nominal (-25o C, 27o C, 125o C), Vcc=2.5V; Nominal, 27o C, (Vcc=2V, 2.5V, 3V); Nominal, 27o C, (R=+30%,-30%); Slow, 27o C, Vcc=2.5V; Fast, 27o C, Vcc=2.5V. Cload=30pF, PM≈90o .
  • 39. System level diagram for common modeSystem level diagram for common mode feedback circuit for hglnopaa opamp.feedback circuit for hglnopaa opamp.
  • 40. Opamp hglnopaa common mode feedback loop magnitude response. Overlaid plots with and without capacitor CP44. Simulations using test bench similar to actest1a. Top blue curve - opamp gain response for reference. Second from top red curve – Differential input stage gain response. Third from top – vcommon gain response. Bottom curve - vcmfb gain response. Nominal process, 27o C, Vcc=2.5V.
  • 41. Input referred noise voltage for hglnopaa opamp using test bench actest1a. Kf =6(10)-27 (pMOS), Kf =3(10)-25 (nMOS), Model Level=11, Nominal process, 27o C, Vcc=2.5V, Cload=30pF, PM=90o .
  • 42. Cadence schematic with device sizes and values for high gain - low noise, opamp with W for P0 and P1 input transistors increased to 2000u. (hglnopaa2). Compensation Source follower sizes increased 50% to W=150u for P50 and W=300u for P51. Associated current increased from 67uA to 100uA. P31 andP26 compensation capacitor sizes remain the same at (100u/20u*24) and (100u/20u*38) respectively.
  • 43. Input referred noise voltage for hglnopaa2 opamp (W=2000u input transistor) using test bench actest1a. Kf =6(10)-27 (pMOS), Kf =3(10)-25 (nMOS), Model Level=11, Nominal process, 27o C, Vcc=2.5V, Cload=30pF, PM=90o .
  • 44. Gain/Phase simulations of hglnoppa2 opamp using test bench actest1a. Overlaid plots of 9 corners: Nominal, 27o C, (Vcc=2V, 2.5V, 3V), (R=+30%,-30%); Slow, 125o C, Vcc=2.5V; Fast, -25o C, Vcc=2.5V. Cload=30pF, PM≈65o .
  • 45. Transient simulation of hglnopaa opamp using trantest1 test bench. +/- 2.5V input, 1us rise and fall times. Nominal process, 27o C, Vcc=2.5V. Includes internal nodes-vinvplus and vinvminus–output of diff. pair. Also includes internal nodes of common mode feedback circuit – vcmfb, vdiffbias, and vcommon.
  • 47. Comparison of Opamp Input Referred Noise RelationsComparison of Opamp Input Referred Noise Relations  Self Biased Folded CascodeSelf Biased Folded Cascode vv22 totaltotal={4kT[(4/3)/g={4kT[(4/3)/gmP1mP1)+1/g)+1/gmP3mP3+1/g+1/gmN1mN1]+]+ [(2K[(2KfPfP+3K+3KfNfN)/6000u)/6000u22 CC00](1/f )}∆f (36)](1/f )}∆f (36)  Low Noise Self Biased Folded CascodeLow Noise Self Biased Folded Cascode vv22 totaltotal={4kT[(4/3/g={4kT[(4/3/gmP0LNmP0LN)+(1/g)+(1/g22 mP0LNmP0LNRR11)]+)]+ (K(KfPfP/20000u/20000u22 CC00)(1/f)}∆f (63))(1/f)}∆f (63)  High Gain Low NoiseHigh Gain Low Noise vv22 totaltotal={4kT[(4/3/g={4kT[(4/3/gmP0mP0)+(1/g)+(1/g22 mP0mP0RR11)]+)]+ (K(KfPfP/10000u/10000u22 CC00)(1/f)}∆f (80))(1/f)}∆f (80)  High Gain Low Noise opa2High Gain Low Noise opa2 vv22 totaltotal={4kT[(4/3/g={4kT[(4/3/gmP0mP0)+(1/g)+(1/g22 mP0mP0RR11)]+)]+ (K(KfPfP/20000u/20000u22 CC00)(1/f)}∆f)(1/f)}∆f
  • 48. Comaparison of Opamp CharateristicsComaparison of Opamp Charateristics AV 1dB W PM I In off. In Offset 5%mm In Ref. Noise Volts Noise V @1kHz CMR R PSR R dB MHz deg mA uV uV uVrms uV./sqrt(Hz) dB dB selfbfcascode 95 4.40 55 0.25 0.470 10.2 100 1 85 95 lnselfbfcascode 117 2.25 75 0.78 0.278 11.5 7.12 0.1 86 112 hglnopaa 117 1.74 90 0.55 0.356 7.6 14 0.2 97 107 hglnopaa2 120 1.65 65 0.58 0.258 10.7 6 0.1 97 107
  • 49. Future PlansFuture Plans  Verify Noise ModelVerify Noise Model  Layout opampsLayout opamps  Have Idea for one transistor opamp – exploreHave Idea for one transistor opamp – explore  Design integrating A/DDesign integrating A/D  Layout and tape out test chipLayout and tape out test chip  Look at chopper stabilized amplifier and lock in amplifierLook at chopper stabilized amplifier and lock in amplifier
  • 50. Low noise neural recording amplifier developed at the University of Utah.Low noise neural recording amplifier developed at the University of Utah. Left schematic shows the top level. Right schematic shows the OTALeft schematic shows the top level. Right schematic shows the OTA opamp used in the design. Device is fabricated in AMI 1.6um technologyopamp used in the design. Device is fabricated in AMI 1.6um technology [9].[9].