SlideShare a Scribd company logo
1 of 44
Download to read offline
 
 
Engr 339/340 Senior Design Project 
Design Report 
Calvin College 
5/10/2016 
Team 07: C​3​V Prosthetics 
Zachary Carney 
Joseph Cha 
Justin Cooper 
Jared Vanderklay 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2015, Team 07 and Calvin College 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abstract 
The goal of this project was to design and build a prosthetic leg versatile enough to fit either a child or                                         
adult. The unique adjustability of this design, coupled with the one­design­fits­all mentality, will allow for                             
our single prosthetic to be mass produced and fitted to an enormous variety of patients, specifically those                                 
in developing countries. Our design accomplishes this through four key elements: the adjustable                         
femur/tibia pylon, the adjustable socket/support, the variable foot design, and the affordable and                         
cost­effective knee component. The coinciding of these four features allows our prosthetic to encompass a                             
range of patients with just a single prosthetic. The knee component was based off an already developed                                 
knee component called the JaipurKnee that was created to be a low costing knee component for amputees                                 
in developing countries. The foot component we have is a multi­axis prosthetic foot that will have the                                 
motion range similar to an actual foot and be adjustable. ​The height adjustment pylon component of the                                 
prosthetic is based off the concept of a bike seat adjustment shaft. More specifically the prosthetic can be                                   
adjusted by unlocking the clamp and changing to the desired length and locking the clamp when the                                 
adjustment is finished. The socket support includes a silicon lining that is standard for prosthetic sockets                               
but the outer part is an adjustable support system. This support is able to fold and bend to fit a wide range                                           
of residual limbs which are the part of the leg that remains after amputation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table of Contacts 
1 Introduction 
1.1 Title Page​…..………………………...……………………….…….………….…….……...​i 
1.2 Copyright Page​…………………………………………………..…….……...…..………..​ii 
1.3 Abstract​…………..……………………………………………....……….………....…….​iii 
1.4 Table of Contents​…………………………………………………..………..…………......​iv 
1.5 Table of Figures​…………………………………………………………………………....​vi 
1.6 Table of Tables​…………………………………………………………………………….​vii 
1.7 Introduction​……………………………………………………………………………........​1 
1.7.1 Team members………………………………………………………………….....​1 
1.7.1.1 Joseph Cha……………………………………………………………....​1 
1.7.1.2 Justin Cooper………………………………………………………........​2 
1.7.1.3 Zachary Carney.…………………………………………………….......​2 
1.7.1.4 Jared Vanderklay ……………………………………………………….​2 
1.8 Acknowledgements​………………………………………………………………………….​3 
 
2 Project 
2.1 Project Management​……………………………………………………………….……….​4 
2.1.1 Team Organization…………………………………………………………..…….​4 
2.1.2 Schedule……………………………………………………………………..…….​5 
2.1.3 Budget……………………………………………………………………….....….​6 
2.1.4 Method of Approach…………………………………………………………….…​6 
2.2 Requirements​……………………………………………………..…………..…………….​7 
2.2.1 Functional Requirements……………………………………………………….….​7 
2.2.2 Performance Requirements…………………………………………………….….​7 
2.2.3 Environmental Requirements………………………………………………….…..​7 
2.2.4 Ease of Use Requirements…………………………………………………….…..​8 
2.3 Research​……………………………………………………………..………………….…..​9 
2.4 Task Specifications and Schedule​………………………………………….……..............​10 
2.5 System Architecture​………………………………………………………….……….…..​13 
2.6 Design​……...………………………………………………………………….……....…...​14 
2.6.1 Design Criteria………………………………………...…………………….…...​14 
2.6.1.1 Design Norms………………………………………………………….​14 
2.6.2 Design Decisions…………………………………………………………….…...​14 
2.6.2.1 Knee Component……………………………………………………….​14 
2.6.2.2 Foot Component………………………………………………………..​17 
2.6.2.3 Height adjustment of the Tibia Pylon…………………………………..​20 
2.6.2.4 Support………………………………………………………………....​22 
2.6.2.5 Fasteners……………………………………………………………….​23 
2.6.2.6 Assembled Design……………………………………………………..​24 
2.6.2.7 Prototype……………………………………………………………….​25 
2.7 Integration, Test, Debug​…………………………………………………………….….....​28 
 
2.8 Business  Plan​………………………………………………….……………..……….…...​29 
2.8.1 Marketing Study…………..………………………..……………………….…....​29 
2.8.1.1 Competition…………………………..…………………………..…….​29 
2.8.2 Cost Estimate………………………………………………………………….….​32 
2.8.2.1 Development…………………………………………………………...​32 
2.8.2.2 Production……………………………………………………………...​32 
2.8.2.2.1 Fixed Costs…………………………..……………………...​34 
2.8.2.2.2 Variable Cost…………………………..……………………​34 
2.8.2.2.3 Financial Summary……….…………………………………​34 
2.8.3 Cost Comparison…..……………………………………………………………..​34 
2.9 Conclusion​…………………………………………...………………………………….....​36 
2.10 References/Bibliography​………………………………………………………………....​37 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table of Figures 
Figure 1: Organization Chart ......……………………………………………………………..……….…​5 
Figure 2: Diagram of Prosthetic ……………..……….……..…………………………………………..​13 
Figure 3: The Jaipur Knee………………...…………………………………………………………….​15 
Figure 4: Types of Four Bar Linkage …………………………………………………………………...​16 
Figure 5: Schematic of  Knee Component……………………...………………….……………….…...​17 
Figure 6: Senator Foot…………………………………………………………………………………...​18 
Figure 7: Trustep……………………….………………………………………….……………….……​19 
Figure 8: Schematic of  Foot Component………………………………………….……………….……​19 
Figure 9: Schematic of Pylon.…………………………………………………………………………...​22 
Figure 10: Schematic of  Support……..…………………………………………………………………​23 
Figure 11: Fasteners…………....……..…………………………………………………………………​24 
Figure 12: First Design of Assembled Prosthetic………………………………………………………..​25 
Figure 13: Redesign of Assembled Prosthetic…………………………………………………………...​25 
Figure 14: Prototype of Assembled Prosthetic…………………...……………………………………...​27 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table of Tables 
 
Table 1: Comparison of Features with LIM innovations ……………………………………….............​29 
Table 2: Comparison of Features with Adjustable prosthetic limb socket ..……....…………………….​30 
Table 3: Comparison of Features with By the Ball Screw Drive ……………………..……….……….​31 
Table 4: Senior Design Estimation Cost ……………………………………………...…………..…….​32 
Table 5: Production Cost of Prosthetic Leg ……………………………………………………..….......​33 
Table 4: Senior Design Estimation Cost ……………………………………………...…………..…….​34 
Table 4: Senior Design Estimation Cost ……………………………………………...…………..…….​35 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.7 Introduction 
We are C​3​V Prosthetic, and we are a team consisting of four mechanical engineering majors that are                                 
currently attending Calvin College. Calvin College is a top­ranked liberal arts college located in Grand                             
Rapids, Michigan. Calvin College was founded by the Christian Reformed Church, and still remains a                             
distinctly Christian institute. The Calvin Engineering department produces a high percentage of students                         
who complete the FE exam, complete their degree in four years, and find jobs within six months of                                   
graduating. This project was completed in fulfilment of ENGR 339­340 which is the Senior Design                             
Project and the Engineering program’s capstone. For our project we are building a nearly universal                             
prosthetic leg. It will be able to fit on almost any body type and almost any type of leg amputation within                                         
a range. While it could be marketed in the United States, our main target audience are developing                                 
countries who may not have access to cheaper prosthetics.  
 
 
   Justin Cooper       Joseph Cha                   Zachary Carney     Jared Vanderklay 
 
 
1.7.1 Team Members 
1.7.1.1 Joseph Cha 
Joseph Cha is a senior mechanical engineer, currently at Calvin College in Grand Rapids. Joseph lives in                                 
L.A, but he came to Calvin a missionary kid from China and has seen and partaken in many voluntary                                     
 
service trips to multiple villages. Joseph has no experience in prosthetics, but hopes to use the complete                                 
product to serve the people in both third world countries and developed countries. 
 
1.7.1.2 Justin Cooper 
Justin Cooper is a senior Mechanical Engineering student currently attending Calvin College in Grand                           
Rapids, Michigan. He is from Ann Arbor, Michigan and currently resides in Grand Rapids, Michigan.                             
The interest for engineering came in his senior year of high school where he greatly enjoyed a physics                                   
class that was taken which sent him on his path to becoming a mechanical engineer. Justin has not had                                     
any experience in the field of engineering but has worked in a plant in the past so is familiar with some                                         
machinery. Justin has a strong interest in the field of prosthetic and is hoping to work for a prosthetic                                     
company in the future. 
 
 
1.7.1.3 Zachary Carney 
Zachary Carney is the third member of this group. He currently resides in Caledonia, Michigan. At a                                 
young age, he grew fascinated with robots and the field of robotics as a whole. He especially was                                   
interested in robots that were shaped and moved similar to humans. Also, he saw some of the issues with                                     
current prosthetics, particularly how uncomfortable they can be. His goal is to create autonomous robots                             
that will help humanity as well as prosthetics that feel more natural to their users. He sees this project as a                                         
great stepping stone to that goal.   
 
1.7.1.4 Jared Vanderklay 
Jared Vanderklay is a senior mechanical engineering student at Calvin College. He grew up in                             
Sacramento, California into a family of seven. His interest in mechanical engineering developed out a                             
fascination with moving parts and problem solving. Although he has no prior experience in prosthetics,                             
this project provides Jared with a wondrous mechanical problem to be tackled. 
 
 
 
 
 
 
 
 
 
 
 
1.8 Acknowledgements 
We would like to thank Ryan Sheridan, a certified prosthetist that works for Hanger, for educating us on                                   
the basics of prosthetics and giving us feedback on our prosthetic leg design. Ryan also donated several                                 
key components for our prosthetic leg. We would also like to thank Professor Ryan Bebej for the                                 
information on bone structures that led us to gain a better understanding of the human leg in an effort to                                       
mimic its functionality for our prosthetic. We would like to express thanks to our team advisor Ned                                 
Nielsen for all the knowledge and guidance he has shared with us. Finally we would like to thank Phil                                     
Jasperse and Bob De Kraker for their support and knowledge in machining and material acquisition.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1 Project Management  
2.1.1 Team Organization 
For our team no specific roles or titles for each member were assigned. Work assignments were delegated                                 
as need arose. Team meetings were scheduled after every senior design class. Additional meetings                           
occurred as needed to accommodate upcoming due dates. By completing most of the work in team                               
meetings, all members stayed up to date and involved in the process. Additionally, individual struggles on                               
any given assignment could quickly be addressed by the team. All of our documents are kept either on                                   
the engineering scratch drive or on Google docs to allow team members easy access and to facilitate                                 
collaboration. We also have a team email address so that any information or external communication that                               
needs to be shared, can readily be. Although team members do not have specified roles or titles, we still                                     
have those that are above us that we take direction from. This includes our professors and mentors that                                   
aided us along the way. The organization chart that shows this can be seen in Figure 1 below. 
 
 
 
Figure 1: Organization Chart 
 
 
 
2.1.2 Schedule 
Scheduling matters were primarily decided by the due dates provided through Engr. 339/340. Outside of                             
these formal constraints, individual assignments and rough due dates were decided in team meetings.                           
These two scheduling methods allowed us to stay on track. A primary task schedule can be seen in section                                     
2.4.  
 
 
2.1.3 Budget 
In accordance with Engr. 339/340, our team was assigned a maximum budget of $500. Our budget of                                 
$500 is more than enough to buy the material we need to create this prosthetic, except one piece, which is                                       
the foot part of the prosthetic. The price of a senator foot alone is about $700 according to freedom                                     
innovations, a the manufacturing company of the senator’s foot. This is one of the biggest challenges we                                 
have to face during this project. 
 
2.1.4 Method of Approach 
Approaching this task, our primary focus was to restore the loss of mobility that amputees had suffered. In                                   
developing countries, the effects felt from limb loss are magnified by the lack of external support                               
measures to sustain the victims and their families. Simply put, losing a limb can remove one’s ability to                                   
support his or her family. With this in mind, supplying a lost­cost and high­function leg prosthetic                               
promises to ease financial difficulties for a neglected part of our world. To accomplish this we started                                 
researching common prosthetic designs both in the U.S. and abroad.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2 Requirements   
Given a primarily third­world audience, it became very important to maintain a low cost through the                               
design and manufacturing procedures. Although this is a low cost product, we do not want it to be a low                                       
quality product. Our design must also be very durable, because living and working in developing                             
countries is rarely as easy going as the U.S.. We also would like it to be used to perform most physical                                         
activities. While wearing this prosthetic the user would be able to walk on almost all types of terrain and                                     
be able to run. Playing sports may be too difficult with this design. Part of our range of users includes                                       
children, and we want them to be able to wear this prosthetic and not feel so different from other kids.                                       
This will be difficult given all are other requirements, but we will attempt to design the leg so that it will                                         
very similarly resemble a real human leg. With all these requirements we want this prosthetic leg to be                                   
simple enough that the user can perform most of the maintenance themselves. We would like for this leg                                   
to last around 5 years, given an industry average of about 3 years.  
 
2.2.1 Functional Requirements 
We want this prosthetic to work almost as well as a natural leg. This will require a knee design that can                                         
almost match the efficiency and functionality of a natural knee. It will also require a strong and durable                                   
frame that can have the dependability of a real leg. Our prosthetic should also be comfortable for our                                   
patients to wear. According to Ryan Sheridan, the two chief complaints about prosthetics are the weight                               
and the heat. Both of these issues pivot around the design of the socket. Temperature control inside a                                   
prosthetic is a massive project in itself, but the feeling of a heavy prosthetic is largely due to a poor                                       
patient fit. As such, our support design must have enough adjustability for each patient to readily establish                                 
a close and secure support fit. 
 
2.2.2 Performance Requirements 
Our performance requirements include the need for the prosthetic to be durable enough for activities such                               
as running and strong enough to last at least 3 and up to 5 years of very high usage. It should be able to                                               
support the weight of each of our patients with a max weight of about 400 lbs including safety factors.  
 
2.2.3 Environmental Requirements  
Our prosthetic should be able to withstand the rough terrain of these developing countries. Large                             
temperature swings and water damage must be accounted for without risking the safety of the user. 
  
 
 
 
2.2.4 Ease of Use Requirements 
We would like our prosthetic to be simple enough for our patients to use and maintain independently. In                                   
order to do that, we would need to make the adjustment mechanisms of the prosthetic rather basic; enough                                   
for our patients to be able to learn on their own once they receive the prosthetic leg. This can reduce the                                         
amount of time and effort for the orthotist and it eliminate the “middle man” part of setting up a                                     
prosthetic. After all the point of all prosthetic is how the patient feels and making sure it fits right, similar                                       
to wearing new shoes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.3 Research 
Our sources for our research were mainly found online. Specifically, a lot of the sources we found were                                   
from the Heckman Library Engineering Database. This turned out to be a very good database because you                                 
can easily filter out reports and documents that just deal with engineering and whatever topic is needed.                                 
Using the database we were able to find very good sources that deal with prosthetic legs. Another source                                   
we had was Ryan Sheridan who is a Certified Prosthesis and Board­Eligible Orthotist with his Masters in                                 
Science of Prosthetics and Orthotics who works for Hanger. All our sources for the PPFS and all other                                   
documents can be seen in 2.10 References/Bibliography. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.4 Task Specifications and Schedule 
9/9 ­ 9/16 : Define Senior Design Project and present to Advisor 
9/16 ­ 12/11 : Research on prosthetics 
9/16 ­ 12/11: Contact and work with prosthetic companies 
9/30 ­ 10/7: Work on PPFS outline and the designs of the socket and the knee 
10/7 ­ 11/16 : Work on the PPFS draft 
10/19 ­ 10/23 : Prepare Oral Presentation of Design Project and purchase pylon parts from a 
community bike shop. 
10/26 ­ 10/28 : Work on Website 
11/4 ­ 11/6: Update poster 
11/16 ­ 12/11: Work on the PPFS final draft 
10/28 ­ 12/11: Update Website 
2/1­3/3: Update Website 
2/1­5/2 :Order Parts for the sockets, knee and new pylons parts 
3/20­3/21: Research on new foot design and pylon is being tested for the 200 lbs load 
3/21­4/11 : Construction of the first knee component prototype  
3/30­4/22: Design foot and searching for a quote of the materials required 
4/18 ­ 5/5: Construction of the second and final knee component prototype 
4/23­5/6: Final Assembly and Part’s quality check and final test of pylon; 400lbs 
5/7: Senior Design Night ­ Project Due 
5/9: Final Website Update 
 
5/11: Final Report Due 
The order of which we complete the tasks are in the order of when they are due. For the tasks such as                                           
research and contacting prosthetic companies for information, they continue throughout the whole                       
semester. A more detailed explanation of each task this semester will be explained with the order of task                                   
being the order in which the task’s are due and the due date can be seen in the schedule above with the                                           
last day to work on the task being the due date. The first task that needed to be completed was the                                         
selection of the senior design project. This was a fairly easy process because the idea of a designing a                                     
prosthetic was already talked about over the summer, so what was left was to decide on what prosthetic                                   
limb to do. The choice of a prosthetic leg was made because we are all mechanical engineers and dealing                                     
with a leg would involve more of what we have learned in our classes. The task of researching was given                                       
to everyone and would be a continual task. The topics of research involved general prosthetic knowledge,                               
adjustment and linkage designs for our prosthetic, the actual human leg, different materials, and methods                             
of prosthetic production. On top of this broad prosthetic research we each broke up the sections of our                                   
prosthetic leg design and had each individual gather more detailed research on that component. This                             
broke down to 
 
Jared Vanderklay ­ support/socket 
Joseph Cha ­ main frame of prosthetic which includes the height adjustment system 
Justin Cooper­ knee component  
Zachary Carney ­ foot component 
 
Another very important task was to get into contact with a prosthetic company and talk about our design                                   
in order to get professional feedback. We managed to accomplish this by meeting with Ryan Sheridan .                                 
From this meeting we gained a source that we could continue to go back to if we had more questions or                                         
sought more guidance for our design. The next task was to create an outline for the PPFS. This was done                                       
as a team and completed by the due date. After the outline was completed, the formation of the PPFS draft                                       
was started. This task distributed out by having it be worked on little by little during our meetings. It was                                       
also worked on individually when each team member had extra time available. The next major task was                                 
the oral presentation which was given by Justin Cooper and Jared Vanderklay. The next task that needed                                 
to be completed was the web design. The first thing that was done was to choose which team member                                     
would be in charge of the web design and Zachary volunteered. Using his student ID we gained access to                                     
Dreamweaver and started working on the website. This was also a task that was spread out and worked on                                     
little by little and was completed by the due date. Finally, the finished PPFS was completed in the same                                     
manner as all the other documents. Work was spread out over several weeks with additional work and                                 
 
emphasis during the final week of the fall semester. For the spring semester it consisted of us building a                                     
prosthetic leg and that was spread over the entire semester. With everyone working on their individual                               
components the need for a schedule was diminished. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.5 System Architecture 
The basic layout of our prosthetic leg can be seen in Figure 2 below. The design consists of five parts the                                         
support (also called the socket), femur and tibia components (also called the pylons), knee, and foot. The                                 
support is where the patient's leg meets the prosthetic. The support will be able to fit wherever the patient                                     
has been amputated. Then depending on if the patient’s amputation is transtibial, below knee, or                             
transfemoral, above knee, the rest of the prosthetic leg components will be selected. With a transtibial                               
amputation the only components that will be used would be the support, the pylon, and foot components,                                 
while a transfemoral would use every component. This is the main feature of our prosthetic and it has the                                     
ability to be easily modified so that the same prosthetic can switch from a patient with a transfemoral                                   
amputation to a patient with a transtibial amputation much like a building block pattern. This is                               
accomplished through a building block design. The fastening system used to connect individual                         
components is consistent throughout the design. This feature allows the patient to pick and choose which                               
components are necessary to most closely match the dimensions of the prosthetic to his or her leg. 
 
 
 
←Socket 
 
 
 
 
 
 
←Knee 
 
 
 
←Pylon 
 
 
 
←Foot 
 
Figure 2: Diagram of a Typical Prosthetic 
 
2.6 Design  
2.6.1 Design Criteria 
2.6.1.1 Design Norm​s 
 
•Caring 
•Integrity 
•Trust 
•Humility 
 
These design norms were chosen because for a leg prosthetic, we need to show that we care for the                                     
patients who need this. We want to boost their confidence, allowing them to stay mobile and able­bodied                                 
despite the loss of their legs. We also need to prove that our product is helpful to the patient in a user                                           
friendly manner and to prove that the product alone is strong enough for them to trust the product. We                                     
want to make sure that our product is reliable enough for them to perform their daily tasks. Last but not                                       
least, we need to understand that we cannot return life to how it was before the amputation, but that does                                       
not mean we will not try to the best of our abilities. Before this design project, we had very little                                       
knowledge on prosthetics and how they are constructed. While we have a better understanding of them                               
now, we still have much to learn. Being a Calvin College student we hold these design norms in high                                     
regard and have spent the whole year making sure we stay true to them. We are all God’s children and                                       
when we have the opportunity to help other by using our God given abilities we need to make sure we do                                         
that. This goes along with the parable of the talents in Matthew 25:14­30. The moral of the story is that                                       
when you are blessed with certain gifts or talents you need to use those to make the world better in some                                         
way not just do nothing. We believe that our group is following this teaching in that we are using the                                       
knowledge that we have been privileged to receive from Calvin College to make the world a little better.   
  
2.6.2 Design Decisions 
2.6.2.1 Knee Component 
For the knee component in our prosthetic leg, the design we chose came from a previously designed knee                                   
joint called the JaipurKnee. When we were searching for ideas on how we want to design our knee we                                     
came across this design that was made by a student team at Stanford University whose goals were very                                   
similar to ours. This team’s goal was to create a low­costing, high­performance prosthetic knee joint for                               
amputees in developing countries. This goal is similar to ours with the only difference being the scope of                                   
the project. The basic layout for the JaipurKnee can be seen in Figure 3.  
 
 
 
Figure 3: The Jaipur Knee 
 
The main design that was used in our knee that the Jaipurknee uses is the four bar linkage system. The                                       
four bar linkage system that is used is a Type II, non­Grashof, triple rocker. This linkage system is known                                     
as a “Type II” because the length of the shortest and the longest links, added together, are greater than the                                       
added lengths of the remaining two links. The dimensions for our 4­bar linkage system can be seen below. 
 
s + l > p + q   
 
where s is the shortest side, l is the longest side, and p and q are the remaining sides: 
 
s =  0.75 inches    l = 2.5 inches  p  =  1.921 inches  q  =  0.875 inches 
 
The linkage is considered a triple rocker because no link completes a full 360 degree rotation relative to                                   
another link. This type of four bar linkage works the best because it gives that sturdy support that a knee                                       
should have when standing upright and it allows for the bending motion of a real knee. This will give the                                       
user the ability to safely perform simple actions such as walking and sitting. This goes along with our                                   
design norm of trust because we want people who use our prosthetic to know that it won’t fail on them                                       
while they are using it. The material that was used to create the knee is high density polyethylene which                                     
is the same material as the Jaipurknee. This knee was developed out of a 12 in x 12in x 1in slab of the                                             
polyethylene that cost $20.93. The low cost of the material used to make the knee allows us to keep the                                       
cost of our prosthetic affordable enough for those living in developing countries. A diagram of a triple                                 
rocker linkage systems as well as others can be seen in Figure 4. 
 
 
 
 
Figure 4: Types of Four Bar Linkages 
 
 
Figure 5: Knee Component 
 
 
2.6.2.2 Foot Component 
For the foot component, we ​initially considered using a dynamic response foot. The design we wanted to                                 
use in particular was based on the senator foot by Freedom Innovations, which is shown in Figure 6. It                                     
was lightweight and was comprised of carbon fiber, allowing for more energy return. However, we found                               
that this foot design was more geared toward those who were athletically driven. It is also rather poor in                                     
terrain adaptability, which is a necessity for those living in third world countries.  
 
We are now considering using a type foot known as a multi­axis foot. Multi­axis prosthetic feet have a                                   
motion range similar to an actual foot. Our design features an adjustable toe length to function with our                                   
project goals. The toe component will slide to the desired length then a screw will hold it in place. This                                       
design is based on the Trustep foot by College Park, which can be seen in Figure 7, while our modified                                       
design can be seen in Figure 8. The forefoot and heel portions of it will be comprised of carbon fiber,                                       
giving the prosthetic even more energy absorption as well as allow it to move across rough terrain with                                   
little difficulty. The ankle portion, though, will be made of aluminum. This will reduce the cost of the                                   
prosthetic while maintaining support. Size range considerations were established with the minimum                       
length based upon the average U.S. shoe size for women. 
 
 
 
Figure 6: Senator Foot 
 
 
 
Figure 7: Trustep 
 
 
 
 
Figure 8: Schematic of Foot Component 
 
 
 
2.6.2.3 Height adjustment of the Pylon 
Regarding the adjustment of height of the pylon, two hollow pipes were used with one that is a smaller                                     
diameter than the other. The inner pipes will have enough space to slide in and out smoothly of the outer                                       
pipe, this is where the main resistive force comes into play. With that the two pipes will have a clamp                                       
where it will lock the two pipes in place and to the required height that the user requires. If the user needs                                           
to change the height of the pylon then the user can unlock the clamp and readjust the height of the two                                         
pipes. This idea is based off of a bike seat adjustment mechanism. The reason why this mechanism is                                   
chosen for this is because on clean and dry surfaces the coefficient of friction of aluminum to aluminum is                                     
between 1.05 and 1.35. The reason why the two tubes are not difficult to remove is because there is not                                       
enough contact with each other due to the clamp being unclamped. 
To put it simply, the more contact with the two pipe have together from the clamp’s compressive force,                                   
the more friction that they will both exert. We want the patient to have an easy time to adjust the tubes                                         
rather than having him/her to fight against it, which is why the tubes are required to slide in as easy as                                         
possible, while it snug as much as possible. The clamp will exert a compressive force onto the two tubes.                                     
Based on the stiffness equation, 
 
K = L
AE
 
Where K is the Stiffness (N/m) 
A is the surface area of contact ( )m2  
E is the young’s Modulus (N/ )m2  
And L is the length of the contact (m) 
 
Along with the given deflection from testing the clamps, the compressive force is given based on this 
equation as well. 
  
δ F = K  
Where F is the compressive force (N) 
is the deflection of the clamp (m) δ  
 
As shown from the equation from above, the higher the deflection of the clamp the higher the                                 
compressive force that it can exert to the two tubes, which will make them have a higher contact with                                     
each other and as of result have a higher friction force between the two tubes.  
 
The pylon will be a tibia length due to the socket will make up for the loss of the femur part. The pylon                                             
lengths vary between sexes, races, or mutations in their growth spurts, which made this quite difficult to                                 
 
capture many of the audience’s bones lengths. For instance, a pylon that can extend from 10 cm to 48 cm                                       
while it can support the patient’s load and it is cheap and easy to manufacture or access while it being                                       
practical is no easy feat. This is also one of the reasons why our objective has changed. As of result                                       
instead of children to adults, the objective is more focus towards teens to adults somewhere the age of 14                                     
to adulthood.  
 
According to Korean Academy of Medical Science, they have recorded over hundreds of childrens from                             
the age of 3 to 16 of both boys and girls with X­rays. Since this project is more focused on the age of 14                                               
and above, then only a portion of data will be used from their data. On an average 14 year old boy’s tibias                                           
are in the 34 cm mark. The girl’s tibia are about 33 cm as well. To allow that the pylons to fit in both                                               
sexes, the lowest tibia length would be the minimum length of a 14 year old child. The pylons has to                                       
reach the average tibia length of 36.45 cm. As long those values are reachable, then the pylons have met                                     
their length requirements.   
 
As shown in Figure 9, the pylons can reach about a range of 15 to 25 cm with a 3~4 cm discrepancy                                           
because a small portion is required for the clamp to grab onto.  
However there is a small issue, there is now a height discrepancy with the knee component and the other                                     
parts of the prosthetic. It is mainly due to the connection parts with a 1.2 inches or a 3.048 cm                                       
discrepancy. Despite the lengths given from the Korean Academy of Medical Science and using replicas                             
as comparisons in the biology departments. The lengths of the pylons would have to be shorter than the                                   
actual sizes of the tibia. 
It would be much more efficient if two pylons were to stack on top of each other and they are able to                                           
change lengths rather than one, since this methods offers more adjustability, especially if there are some                               
height discrepancies in the prosthetic. 
 
 
 
Figure 9: Schematic of Tibia Pylon, Scale 1:2 
 
2.6.2.4 Support / Socket 
Adjustability in the support is essential to creating a versatile and comfortable prosthetic. In modern                             
prosthetics, the two chief complaints from patients are that the prosthetic is too hot and too heavy.                                 
Contrary to the idea of a heavy prosthetic, most of these “heavy” prosthetics are actually lighter than the                                   
limb that they replace. The feeling of additional weight is due both to the moment generated by the                                   
prosthetic and a poor support fit. To accommodate a range of people, our design implements the standard                                 
socket liner and base locking measures. These common components allow for the leg to be securely                               
fastened to the socket when the leg is lifted. The weight of the individual will be transferred to the socket                                       
liner by a series of 4 multi­hinged arms. Each arm will be independently adjustable. Once appropriate arm                                 
positions have been determined, the arms will be strapped to both the middle and top of the socket liner.                                     
Finally, an external wrap will prevent the supports from buckling outward. Shown in Figure 10 is an                                 
example of one potential patient fitting. The arms of the support are to be extended to the maximum                                   
 
possible length (with restrictions determined by patient anatomical structure) in order to maximize the                           
area that the support distributes the load over and minimize the shear forces on the patient's leg tissue. 
 
 
Figure 10: Schematic of Support 
 
 
2.6.2.5 Fasteners 
Consistency between all locking mechanisms is essential to allow for the building block idea to function.                               
For the fasteners, we initially considered twist­and­lock mechanisms. These will be located on the bottom                             
and top of the individual components. However, we decided to go with an allen­socket screw fasteners.                               
While it does take longer to assemble the parts using these, they offer more stability and overall                                 
versatility, especially in the foot. The two types we used can be shown in Figure 11 
 
 
 
Figure 11: Fasteners 
 
2.6.2.6 Assembled Design 
Finally, the aforementioned components but be assembled into a cohesive unit. The final unit for                             
mass production and shipping will consist of a support and liner, the knee component, 2 pylons,                               
and a foot. This combination of parts will allow for a wide range of patients to assemble the 
required parts to fit their needs. Shown in Figure 12 is our first attempt for a possible patient                                   
fitting. Due to further research, though, we found that this design was rather lacking in terms of                                 
versatility, specifically in the foot. Shown in Figure 13 is our redesigned unit.  
 
   
Figure 12:First Design of Assembled Prosthetic  
 
 
Figure 13: Redesign of Assembled Prosthetic 
 
 
 
2.6.2.7 Prototype  
The Prototype came out as what most of us expected, each othe “blocks” or modules were able to                                   
meet their conditions. Despite that, the overall the prototype was unable to be fully tested in                               
terms to walking nor running. At the moment the prosthetic can stand and hold the patient. With                                 
each of the parts meeting their goals, they each also have a flaw that hindered the progress of this                                     
prototype. 
Due to time constraints and the large prices on its components, we could not construct our foot                                 
design. Fortunately, thanks to the versatility of our fasteners, we were able to use a dynamic foot                                 
for the prototype and in the future allows many patients to rely on other foot types than one type                                     
of foot. Not only the foot, but the socket, pylon and the knee also has some flaws in their                                     
prototype stage. Due to the height discrepancy, the pylons became shorter than the expected 36.5                             
cm for the actual tibia length. The reason behind this was that the socket’s range in length was                                   
unknown to me due to unfortunate circumstances with our socket designer.  
For the sockets, its linkages requires larger hinges than needed to fit the steel wires that had to be                                     
looped around the leg, which made those hinges even more likely to break under the expected                               
loads. The linkages were able to take the compression, however we assumed that the linkages                             
would be in a straight linkage pattern rather than a crooked one. As of result, this allows the                                   
linkages to be more susceptible to breaking. If the links themselves were to be thicker and some                                 
of the links were to be replaced near the base plate, then the links could have able to withstand                                     
the loads. Figure 14 shows our prototype.  
For the knee component the motion of the knee with the four bar linkage system worked the way                                   
we design it to be but we were unable to complete a load test for the knee. Therefore our knee                                       
component is fully functional but we do not know the extent of the load it is capable of bearing. 
 
 
 
Figure 14: Prototype of Assembled Prosthetic 
 
 
 
 
 
 
 
 
 
 
 
 
2.7 Integration, Test, Debug 
To test our prosthetic we created virtual models in Inventor. This focused mainly on strength, seeing what                                 
materials and designs can provide the support and durability our leg needs. We used a force analysis, first                                   
on the individual parts, then on the whole assembly. We also used the program SolidWorks to test the                                   
motion of our four bar linkage system. Through this we were able to formulate the exact measurements of                                   
our links. 
 
Once this was done and we selected the most cost effective materials and design, we created our                                 
prototype and tested it on four aspects: comfort, horizontal walking, incline walking, and running.                           
Unfortunately due to time constraints we were unable to perform an extensive test on our prosthetic. What                                 
we had planned was for the comfort test, we would check to see if the support for our prosthetic caused                                       
irritation or discomfort when wearing it. For horizontal walking, we would test how the prosthetic would                               
act when it’s used on various terrain. That would include gravel, mud, grass, and sidewalk. For incline                                 
walking, we would have tested how the prosthetic acts while walking up and down stairs as well as                                   
various inclines. For running, we would test how the prosthetic would act at various speeds.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.8 Business Plan 
2.8.1 Marketing Study 
2.8.1.1 Competition 
Throughout the market, there is not much competition for a near universal prosthetic leg that can fully                                 
adjust from the leg to support. Ours is unique in that respect. In the table below, the LIM innovation’s                                     
product, infinite socket, is the closest product that we can compare to our design. 
 
Table 1. Comparison of Features with LIM innovations 
 
Features  C3V Solutions Prosthetics  LIM innovations infinite 
socket 
Purposes  Fully Adjustable for the entire 
leg, while allowing the 
prosthetic to provide human like 
motion. 
Clinicians interested in a 
streamlined or mobile fitting 
process while also improving 
outcomes 
Trans­femoral and knee 
disarticulation users with large 
volume changes, discomfort, or 
at risk for skin breakdown. 
Process of Creation  Requires mold and parts to 
assemble the parts to create the 
leg prosthetic. 
A proprietary process for 
achieving a well­fitting, 
custom­molded socket using 
measurements and images, 
without the requirement of an 
impression.  
 
Warranty 
 
Life expectancy of 3 years; and 
soft goods for about 6 months. 
 
The Infinite Socket hard goods 
are warranted for two years; soft 
goods for 6 months 
Weight  Expected to hold 400 pounds  Weight under 250 pounds.  
Height  Expected to have 30 cm height 
adjustment 
Minimum of 15 cm height 
adjustment 
Availability  Fast manufacturing process, 
similar to Lego production 
Depends on clinical 
examinations, if it requires or 
not. 
Comfortability   Expected to make it comfortable 
and lightweight. 
Main function to make it 
lightweight and comfortable. 
 
Source  PPFS and Team 7 
documentations 
http://www.liminnovations.com/
products/infinite­socket/ 
 
 
 
 
Table 2. Comparison of Features with Adjustable prosthetic limb socket 
 
Features  C3V Solutions Prosthetics  Adjustable prosthetic limb 
socket 
Purposes  Fully Adjustable for the entire 
leg, while allowing the 
prosthetic to provide human like 
motion. 
Adjustable prosthetic limb 
socket system having a partial 
rigid support, a non­elastic, 
flexible support and adjustment 
means.  
Process of Creation  Requires mold and parts to 
assemble the parts to create the 
leg prosthetic. 
Requires mold process. 
 
Warranty 
 
Life expectancy of 3 years; and 
soft goods for about 6 months. 
NA 
     
Weight  Expected to hold 400 pounds  NA 
Height  Expected to have 30 cm height 
adjustment 
NA 
Availability  Fast manufacturing process, 
similar to Lego production 
NA 
Comfortability   Expected to make it comfortable 
and lightweight. 
The traditional socket is 
designed to allow comfortable 
weight bearing and prevent soft 
tissue damage as weight 
pressures are applied to the 
residual limb via the prosthetic 
socket.  
Source  PPFS and Team 7 
documentations 
http://www.google.com/patents/
US20120041567 
 
 
Table 3. Comparison of Features with ​By the Ball Screw Drive 
 
Features  C3V Solutions Prosthetics  By the Ball Screw Drive 
Purposes  Fully Adjustable for the entire 
leg, while allowing the 
prosthetic to provide human like 
motion. 
Artificial limb main part is 
through motor based on 
active control knee flexion 
knee actuator, by intelligents 
Process of Creation  Requires mold and parts to 
assemble the parts to create the 
leg prosthetic. 
NA 
 
Warranty 
 
Life expectancy of 3 years; and 
soft goods for about 6 months. 
NA 
 
     
Weight  Expected to hold 400 pounds  NA 
Height  Expected to have 30 cm height 
adjustment 
ball­screw producing 5mm 
longitudinal displacement for 
each revolution for movement 
only. 
Availability  Fast manufacturing process, 
similar to Lego production 
NA 
     
Comfortability   Expected to make it comfortable 
and lightweight. 
NA 
Source  PPFS and Team 7 
documentations 
http://search.proquest.com/docvi
ew/1443593717/25B9D19DDFF
94B63PQ/15?accountid=9844 
 
 
 
   
 
2.8.2 Cost Estimate 
2.8.2.1 Development 
For our senior design project we were given a budget of $500 from Calvin. This cost will need to cover all                                         
materials, equipment and other cost that will go into or design. This budget was more than enough                                 
because with the idea being more for developing countries this whole product is to be as low cost as                                     
possible. Our estimated cost for our prosthetic is shown in Table 4.  
Table 4: Senior Design Estimation Cost 
 
This price can be this low because the only need for the money was to buy the material. There will not be                                           
any labor cost because we are the ones building it and we don’t get paid for this. There are no equipment                                         
costs because the metal shop at Calvin was available for use on our project and access is free. We do not                                         
need to pay for any building cost, taxes, or anything else because this is just the production of one                                     
prosthetic leg. If we wanted to mass produce this item on our own many more factors would come into                                     
play and the production cost would be greatly higher and this process will be shown and explained in                                   
section 2.8.2.2.   
 
2.8.2.2 Production 
There are two methods that we could choose to mass produce our prosthetic leg and they will both be                                     
looked at. The first method is to do all of production of our prosthetic leg in the U.S. The other method is                                           
to have all production overseas to make the whole production cost lower. Cost estimates for producing in                                 
the U.S. and overseas can be seen in Table 5. 
 
 
 
 
 
 
 
 
 
 
 
Table 5: Production Cost for Prosthetic Leg 
 
The goal of producing 1000 prosthetic legs is shown for production process in the U.S. and overseas. The                                   
raw materials are assumed the same for both production methods which includes Aluminum, High                           
Density Polyethylene, and Carbon Fiber. The equipment cost includes the initial cost of the mill and lathe                                 
that is assumed to be the only equipment needed to form the prosthetic leg. It was assumed that the same                                       
equipment could be purchased for almost half the price overseas. The direct labor really shows the                               
difference of manufacturing overseas and in the U.S. In the U.S. direct labor was done using 5 employees                                   
working 8 hours a day five days a week on a minimum wage of $8.15 an hour. If done this way it would                                             
take roughly 17 months to produce 1000 prosthetic legs. If production was overseas the labor would be 20                                   
employees working 12 hours a day 6 days a week for a wage of $1.15 an hour. Knowing that labor laws                                         
are vastly different in other countries if we took that route we could save more money but we would need                                       
to treat our workers as well as we can to stay with what we believe in as a company and the design norms                                             
that guide us. The repeating costs include rent for the building, utilities, and the marketing costs. A rough                                   
estimate for these were done excluding all cost involving taxes. Looking at the table we can see that the                                     
total cost for production in the U.S. is $211,120 to produce 1000 prosthetic legs and to produce the same                                     
amount but overseas will cost $41,000 and it would only take about 4 months. The large difference in                                   
costs can easily be seen but there are so many more factors that come into play on deciding if production                                       
should be in the U.S. or not and one important factor is who it is sold to. Through discussion, we’ve                                       
decided to first sell our product in the US, then sell overseas. For our analysis, we assumed that the other                                       
country that we would be producing in is China. The same conditions used in our previous analysis will                                   
be applied to the US branch. However for China, the workers will work for about 9 hours a day, 5 days a                                           
week. They will also receive more equipment to meet their quota and prevent bottlenecking.  
 
 
 
2.8.2.2.1 Fixed costs 
For the US, the fixed cost for goods sold is $7,200 per year and the total fixed operational costs are $1500                                         
per year. Depreciation is $6,288 per year and the interest expense is $3,750 per year. The total fixed costs                                     
are $32,238 per year. 
 
For China, the fixed cost for goods sold is $3,600 per year and the total fixed operational costs are $900                                       
per year. Depreciation is $6,288 per year and the interest expense is $3,750 per year. The total fixed costs                                     
are $25,469. 
 
2.8.2.2.2 Variable costs 
For the US, the variable cost for goods sold is $160,200 per year and variable operational costs are                                   
$10,000 per year. The total variable costs are $170,200. The variable cost per unit is $170.20. 
 
For China, the variable cost for goods sold is $68,600 per year and the variable operational costs are                                   
$1000 per year. The total variable costs are $69,600. The variable cost per unit is $69.60. 
 
2.8.2.2.3 Financial summary 
For the US, the price per unit is $250. 
 
For China, the price per unit is $140. 
 
2.8.3 Cost Comparison 
 
Table 6: Cost Analysis of Prosthesis with Senator Foot 
 
Cost Analysis 
Modules  Cost ($) 
Senator Foot  700.00 
Pylons  50.14 
Knee  43.08 
Support  100.00 
Total  893.22 
 
 
Table 7: Cost Analysis of Prosthesis with SACH Foot 
 
Cost Analysis 
Modules  Cost ($) 
SACH Foot  13.00 
Pylons  50.14 
Knee  43.08 
Support  100.00 
Total  206.22 
 
After taking all the materials accounted for, Table 6 and 7 shows the aftermath of the price of the 
prosthetic leg of our designs. Thanks to the versatility of our fasteners, the price of the prosthetics can 
vary greatly, as the foot of the prosthetics is at least one of the more expensive part of the prosthetics. 
With the SACH foot, the prosthetic is about $200 which is ⅕ cheaper than the current cheapest prosthetic 
leg that we have around today. However; carbon fiber feet are a different story as they have different 
process and different layers, which increases cost to an absurd level with the current budget.  Thankfully, 
the parts were donated, from Ryan from Hangar, but this is something that should not be overlooked. This 
proves that for our design to be feasible to the developing and 3rd world countries the SACH foot, which 
is common in developing and 3rd world countries, is the best choice for the patients there.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.9 Conclusion 
This report discusses all the steps, considerations, and factors that went into the design of our prosthetic                                 
leg. Through our research and talks with our Ryan Sheridan we have managed to create a basic design for                                     
an adjustable prosthetic leg. This design was completed keeping in mind all our many factors, which                               
include maintaining a low cost, accounting for patient safety and comfort, and manufacturing and                           
distribution in and to third world countries. In the beginning all the members in this team struggle in                                   
learning prosthetics and to build a foundation to stand upon. This was a learning and a wonderful                                 
experience that we asked for, much like solomon to God. ​And God said to Solomon in 2 Chronicles 1:11                                     
“Because this was in thine heart, and thou hast not asked riches, wealth, or honor, nor the life of thine                                       
enemies, neither yet hast asked for long life, but hast asked wisdom and knowledge for thyself, that thou                                   
mayest judge My people over whom I have made thee king,​“ If it weren't for our motivation and God, we                                       
would have been lost in this project. As of result, C​3​V Prosthetics has addressed this through the height                                   
and width adjustment in the support, height adjustment in the pylons, a high­function and low­cost knee                               
solution, an adjustable dynamic response foot, and a revolutionary building block layout.  
 
 
 
   
 
2.10 References/Bibliography 
 
Romero, Emmanuel. "$20 Artificial Knee for Patients in the Developing World." ​Stanford News​ 15 Apr. 
 2009: n. pag.  
<​http://news.stanford.edu/news/2009/april15/cool­product­expo­artificial­limbs­041509.html​>. 
 
Torrealba, R. R., L. A. Zambrano, E. Andara, G. Fernandez­Lopez, and J. C. Grieco. ​Medium­Cost 
Electronic Prosthetic Knee for Transfemoral Amputees: A Medical Solution for Developing 
Countries​. Tech. Vol. 25/9. N.p.: Springer Berlin Heidelberg, 2009. 1680­0737. ​Springer Link​. 
Web. 9 Nov. 2015. <​http://link.springer.com/chapter/10.1007/978­3­642­03889­1_122​>. 
 
Sachin, M. S. ​The Bionic Man: Future Super Human​. Tech. Vol. 5. Bhopal: International Journal of  
Electronics Communication and Computer Engineering, 2014. Print.  
<​http://search.proquest.com/docview/1618219085/abstract?accountid=9844​>. 
 
"What Is O&P?" ​OP Careers​. N.p., n.d. Web. 11 Nov. 2015.  
<​http://www.opcareers.org/default.asp​>.   
 
Leimkuehler, Paul. “Human Foot and Ankle Versus Prosthetic Foot/Ankle Mechanism Function.”  
Prosthetic Foot/Ankle Mechanisms. Online Learning Center. Web. 29 Nov. 2015. 
<​http://www.oandp.org/olc/lessons/html/200606­14/section_5.asp?frmCourseSectionId=5828CD
65­86D4­45E9­81F0­E996BA425D48>. 
 
“Finding the best foot for you.” Ottobock. Web. 29 Oct. 2015.  
<​http://consumers.ottobockus.com/prosthetics/info­for­new­amputees/prosthetics­101/finding­the
­best­foot­for­you/>. 
 
 
 Kim, Ki Jun, Cheng Dong Wu, Fei Wang, and Shi Guang Wen. ​By the Ball Screw Drive a New Initiative  
Knee Joint Structure Design​. Rep. Vol. 58­60. Zurich: Trans Tech Publications, 2011. ​ProQuest​. 
Web. 9 Nov. 2015.   
<​http://search.proquest.com/docview/1443593717/abstract?accountid=9844​>.   
 
 
Adjustable Prosthetic Limb Socket. Cornell Keith D, assignee. Patent US 13/208,846. 12 Aug. 2011.  
Print.  
<​http://www.google.com/patents/US20120041567​>. 
 
"Infinite Socket ­ LIM Innovations." ​LIM Innovations​. N.p., n.d. Web. 09 Nov. 2015.  
<​http://www.liminnovations.com/products/infinite­socket/​>.   
 
 
Slocum, Alexander. ​Fundamentals of Design​. N.p., 1 Jan. 2008. Web. 14 Nov. 2015.  
<​http://web.mit.edu/2.75/fundamentals/FUNdaMENTALs%20Book%20pdf/FUNdaMENTALs%
20Topic%204.PDF​> 
Trustep. College Park. Web. 22 Apr. 2016. <​http://www.college­park.com/prosthetics/trustep​> 
 
Figure 2: Prosthetic Schematic Image 
<​http://www.stancepando.com/services/prosthetics/transfemoral/​> 
 
Figure 3 JaipurKnee image 
<​http://download.springer.com/static/pdf/236/art%253A10.1007%252Fs10439­013­0792­8.pdf?o
riginUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10439­013­0792­8&to
ken2=exp=1447620580~acl=%2Fstatic%2Fpdf%2F236%2Fart%25253A10.1007%25252Fs1043
9­013­0792­8.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%2
52F10.1007%252Fs10439­013­0792­8*~hmac=9a801424314beb42aa2d3dd805c20ad041d3140e
2bc5b4da703ff400091b5c84​> 
 
Figure 6: Senator Foot image  
<​http://www.freedom­innovations.com/wp­content/uploads/2014/08/Senator.png​> 
 
Figure 7: Trustep image 
<​http://rslsteeper.com/products/prosthetics/products/lower_limb/college_park_industries/trustep​> 
 
US Shoe size standards 
<​http://www.zappos.com/c/shoe­size­conversion​> 
 
Korean Academy of Medical Science: Tibia and Femur sizes 
<​http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.349.1754&rep=rep1&type=pdf​> 
 
Average Tibia length 
<​http://onlinelibrary.wiley.com/doi/10.1525/aa.1898.11.10.02a00010/pdf​> 
 
 

More Related Content

Similar to Team07DesignFinalReport

Design and Analysis of Affordable Artificial Knee Joint Model. Motion and Str...
Design and Analysis of Affordable Artificial Knee Joint Model. Motion and Str...Design and Analysis of Affordable Artificial Knee Joint Model. Motion and Str...
Design and Analysis of Affordable Artificial Knee Joint Model. Motion and Str...Gautam Singh
 
Aravind_Jayasankar_Master_Thesis
Aravind_Jayasankar_Master_ThesisAravind_Jayasankar_Master_Thesis
Aravind_Jayasankar_Master_ThesisAravind Kumar
 
Designing in rp ds/ dental implant courses
Designing in rp ds/ dental implant coursesDesigning in rp ds/ dental implant courses
Designing in rp ds/ dental implant coursesIndian dental academy
 
Automatic Stretcher Cum Wheelchair
Automatic Stretcher Cum WheelchairAutomatic Stretcher Cum Wheelchair
Automatic Stretcher Cum WheelchairIRJET Journal
 
Product Dev with NASA @ UC Berkeley, Final Report
Product Dev with NASA @ UC Berkeley, Final ReportProduct Dev with NASA @ UC Berkeley, Final Report
Product Dev with NASA @ UC Berkeley, Final ReportJosh Stroud
 
Total Hip Replacement Implant Designing and its Computational Analysis using ...
Total Hip Replacement Implant Designing and its Computational Analysis using ...Total Hip Replacement Implant Designing and its Computational Analysis using ...
Total Hip Replacement Implant Designing and its Computational Analysis using ...IRJET Journal
 
Manufacturing of a Wheelchair Cum Stretcher for a Variety of Uses
Manufacturing of a Wheelchair Cum Stretcher for a Variety of UsesManufacturing of a Wheelchair Cum Stretcher for a Variety of Uses
Manufacturing of a Wheelchair Cum Stretcher for a Variety of UsesIRJET Journal
 
Paragraph Writing In 1St And 2Nd Grade - The Brown Ba
Paragraph Writing In 1St And 2Nd Grade - The Brown BaParagraph Writing In 1St And 2Nd Grade - The Brown Ba
Paragraph Writing In 1St And 2Nd Grade - The Brown BaStephanie King
 
Writing 5 Paragraph Essay. Five paragraph essay format. How to write a 5 Par...
Writing 5 Paragraph Essay.  Five paragraph essay format. How to write a 5 Par...Writing 5 Paragraph Essay.  Five paragraph essay format. How to write a 5 Par...
Writing 5 Paragraph Essay. Five paragraph essay format. How to write a 5 Par...Lauren Davis
 
Writing 5 Paragraph Essay.pdf
Writing 5 Paragraph Essay.pdfWriting 5 Paragraph Essay.pdf
Writing 5 Paragraph Essay.pdfAmy Toukonen
 
Implants in orthodontics a paradigm shift /certified fixed orthodontic cour...
Implants in orthodontics  a paradigm shift  /certified fixed orthodontic cour...Implants in orthodontics  a paradigm shift  /certified fixed orthodontic cour...
Implants in orthodontics a paradigm shift /certified fixed orthodontic cour...Indian dental academy
 
Expository Essay Topics For College Students.pdf
Expository Essay Topics For College Students.pdfExpository Essay Topics For College Students.pdf
Expository Essay Topics For College Students.pdfJennifer Martinez
 
John Arigho (X00075278) Final Project [Porcine Vertebra Simulation](Print)
John Arigho (X00075278) Final Project [Porcine Vertebra Simulation](Print)John Arigho (X00075278) Final Project [Porcine Vertebra Simulation](Print)
John Arigho (X00075278) Final Project [Porcine Vertebra Simulation](Print)John Arigho
 
2- b. Basic principles for designing Kennedy class II, III and IV Removable P...
2- b. Basic principles for designing Kennedy class II, III and IV Removable P...2- b. Basic principles for designing Kennedy class II, III and IV Removable P...
2- b. Basic principles for designing Kennedy class II, III and IV Removable P...AmalKaddah1
 
2- b. Basic principles for designing Kennedy class II, III and IV RPD - Copy....
2- b. Basic principles for designing Kennedy class II, III and IV RPD - Copy....2- b. Basic principles for designing Kennedy class II, III and IV RPD - Copy....
2- b. Basic principles for designing Kennedy class II, III and IV RPD - Copy....AmalKaddah1
 
Romeo And Juliet Essay On Love
Romeo And Juliet Essay On LoveRomeo And Juliet Essay On Love
Romeo And Juliet Essay On LoveSharon Lopez
 

Similar to Team07DesignFinalReport (20)

Design and Analysis of Affordable Artificial Knee Joint Model. Motion and Str...
Design and Analysis of Affordable Artificial Knee Joint Model. Motion and Str...Design and Analysis of Affordable Artificial Knee Joint Model. Motion and Str...
Design and Analysis of Affordable Artificial Knee Joint Model. Motion and Str...
 
Aravind_Jayasankar_Master_Thesis
Aravind_Jayasankar_Master_ThesisAravind_Jayasankar_Master_Thesis
Aravind_Jayasankar_Master_Thesis
 
Designing in rp ds/ dental implant courses
Designing in rp ds/ dental implant coursesDesigning in rp ds/ dental implant courses
Designing in rp ds/ dental implant courses
 
Automatic Stretcher Cum Wheelchair
Automatic Stretcher Cum WheelchairAutomatic Stretcher Cum Wheelchair
Automatic Stretcher Cum Wheelchair
 
Product Dev with NASA @ UC Berkeley, Final Report
Product Dev with NASA @ UC Berkeley, Final ReportProduct Dev with NASA @ UC Berkeley, Final Report
Product Dev with NASA @ UC Berkeley, Final Report
 
Total Hip Replacement Implant Designing and its Computational Analysis using ...
Total Hip Replacement Implant Designing and its Computational Analysis using ...Total Hip Replacement Implant Designing and its Computational Analysis using ...
Total Hip Replacement Implant Designing and its Computational Analysis using ...
 
GoffInvLinBet
GoffInvLinBetGoffInvLinBet
GoffInvLinBet
 
Manufacturing of a Wheelchair Cum Stretcher for a Variety of Uses
Manufacturing of a Wheelchair Cum Stretcher for a Variety of UsesManufacturing of a Wheelchair Cum Stretcher for a Variety of Uses
Manufacturing of a Wheelchair Cum Stretcher for a Variety of Uses
 
Paragraph Writing In 1St And 2Nd Grade - The Brown Ba
Paragraph Writing In 1St And 2Nd Grade - The Brown BaParagraph Writing In 1St And 2Nd Grade - The Brown Ba
Paragraph Writing In 1St And 2Nd Grade - The Brown Ba
 
Robotics report
Robotics reportRobotics report
Robotics report
 
Writing 5 Paragraph Essay. Five paragraph essay format. How to write a 5 Par...
Writing 5 Paragraph Essay.  Five paragraph essay format. How to write a 5 Par...Writing 5 Paragraph Essay.  Five paragraph essay format. How to write a 5 Par...
Writing 5 Paragraph Essay. Five paragraph essay format. How to write a 5 Par...
 
Writing 5 Paragraph Essay.pdf
Writing 5 Paragraph Essay.pdfWriting 5 Paragraph Essay.pdf
Writing 5 Paragraph Essay.pdf
 
Implants in orthodontics a paradigm shift /certified fixed orthodontic cour...
Implants in orthodontics  a paradigm shift  /certified fixed orthodontic cour...Implants in orthodontics  a paradigm shift  /certified fixed orthodontic cour...
Implants in orthodontics a paradigm shift /certified fixed orthodontic cour...
 
Expository Essay Topics For College Students.pdf
Expository Essay Topics For College Students.pdfExpository Essay Topics For College Students.pdf
Expository Essay Topics For College Students.pdf
 
Walker Thesis W13
Walker Thesis W13Walker Thesis W13
Walker Thesis W13
 
John Arigho (X00075278) Final Project [Porcine Vertebra Simulation](Print)
John Arigho (X00075278) Final Project [Porcine Vertebra Simulation](Print)John Arigho (X00075278) Final Project [Porcine Vertebra Simulation](Print)
John Arigho (X00075278) Final Project [Porcine Vertebra Simulation](Print)
 
2- b. Basic principles for designing Kennedy class II, III and IV Removable P...
2- b. Basic principles for designing Kennedy class II, III and IV Removable P...2- b. Basic principles for designing Kennedy class II, III and IV Removable P...
2- b. Basic principles for designing Kennedy class II, III and IV Removable P...
 
2- b. Basic principles for designing Kennedy class II, III and IV RPD - Copy....
2- b. Basic principles for designing Kennedy class II, III and IV RPD - Copy....2- b. Basic principles for designing Kennedy class II, III and IV RPD - Copy....
2- b. Basic principles for designing Kennedy class II, III and IV RPD - Copy....
 
Presentation1
Presentation1Presentation1
Presentation1
 
Romeo And Juliet Essay On Love
Romeo And Juliet Essay On LoveRomeo And Juliet Essay On Love
Romeo And Juliet Essay On Love
 

Team07DesignFinalReport