SlideShare a Scribd company logo
1 of 69
Download to read offline
Radiochemistry Center of Excellence
Expanding the Horizons of Nuclear Forensics
Analysis
John D. Auxier II
University of Tennessee
Nuclear Engineering Colloquium
January 21, 2015 -- Knoxville, TN
The context
§  Importance of training nuclear and
radio-chemists
§  Nuclear Melt Glass
§  Gas-phase separations
Copyright©NationalAcademyofSciences.Allrightsreserved.
1-1.eps
5 bitmaps included
landscape
1903
Nobel Prize in Physics
to Becquerel and Curies
1974
Positron emission transaxial
tomographic (PETT) imaging
device introduced by Michael
Phelps and industry colleagues
1901
Henri Alexandre Danlos
and Eugene Bloch placed
radium in contact with
a tuberculous skin lesion
1943
Nobel Prize in Chemistry
to de Hevesy for the use
of isotopes as tracers
2006
About 395 million radiological
and nuclear medicine
procedures performed in
the United States
Nuclear
Medicine
Education
and Training
1978
ACS Committee on Training
of Nuclear and Radiochemists
notes decline in nuclear and
radiochemistry faculty and
students
1984
First ACS/DOE Nuclear
Chemistry Summer
School established
2004
NSAC Report
1937
Glenn Seaborg receives
PhD in nuclear chemistry
from University of
California at Berkeley
1896
Discovery of
radioactivity by
Henri Becquerel
1939
Nobel Prize in Physics
to Lawrence for
inventing cyclotron
1911
Nobel Prize in
Chemistry to Marie
Curie for discovery of
radium and polonium
1951
Nobel Prize in Chemistry
to Edwin McMillan and
Seaborg for chemistry of
transuranium elements
Nuclear
Energy
1991
22% U.S. electricity
from nuclear energy
2010
20% U.S. electricity
from nuclear energy
1951
Experimental
breeder reactor
generates electricity
1945
WWII – Hiroshima
and Nagasaki
1979
Three Mile Island
1986
Chernobyl
2011
Fukushima
Earthquake
Nuclear
Incidents
2009
DNDO National
Forensics
Expertise Development
Program established
1988
NAS Report
201020001900 1910 1920 1940 1950 1960 1970 1980 19901890 1930
FIGURE 1-1 Milestones in Nuclear and Radiochemistry.
SOURCES: NRC 1988; Yates 1993; Peterson 1997; Argonne National Laboratory 2012; DOE/NSF 2004; DOE 2011a,b; EIA 2011a,b; Kentis 2011;
Nobelprize.org 2012a,b,e; NSF 2011; SNM 2011; UC Berkeley 2012.
Assuring	
  a	
  Future	
  U.S.-­‐Based	
  Nuclear	
  Chemistry	
  Exper=se,	
  Na#onal	
  Research	
  Council	
  (2012)	
  
What is a radiochemist?
ORNL	
  Physics	
  Division	
  
NIST	
  
Radiochemist:	
  one	
  who	
  
uses	
  the	
  radioac#ve	
  
nature	
  	
  of	
  ma=er	
  to	
  
study	
  non-­‐radioac#ve	
  
proper#es	
  of	
  reac#ons	
  
Nuclear	
  chemist:	
  one	
  
who	
  uses	
  chemistry	
  to	
  
study	
  radioac#ve	
  
elements	
  
Studies of the pipeline
§  1978: The American Chemical Society’s (ACS) Division
of Nuclear Chemistry and Technology (DNCT) first
noted a decline in nuclear and radiochemistry faculty
and students in chemistry departments
§  1988: National Research Council, Training
Requirements for Chemists in Nuclear Medicine,
Nuclear Industry, and Related Areas.
§  2004: DOE/NSF Nuclear Science Advisory Committee,
Education in Nuclear Science
§  2008: AAAS/APS, Nuclear Forensics: Role, State of the
Art, Program Needs
§  2012: National Research Council, Assuring a Future
U.S.-Based Nuclear Chemistry Expertise
numbers of degree holders in this discipline.
Nuclear and radiochemistry needs cannot simply be filled by transfers
from the larger groups of engineering and physics degree holders. Much of
the chemistry involved in separating actinides, preparing reagents for nuclear
medicine, and removing radioactive materials from the environment requires
knowledge of synthetic, analytical, and other aspects of chemistry, informa-
1-2.eps
0
50
100
150
200
250
1950
1953
1956
1959
1962
1965
1968
1971
1974
1977
1980
1983
1986
1989
1992
1995
1998
2001
2004
2007
NumberofEarnedDoctorateDegrees
Academic Year
Nuclear chemistry
Nuclear physics
Nuclear engineering
FIGURE 1-2 Number of Ph.D.s per year in selected nuclear science and engineering
disciplines, 1950–2007.
NOTE: Survey of Earned Doctorates stopped counting nuclear chemistry degrees after
2003.Assuring	
  a	
  Future	
  U.S.-­‐Based	
  Nuclear	
  Chemistry	
  Exper=se,	
  Na#onal	
  Research	
  Council	
  (2012)	
  
US nuclear chemistry PhD’s
Radchem PhD’s (keyword based)
DEFINING NUCLEAR AND RADIOCHEMISTRY EXPERTISE 21
2-1.eps
0
5
10
15
20
25
30
35
40
45
1970 1975 1980 1985 1990 1995 2000 2005 2010
Count
Year
SED Ph.D. Degrees
PQDT Ph.D. Theses
FIGURE 2-1 U.S.-granted Ph.D. degrees and dissertations in nuclear chemistry by year,
1970-2010, based on the National Science Foundation Survey of Earned Doctorates
(SED) and the ProQuest Dissertation and Theses (PQDT) database. SED data (blackAssuring	
  a	
  Future	
  U.S.-­‐Based	
  Nuclear	
  Chemistry	
  Exper=se,	
  Na#onal	
  Research	
  Council	
  (2012)	
  
US peer-reviewed contributions in
radiochemistry declining
24 ASSURING A FUTURE U.S.-BASED NUCLEAR AND RADIOCHEMISTRY EXPERTISE
2-4.eps
0%
10%
20%
30%
40%
50%
60%
70%
80%
1970
1972
1974
1976
1978
1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004
2006
2008
2010
%U.S.Authorship
Publication Year
Uranium
Plutonium
Technetium
Thorium
Fluorine-18 or (18)F
FIGURE 2-4 Percentage of U.S.-authored papers out of the total number of papers for
selected keywords, 1970-2010.
SOURCE: Web of Science keyword search, http://apps.webofknowledge.com, Septem-Assuring	
  a	
  Future	
  U.S.-­‐Based	
  Nuclear	
  Chemistry	
  Exper=se,	
  Na#onal	
  Research	
  Council	
  (2012)	
  
Nuclear Eng. PhD’s trending up
ASSURING A FUTURE U.S.-BASED NUCLEAR AND RADIOCHEMISTRY EXPERTISE
2-2.eps
0
20
40
60
80
100
120
140
160
180
200
1970
1972
1974
1976
1978
1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004
2006
2008
2010
NumberofNuclearEngineeringPh.D.DegreesAwarded
Year
FIGURE 2-2 Trend in nuclear engineering Ph.D. degrees, 1970-2010.
NOTE: Includes programs with nuclear engineering majors and option programs inAssuring	
  a	
  Future	
  U.S.-­‐Based	
  Nuclear	
  Chemistry	
  Exper=se,	
  Na#onal	
  Research	
  Council	
  (2012)	
  
Faculty base was a concern
§  2008: 46 active faculty identified
– Across 20 universities
– Producing 114 PhD’s
– 7 universities were “singlets”
– 5 universities were “doublets”
– Largest program was Washington
University in St. Louis, with 6 faculty in
nuclear medicine program
Assuring	
  a	
  Future	
  U.S.-­‐Based	
  Nuclear	
  Chemistry	
  Exper=se,	
  Na#onal	
  Research	
  Council	
  (2012)	
  
Additionally, academic radiochemistry
programs face significant challenges
§  Perceived risk
§  Expense of compliance
§  Lack of faculty base
§  General shift from experimental
science to modeling and simulation
§  Increasing challenges using the
national labs
§  Budgets and budget cycles
Assuring	
  a	
  Future	
  U.S.-­‐Based	
  Nuclear	
  Chemistry	
  Exper=se,	
  Na#onal	
  Research	
  Council	
  (2012)	
  
2012: Findings
§  Faculty base was extremely vulnerable
§  Little or no undergraduate curricula
§  Programs with only one faculty were
unsustainable
§  Funding was limited and unpredictable
§  Data sources for tracking the academic
health of the field are poor or missing
§  Specific programs were helping, but not
fast enough
Assuring	
  a	
  Future	
  U.S.-­‐Based	
  Nuclear	
  Chemistry	
  Exper=se,	
  Na#onal	
  Research	
  Council	
  (2012)	
  
Overall conclusions – Demand
and Supply
(5-­‐year	
  data)	
   BS	
   MS	
   PhD	
  
Demand	
   200	
   93	
   306	
  
Supply	
   250	
   50	
   65	
  
Assuring	
  a	
  Future	
  U.S.-­‐Based	
  Nuclear	
  Chemistry	
  Exper=se,	
  Na#onal	
  Research	
  Council	
  (2012)	
  
In memoriam,….
W.	
  Frank	
  Kinard	
  (2013)	
  
College	
  of	
  Charleston	
  
Heino	
  Nitsche	
  (2014)	
  
University	
  of	
  California	
  
And one last bit of bad news
§  Update on the Nuclear Chemistry
Summer Schools
§  From NUCL Newsletter: This is traditionally the time of year
that we announce the dates for the summer schools. I regret to
inform the Division that at this time we have not received
any funding for the fourth year of the five year grant
that will allow us to hold the summer schools in
2015.
DNCT	
  NewsleIer,	
  October	
  2014	
  
NNSA established the UT Radiochemistry
Center of Excellence in 2013
Development and Forensic Analysis of
Nuclear Melt Glass Surrogates
Overview
§  Motivation
§  Synthetic Trinitite
§  Conclusions
§  Future Work
Motivation
§  Lack of available nuclear melt glass
§  Development of analytical techniques
needed
§  Support of radiochemistry and nuclear
forensic education
Event	
  
Environmental	
  Knowns	
  
Post	
  Material	
  
Analysis	
   Regional	
  
Produc#on	
  
Comparison	
  
A=ribu#on	
  
Scenario	
  
Selec#on	
  
Es#mates	
  
of	
  	
  
Environment	
  
Develop	
  
Surrogate	
  
Produce	
  
Event	
  
Surrogate	
  
Sample	
  
Analysis	
  
Surrogate	
  
Material	
  
Regional	
  
Produc#on	
  
Comparison	
  
Verifica#on	
  
&	
  
Valida#on	
  
Applica#on	
   Laboratory	
  
Synthetic Trinitite
Development and Synthesis
§  Trinitite used as a
benchmark
§  Powdered oxides used
to create sample
matrix
§  Matrix melted and
vitrified
STF Composition (by mass fraction)
Trinitite Data Synthetic Formulation
Comp. Fraction Comp. Fraction
SiO2 6.42x10-1
SiO2 6.42x10-1
Al2O3 1.43x10-1
Al2O3 1.43x10-1
CaO 9.64x10-2
CaO 9.64x10-2
FeO 1.97x10-2
FeO 1.97x10-2
MgO 1.15x10-2
MgO 1.15x10-2
Na2O 1.25x10-2
Na2O 1.25x10-2
K2O 5.13x10-2
KOH 6.12x10-2
MnO 5.05x10-4
MnO 5.05x10-4
TiO2 4.27x10-3
TiO2 4.27x10-3
U 1.60x10-5
UNH 3.37x10-5
Total 9.81x10-1
Total 9.91x10-1
Element Fraction Element Fraction
Si 3.00x10-1
Si 3.00x10-1
Al 7.55x10-2
Al 7.55x10-2
Ca 6.88x10-2
Ca 6.88x10-2
Fe 1.53x10-2
Fe 1.53x10-2
Mg 6.90x10-3
Mg 6.90x10-3
Na 9.24x10-3
Na 9.24x10-3
K 4.26x10-2
K 4.26x10-2
Mn 3.93x10-4
Mn 3.93x10-4
Ti 2.58x10-3
Ti 2.58x10-3
O 4.60x10-1
O 4.69x10-1
U 1.60x10-5
U 1.60x10-5
N 0 N 1.88x10-6
H 0 H 1.10x10-3
Synthesis
PXRD
SEM/EDS
Trini#te	
   Synthe#c	
  
Gamma Spectroscopy
Gamma Spectroscopy (Cont.)
Nuclide ROI Half-­‐Life	
  
(yr)
Energy	
  
(keV)
Branching	
  RaPo	
  
(%)
Act.	
  (Bq/g	
  )	
  -­‐	
  
TriniPte	
  
Act.	
  (Bq/g	
  )	
  –	
  
STF	
  
133Ba1,2,3 5 10.51 356.01 62.05 27.1 ± 0.5 N/A
137Cs1,2,3 8 30.05 661.66 84.99 32.1 ± 0.04 N/A
152Eu1,2,3 3 13.522 121.7 28.41 69.9 ± 0.8 N/A
	
  
4 	
   334.2 26.59
	
  
10 	
   778.9 12.97
	
  
11 	
   964.08 14.50
154Eu1,2,3 * 8.601 123.07 40.40 158 ± 0.4 477 ± 9.3
	
  
9 	
   723.3 20.05
	
  
12 	
   1,004.7 17.86
	
  
13 	
   1,274.4 34.90
155Eu1 * 4.573 86.55 30.7 0.9 ± 0.6 0.38 ± 0.003
	
  
* 	
   105.31 21.1
239Pu1 1 24.1x103 51.62 0.02 11208 ±
3907
N/A
	
  
* 	
   129.30 0.002
	
  
6 	
   375.05 0.0015
	
  
7 	
   413.71 0.0015
241Pu2 * 14.35	
   103.68 1.0E-­‐4 63.0 ± 1.8 N/A
241Am1,2,3 2 432.2 59.94 35.92 13 ± 11 N/A
60Co1,2,3 * 5.271 1,173.2 99.85 44 ± 4 N/A
	
  
* 	
   1,332.4 99.98
95Zr	
  is	
  the	
  actual	
  isotope	
  
126Sn	
  is	
  the	
  actual	
  isotope	
  
1P.	
  P.	
  Parekh	
  et	
  al.,	
  “Radioac#vity	
  in	
  trini#te	
  six	
  decades	
  later.,”	
  J.	
  Environ.	
  Radioact.,	
  vol.	
  85,	
  no.	
  1,	
  pp.	
  103–20,	
  Jan.	
  2006	
  	
  
2J.	
  J.	
  Bellucci	
  et	
  al	
  ,	
  “Distribu#on	
  and	
  behavior	
  of	
  some	
  radionuclides	
  associated	
  with	
  the	
  Trinity	
  nuclear	
  test,”	
  J.	
  Radioanal.	
  Nucl.	
  Chem.,	
  vol.	
  295,	
  no.	
  
3,	
  pp.	
  2049–2057,	
  Sep.	
  2012	
  
3D.	
  Schlauf,,et	
  al“Trini#te	
  redux:	
  Comment	
  on	
  ‘Determining	
  the	
  yield	
  of	
  the	
  Trinity	
  nuclear	
  device	
  via	
  gamma-­‐ray	
  spectroscopy,’”	
  Am.	
  J.	
  Phys.,	
  vol.	
  
65,	
  no.	
  11,	
  p.	
  1110,	
  1997.	
  
	
  
Synthetic Trinitite Results/Conclusions
§  It is possible to produce melt glass that is
similar to trinitite in:
–  Elemental Composition
–  Morphology
–  Radiological Signature
–  Chemical Behavior
§  This melt glass can be used as a viable surrogate for
radiochemistry/ nuclear forensic applications
Background
§  Separations are important part of
nuclear forensics.
–  Post-Detonation Scenarios1
–  Current liquid methods are time-
consuming
§  Need for Rapid Separations
–  Experiment with gas chromatography/
mass spectrometry separations2 for
thermochemical separations3
1Development of Synthetic Nuclear Melt Glass for Forensic Analysis” Molgaard, Auxier et. al.
J. Rad. Nucl. Chem., 2015, In press.
2 “Assessing thermochromatography as a separation for nuclear forensics: current capability
vis-a-via forensic requirements”, Hanson et. al 2011, J. Rad. Nucl. Chem.
3Synthesis and detection of a seaborgium carbonyl complex, Even et al., 2014, Science,
Background (Cont.)
§  Ligands for ease of volatilization and
rapid separation
1,1,1,5,5,5	
  –	
  hexafluoro	
  –	
  2,4	
  –	
  
pentadione	
  (denoted	
  hfac)	
  
6,6,7,7,8,8,8-heptafluoro-2,2-
dimethyl-3,5-octanedione (denoted hfod)
2,2,6,6-­‐tetramethyl-­‐3,5-­‐
heptanedione	
  (denoted	
  hdpm)	
  
Outline
§  Ligand Synthesis
–  Comparison in terms of timeliness and
percent yield.
–  Mass Spectrometry Analysis
§  Separations
–  Mass Spectra
–  Time separated separations
§  Conclusions
Rapid Separations Flowchart
Dissolve Ln oxides
use of HCl, HNO3,
H2SO4
Prepare NH4[ligand]
Hhfac + NH4OH à
NH4[hfac] + H2O
Combine NH4[hfac] with LnCl3
X NH4[lig] + LnCl3 à Ln[hfac]x + X NH4Cl
Extract Ln[hlig]4 into
organic phase and dry
Structural Characterization and
Purity Determination:
FT-ATR-IR (NDA), P-XRD (NDA),
SC-XRD (~ 5 mg), ICP-TOF-MS (~1
mg), MP (~2 mg), NMR (~1 mg)
Separate using
thermochromatographic
methods.
Synthesis and Characterization
Synthesis of Ln[hfac]4 Compounds
Compound	
   %	
  Yield	
  
Sm	
   35.0-­‐36.3	
  
Gd	
   57.9-­‐60.0	
  
Tm	
   57.2-­‐59.2	
  
1Sievers, R. E.; Ponder, B. W.; Morris, M. L.; Moshier, R. W. Inorganic Chemistry 1963, 2, 693.
2Eisentraut, K. J.; Sievers, R. E. Journal of the American Chemical Society 1965, 87, 5254.
3Springer, C. S.; Meek, D. W.; Sievers, R. E. Inorganic Chemistry 1967, 6, 1105.
Synthesis of Ln[hfod]x compounds
Compound	
   %	
  Yield	
  
Nd	
   21.0-­‐21.6	
  
Sm	
   15.8-­‐16.2	
  
Dy	
   14.3-­‐14.7	
  
1Sievers, R. E.; Ponder, B. W.; Morris, M. L.; Moshier, R. W. Inorganic Chemistry 1963, 2, 693.
2Eisentraut, K. J.; Sievers, R. E. Journal of the American Chemical Society 1965, 87, 5254.
3Springer, C. S.; Meek, D. W.; Sievers, R. E. Inorganic Chemistry 1967, 6, 1105.
Synthesis of Ln[hdpm]x
compounds
*Eisentraut,	
  J.	
  Am.	
  Chem.	
  Soc.,	
  82(22),	
  1965	
  
Compound	
   %	
  Yield	
  
Pr	
   72.1	
  
Eu	
   80.7	
  
Ho	
   82.4	
  
Synthesis Time Comparison
Ligand	
   Time	
  for	
  Synthesis	
   Steps	
  
hfac	
   3	
  hr.	
   Oxide	
  to	
  Chloride	
  
Total	
  Time:	
   0.25	
  hr.	
   Ether	
  extrac#on	
  
3.5	
  hr.	
   0.25	
  hr.	
   GC-­‐MS	
  Analysis	
  
hfod	
   3	
  hr.	
   Oxide	
  to	
  Chloride	
  
Total	
  Time:	
   0.25	
  hr.	
   Ligand	
  Addi#on/
Precipita#on	
  
3.5	
  hr.	
   0.25	
  hr.	
   GC-­‐MS	
  Analysis	
  
hdpm	
   3	
  hr.	
   Oxide	
  to	
  Chloride	
  	
  
Total	
  Time:	
   3	
  hr.	
   Ligand	
  to	
  Ln	
  Addi#on	
  
12.25	
  hr.	
   6	
  hr.	
   Vacuum	
  Dis#lla#on	
  
0.25	
  hr.	
   GC-­‐MS	
  Analysis	
  
Mass Spectrum Analysis
Ln[hfod]x MS Analysis
Solvent	
  
Sm	
  
Ln[hdpm]x MS Analysis
Solvent	
  
Separations
Ln[hfac]4Gas Chromatography
Sm
Tm
Dy
Ln[hfac]4 GC-MS Results
Dy, 4.85-4.9 min.
Left to Right: Tm,
TmF, 4.1-4.2 min.
,
Left to Right:
Sm, SmC,
SmO. At
3.4-3.6 min
Ln[hfod]x Gas Chromatography
Nd[hfod]x	
  
Eu[hfod]x	
  	
  
Ho[hfod]x	
  
Ln[hfod]x GC-MS Results 3D
Nd,	
  2.4	
  –	
  2.9	
  min	
  
Sm,	
  2.4	
  –	
  2.8	
  min	
  	
  	
  
Dy,	
  2.4	
  –	
  2.6	
  min	
  
Ln[hdpm]x Gas Chromatography
Ether,	
  Solvent	
  
Eu,	
  2.8	
  –	
  2.9	
  min	
  	
  	
  
Pr,	
  3.9	
  –	
  4.3	
  min	
  	
  	
  
Ln[hdpm]x GC-MS Results 3D
Pr,	
  3.9	
  –	
  4.3	
  min	
  	
  	
  
Ligand	
  Fragment	
  
Eu,	
  2.8	
  –	
  2.9	
  min	
  	
  	
  
Separation Efficiency
§  Resolution
–  Equation: ∆tr/wav > 1.5
•  ∆tr is the difference in retention times for two
compounds
•  wav is the average base of the same two peaks
–  Separation largely based upon physiosorption
interactions
•  Driven by the ΔHabs and ΔHdes of the individual
compounds.
•  These entropic factors will be used to model separation
parameters
Comparison of Separation
Efficiency
Ln[hfac]4	
  Compounds	
   ResoluPon	
  (∆tr/wav )	
  
Sm	
  and	
  Tm	
   3.25	
  
Tm	
  and	
  Nd	
   5.30	
  
Ln[hfod]x	
  Compounds	
   ResoluPon	
  (∆tr/wav )	
  
Nd	
  and	
  Sm	
   No	
  separa#on	
  
Sm	
  and	
  Dy	
   No	
  separa#on	
  
Ln[hdpm]x	
  Compounds	
   ResoluPon	
  (∆tr/wav )	
  
Pr	
  and	
  Eu	
   7.43	
  
Conclusions
–  Successfully synthesized and characterized
•  14 of the Ln[hfac]4·NH4 compounds
•  14 Ln[hfod]x compounds
•  Pr, Eu, and Ho hdpm compounds
–  Have made initial measurements as to separation
thermodynamics
•  Used Electron Ionization Mass Spectrometry
–  Have begun to make progress in separations with the first
ever GC-ICP-TOF-MS system
•  Initial results are promising
Future Work
§  Radiochemistry Center
–  Continue to recruit undergraduate and graduate students
for the program
–  Develop useful curricula for nuclear and radiochemistry
students
§  Melt Glass
–  Begin to distribute samples to National Labs and other
universities
–  Begin to make urban nuclear melt samples
§  Advanced Separations
–  Make first thermodynamic separation measurements of
these compounds
–  Finalize dissolution techniques to aid melt glass analysis
Publications from related work.
§  J. D. Auxier II, S. A. Stratz, D. E. Hanson, M. L. Marsh, H. L. Hall
“Synthesis and Characterization of Lanthanide 6,6,7,7,8,8,8-Heptafluoro-2,2-
Dimethyl-3,5-Octanedione Complexes” Under Review Inor. Chem.
§  J. J. Molgaard, J. D. Auxier II, C. J. Oldham, M. T. Cook, H. L. Hall,
“Development of Synthetic Nuclear Melt Glass for Forensic Analysis” J. Rad.
Nucl. Chem. 2015 In Press
§  A. V. Giminaro, S. A. Stratz, J. A. Gill, J. P. Auxier, C. J. Oldham, M. T. Cook,
J. D. Auxier II, J. J. Molgaard, H. L. Hall, “A Method for Development of
Synthetic Urban Nuclear Melt Glass for Rapid Forensic Analysis” Under
Review to J. Rad. Nucl. Chem.
§  4 others in process
§  Also sponsored the Radiobioassay and Radiochemical Measurements
Conference, Knoxville, TN 2014
Patents in Process from related
work
§  J. J. Molgaard, J. D. Auxier II, H. L. Hall, “Novel Synthetic
Nuclear Melt Glass and Methods Thereof” 2014, Pat. Pend.
62/002,202
–  Also: A. V. Giminaro, C. J. Oldham, Mr. J. P. Auxier, E. K. Fenske, J. D.
Auxier II, H. L. Hall, “Standard Testable Urban Formation for Forensics
(S.T.U.F.F.)”, 2014 has been combined in the license
§  J. D. Auxier II, D. E. Hanson, M. L. Marsh, H. L. Hall, “Gas-
phase Thermochromatographic Separations of Fission and
Activation Products”, 2014, Pat. Pend. 62/028,199
§  S. J. Willmon, H. L. Hall, J. D. Auxier II, Ms. Hannah Hale, M.
Thornbury, “Broad Area Search Bayesian Processor” 2015 Under
Review
§  J. D. Auxier II, J. Stainback IV, M. T. Cook, M. J. Willis, J. D.
Birdwell, R. Horn., “Radiation Detection Instrumentation
Universal Simulator (RADIUS)”, 2014, Pat. Pend. 62/033,821
§  M. T. Cook, A. V. Giminaro, D. E. Hanson, J. D. Auxier II, H. L.
Hall, “Solid Sample Introduction System for Gas
Chromatography” 2014, Under Review
Collaborators (Hall Group)
§  Melt Glass
–  Joshua Molgaard (M.S. – now at USMA)
–  Andrew Giminaro, Jerrad Auxier, Jonathan
Gill, CJ Oldham, Matthew Cook
§  Advanced Separations
–  Daniel Hanson (now Ph.D. at SRNL)
–  Adam Stratz, Steven Jones (Bredesen
Scholar)
–  UGS: Matthew Marsh (ACS Coryell Award
Winner), Ashlyn Jones
Interdepartmental Collabotors
§  UT Chemistry: Derek Cressy, Derek Mull,
Dr. David Jenkins, Dr. Carlos Steren
§  Materials Science Engineering: Dr.
Stephen Young
§  UT/ORNL Joint Institute for
Computational Sciences: Dr. Deborah
Penchoff
RCoE impact on the UT academic
program
§  Radiochemistry Certificate program
§  Nuclear Engineering’s Nuclear Security
curricula
§  New NE building programming
§  Funding: U.S Dept. of Energy, National
Nuclear Security Administration, Scientific
Stewardship Academic Alliances Program
–  Special Thanks to Dr. Howard Hall and Dr.
Lawrence Heilbronn
Extra	
  Slides	
  
Hfac FT-ATR-IR Results
NH4 La Gd Lu FuncPonal	
  Assignment*
738 737 744 738 C-­‐CF3	
  stretch
799 806 804 821 C-­‐H	
  out	
  of	
  plane	
  bend
1113 1130 1136 1115 C-­‐H	
  in-­‐plane	
  bend
1176 1187 	
   1177 C-­‐F	
  stretch
1203 1203 1202 1204 C-­‐F	
  stretch
1271 1270 1253 1271 C-­‐F	
  stretch
1455 1458 1472 1456
C-­‐H	
  bend,	
  [Hfac]-­‐metal	
  
coordina#on
	
   1537 1537 1536
C-­‐O	
  stretch,	
  C-­‐H	
  bend,	
  
[Hfac]-­‐metal	
  
coordina#on
	
   1563 1563 1562
C=C	
  stretch,	
  [Hfac]-­‐
metal	
  coordina#on
1656 1645 1645 1652
C-­‐O	
  stretch,	
  [Hfac]-­‐metal	
  
coordina#on
3260 3332 3040 3253 O-­‐H	
  stretch
*Richardson, Wagner, Sands (1968) J. Inorg. Nucl. Chem.
Elemental Analysis
Compound Element Theory	
  (%) Found	
  (%)
La[hfac]4
-­‐*	
  X	
  H2O	
  
C 23.55 24.7
H 1.28 1.31
N 2.93 2.65
F 47.75 43.41
	
  	
  
Gd[hfac]4
-­‐*	
  X	
  H2O	
  
C 23.54 24.35
H 0.99 0.96
N 2.75 2.95
F 44.69 42.74
	
  Lu[hfac]4
-­‐*	
  X	
  H2O	
  
C 23.44 23.62
H 0.79 0.78
N 1.71 1.63
F 44.5 42.09
•  Possible residual NH4R, causing differences in F %
•  Possible hydration differences causes differences in
hydrogen amounts
NMR Results Ln[hfac]x
H-­‐NMR	
  
19F-­‐NMR	
  
Unreacted	
  hfac	
  
1,4-­‐dioxane	
  
-­‐88.0	
  -­‐88.0	
  
Elemental Analysis hfod
Compound Element Theory Found
C 30.46 31.54
H 2.9 2.91
N 0 0
F 33.72 32.73
C 34.56 34.99
H 3.34 3.515
N 1.01 1.035
F 38.27 38.47
C 34.13 34.585
H 3.29 3.235
N 1 1.045
F 37.79 38.16
La[fod]3	
  *2H2O
NH3
+
(Gd[fod]4
-­‐
)	
  
*2H2O
NH3
+
(Lu[fod]4
-­‐
)	
  
*2H2O
*A	
  4:1	
  mole	
  ra#o	
  of	
  
NH4[fod]:LnCl3	
  was	
  
used.	
  
	
  	
  
*One	
  possible	
  product	
  
from	
  this	
  would	
  be	
  the	
  
charged	
  8-­‐coordinate	
  
dihydrate	
  (NH3+	
  
[Ln(Hfac)4
-­‐]*2H20).	
  
*The results go against
expectation that the
smaller cations would
have less ligands
Sm Gd Ho
FuncPonal	
  
Assignment*
741	
   741	
   741	
   C-­‐CF3	
  stretch	
  
806	
   804	
   821	
   C-­‐H	
  out	
  of	
  plane	
  bend	
  
1117	
   1117	
   1117	
   C-­‐H	
  in-­‐plane	
  bend	
  
1178	
   1178	
  	
   1178	
   C-­‐F	
  stretch	
  
1220	
   1220	
   1220	
   C-­‐F	
  stretch	
  
1276	
   1276	
   1276	
   C-­‐F	
  stretch	
  
1458	
   1458	
   1458	
  
C-­‐H	
  bend,	
  [Hfac]-­‐
metal	
  coordina#on	
  
1509	
   1509	
   1509	
  
C-­‐O	
  stretch,	
  C-­‐H	
  bend,	
  
[Hfac]-­‐metal	
  
coordina#on	
  
1593	
   1593	
   1593	
  
C=C	
  stretch,	
  [Hfac]-­‐
metal	
  coordina#on	
  
1624	
   1624	
   1624	
  
C-­‐O	
  stretch,	
  [Hfac]-­‐
metal	
  coordina#on	
  
2974	
   2974	
   2974	
   O-­‐H	
  stretch	
  
Ln[hfod]x FT-ATR-IR Results
NMR Results Ln[hfod]x
Ln[fod]x	
  
H-­‐NMR	
  
19F-­‐NMR	
  
NMR Results Ln[hfod]x (cont’d)
La	
  
Gd	
  
Lu	
   Legend	
  
*Shows	
  most	
  varia#on	
  
across	
  series	
  due	
  to	
  being	
  
metal	
  coordina#on	
  site	
  
*Larger	
  ionic	
  radius	
  
coordina#on	
  →	
  greater	
  shiq	
  
upfield	
  
*ParamagnePc	
  properPes	
  
causes	
  large	
  shiqs	
  and	
  line	
  
broadening	
  =	
  lower	
  quality	
  
NMR	
  results	
  
FT-IR Results hdpm
Hdpm Eu Pr FuncPonal	
  Assignment*
741	
   760	
   759	
   C-­‐H	
  out	
  of	
  plane	
  bend	
  
797	
   793	
   793	
   C-­‐H	
  out	
  of	
  plane	
  bend	
  
874	
   867	
   867	
   C-­‐H	
  	
  bend	
  
1133	
   1130	
   1130	
  	
   C-­‐H	
  in	
  plane	
  bend	
  
1220	
   1220	
   1220	
   C-­‐O	
  stretch	
  	
  
1365	
   1380	
   1350	
  
C-­‐H	
  rock,	
  [Hdpm]	
  metal	
  
coordina#on	
  
1604	
   1500	
   1490	
  
C-­‐O	
  stretch,	
  	
  C-­‐H	
  bend,	
  
[Hdpm]	
  metal	
  
coordina#on	
  
1604	
   1570	
   1570	
  
C=C	
  stretch,	
  [Hdpm]	
  
metal	
  coordina#on	
  
3198	
   2950	
   2950	
   C-­‐H	
  stretch
____	
  
[Hdpm]	
  
100	
  
0
50	
  
Wavenumbers	
  cm-­‐1	
  
Elemental Analysis hdpm
Compound Element Theory Found
C 30.46 31.54
H 2.9 2.91
C 34.13 34.585
H 3.29 3.235
Eu[dpm]3
Pr[dpm]3
*A	
  3:1	
  mole	
  ra#o	
  of	
  
Na(dpm):LnCl3	
  was	
  
used.	
  
*Steric	
  hindrance	
  of	
  t-­‐butyl	
  
groups	
  influences	
  Ln[dpm)3]	
  
product.	
  
NMR Analysis Ln[hdpm]x
1,4-­‐dioxane	
  
13C-­‐NMR	
  
NMR Analysis Ln[hdpm]
1H-­‐NMR	
  
6.0	
  
1,4-­‐dioxane	
  
Shiq	
  Up	
  

More Related Content

What's hot

CV and list of publications andrii sofiienko
CV and list of publications andrii sofiienkoCV and list of publications andrii sofiienko
CV and list of publications andrii sofiienkoAndrii Sofiienko
 
Environmental Health
Environmental HealthEnvironmental Health
Environmental HealthAmeliaBahr
 
السيرة الذاتية للدكتور محمد عبد البصير - مارس 2016
السيرة الذاتية  للدكتور محمد عبد البصير - مارس 2016السيرة الذاتية  للدكتور محمد عبد البصير - مارس 2016
السيرة الذاتية للدكتور محمد عبد البصير - مارس 2016Dr. Mohammed Abd-Elbasseer
 
Short term course in Nanoscience at Jamia Millia Islamia
Short term course in Nanoscience at Jamia Millia IslamiaShort term course in Nanoscience at Jamia Millia Islamia
Short term course in Nanoscience at Jamia Millia IslamiaSangeetha Balakrishnan
 
Science and technology (IAS)
Science and technology (IAS)Science and technology (IAS)
Science and technology (IAS)Babla Mondal
 
Nobel Laureates in Chemistry (2016-2020)
Nobel Laureates in Chemistry (2016-2020)Nobel Laureates in Chemistry (2016-2020)
Nobel Laureates in Chemistry (2016-2020)Ikkadeep Kaur
 
Youliang Wang resume
Youliang Wang resumeYouliang Wang resume
Youliang Wang resumeYouliang Wang
 
Yu-Chuan Lin_CV_LinkedIn
Yu-Chuan Lin_CV_LinkedInYu-Chuan Lin_CV_LinkedIn
Yu-Chuan Lin_CV_LinkedInYu-Chuan Lin
 

What's hot (16)

Postdoc Reseacher CV
Postdoc Reseacher CVPostdoc Reseacher CV
Postdoc Reseacher CV
 
16merguiaddendumpto
16merguiaddendumpto16merguiaddendumpto
16merguiaddendumpto
 
CV and list of publications andrii sofiienko
CV and list of publications andrii sofiienkoCV and list of publications andrii sofiienko
CV and list of publications andrii sofiienko
 
Environmental Health
Environmental HealthEnvironmental Health
Environmental Health
 
السيرة الذاتية للدكتور محمد عبد البصير - مارس 2016
السيرة الذاتية  للدكتور محمد عبد البصير - مارس 2016السيرة الذاتية  للدكتور محمد عبد البصير - مارس 2016
السيرة الذاتية للدكتور محمد عبد البصير - مارس 2016
 
Short term course in Nanoscience at Jamia Millia Islamia
Short term course in Nanoscience at Jamia Millia IslamiaShort term course in Nanoscience at Jamia Millia Islamia
Short term course in Nanoscience at Jamia Millia Islamia
 
Science and technology (IAS)
Science and technology (IAS)Science and technology (IAS)
Science and technology (IAS)
 
Lawrence Duffy CV
Lawrence Duffy CVLawrence Duffy CV
Lawrence Duffy CV
 
Nobel Laureates in Chemistry (2016-2020)
Nobel Laureates in Chemistry (2016-2020)Nobel Laureates in Chemistry (2016-2020)
Nobel Laureates in Chemistry (2016-2020)
 
Ch111lec
Ch111lecCh111lec
Ch111lec
 
Deepthy j dileep
Deepthy j dileepDeepthy j dileep
Deepthy j dileep
 
FUTURE POSTPONED
FUTURE POSTPONEDFUTURE POSTPONED
FUTURE POSTPONED
 
Youliang Wang resume
Youliang Wang resumeYouliang Wang resume
Youliang Wang resume
 
CV_Dr[2].Asad_Sabih_Mohammad_Raouf 11
CV_Dr[2].Asad_Sabih_Mohammad_Raouf 11CV_Dr[2].Asad_Sabih_Mohammad_Raouf 11
CV_Dr[2].Asad_Sabih_Mohammad_Raouf 11
 
Yu-Chuan Lin_CV_LinkedIn
Yu-Chuan Lin_CV_LinkedInYu-Chuan Lin_CV_LinkedIn
Yu-Chuan Lin_CV_LinkedIn
 
UCC Environmental Research Institute: Overview and Contact Points
UCC Environmental Research Institute: Overview and Contact PointsUCC Environmental Research Institute: Overview and Contact Points
UCC Environmental Research Institute: Overview and Contact Points
 

Viewers also liked

Viewers also liked (20)

The Matter
The MatterThe Matter
The Matter
 
2013 abstracts russian-nordic.pdf
2013 abstracts russian-nordic.pdf2013 abstracts russian-nordic.pdf
2013 abstracts russian-nordic.pdf
 
The Matter
The MatterThe Matter
The Matter
 
General terms in nuclear safety and security sphere. nuclear fuel cycle (nfc)...
General terms in nuclear safety and security sphere. nuclear fuel cycle (nfc)...General terms in nuclear safety and security sphere. nuclear fuel cycle (nfc)...
General terms in nuclear safety and security sphere. nuclear fuel cycle (nfc)...
 
The Matter
The MatterThe Matter
The Matter
 
Arn 01-0-nuclear fission
Arn 01-0-nuclear fissionArn 01-0-nuclear fission
Arn 01-0-nuclear fission
 
Chem 312 lect 1 2013 (intro) show
Chem 312 lect 1 2013 (intro) showChem 312 lect 1 2013 (intro) show
Chem 312 lect 1 2013 (intro) show
 
Nuclear Fuel Cycle
Nuclear Fuel CycleNuclear Fuel Cycle
Nuclear Fuel Cycle
 
Z transform
Z transformZ transform
Z transform
 
Nuclear chemistry
Nuclear chemistryNuclear chemistry
Nuclear chemistry
 
Z transform
Z transformZ transform
Z transform
 
Nuclear Chemistry: Nuclear fission
Nuclear Chemistry: Nuclear fissionNuclear Chemistry: Nuclear fission
Nuclear Chemistry: Nuclear fission
 
MIT Nuclear fuel cycle 2010
MIT Nuclear fuel cycle 2010MIT Nuclear fuel cycle 2010
MIT Nuclear fuel cycle 2010
 
Z transform
 Z transform Z transform
Z transform
 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
 
Z TRANSFORM PROPERTIES AND INVERSE Z TRANSFORM
Z TRANSFORM PROPERTIES AND INVERSE Z TRANSFORMZ TRANSFORM PROPERTIES AND INVERSE Z TRANSFORM
Z TRANSFORM PROPERTIES AND INVERSE Z TRANSFORM
 
Z transform
Z transformZ transform
Z transform
 
Applications of Z transform
Applications of Z transformApplications of Z transform
Applications of Z transform
 
z transforms
z transformsz transforms
z transforms
 
Ch10 nuclear chem
Ch10 nuclear chemCh10 nuclear chem
Ch10 nuclear chem
 

Similar to Expanding Horizons Nuclear Forensics Analysis

Jose Darruda_vita 2014b (2)
Jose Darruda_vita 2014b (2)Jose Darruda_vita 2014b (2)
Jose Darruda_vita 2014b (2)Jose D'Arruda
 
Advanced Computational Materials Science: Application to Fusion and Generatio...
Advanced Computational Materials Science: Application to Fusion and Generatio...Advanced Computational Materials Science: Application to Fusion and Generatio...
Advanced Computational Materials Science: Application to Fusion and Generatio...myatom
 
Elena Guliants _CV 2015
Elena Guliants _CV 2015Elena Guliants _CV 2015
Elena Guliants _CV 2015Elena Guliants
 
eBook University Physics for the Life Sciences, 1e Randall Knight, Brian Jone...
eBook University Physics for the Life Sciences, 1e Randall Knight, Brian Jone...eBook University Physics for the Life Sciences, 1e Randall Knight, Brian Jone...
eBook University Physics for the Life Sciences, 1e Randall Knight, Brian Jone...janidwali
 
Science Framework Overview Mary Wroten
Science Framework Overview Mary WrotenScience Framework Overview Mary Wroten
Science Framework Overview Mary WrotenWesley McCammon
 
nano9_11082007ppt.ppt
nano9_11082007ppt.pptnano9_11082007ppt.ppt
nano9_11082007ppt.pptManojM653713
 
Bas, Derek A CV US 20160901
Bas, Derek A CV US 20160901Bas, Derek A CV US 20160901
Bas, Derek A CV US 20160901Derek Bas
 
CV_Dilip_De_2015
CV_Dilip_De_2015CV_Dilip_De_2015
CV_Dilip_De_2015Dilip De
 

Similar to Expanding Horizons Nuclear Forensics Analysis (20)

MIT - The Future of Fuel Cyle
MIT - The Future of Fuel CyleMIT - The Future of Fuel Cyle
MIT - The Future of Fuel Cyle
 
Drain CV long 6_2016
Drain CV long 6_2016Drain CV long 6_2016
Drain CV long 6_2016
 
Corey_N._Stedwell_CV
Corey_N._Stedwell_CVCorey_N._Stedwell_CV
Corey_N._Stedwell_CV
 
Jose Darruda_vita 2014b (2)
Jose Darruda_vita 2014b (2)Jose Darruda_vita 2014b (2)
Jose Darruda_vita 2014b (2)
 
Advanced Computational Materials Science: Application to Fusion and Generatio...
Advanced Computational Materials Science: Application to Fusion and Generatio...Advanced Computational Materials Science: Application to Fusion and Generatio...
Advanced Computational Materials Science: Application to Fusion and Generatio...
 
Maxwell omeje cv
Maxwell omeje cvMaxwell omeje cv
Maxwell omeje cv
 
(NuClean) R&D at the Nuclear/Chemical Engineering Interface: Some Indentifie...
(NuClean) R&D at the Nuclear/Chemical Engineering  Interface: Some Indentifie...(NuClean) R&D at the Nuclear/Chemical Engineering  Interface: Some Indentifie...
(NuClean) R&D at the Nuclear/Chemical Engineering Interface: Some Indentifie...
 
Jon Batchelder c.v.
Jon Batchelder c.v.Jon Batchelder c.v.
Jon Batchelder c.v.
 
CV Christopher Shearwood July-2016
CV Christopher Shearwood July-2016CV Christopher Shearwood July-2016
CV Christopher Shearwood July-2016
 
National Institute of Surface Engineering - 2009-2010
National Institute of Surface Engineering - 2009-2010National Institute of Surface Engineering - 2009-2010
National Institute of Surface Engineering - 2009-2010
 
Elena Guliants _CV 2015
Elena Guliants _CV 2015Elena Guliants _CV 2015
Elena Guliants _CV 2015
 
Content 6x11
Content 6x11Content 6x11
Content 6x11
 
eBook University Physics for the Life Sciences, 1e Randall Knight, Brian Jone...
eBook University Physics for the Life Sciences, 1e Randall Knight, Brian Jone...eBook University Physics for the Life Sciences, 1e Randall Knight, Brian Jone...
eBook University Physics for the Life Sciences, 1e Randall Knight, Brian Jone...
 
Science Framework Overview Mary Wroten
Science Framework Overview Mary WrotenScience Framework Overview Mary Wroten
Science Framework Overview Mary Wroten
 
2110011
21100112110011
2110011
 
nano9_11082007ppt.ppt
nano9_11082007ppt.pptnano9_11082007ppt.ppt
nano9_11082007ppt.ppt
 
Bas, Derek A CV US 20160901
Bas, Derek A CV US 20160901Bas, Derek A CV US 20160901
Bas, Derek A CV US 20160901
 
CV_Dilip_De_2015
CV_Dilip_De_2015CV_Dilip_De_2015
CV_Dilip_De_2015
 
The Nano World.pdf
The Nano World.pdfThe Nano World.pdf
The Nano World.pdf
 
Resume Jiun-Ruey Chen
Resume Jiun-Ruey ChenResume Jiun-Ruey Chen
Resume Jiun-Ruey Chen
 

Expanding Horizons Nuclear Forensics Analysis

  • 1. Radiochemistry Center of Excellence Expanding the Horizons of Nuclear Forensics Analysis John D. Auxier II University of Tennessee Nuclear Engineering Colloquium January 21, 2015 -- Knoxville, TN
  • 2. The context §  Importance of training nuclear and radio-chemists §  Nuclear Melt Glass §  Gas-phase separations
  • 3. Copyright©NationalAcademyofSciences.Allrightsreserved. 1-1.eps 5 bitmaps included landscape 1903 Nobel Prize in Physics to Becquerel and Curies 1974 Positron emission transaxial tomographic (PETT) imaging device introduced by Michael Phelps and industry colleagues 1901 Henri Alexandre Danlos and Eugene Bloch placed radium in contact with a tuberculous skin lesion 1943 Nobel Prize in Chemistry to de Hevesy for the use of isotopes as tracers 2006 About 395 million radiological and nuclear medicine procedures performed in the United States Nuclear Medicine Education and Training 1978 ACS Committee on Training of Nuclear and Radiochemists notes decline in nuclear and radiochemistry faculty and students 1984 First ACS/DOE Nuclear Chemistry Summer School established 2004 NSAC Report 1937 Glenn Seaborg receives PhD in nuclear chemistry from University of California at Berkeley 1896 Discovery of radioactivity by Henri Becquerel 1939 Nobel Prize in Physics to Lawrence for inventing cyclotron 1911 Nobel Prize in Chemistry to Marie Curie for discovery of radium and polonium 1951 Nobel Prize in Chemistry to Edwin McMillan and Seaborg for chemistry of transuranium elements Nuclear Energy 1991 22% U.S. electricity from nuclear energy 2010 20% U.S. electricity from nuclear energy 1951 Experimental breeder reactor generates electricity 1945 WWII – Hiroshima and Nagasaki 1979 Three Mile Island 1986 Chernobyl 2011 Fukushima Earthquake Nuclear Incidents 2009 DNDO National Forensics Expertise Development Program established 1988 NAS Report 201020001900 1910 1920 1940 1950 1960 1970 1980 19901890 1930 FIGURE 1-1 Milestones in Nuclear and Radiochemistry. SOURCES: NRC 1988; Yates 1993; Peterson 1997; Argonne National Laboratory 2012; DOE/NSF 2004; DOE 2011a,b; EIA 2011a,b; Kentis 2011; Nobelprize.org 2012a,b,e; NSF 2011; SNM 2011; UC Berkeley 2012. Assuring  a  Future  U.S.-­‐Based  Nuclear  Chemistry  Exper=se,  Na#onal  Research  Council  (2012)  
  • 4. What is a radiochemist? ORNL  Physics  Division   NIST   Radiochemist:  one  who   uses  the  radioac#ve   nature    of  ma=er  to   study  non-­‐radioac#ve   proper#es  of  reac#ons   Nuclear  chemist:  one   who  uses  chemistry  to   study  radioac#ve   elements  
  • 5. Studies of the pipeline §  1978: The American Chemical Society’s (ACS) Division of Nuclear Chemistry and Technology (DNCT) first noted a decline in nuclear and radiochemistry faculty and students in chemistry departments §  1988: National Research Council, Training Requirements for Chemists in Nuclear Medicine, Nuclear Industry, and Related Areas. §  2004: DOE/NSF Nuclear Science Advisory Committee, Education in Nuclear Science §  2008: AAAS/APS, Nuclear Forensics: Role, State of the Art, Program Needs §  2012: National Research Council, Assuring a Future U.S.-Based Nuclear Chemistry Expertise
  • 6. numbers of degree holders in this discipline. Nuclear and radiochemistry needs cannot simply be filled by transfers from the larger groups of engineering and physics degree holders. Much of the chemistry involved in separating actinides, preparing reagents for nuclear medicine, and removing radioactive materials from the environment requires knowledge of synthetic, analytical, and other aspects of chemistry, informa- 1-2.eps 0 50 100 150 200 250 1950 1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 NumberofEarnedDoctorateDegrees Academic Year Nuclear chemistry Nuclear physics Nuclear engineering FIGURE 1-2 Number of Ph.D.s per year in selected nuclear science and engineering disciplines, 1950–2007. NOTE: Survey of Earned Doctorates stopped counting nuclear chemistry degrees after 2003.Assuring  a  Future  U.S.-­‐Based  Nuclear  Chemistry  Exper=se,  Na#onal  Research  Council  (2012)   US nuclear chemistry PhD’s
  • 7. Radchem PhD’s (keyword based) DEFINING NUCLEAR AND RADIOCHEMISTRY EXPERTISE 21 2-1.eps 0 5 10 15 20 25 30 35 40 45 1970 1975 1980 1985 1990 1995 2000 2005 2010 Count Year SED Ph.D. Degrees PQDT Ph.D. Theses FIGURE 2-1 U.S.-granted Ph.D. degrees and dissertations in nuclear chemistry by year, 1970-2010, based on the National Science Foundation Survey of Earned Doctorates (SED) and the ProQuest Dissertation and Theses (PQDT) database. SED data (blackAssuring  a  Future  U.S.-­‐Based  Nuclear  Chemistry  Exper=se,  Na#onal  Research  Council  (2012)  
  • 8. US peer-reviewed contributions in radiochemistry declining 24 ASSURING A FUTURE U.S.-BASED NUCLEAR AND RADIOCHEMISTRY EXPERTISE 2-4.eps 0% 10% 20% 30% 40% 50% 60% 70% 80% 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 %U.S.Authorship Publication Year Uranium Plutonium Technetium Thorium Fluorine-18 or (18)F FIGURE 2-4 Percentage of U.S.-authored papers out of the total number of papers for selected keywords, 1970-2010. SOURCE: Web of Science keyword search, http://apps.webofknowledge.com, Septem-Assuring  a  Future  U.S.-­‐Based  Nuclear  Chemistry  Exper=se,  Na#onal  Research  Council  (2012)  
  • 9. Nuclear Eng. PhD’s trending up ASSURING A FUTURE U.S.-BASED NUCLEAR AND RADIOCHEMISTRY EXPERTISE 2-2.eps 0 20 40 60 80 100 120 140 160 180 200 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 NumberofNuclearEngineeringPh.D.DegreesAwarded Year FIGURE 2-2 Trend in nuclear engineering Ph.D. degrees, 1970-2010. NOTE: Includes programs with nuclear engineering majors and option programs inAssuring  a  Future  U.S.-­‐Based  Nuclear  Chemistry  Exper=se,  Na#onal  Research  Council  (2012)  
  • 10. Faculty base was a concern §  2008: 46 active faculty identified – Across 20 universities – Producing 114 PhD’s – 7 universities were “singlets” – 5 universities were “doublets” – Largest program was Washington University in St. Louis, with 6 faculty in nuclear medicine program Assuring  a  Future  U.S.-­‐Based  Nuclear  Chemistry  Exper=se,  Na#onal  Research  Council  (2012)  
  • 11. Additionally, academic radiochemistry programs face significant challenges §  Perceived risk §  Expense of compliance §  Lack of faculty base §  General shift from experimental science to modeling and simulation §  Increasing challenges using the national labs §  Budgets and budget cycles Assuring  a  Future  U.S.-­‐Based  Nuclear  Chemistry  Exper=se,  Na#onal  Research  Council  (2012)  
  • 12. 2012: Findings §  Faculty base was extremely vulnerable §  Little or no undergraduate curricula §  Programs with only one faculty were unsustainable §  Funding was limited and unpredictable §  Data sources for tracking the academic health of the field are poor or missing §  Specific programs were helping, but not fast enough Assuring  a  Future  U.S.-­‐Based  Nuclear  Chemistry  Exper=se,  Na#onal  Research  Council  (2012)  
  • 13. Overall conclusions – Demand and Supply (5-­‐year  data)   BS   MS   PhD   Demand   200   93   306   Supply   250   50   65   Assuring  a  Future  U.S.-­‐Based  Nuclear  Chemistry  Exper=se,  Na#onal  Research  Council  (2012)  
  • 14. In memoriam,…. W.  Frank  Kinard  (2013)   College  of  Charleston   Heino  Nitsche  (2014)   University  of  California  
  • 15. And one last bit of bad news §  Update on the Nuclear Chemistry Summer Schools §  From NUCL Newsletter: This is traditionally the time of year that we announce the dates for the summer schools. I regret to inform the Division that at this time we have not received any funding for the fourth year of the five year grant that will allow us to hold the summer schools in 2015. DNCT  NewsleIer,  October  2014  
  • 16. NNSA established the UT Radiochemistry Center of Excellence in 2013
  • 17. Development and Forensic Analysis of Nuclear Melt Glass Surrogates
  • 18. Overview §  Motivation §  Synthetic Trinitite §  Conclusions §  Future Work
  • 19. Motivation §  Lack of available nuclear melt glass §  Development of analytical techniques needed §  Support of radiochemistry and nuclear forensic education
  • 20. Event   Environmental  Knowns   Post  Material   Analysis   Regional   Produc#on   Comparison   A=ribu#on   Scenario   Selec#on   Es#mates   of     Environment   Develop   Surrogate   Produce   Event   Surrogate   Sample   Analysis   Surrogate   Material   Regional   Produc#on   Comparison   Verifica#on   &   Valida#on   Applica#on   Laboratory  
  • 22. Development and Synthesis §  Trinitite used as a benchmark §  Powdered oxides used to create sample matrix §  Matrix melted and vitrified STF Composition (by mass fraction) Trinitite Data Synthetic Formulation Comp. Fraction Comp. Fraction SiO2 6.42x10-1 SiO2 6.42x10-1 Al2O3 1.43x10-1 Al2O3 1.43x10-1 CaO 9.64x10-2 CaO 9.64x10-2 FeO 1.97x10-2 FeO 1.97x10-2 MgO 1.15x10-2 MgO 1.15x10-2 Na2O 1.25x10-2 Na2O 1.25x10-2 K2O 5.13x10-2 KOH 6.12x10-2 MnO 5.05x10-4 MnO 5.05x10-4 TiO2 4.27x10-3 TiO2 4.27x10-3 U 1.60x10-5 UNH 3.37x10-5 Total 9.81x10-1 Total 9.91x10-1 Element Fraction Element Fraction Si 3.00x10-1 Si 3.00x10-1 Al 7.55x10-2 Al 7.55x10-2 Ca 6.88x10-2 Ca 6.88x10-2 Fe 1.53x10-2 Fe 1.53x10-2 Mg 6.90x10-3 Mg 6.90x10-3 Na 9.24x10-3 Na 9.24x10-3 K 4.26x10-2 K 4.26x10-2 Mn 3.93x10-4 Mn 3.93x10-4 Ti 2.58x10-3 Ti 2.58x10-3 O 4.60x10-1 O 4.69x10-1 U 1.60x10-5 U 1.60x10-5 N 0 N 1.88x10-6 H 0 H 1.10x10-3
  • 24. PXRD
  • 27. Gamma Spectroscopy (Cont.) Nuclide ROI Half-­‐Life   (yr) Energy   (keV) Branching  RaPo   (%) Act.  (Bq/g  )  -­‐   TriniPte   Act.  (Bq/g  )  –   STF   133Ba1,2,3 5 10.51 356.01 62.05 27.1 ± 0.5 N/A 137Cs1,2,3 8 30.05 661.66 84.99 32.1 ± 0.04 N/A 152Eu1,2,3 3 13.522 121.7 28.41 69.9 ± 0.8 N/A   4   334.2 26.59   10   778.9 12.97   11   964.08 14.50 154Eu1,2,3 * 8.601 123.07 40.40 158 ± 0.4 477 ± 9.3   9   723.3 20.05   12   1,004.7 17.86   13   1,274.4 34.90 155Eu1 * 4.573 86.55 30.7 0.9 ± 0.6 0.38 ± 0.003   *   105.31 21.1 239Pu1 1 24.1x103 51.62 0.02 11208 ± 3907 N/A   *   129.30 0.002   6   375.05 0.0015   7   413.71 0.0015 241Pu2 * 14.35   103.68 1.0E-­‐4 63.0 ± 1.8 N/A 241Am1,2,3 2 432.2 59.94 35.92 13 ± 11 N/A 60Co1,2,3 * 5.271 1,173.2 99.85 44 ± 4 N/A   *   1,332.4 99.98 95Zr  is  the  actual  isotope   126Sn  is  the  actual  isotope   1P.  P.  Parekh  et  al.,  “Radioac#vity  in  trini#te  six  decades  later.,”  J.  Environ.  Radioact.,  vol.  85,  no.  1,  pp.  103–20,  Jan.  2006     2J.  J.  Bellucci  et  al  ,  “Distribu#on  and  behavior  of  some  radionuclides  associated  with  the  Trinity  nuclear  test,”  J.  Radioanal.  Nucl.  Chem.,  vol.  295,  no.   3,  pp.  2049–2057,  Sep.  2012   3D.  Schlauf,,et  al“Trini#te  redux:  Comment  on  ‘Determining  the  yield  of  the  Trinity  nuclear  device  via  gamma-­‐ray  spectroscopy,’”  Am.  J.  Phys.,  vol.   65,  no.  11,  p.  1110,  1997.    
  • 28. Synthetic Trinitite Results/Conclusions §  It is possible to produce melt glass that is similar to trinitite in: –  Elemental Composition –  Morphology –  Radiological Signature –  Chemical Behavior §  This melt glass can be used as a viable surrogate for radiochemistry/ nuclear forensic applications
  • 29. Background §  Separations are important part of nuclear forensics. –  Post-Detonation Scenarios1 –  Current liquid methods are time- consuming §  Need for Rapid Separations –  Experiment with gas chromatography/ mass spectrometry separations2 for thermochemical separations3 1Development of Synthetic Nuclear Melt Glass for Forensic Analysis” Molgaard, Auxier et. al. J. Rad. Nucl. Chem., 2015, In press. 2 “Assessing thermochromatography as a separation for nuclear forensics: current capability vis-a-via forensic requirements”, Hanson et. al 2011, J. Rad. Nucl. Chem. 3Synthesis and detection of a seaborgium carbonyl complex, Even et al., 2014, Science,
  • 30. Background (Cont.) §  Ligands for ease of volatilization and rapid separation 1,1,1,5,5,5  –  hexafluoro  –  2,4  –   pentadione  (denoted  hfac)   6,6,7,7,8,8,8-heptafluoro-2,2- dimethyl-3,5-octanedione (denoted hfod) 2,2,6,6-­‐tetramethyl-­‐3,5-­‐ heptanedione  (denoted  hdpm)  
  • 31. Outline §  Ligand Synthesis –  Comparison in terms of timeliness and percent yield. –  Mass Spectrometry Analysis §  Separations –  Mass Spectra –  Time separated separations §  Conclusions
  • 32. Rapid Separations Flowchart Dissolve Ln oxides use of HCl, HNO3, H2SO4 Prepare NH4[ligand] Hhfac + NH4OH à NH4[hfac] + H2O Combine NH4[hfac] with LnCl3 X NH4[lig] + LnCl3 à Ln[hfac]x + X NH4Cl Extract Ln[hlig]4 into organic phase and dry Structural Characterization and Purity Determination: FT-ATR-IR (NDA), P-XRD (NDA), SC-XRD (~ 5 mg), ICP-TOF-MS (~1 mg), MP (~2 mg), NMR (~1 mg) Separate using thermochromatographic methods.
  • 34. Synthesis of Ln[hfac]4 Compounds Compound   %  Yield   Sm   35.0-­‐36.3   Gd   57.9-­‐60.0   Tm   57.2-­‐59.2   1Sievers, R. E.; Ponder, B. W.; Morris, M. L.; Moshier, R. W. Inorganic Chemistry 1963, 2, 693. 2Eisentraut, K. J.; Sievers, R. E. Journal of the American Chemical Society 1965, 87, 5254. 3Springer, C. S.; Meek, D. W.; Sievers, R. E. Inorganic Chemistry 1967, 6, 1105.
  • 35. Synthesis of Ln[hfod]x compounds Compound   %  Yield   Nd   21.0-­‐21.6   Sm   15.8-­‐16.2   Dy   14.3-­‐14.7   1Sievers, R. E.; Ponder, B. W.; Morris, M. L.; Moshier, R. W. Inorganic Chemistry 1963, 2, 693. 2Eisentraut, K. J.; Sievers, R. E. Journal of the American Chemical Society 1965, 87, 5254. 3Springer, C. S.; Meek, D. W.; Sievers, R. E. Inorganic Chemistry 1967, 6, 1105.
  • 36. Synthesis of Ln[hdpm]x compounds *Eisentraut,  J.  Am.  Chem.  Soc.,  82(22),  1965   Compound   %  Yield   Pr   72.1   Eu   80.7   Ho   82.4  
  • 37. Synthesis Time Comparison Ligand   Time  for  Synthesis   Steps   hfac   3  hr.   Oxide  to  Chloride   Total  Time:   0.25  hr.   Ether  extrac#on   3.5  hr.   0.25  hr.   GC-­‐MS  Analysis   hfod   3  hr.   Oxide  to  Chloride   Total  Time:   0.25  hr.   Ligand  Addi#on/ Precipita#on   3.5  hr.   0.25  hr.   GC-­‐MS  Analysis   hdpm   3  hr.   Oxide  to  Chloride     Total  Time:   3  hr.   Ligand  to  Ln  Addi#on   12.25  hr.   6  hr.   Vacuum  Dis#lla#on   0.25  hr.   GC-­‐MS  Analysis  
  • 43. Ln[hfac]4 GC-MS Results Dy, 4.85-4.9 min. Left to Right: Tm, TmF, 4.1-4.2 min. , Left to Right: Sm, SmC, SmO. At 3.4-3.6 min
  • 44. Ln[hfod]x Gas Chromatography Nd[hfod]x   Eu[hfod]x     Ho[hfod]x  
  • 45. Ln[hfod]x GC-MS Results 3D Nd,  2.4  –  2.9  min   Sm,  2.4  –  2.8  min       Dy,  2.4  –  2.6  min  
  • 46. Ln[hdpm]x Gas Chromatography Ether,  Solvent   Eu,  2.8  –  2.9  min       Pr,  3.9  –  4.3  min      
  • 47. Ln[hdpm]x GC-MS Results 3D Pr,  3.9  –  4.3  min       Ligand  Fragment   Eu,  2.8  –  2.9  min      
  • 48. Separation Efficiency §  Resolution –  Equation: ∆tr/wav > 1.5 •  ∆tr is the difference in retention times for two compounds •  wav is the average base of the same two peaks –  Separation largely based upon physiosorption interactions •  Driven by the ΔHabs and ΔHdes of the individual compounds. •  These entropic factors will be used to model separation parameters
  • 49. Comparison of Separation Efficiency Ln[hfac]4  Compounds   ResoluPon  (∆tr/wav )   Sm  and  Tm   3.25   Tm  and  Nd   5.30   Ln[hfod]x  Compounds   ResoluPon  (∆tr/wav )   Nd  and  Sm   No  separa#on   Sm  and  Dy   No  separa#on   Ln[hdpm]x  Compounds   ResoluPon  (∆tr/wav )   Pr  and  Eu   7.43  
  • 50. Conclusions –  Successfully synthesized and characterized •  14 of the Ln[hfac]4·NH4 compounds •  14 Ln[hfod]x compounds •  Pr, Eu, and Ho hdpm compounds –  Have made initial measurements as to separation thermodynamics •  Used Electron Ionization Mass Spectrometry –  Have begun to make progress in separations with the first ever GC-ICP-TOF-MS system •  Initial results are promising
  • 51. Future Work §  Radiochemistry Center –  Continue to recruit undergraduate and graduate students for the program –  Develop useful curricula for nuclear and radiochemistry students §  Melt Glass –  Begin to distribute samples to National Labs and other universities –  Begin to make urban nuclear melt samples §  Advanced Separations –  Make first thermodynamic separation measurements of these compounds –  Finalize dissolution techniques to aid melt glass analysis
  • 52. Publications from related work. §  J. D. Auxier II, S. A. Stratz, D. E. Hanson, M. L. Marsh, H. L. Hall “Synthesis and Characterization of Lanthanide 6,6,7,7,8,8,8-Heptafluoro-2,2- Dimethyl-3,5-Octanedione Complexes” Under Review Inor. Chem. §  J. J. Molgaard, J. D. Auxier II, C. J. Oldham, M. T. Cook, H. L. Hall, “Development of Synthetic Nuclear Melt Glass for Forensic Analysis” J. Rad. Nucl. Chem. 2015 In Press §  A. V. Giminaro, S. A. Stratz, J. A. Gill, J. P. Auxier, C. J. Oldham, M. T. Cook, J. D. Auxier II, J. J. Molgaard, H. L. Hall, “A Method for Development of Synthetic Urban Nuclear Melt Glass for Rapid Forensic Analysis” Under Review to J. Rad. Nucl. Chem. §  4 others in process §  Also sponsored the Radiobioassay and Radiochemical Measurements Conference, Knoxville, TN 2014
  • 53. Patents in Process from related work §  J. J. Molgaard, J. D. Auxier II, H. L. Hall, “Novel Synthetic Nuclear Melt Glass and Methods Thereof” 2014, Pat. Pend. 62/002,202 –  Also: A. V. Giminaro, C. J. Oldham, Mr. J. P. Auxier, E. K. Fenske, J. D. Auxier II, H. L. Hall, “Standard Testable Urban Formation for Forensics (S.T.U.F.F.)”, 2014 has been combined in the license §  J. D. Auxier II, D. E. Hanson, M. L. Marsh, H. L. Hall, “Gas- phase Thermochromatographic Separations of Fission and Activation Products”, 2014, Pat. Pend. 62/028,199 §  S. J. Willmon, H. L. Hall, J. D. Auxier II, Ms. Hannah Hale, M. Thornbury, “Broad Area Search Bayesian Processor” 2015 Under Review §  J. D. Auxier II, J. Stainback IV, M. T. Cook, M. J. Willis, J. D. Birdwell, R. Horn., “Radiation Detection Instrumentation Universal Simulator (RADIUS)”, 2014, Pat. Pend. 62/033,821 §  M. T. Cook, A. V. Giminaro, D. E. Hanson, J. D. Auxier II, H. L. Hall, “Solid Sample Introduction System for Gas Chromatography” 2014, Under Review
  • 54. Collaborators (Hall Group) §  Melt Glass –  Joshua Molgaard (M.S. – now at USMA) –  Andrew Giminaro, Jerrad Auxier, Jonathan Gill, CJ Oldham, Matthew Cook §  Advanced Separations –  Daniel Hanson (now Ph.D. at SRNL) –  Adam Stratz, Steven Jones (Bredesen Scholar) –  UGS: Matthew Marsh (ACS Coryell Award Winner), Ashlyn Jones
  • 55. Interdepartmental Collabotors §  UT Chemistry: Derek Cressy, Derek Mull, Dr. David Jenkins, Dr. Carlos Steren §  Materials Science Engineering: Dr. Stephen Young §  UT/ORNL Joint Institute for Computational Sciences: Dr. Deborah Penchoff
  • 56. RCoE impact on the UT academic program §  Radiochemistry Certificate program §  Nuclear Engineering’s Nuclear Security curricula §  New NE building programming §  Funding: U.S Dept. of Energy, National Nuclear Security Administration, Scientific Stewardship Academic Alliances Program –  Special Thanks to Dr. Howard Hall and Dr. Lawrence Heilbronn
  • 57.
  • 59. Hfac FT-ATR-IR Results NH4 La Gd Lu FuncPonal  Assignment* 738 737 744 738 C-­‐CF3  stretch 799 806 804 821 C-­‐H  out  of  plane  bend 1113 1130 1136 1115 C-­‐H  in-­‐plane  bend 1176 1187   1177 C-­‐F  stretch 1203 1203 1202 1204 C-­‐F  stretch 1271 1270 1253 1271 C-­‐F  stretch 1455 1458 1472 1456 C-­‐H  bend,  [Hfac]-­‐metal   coordina#on   1537 1537 1536 C-­‐O  stretch,  C-­‐H  bend,   [Hfac]-­‐metal   coordina#on   1563 1563 1562 C=C  stretch,  [Hfac]-­‐ metal  coordina#on 1656 1645 1645 1652 C-­‐O  stretch,  [Hfac]-­‐metal   coordina#on 3260 3332 3040 3253 O-­‐H  stretch *Richardson, Wagner, Sands (1968) J. Inorg. Nucl. Chem.
  • 60. Elemental Analysis Compound Element Theory  (%) Found  (%) La[hfac]4 -­‐*  X  H2O   C 23.55 24.7 H 1.28 1.31 N 2.93 2.65 F 47.75 43.41     Gd[hfac]4 -­‐*  X  H2O   C 23.54 24.35 H 0.99 0.96 N 2.75 2.95 F 44.69 42.74  Lu[hfac]4 -­‐*  X  H2O   C 23.44 23.62 H 0.79 0.78 N 1.71 1.63 F 44.5 42.09 •  Possible residual NH4R, causing differences in F % •  Possible hydration differences causes differences in hydrogen amounts
  • 61. NMR Results Ln[hfac]x H-­‐NMR   19F-­‐NMR   Unreacted  hfac   1,4-­‐dioxane   -­‐88.0  -­‐88.0  
  • 62. Elemental Analysis hfod Compound Element Theory Found C 30.46 31.54 H 2.9 2.91 N 0 0 F 33.72 32.73 C 34.56 34.99 H 3.34 3.515 N 1.01 1.035 F 38.27 38.47 C 34.13 34.585 H 3.29 3.235 N 1 1.045 F 37.79 38.16 La[fod]3  *2H2O NH3 + (Gd[fod]4 -­‐ )   *2H2O NH3 + (Lu[fod]4 -­‐ )   *2H2O *A  4:1  mole  ra#o  of   NH4[fod]:LnCl3  was   used.       *One  possible  product   from  this  would  be  the   charged  8-­‐coordinate   dihydrate  (NH3+   [Ln(Hfac)4 -­‐]*2H20).   *The results go against expectation that the smaller cations would have less ligands
  • 63. Sm Gd Ho FuncPonal   Assignment* 741   741   741   C-­‐CF3  stretch   806   804   821   C-­‐H  out  of  plane  bend   1117   1117   1117   C-­‐H  in-­‐plane  bend   1178   1178     1178   C-­‐F  stretch   1220   1220   1220   C-­‐F  stretch   1276   1276   1276   C-­‐F  stretch   1458   1458   1458   C-­‐H  bend,  [Hfac]-­‐ metal  coordina#on   1509   1509   1509   C-­‐O  stretch,  C-­‐H  bend,   [Hfac]-­‐metal   coordina#on   1593   1593   1593   C=C  stretch,  [Hfac]-­‐ metal  coordina#on   1624   1624   1624   C-­‐O  stretch,  [Hfac]-­‐ metal  coordina#on   2974   2974   2974   O-­‐H  stretch   Ln[hfod]x FT-ATR-IR Results
  • 64. NMR Results Ln[hfod]x Ln[fod]x   H-­‐NMR   19F-­‐NMR  
  • 65. NMR Results Ln[hfod]x (cont’d) La   Gd   Lu   Legend   *Shows  most  varia#on   across  series  due  to  being   metal  coordina#on  site   *Larger  ionic  radius   coordina#on  →  greater  shiq   upfield   *ParamagnePc  properPes   causes  large  shiqs  and  line   broadening  =  lower  quality   NMR  results  
  • 66. FT-IR Results hdpm Hdpm Eu Pr FuncPonal  Assignment* 741   760   759   C-­‐H  out  of  plane  bend   797   793   793   C-­‐H  out  of  plane  bend   874   867   867   C-­‐H    bend   1133   1130   1130     C-­‐H  in  plane  bend   1220   1220   1220   C-­‐O  stretch     1365   1380   1350   C-­‐H  rock,  [Hdpm]  metal   coordina#on   1604   1500   1490   C-­‐O  stretch,    C-­‐H  bend,   [Hdpm]  metal   coordina#on   1604   1570   1570   C=C  stretch,  [Hdpm]   metal  coordina#on   3198   2950   2950   C-­‐H  stretch ____   [Hdpm]   100   0 50   Wavenumbers  cm-­‐1  
  • 67. Elemental Analysis hdpm Compound Element Theory Found C 30.46 31.54 H 2.9 2.91 C 34.13 34.585 H 3.29 3.235 Eu[dpm]3 Pr[dpm]3 *A  3:1  mole  ra#o  of   Na(dpm):LnCl3  was   used.   *Steric  hindrance  of  t-­‐butyl   groups  influences  Ln[dpm)3]   product.  
  • 69. NMR Analysis Ln[hdpm] 1H-­‐NMR   6.0   1,4-­‐dioxane   Shiq  Up