SlideShare a Scribd company logo
1 of 12
Download to read offline
1
REDUCING HEALTH AND SAFETY RISKS
ON POORLY MAINTAINED RURAL ROADS
Johan obtained his M.Sc. in Civil Engineering at Luleå University of Technology, Sweden,
and in 2007 he became certified Senior Project Manager by IPMA.
He joined Swedish Road Administration (SRA) as Pavement Engineer in 1991. During 17
years, he served in a handful of positions at SRA. In 2009 the Swedish State created the
transportation infrastructure company Vectura Consulting AB. Johan’s position at Vectura
is Chief Technology Officer for Road Operations and Maintenance.
Johan is secretary for the working group “Vehicles and Transportation” within the Nordic
Road Association (NVF).
His key areas of interests are traffic safety and ride quality, as affected by speed, road
alignment, pavement unevenness, roughness, texture and friction.
N. O. JOHAN GRANLUND
Vectura Consulting AB
Sweden
Abstract
This paper presents a handful of methods to measure road alignment properties and pavement
damages that bring health and safety risks. These methods can be used in new approaches to
reduce disproportionally high risks in hot spots on the low-volume road network. Suitable
actions include road curve reconstruction, reinforcement of road edge or entire pavement,
resurfacing or retexturing the wearing course, as well as mounting intelligent warning signs
using radar for detection of excessive vehicle speed. The potential for crash reduction is high
at hot spot road sections, especially where friction is low. This paper ends with a consensus
statement on the urgent need to implement such approaches in road management. The
statement is given by the Nordic Road Associations (NVF) working group “Vehicles and
Transportation”, consisting of about 50 recognized experts in the fields of heavy vehicles,
transportation and of vehicle-road interaction.
Keywords: Curvature, cross slope, gradient, roll vibration, lateral force, drainage, road grip.
Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads
Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 2
1. Introduction
Many professional truck drivers that frequently drive on rural low-volume roads in poor
condition are exposed to human whole-body vibration (WBV) higher than the Action Value
set by EU directive 2002/44/EC. These drivers suffer unacceptably high risk for stress related
heart diseases and for musculoskeletal problems in the neck, shoulders and back. Furthermore
they are at high risk of being involved in crashes, where also other road users may be severely
injured when colliding with the heavy vehicle.
The main cause of ride vibration is road defects. While vehicle suspension systems are
engineered to efficiently isolate the chassis from wheel vibration with higher frequencies, they
typically tend to amplify vibration frequencies somewhat lower than 4 Hz. Such vibrations are
excited from pavement deformation comparable to, or even longer/wider than, vehicle
dimensions.
While most previous research have focused on vertical and pitch vibration, recent truck ride
measurements on roads in the Northern Periphery (NP) of the European Union have showed
surprisingly high levels of both quasi-static and transient lateral vibration. Unexpected high
lateral forces in “egg-shaped” sharp curves and roll-related lateral buffeting is of outermost
concern for traffic safety in cold climate, as they may initiate skidding on ice-slippery
surfaces. Lateral buffeting also give rise to health issues for vulnerable ambulance car
patients.
The Swedish National Institute of Public Health (2008) found that the most common types of
preventable mortality in Sweden are lung cancer (death rate of 17.1), suicide (15.4) and
cerebro-vascular disease (11.8). Among the therapeutic treatable death causes, diabetes
mellitus is the worst “big killer” with a death rate of 4.5. However, motor vehicle crashes are
worse, with a death rate of 4.9. There are large regional differences in the risk of being killed
in a traffic accident. While the metropolitan areas of Stockholm, Gothenburg and Malmoe
have a Standardized Mortality Ratio (SMR) of 70 for vehicle crashes, the rural areas have a
SMR of 177. This means that vehicle users in the rural areas have (177 – 70) / 70 = 153 %
higher risk to end up in a fatal crash, as compared to urban vehicle users. In the Swedish rural
areas, vehicle crashes take 39 % more lives than diabetes does.
1.1 Extreme Skid Risk in Improperly Banked Outer Curves
Crash rates in curves have been found to be typically 2 to 4.5 times higher than on straight
road sections (Leonard et al., 1994). There is good agreement in the road safety research
community that sharper curves cause more accidents (Charlton & de Pont, 2007). Trucks
show the highest raise in crash rates between straight and curved road sections. Single sharp
curves in highways with long straight sections as well as “flat curves” create some of the most
hazardous situations (Haywood, 1980).
Lindholm (2002) investigated all single crashes with fatal outcome in Sweden during four
years. The results show that the crash rate ratio between outer curves and inner curves is
extremely high; outer curves were found to be 5 times as dangerous as inner curves. On low
volume roads, the crash rate ratio exceeds 6. If the extreme over risk seen in outer curves can
be eliminated, more than 10 % of all fatal road traffic crashes in Sweden would be prevented.
Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads
Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 3
The Roadex III project (Granlund, 2008) identified two unique risk factors in outer curves on
the NP road networks. The first is that many outer curves on old road sections have
insufficient banking, with respect to reference speed and slippery surface conditions. These
curves were properly designed when constructed, considering the neglect able cornering
forces of ancient low speed traffic with horse-pulled wagons. However, these old curves do
not meet the needs of motorized highway vehicles. The second risk factor is that many
entrances and exits of improperly designed superelevated outer curves have insufficient
Drainage Gradient; below 0.5 %. During and after rainfall, there may be large areas with a
very thick water film in these transition sections. The thickness of the water film between tire
and road is decisive for the hydroplaning risk. In wintertime, local outer curve sections with
insufficient Drainage Gradient are often contaminated by extremely slippery ice while other
parts of the road surface may be dry and safe. Such unexpected local ice spots may bring even
higher risk, than generic and thus foreseeable slipperiness all over longer road sections.
1.2 Bumps and Ride Vibration Cause Poor Health
Back disorders are costly to society and are the main causes of sick leave in the working
community. They cause great pain to those suffering, and are a significant economical burden
to society. Professional drivers are a group of workers that have been found to be at high risk
for back disorders. Many epidemiological studies have been made on the relationship between
back disorders and vehicle operation with vibration exposure. The results show overwhelming
evidence of a relationship that is consistent and strong, which increases with increasing
exposure, and is biologically plausible. Numerous back disorders are involved, including
lumbago, sciatica, generalized back pain, and intervertebral disc herniation and degeneration.
The risk is elevated in a broad range of driving occupations, including truck and bus drivers.
Elevated risk is consistently observed after five years of exposure; see Teschke et al (1999).
Amongst older commercial drivers, musculoskeletal problems and cardiovascular diseases are
the primary reasons for changing their occupation. An increased risk of myocardial infarction
among professional drivers was first reported about 50 years ago, and has been reported
repeatedly since then. Stress under certain driving conditions is considered to explain the
raised level of stress hormones found in commercial drivers, and is believed to cause a large
proportion of the health problems, see Hedberg (1993). Bigert et al (2004) showed that the
high incidence of certain heart disease among Swedish truck drivers is constant over time.
McFarlane & Sweatman (2003) studied lane-keeping behaviour of heavy trucks on rough road
sections. Where the road width is narrow, lateral bump steer disturbances may require the
driver to increase concentration into a stress level significant for driver fatigue.
Opinions of professional road users on road service levels across the EU NP area were
mapped by Saarenketo & Saari (2004). Truck drivers stated that the worst sections had bumps
at culverts, weak pavement shoulders, poor road alignment and incorrect cross slope (with
respect to road curvature, decisive for the cornering lateral forces). They also reported
continual stress when driving on some long routes that the road agency believed to be in good
driving condition. This happens when unexpected poor road conditions make the perceived
maximum safe speed drop far below the planned speed. The result is a stressing conflict
within the driver, between making a delayed delivery and causing a major traffic safety risk.
Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads
Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 4
Bray et al (2006) studied physiological stress responses to vehicular buffeting during a 5
minute mild ‘off road’ exposure in a motion simulator, producing transient low frequency roll
vibration with 1 m/s2
r.m.s. lateral vibration. This level is not unusual during normal truck
driving on rural roads in the EU NP. The controlled exposure provoked an increase in heart
rate and blood pressure and a significant hypocapnia of PETCO2 34 mm Hg caused by
tachypnea, which took the test persons 5 minutes to recover. The authors concluded that
buffeting in everyday transport can affect people with cardiovascular disease.
The Roadex III project has done an accurate assessment of truck driver’s exposure to
vibration, see Granlund (2008). Measurements were made in a timber logging truck during ten
roundtrips of 140 - 170 km, with most time spent on Rd 331 between the Swedish inland
forest area and the coast. The results showed that for all measured working days, the daily
vibration exposure A(8) was above 0.65 m/s2
, including normal pauses with zero vibration,
and that A(8) = 0.76 m/s2
is a fair estimate for an 8 hour shift on this kind of routes. This is
significantly above the EU Action Value of A(8) = 0.5 m/s2
. Thereby employers of truck
drivers performing long and bumpy driving in the EU are required to take necessary technical
and/or organizational actions to minimize the driver’s exposure to vibration.
EU employers are also obliged to perform a special risk assessment for workers exposed to
repeated mechanical shock, such as from bumpy rides. The Roadex III case study showed that
even when driven at low speeds (below 40 km/h), severe bumps (> 5 cm) exposed the truck
driver to an equivalent daily static compression dose Sed
2. Identifying Hazardous or Unhealthy Road Sections where Action is needed
over 0.5 MPa. This stress level
corresponds to health risk, as per the ISO 2631-5 (2004) standard.
All the road analysis methods presented below are using data for road alignment and road
condition, measured with a laser/inertial Profilometer such as the one showed in Figure 1.
[Photo: Mats Landerberg]
Figure 1 Vecturas Profilograph P45
2.1 High Curvature and Lack of Cross Slope Increase Side Friction Demand
While much energy is spent on careful alignment design of new roads to be built or
rehabilitated, the constructed ratios between cross slope to curve radius are seldom inspected.
Even more serious is that ancient roads are not inspected in terms of alignment design. One
reason is that many road managers consider it difficult to perform an evaluation. However,
this section provides a simple but yet scientific method, which yields a single value to check.
As described by Newton’s second law of mechanics, cornering vehicles undergo centripetal
acceleration acting toward the centre of the curvature. The exciting lateral force is given by
velocity (squared) [m/s], divided by curve radius [m] and gravity [m/s2
]. The reaction forces
Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads
Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 5
needed to balance the ride is simply the sum of pavement cross slope (E [%]) and the
demanded side friction factor fsd, see equation 1. In order to provide acceptable stability
margin for the ride, the demanded side friction must not exceed the supply side friction factor
fss. The supply side friction factor fss used in Sweden is given by equation 2. For 90 km/h (25
m/s) roads, fss equals 0.118. Equation 2 does not provide conservative, “safe” values in a
winter perspective, since slippery thin “black ice” may give fs < 0.05 when traversed with un-
studded winter tires. The resulting lack of margin is remarkable, since more than 1 out of 2
fatal winter skid accidents in Sweden occur on ”thin ice”. See Granlund (2008) for details.
sdfE
gR
+≈
*
2
ν
(1)
ν*0346.0
*28.0 −
= efss (2)
For the road section of interest, the demand fsd is simply calculated by inserting reference
speed and data on curvature and cross slope (in 1 m steps) in equation 1. Then fsd is compared
to the supply fss Figure 2given by inserting reference speed in equation 2. See the example in .
There reference is given also to 70 % of the max supply fss; equal to “good design standard”.
Figure 2 Excessive Friction Demand in a Sharp and Flat 70 km/h Crash Curve
Experiences in Sweden show that road sections where the demand side friction factor fsd
exceeds the supply side friction factor fss
2.2 Raise the Drainage Gradient above 0.5 % at Outer Curve Transitions
typically have a very high crash rate. Key factors for
crash prevention at these sites are speed reduction, intensified friction maintenance, increased
cross slope/banking and increased road curve radius.
The Drainage Gradient (DG) is the resultant of Cross Slope and Longitudinal Gradient. If the
DG is too low, below 0.5 %, the road surface provides unacceptably low wet skid resistance.
Both Cross Slope and Longitudinal Grade are measured with Profilometers as the one seen in
Figure 1. Using Profilograph data from Rd 331, the Roadex III project demonstrated that most
outer curves were poorly designed as they had insufficient DG. Later investigations on several
Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads
Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 6
other roads, including accident hot spots on brand new express roads, showed that insufficient
DG at entrances and exits of banked outer curves is often built in already in the road design.
Transitions into and out of banked outer curves are less than 1 % of normal road length.
Despite their small share of road length, experiences in Sweden show that a large share of all
rural crashes take place in these sections. Key factor for crash prevention at these sites is to
avoid poor drainage in sections where lateral forces may be significant. This can be done by
redesigning the pavement geometry, so the cross slope transition is moved from the curve to a
straight section where lateral forces are low. If possible, the transition should be made in an
(artificially created, if needed) up- or downgrade. In some cases, permeable asphalt can be
used in the curve transitions.
2.3 Ride Vibration and Shock: Keep Road Roughness IRI20m
A study of 78 631 crashes showed that when road roughness level increase, also the crash rate
increase (Ihs et al, 2002). A general relationship between crash rate and International
Roughness Index (IRI) for roads with AADT 1000 – 4000 vehicles/day is given by equation 3.
The equation shows that if the road is rough (IRI 3 mm/m), the crash rate is expected to be 20
% higher than if the road had been smooth (IRI 1 mm/m). The study also showed that high
variance in roughness (local road damage) is accompanied by further increased crash rate.
below 3 mm/m
Crash rate per 100 million axle pair km = 22.7 + 2.54* IRI20m [mm/m] (3)
Truck drivers’ exposure to ride vibration was related to the International Roughness Index by
Ahlin et al (2000). For a heavy truck with trailer driving at 75 km/h, equation 4 gives a
relationship between seat vibration and IRI [mm/m].
RMS(ax,y,z) = 0.18 + 0.30 * IRI100m (4)
The EU Action Value A(8) is set to 0.5 m/s2
. Assuming that 100 min/day consists of loading,
unloading and pauses with zero ride vibration, the remaining 380 min of the 8 hour working
day is allowed to have an intensity of 0.56 m/s2
. In order to keep the driving time exposure
below this value, equation 4 shows that average road network roughness should be below IRI
= (0.56 – 0.18) / 0.30 = 1.27 mm/m. This is a low road roughness level for road networks; in
many rural areas not realistic to achieve without significantly raised road funding.
Experiences in Sweden show significant reduction in ride vibration and shock by eliminating
bumps and other local road damage causing IRI20m higher than 3 mm/m, as well as steps at
road/bridge joints and potholes causing 50 – 500 mm long Megatexture1m over 0.60 mm
2.4 Limit Truck Roll and Lateral Vibration by Keeping RBCSV below 0.30 %
.
The Roadex III study reported by Granlund (2008) validated a new pavement condition
parameter called “Rut Bottom Cross Slope Variance” (RBCSV), by correlation with truck roll
vibration as well as with truck lateral vibration. A limit value of 0.30 % was drafted for
RBCSV, based on values recorded at hazardous sites / accident hot spots, on truck driver’s
subjective opinion as well as on statistical analysis of data from road sections in various
conditions.
Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads
Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 7
RBCSV is based on road profile data, laser scanned at 16 kHz in the bottom of the truck
wheel paths (left and right), inertial compensated for the Profilometer vehicle roll angle versus
the horizon, and eventually reported in steps no longer than 1 m.
Since Nordic HGV’s typically has a track width of about 2.0 m, the height sensors recording
Rut Bottom Cross Slope (RBCS) should be spaced 2.0 m. Preferably, the elevation in each
wheel path is estimated by readings from several (three or more) height sensors, rather than by
readings from a single sensor in the Profilograph rut bar. From the data recovered, the RBCS
is calculated as described below.
The calculation is made with a crucial filtering procedure to remove very long wave slope
variance, relating to superelevation change at outer curve transitions. Depending on road
section width and reference speed, such desired change in cross slope takes place over some
40 - 200 m. These transitions smoothly tilt the truck cab roll angle from one side to the other
without producing roll-mode vibration. The vital filter is calibrated with the road’s reference
speed, thereby normalizing the filtering to typical roll vibration eigenfrequencies of heavy
truck suspended masses.
The long wave variance is removed from the RBCS with the following “running averaging”
procedure:
1. For each road section, very long wave variance in RBCS is calculated centred over the
base length relevant for the current reference speed limit, see Table 1. This is made by
taking the average over as many values ”before” as ”after” the current section. Since
this step is made for each section, the procedure may be called “moving averaging”.
2. The derived series of “the surroundings very long wave variance” is now subtracted
from the origin RBCS series.
3. The resulting series of data has an average value of 0 % (zero) and reflects only sudden
variance (within 1 to 31 m) in RBCS. This series does not longer give information
about the RBCS magnitude, but from this series it is now possible to calculate RBCS
variance in terms of running Root-Mean-Square.
Table 1 Base length for moving averaging
Reference speed Base length
[km/h] [m/s] [m]
30 8.3 9
50 13.9 13
70 19.4 19
90 25 25
110 30.5 31
The RBCS of a 400 m long road section is showed with a red dotted graph in Figure 3; data is
given in step of 1 m. Since the section has 70 km/h reference speed, the base length is 19 m
(see Table 1). The long wave cross slope variance, which may be a fruit of smooth curve
transitions, is showed with a purple graph.
The difference between the two graphs in Figure 3 constitutes the undesired Cross Slope
variance, and is showed with a blue graph in Figure 4.
Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads
Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 8
Figure 3 RBCS and its “very long wave” variance
Figure 4 RBCS and its undesired variance
In the next step, running Root-Mean-Squares of undesired variances are calculated in two
parallel runs. One run calculates the RMS variance over 5 m “short sections”, addressing truck
wheel axle roll vibration. The other run calculates the RMS variance over 20 m “long
sections”, addressing chassis/cab roll excitation. See Figure 5.
Figure 5 RMS of short wave and long wave RBCS variance
Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads
Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 9
In the final step, the maximum of the two variances in Figure 5 is reported as the undesired
Variance of Rut Bottom Cross Slope (RBCSV). While the long wave RMS is generally
decisive, the short wave RMS is highest in some sections with local extreme pavement edge
damage.
In the Roadex III project, the roll angle of a Scania R144G truck cab was measured at 100 Hz
with an Oxford Technical Solutions RT 3050 GPS/inertial unit. The variance of truck cab roll
angle is compared with the variance of the RBCS (RBCSV) in Figure 6. The graphs show a
good overall fit. However, there is a large local shift in magnitude between the graphs at
section 125/275 km. This discrepancy was caused as the truck driver decided to leave the
wheel track at the edge damage in section 125/275 km seen in Figure 7 (photo and
Profilograph scan). The laser scan showed that the edge deformation was 69 mm deep.
Despite the fact that the truck was driven around the worst part of the 69 mm deep edge
deformation, truck cab lateral acceleration peaked at 2 m/s2
. A seat pad under the truck
drivers’ bottom peaked at 3.5 m/s2
lateral acceleration on the straight road section. Obviously
the experienced truck driver’s decision to avoid the edge deformation by leaving the wheel
paths was correct; otherwise a crash may have occurred during the test.
Figure 6 Pavement RBCSV versus Variance of Truck Cab Roll Angle
Figure 7 69 mm deep pavement edge deformation at 125/275 km
Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads
Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 10
As showed in the Roadex III project, RBCSV is strongly correlated to both roll and lateral
vibration in heavy vehicles. Furtermore, it has been showed that road sections with RBCSV
exceeding 0.30 % are overrepresented "hot spots" in the crash records.
2.5 Avoid Low or Split Friction by Keeping Macro Texture above 0.6 mm in Both Ruts
When driving in rain, too low pavement texture depth can be as hazardous as having slick
worn tires. The minimum level of “safe” 0.5 – 50 mm long Macro-texture (MaTx) varies
somewhat with surface type and texture measurement method. For MaTx-data from the
Profilograph in Figure 1, a benchmark value is MPD minimum 0.6 mm.
Poor patch repair often create large variance between wheel paths, in terms of colour and
MaTx. The outcome may include hazardous Split Friction when braking hard in wet (or
freeze/thaw) road condition. The result may be jack-knifing or trailer swing.
There were 5 crashes in a curve on Swedish HW 61 within 2 weeks after the edge patch repair
seen in Figure 8. Profilograph data showed good MaTx, MPD 1.0 – 1.3 mm, on the intact
asphalt. However, the edge-patch had less than MPD 0.3 mm. The patch did not only give too
low wet friction, but also Split Friction compared to the other wheel path.
Photo: Bengt Andersson and Mats Ekehov
Figure 8 Hw 61: After Edge Repair, the Curve had 5 Crashes in 2 Weeks
3. Conclusion
There are disproportionally high health and safety risks on poorly maintained hot spot sections
on the rural road network.
Key risk factors are road roughness, lateral force, poor drainage and low road grip.
Parameters that affect the key factors include pavement (edge) bearing capacity, speed, road
curvature, cross slope, gradient and texture.
This paper presents a handful of analysis methods that can be used to identify risk sections,
where actions should be taken.
Actions addressing the key factors listed above will reduce health risks for professional
drivers and vulnerable ambulance patients. Such actions are also expected to reduce crash risk
for both heavy vehicle and light vehicle traffic.
Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads
Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 11
4. Consensus Statement
This paper is prepared on behalf of the Nordic Road Associations (NVF) working group
“Vehicle and Transportation”. The working group consists of about 50 Nordic recognized
experts on vehicles, transportation and on vehicle-road interaction. The experts are nominated
by a wide range of national organizations, including transport departments, police, road
agencies, truck haulage associations and vehicle manufacturers in Sweden, Norway, Finland,
Denmark, Iceland and the Pharoe Islands.
Hereby the NVF working group “Vehicle and Transportation” states in consensus that:
“-There is a need to implement new knowledge and practical methods into new approaches,
aiming to make an efficient reduction of the disproportionally high health and safety risks on
hot spot sections on the road network. This will improve the working environment for
professional drivers and is expected to reduce crash risk for both heavy vehicle and light
vehicle traffic as well”.
On behalf of NVF working group “Vehicles and Transportation”,
Mårten Johansson Asbjörn Johnsen Juha Valtonen
Chairman, Sweden Chairman, Norway Chairman, Finland
Hans Skat Daniel Arnason Bugvi Apol
Chairman, Denmark Chairman, Iceland Chairman, Pharoe Islands
Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads
Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 12
5. References
• Directive 2002/44/EC on The minimum health and safety requirements regarding the
exposure of workers to the risks arising from physical agents (vibration). The European
Parliament and the Council.
Internet 2010-01-30: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:177:0013:0019:EN:PDF
• Westerling, R. (2008). ”Åtgärdbar dödlighet som en indikator i den folkhälsopolitiska
uppföljningen”. (Avoidable mortality as an indicator in the evaluation of public health
politics). Statens folkhälsoinstitut, Rapport 2008:03.
Internet 2010-01-30: http://www.fhi.se/PageFiles/3122/Atgardbar_dod_webb_0802.pdf
• Leonard, J., Bilse, D., & Recker, W. (1994). “Superelevation rates at rural highway
intersections”. Report no. RTA-53P434. Irvine CA: University of California Institute of
Transportation Studies.
• Charlton, S. G., & de Pont, J. J. (2007). ”Curve speed management”. Land Transport New
Zealand, Research Report 323.
• Haywood, J. C. (1980). “Highway alignment and superelevation: Some design-speed
misconceptions”. Transportation Research Record, 757: 22−25.
• Lindholm, M. (2002). “Analys av singelolyckor med dödlig utgång på det statliga
vägnätet”. (Analysis of fatal single crashes on state highways). Swedish Road
Administration, publ 2002:109. Internet 2010-01-30:
http://publikationswebbutik.vv.se/upload/1436/2002_109_analys_av_singelolyckor_med_dodlig_utgang_pa_det_statliga_vagnatet_ex
klusive_motorvagar_1997_2000.pdf
• Granlund, J. (2008). “Health Issues Raised by Poorly Maintained Road Networks”. The
Roadex III project.
Internet 2010-01-30: http://www.roadex.org/Publications/docs-RIII-EN/Health%20Issues%20-%20RIII.pdf
Videolecture 2010-01-31: http://videolectures.net/surf08_grandlund_rhirt/
• Teschke, K., Nicol, A-M., Davies, H. & Ju, S. (1999). “Whole Body Vibration and Back
Disorders Among Motor Vehicle Drivers and Heavy Equipment Operators: A Review of
the Scientific Evidence”. Report to Workers' Compensation Board of British Columbia.
Internet 2010-01-30: http://www.cher.ubc.ca/PDFs/WBV_Report.pdf
• Hedberg, G.E., et al. (1993). “Risk indicators of ischemic heart disease among male
professional drivers in Sweden”. Scand. J Work Environ Health, Vol 19, p 326-333.
• Bigert, C. Klerdal, K., Hammar, N., Hallqvist, J. & Gustavsson, P. (2004). ”Time trends in
the incidence of myocardial infarction among professional drivers in Stockholm 1977-96”.
Occup Environ Med; Vol 61, p 987 - 991. Internet 2010-01-30: http://oem.bmj.com/content/61/12/987.abstract
• McFarlane, S. & Sweatman, P.F. (2003). ”Investigation into the Specification of Heavy
Trucks and Consequent Effect on Truck Dynamics and Drivers: Final Report”. Roaduser
International Pty Ltd.
• Saarenketo, T. & Saari, J. (2004). “User perspective to ROADEX II test area’s road
network service level”. The ROADEX II project.
Internet 2010-01-30: http://www.roadex.org/Publications/docs-RII-EN/1_1%20User%20Perspective_l.pdf
• Bray, A., Bronstein, A.M., Green, D.A., Gresty, M. A. & Golding, J. F. (2006).
“Tachypnea and hypocapnia are induced by ‘buffeting’ in vehicles”. Clin Auton Res,
16:281–285.
• Ahlin, K., Granlund, J. & Lundström, R. (2000). ”Whole-Body Vibration When Riding on
Rough Roads – A Shocking Study”. Swedish Road Administration, Vol. 31E. Internet 2010-01-
30: http://publikationswebbutik.vv.se/upload/3054/2000_31E_Whole_body_vibrations_when_riding_on_rough_roads.zip
• Ihs, A., Velin, H. & Wikström, M. (2002). ”Vägytans inverkan på trafiksäkerheten”. (The
influence of road surface condition on traffic safety). Väg- och TransportforskningsInsti-
tutet, VTI medd 909. Internet 2010-01-30: www.vti.se/EPiBrowser/Publikationer/M909.pdf

More Related Content

Similar to Reducing health and safety risks on poorly maintained rural roads, granlund

The influence of road geometric design elements on highway safety
The influence of road geometric design elements on highway safetyThe influence of road geometric design elements on highway safety
The influence of road geometric design elements on highway safetyIAEME Publication
 
4 estimating benefits-from_specific_highwa
4   estimating benefits-from_specific_highwa4   estimating benefits-from_specific_highwa
4 estimating benefits-from_specific_highwaSierra Francisco Justo
 
Hvtt13 granlund et al lowered crash risk with banked curves designed for heav...
Hvtt13 granlund et al lowered crash risk with banked curves designed for heav...Hvtt13 granlund et al lowered crash risk with banked curves designed for heav...
Hvtt13 granlund et al lowered crash risk with banked curves designed for heav...Johan Granlund
 
Determination of the significance level of environmental and
Determination of the significance level of environmental andDetermination of the significance level of environmental and
Determination of the significance level of environmental andAlexander Decker
 
Vehicle and human vibration due to road condition - ROADEX IV
Vehicle and human vibration due to road condition - ROADEX IVVehicle and human vibration due to road condition - ROADEX IV
Vehicle and human vibration due to road condition - ROADEX IVJohan Granlund
 
tph-traffic-health-impacts
tph-traffic-health-impactstph-traffic-health-impacts
tph-traffic-health-impactsKim Perrotta
 
Roundabouts: Finding the Right Way
Roundabouts: Finding the Right WayRoundabouts: Finding the Right Way
Roundabouts: Finding the Right WayJay Bohman
 
Investigating Heavy Vehicle Rollover Crashes and the Influence of Road Design
Investigating Heavy Vehicle Rollover Crashes and the Influence of Road DesignInvestigating Heavy Vehicle Rollover Crashes and the Influence of Road Design
Investigating Heavy Vehicle Rollover Crashes and the Influence of Road DesignJohan Granlund
 
Degree of vehicle overloading and its implication on road safety in developin...
Degree of vehicle overloading and its implication on road safety in developin...Degree of vehicle overloading and its implication on road safety in developin...
Degree of vehicle overloading and its implication on road safety in developin...Alexander Decker
 
IRJET- Intelligent Overloading Prevention System in Trucks
IRJET- Intelligent Overloading Prevention System in TrucksIRJET- Intelligent Overloading Prevention System in Trucks
IRJET- Intelligent Overloading Prevention System in TrucksIRJET Journal
 
Chapter -I Introduction of Road Safety by Dr.Makendran C
Chapter -I Introduction of Road Safety by Dr.Makendran CChapter -I Introduction of Road Safety by Dr.Makendran C
Chapter -I Introduction of Road Safety by Dr.Makendran Cmakendran1
 
The Effects of Vehicle Speeds on Accident Frequency within Settlements along ...
The Effects of Vehicle Speeds on Accident Frequency within Settlements along ...The Effects of Vehicle Speeds on Accident Frequency within Settlements along ...
The Effects of Vehicle Speeds on Accident Frequency within Settlements along ...IJMER
 
CAD CAM pavement maintenance actions -An efficient method to reduce human who...
CAD CAM pavement maintenance actions -An efficient method to reduce human who...CAD CAM pavement maintenance actions -An efficient method to reduce human who...
CAD CAM pavement maintenance actions -An efficient method to reduce human who...Johan Granlund
 
17 hauer web9 lessons learned white paper
17 hauer web9 lessons learned white paper17 hauer web9 lessons learned white paper
17 hauer web9 lessons learned white paperSierra Francisco Justo
 
Las tres e, y la politica de seguridad vial 2013
Las tres e, y la politica de seguridad vial 2013Las tres e, y la politica de seguridad vial 2013
Las tres e, y la politica de seguridad vial 2013Sierra Francisco Justo
 
17 hauer web9 lessons learned white paper
17 hauer web9 lessons learned white paper17 hauer web9 lessons learned white paper
17 hauer web9 lessons learned white paperSierra Francisco Justo
 
Automobile safety seminar report
Automobile safety seminar reportAutomobile safety seminar report
Automobile safety seminar reportDeepak kango
 

Similar to Reducing health and safety risks on poorly maintained rural roads, granlund (20)

The influence of road geometric design elements on highway safety
The influence of road geometric design elements on highway safetyThe influence of road geometric design elements on highway safety
The influence of road geometric design elements on highway safety
 
4 estimating benefits-from_specific_highwa
4   estimating benefits-from_specific_highwa4   estimating benefits-from_specific_highwa
4 estimating benefits-from_specific_highwa
 
Hvtt13 granlund et al lowered crash risk with banked curves designed for heav...
Hvtt13 granlund et al lowered crash risk with banked curves designed for heav...Hvtt13 granlund et al lowered crash risk with banked curves designed for heav...
Hvtt13 granlund et al lowered crash risk with banked curves designed for heav...
 
Bloody Pavement
Bloody PavementBloody Pavement
Bloody Pavement
 
W01231139146
W01231139146W01231139146
W01231139146
 
Determination of the significance level of environmental and
Determination of the significance level of environmental andDetermination of the significance level of environmental and
Determination of the significance level of environmental and
 
9 is your-road_forgiving (4)
9   is your-road_forgiving (4)9   is your-road_forgiving (4)
9 is your-road_forgiving (4)
 
Vehicle and human vibration due to road condition - ROADEX IV
Vehicle and human vibration due to road condition - ROADEX IVVehicle and human vibration due to road condition - ROADEX IV
Vehicle and human vibration due to road condition - ROADEX IV
 
tph-traffic-health-impacts
tph-traffic-health-impactstph-traffic-health-impacts
tph-traffic-health-impacts
 
Roundabouts: Finding the Right Way
Roundabouts: Finding the Right WayRoundabouts: Finding the Right Way
Roundabouts: Finding the Right Way
 
Investigating Heavy Vehicle Rollover Crashes and the Influence of Road Design
Investigating Heavy Vehicle Rollover Crashes and the Influence of Road DesignInvestigating Heavy Vehicle Rollover Crashes and the Influence of Road Design
Investigating Heavy Vehicle Rollover Crashes and the Influence of Road Design
 
Degree of vehicle overloading and its implication on road safety in developin...
Degree of vehicle overloading and its implication on road safety in developin...Degree of vehicle overloading and its implication on road safety in developin...
Degree of vehicle overloading and its implication on road safety in developin...
 
IRJET- Intelligent Overloading Prevention System in Trucks
IRJET- Intelligent Overloading Prevention System in TrucksIRJET- Intelligent Overloading Prevention System in Trucks
IRJET- Intelligent Overloading Prevention System in Trucks
 
Chapter -I Introduction of Road Safety by Dr.Makendran C
Chapter -I Introduction of Road Safety by Dr.Makendran CChapter -I Introduction of Road Safety by Dr.Makendran C
Chapter -I Introduction of Road Safety by Dr.Makendran C
 
The Effects of Vehicle Speeds on Accident Frequency within Settlements along ...
The Effects of Vehicle Speeds on Accident Frequency within Settlements along ...The Effects of Vehicle Speeds on Accident Frequency within Settlements along ...
The Effects of Vehicle Speeds on Accident Frequency within Settlements along ...
 
CAD CAM pavement maintenance actions -An efficient method to reduce human who...
CAD CAM pavement maintenance actions -An efficient method to reduce human who...CAD CAM pavement maintenance actions -An efficient method to reduce human who...
CAD CAM pavement maintenance actions -An efficient method to reduce human who...
 
17 hauer web9 lessons learned white paper
17 hauer web9 lessons learned white paper17 hauer web9 lessons learned white paper
17 hauer web9 lessons learned white paper
 
Las tres e, y la politica de seguridad vial 2013
Las tres e, y la politica de seguridad vial 2013Las tres e, y la politica de seguridad vial 2013
Las tres e, y la politica de seguridad vial 2013
 
17 hauer web9 lessons learned white paper
17 hauer web9 lessons learned white paper17 hauer web9 lessons learned white paper
17 hauer web9 lessons learned white paper
 
Automobile safety seminar report
Automobile safety seminar reportAutomobile safety seminar report
Automobile safety seminar report
 

More from Johan Granlund

Accurate Measurement of Runway Pavement Geometries
Accurate Measurement of Runway Pavement GeometriesAccurate Measurement of Runway Pavement Geometries
Accurate Measurement of Runway Pavement GeometriesJohan Granlund
 
TRAFFIC CALMING AT MOBILE ROADWORK ZONES: USE OF VEHICLE-MOUNTED RADAR TO EV...
TRAFFIC CALMING AT MOBILE ROADWORK ZONES: USE OF VEHICLE-MOUNTED RADAR TO EV...TRAFFIC CALMING AT MOBILE ROADWORK ZONES: USE OF VEHICLE-MOUNTED RADAR TO EV...
TRAFFIC CALMING AT MOBILE ROADWORK ZONES: USE OF VEHICLE-MOUNTED RADAR TO EV...Johan Granlund
 
TRAFFIC CALMING AT STATIONARY SHORT-TERM ROADWORK ZONES
TRAFFIC CALMING AT STATIONARY SHORT-TERM ROADWORK ZONESTRAFFIC CALMING AT STATIONARY SHORT-TERM ROADWORK ZONES
TRAFFIC CALMING AT STATIONARY SHORT-TERM ROADWORK ZONESJohan Granlund
 
Vasaloppsvägen, väg 1012, Olyckskurva vid distans ca 9790 m från Rv 70 n Oxbe...
Vasaloppsvägen, väg 1012, Olyckskurva vid distans ca 9790 m från Rv 70 n Oxbe...Vasaloppsvägen, väg 1012, Olyckskurva vid distans ca 9790 m från Rv 70 n Oxbe...
Vasaloppsvägen, väg 1012, Olyckskurva vid distans ca 9790 m från Rv 70 n Oxbe...Johan Granlund
 
Geometrisk vägbeläggningsprojektering inför mötesfri landsväg
Geometrisk vägbeläggningsprojektering inför mötesfri landsvägGeometrisk vägbeläggningsprojektering inför mötesfri landsväg
Geometrisk vägbeläggningsprojektering inför mötesfri landsvägJohan Granlund
 
Vägnära häckar, buskar, träd och annan växtlighet i Bäsna
Vägnära häckar, buskar, träd och annan växtlighet i BäsnaVägnära häckar, buskar, träd och annan växtlighet i Bäsna
Vägnära häckar, buskar, träd och annan växtlighet i BäsnaJohan Granlund
 
Kan jämnhetsstandarden hos det svenska vägnätet förorsaka fordonsskador och o...
Kan jämnhetsstandarden hos det svenska vägnätet förorsaka fordonsskador och o...Kan jämnhetsstandarden hos det svenska vägnätet förorsaka fordonsskador och o...
Kan jämnhetsstandarden hos det svenska vägnätet förorsaka fordonsskador och o...Johan Granlund
 
Landsvägstrafiken genom Bäsna
Landsvägstrafiken genom BäsnaLandsvägstrafiken genom Bäsna
Landsvägstrafiken genom BäsnaJohan Granlund
 
Optimalt däckval, HGAB Granlund
Optimalt däckval, HGAB GranlundOptimalt däckval, HGAB Granlund
Optimalt däckval, HGAB GranlundJohan Granlund
 
Minska vältrisken vid körning med hög tyngdpunkt, VETA Granlund
Minska vältrisken vid körning med hög tyngdpunkt, VETA GranlundMinska vältrisken vid körning med hög tyngdpunkt, VETA Granlund
Minska vältrisken vid körning med hög tyngdpunkt, VETA GranlundJohan Granlund
 
Bristande vägkvalitet är miljöboven - inte dubbdäcken
Bristande vägkvalitet är miljöboven - inte dubbdäckenBristande vägkvalitet är miljöboven - inte dubbdäcken
Bristande vägkvalitet är miljöboven - inte dubbdäckenJohan Granlund
 
Optimalt däckval; dubbel- eller enkelmontage?
Optimalt däckval; dubbel- eller enkelmontage?Optimalt däckval; dubbel- eller enkelmontage?
Optimalt däckval; dubbel- eller enkelmontage?Johan Granlund
 
Vägslitage; orsaker och kostnader
Vägslitage; orsaker och kostnaderVägslitage; orsaker och kostnader
Vägslitage; orsaker och kostnaderJohan Granlund
 
Trafiksäker framkomlighet
Trafiksäker framkomlighetTrafiksäker framkomlighet
Trafiksäker framkomlighetJohan Granlund
 
Fallstudie av beläggningsunderhåll på enskilt vägnät, Strategi och taktiskt g...
Fallstudie av beläggningsunderhåll på enskilt vägnät, Strategi och taktiskt g...Fallstudie av beläggningsunderhåll på enskilt vägnät, Strategi och taktiskt g...
Fallstudie av beläggningsunderhåll på enskilt vägnät, Strategi och taktiskt g...Johan Granlund
 
Reduced Pavement Service Life - Causes and Costs, HVTT15 slides
Reduced Pavement Service Life - Causes and Costs, HVTT15 slidesReduced Pavement Service Life - Causes and Costs, HVTT15 slides
Reduced Pavement Service Life - Causes and Costs, HVTT15 slidesJohan Granlund
 
Reduced Pavement Service Life - Causes and Costs, HVTT15 paper
Reduced Pavement Service Life - Causes and Costs, HVTT15 paperReduced Pavement Service Life - Causes and Costs, HVTT15 paper
Reduced Pavement Service Life - Causes and Costs, HVTT15 paperJohan Granlund
 
Trafikksikker fremkommelighet.
Trafikksikker fremkommelighet.Trafikksikker fremkommelighet.
Trafikksikker fremkommelighet.Johan Granlund
 
Förebygg dynamiska laster som deformerar vägbanan
Förebygg dynamiska laster som deformerar vägbananFörebygg dynamiska laster som deformerar vägbanan
Förebygg dynamiska laster som deformerar vägbananJohan Granlund
 

More from Johan Granlund (20)

Accurate Measurement of Runway Pavement Geometries
Accurate Measurement of Runway Pavement GeometriesAccurate Measurement of Runway Pavement Geometries
Accurate Measurement of Runway Pavement Geometries
 
TRAFFIC CALMING AT MOBILE ROADWORK ZONES: USE OF VEHICLE-MOUNTED RADAR TO EV...
TRAFFIC CALMING AT MOBILE ROADWORK ZONES: USE OF VEHICLE-MOUNTED RADAR TO EV...TRAFFIC CALMING AT MOBILE ROADWORK ZONES: USE OF VEHICLE-MOUNTED RADAR TO EV...
TRAFFIC CALMING AT MOBILE ROADWORK ZONES: USE OF VEHICLE-MOUNTED RADAR TO EV...
 
TRAFFIC CALMING AT STATIONARY SHORT-TERM ROADWORK ZONES
TRAFFIC CALMING AT STATIONARY SHORT-TERM ROADWORK ZONESTRAFFIC CALMING AT STATIONARY SHORT-TERM ROADWORK ZONES
TRAFFIC CALMING AT STATIONARY SHORT-TERM ROADWORK ZONES
 
Vasaloppsvägen, väg 1012, Olyckskurva vid distans ca 9790 m från Rv 70 n Oxbe...
Vasaloppsvägen, väg 1012, Olyckskurva vid distans ca 9790 m från Rv 70 n Oxbe...Vasaloppsvägen, väg 1012, Olyckskurva vid distans ca 9790 m från Rv 70 n Oxbe...
Vasaloppsvägen, väg 1012, Olyckskurva vid distans ca 9790 m från Rv 70 n Oxbe...
 
Utvecklande ledarskap
Utvecklande ledarskapUtvecklande ledarskap
Utvecklande ledarskap
 
Geometrisk vägbeläggningsprojektering inför mötesfri landsväg
Geometrisk vägbeläggningsprojektering inför mötesfri landsvägGeometrisk vägbeläggningsprojektering inför mötesfri landsväg
Geometrisk vägbeläggningsprojektering inför mötesfri landsväg
 
Vägnära häckar, buskar, träd och annan växtlighet i Bäsna
Vägnära häckar, buskar, träd och annan växtlighet i BäsnaVägnära häckar, buskar, träd och annan växtlighet i Bäsna
Vägnära häckar, buskar, träd och annan växtlighet i Bäsna
 
Kan jämnhetsstandarden hos det svenska vägnätet förorsaka fordonsskador och o...
Kan jämnhetsstandarden hos det svenska vägnätet förorsaka fordonsskador och o...Kan jämnhetsstandarden hos det svenska vägnätet förorsaka fordonsskador och o...
Kan jämnhetsstandarden hos det svenska vägnätet förorsaka fordonsskador och o...
 
Landsvägstrafiken genom Bäsna
Landsvägstrafiken genom BäsnaLandsvägstrafiken genom Bäsna
Landsvägstrafiken genom Bäsna
 
Optimalt däckval, HGAB Granlund
Optimalt däckval, HGAB GranlundOptimalt däckval, HGAB Granlund
Optimalt däckval, HGAB Granlund
 
Minska vältrisken vid körning med hög tyngdpunkt, VETA Granlund
Minska vältrisken vid körning med hög tyngdpunkt, VETA GranlundMinska vältrisken vid körning med hög tyngdpunkt, VETA Granlund
Minska vältrisken vid körning med hög tyngdpunkt, VETA Granlund
 
Bristande vägkvalitet är miljöboven - inte dubbdäcken
Bristande vägkvalitet är miljöboven - inte dubbdäckenBristande vägkvalitet är miljöboven - inte dubbdäcken
Bristande vägkvalitet är miljöboven - inte dubbdäcken
 
Optimalt däckval; dubbel- eller enkelmontage?
Optimalt däckval; dubbel- eller enkelmontage?Optimalt däckval; dubbel- eller enkelmontage?
Optimalt däckval; dubbel- eller enkelmontage?
 
Vägslitage; orsaker och kostnader
Vägslitage; orsaker och kostnaderVägslitage; orsaker och kostnader
Vägslitage; orsaker och kostnader
 
Trafiksäker framkomlighet
Trafiksäker framkomlighetTrafiksäker framkomlighet
Trafiksäker framkomlighet
 
Fallstudie av beläggningsunderhåll på enskilt vägnät, Strategi och taktiskt g...
Fallstudie av beläggningsunderhåll på enskilt vägnät, Strategi och taktiskt g...Fallstudie av beläggningsunderhåll på enskilt vägnät, Strategi och taktiskt g...
Fallstudie av beläggningsunderhåll på enskilt vägnät, Strategi och taktiskt g...
 
Reduced Pavement Service Life - Causes and Costs, HVTT15 slides
Reduced Pavement Service Life - Causes and Costs, HVTT15 slidesReduced Pavement Service Life - Causes and Costs, HVTT15 slides
Reduced Pavement Service Life - Causes and Costs, HVTT15 slides
 
Reduced Pavement Service Life - Causes and Costs, HVTT15 paper
Reduced Pavement Service Life - Causes and Costs, HVTT15 paperReduced Pavement Service Life - Causes and Costs, HVTT15 paper
Reduced Pavement Service Life - Causes and Costs, HVTT15 paper
 
Trafikksikker fremkommelighet.
Trafikksikker fremkommelighet.Trafikksikker fremkommelighet.
Trafikksikker fremkommelighet.
 
Förebygg dynamiska laster som deformerar vägbanan
Förebygg dynamiska laster som deformerar vägbananFörebygg dynamiska laster som deformerar vägbanan
Förebygg dynamiska laster som deformerar vägbanan
 

Recently uploaded

Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetEnjoy Anytime
 

Recently uploaded (20)

Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
 

Reducing health and safety risks on poorly maintained rural roads, granlund

  • 1. 1 REDUCING HEALTH AND SAFETY RISKS ON POORLY MAINTAINED RURAL ROADS Johan obtained his M.Sc. in Civil Engineering at Luleå University of Technology, Sweden, and in 2007 he became certified Senior Project Manager by IPMA. He joined Swedish Road Administration (SRA) as Pavement Engineer in 1991. During 17 years, he served in a handful of positions at SRA. In 2009 the Swedish State created the transportation infrastructure company Vectura Consulting AB. Johan’s position at Vectura is Chief Technology Officer for Road Operations and Maintenance. Johan is secretary for the working group “Vehicles and Transportation” within the Nordic Road Association (NVF). His key areas of interests are traffic safety and ride quality, as affected by speed, road alignment, pavement unevenness, roughness, texture and friction. N. O. JOHAN GRANLUND Vectura Consulting AB Sweden Abstract This paper presents a handful of methods to measure road alignment properties and pavement damages that bring health and safety risks. These methods can be used in new approaches to reduce disproportionally high risks in hot spots on the low-volume road network. Suitable actions include road curve reconstruction, reinforcement of road edge or entire pavement, resurfacing or retexturing the wearing course, as well as mounting intelligent warning signs using radar for detection of excessive vehicle speed. The potential for crash reduction is high at hot spot road sections, especially where friction is low. This paper ends with a consensus statement on the urgent need to implement such approaches in road management. The statement is given by the Nordic Road Associations (NVF) working group “Vehicles and Transportation”, consisting of about 50 recognized experts in the fields of heavy vehicles, transportation and of vehicle-road interaction. Keywords: Curvature, cross slope, gradient, roll vibration, lateral force, drainage, road grip.
  • 2. Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 2 1. Introduction Many professional truck drivers that frequently drive on rural low-volume roads in poor condition are exposed to human whole-body vibration (WBV) higher than the Action Value set by EU directive 2002/44/EC. These drivers suffer unacceptably high risk for stress related heart diseases and for musculoskeletal problems in the neck, shoulders and back. Furthermore they are at high risk of being involved in crashes, where also other road users may be severely injured when colliding with the heavy vehicle. The main cause of ride vibration is road defects. While vehicle suspension systems are engineered to efficiently isolate the chassis from wheel vibration with higher frequencies, they typically tend to amplify vibration frequencies somewhat lower than 4 Hz. Such vibrations are excited from pavement deformation comparable to, or even longer/wider than, vehicle dimensions. While most previous research have focused on vertical and pitch vibration, recent truck ride measurements on roads in the Northern Periphery (NP) of the European Union have showed surprisingly high levels of both quasi-static and transient lateral vibration. Unexpected high lateral forces in “egg-shaped” sharp curves and roll-related lateral buffeting is of outermost concern for traffic safety in cold climate, as they may initiate skidding on ice-slippery surfaces. Lateral buffeting also give rise to health issues for vulnerable ambulance car patients. The Swedish National Institute of Public Health (2008) found that the most common types of preventable mortality in Sweden are lung cancer (death rate of 17.1), suicide (15.4) and cerebro-vascular disease (11.8). Among the therapeutic treatable death causes, diabetes mellitus is the worst “big killer” with a death rate of 4.5. However, motor vehicle crashes are worse, with a death rate of 4.9. There are large regional differences in the risk of being killed in a traffic accident. While the metropolitan areas of Stockholm, Gothenburg and Malmoe have a Standardized Mortality Ratio (SMR) of 70 for vehicle crashes, the rural areas have a SMR of 177. This means that vehicle users in the rural areas have (177 – 70) / 70 = 153 % higher risk to end up in a fatal crash, as compared to urban vehicle users. In the Swedish rural areas, vehicle crashes take 39 % more lives than diabetes does. 1.1 Extreme Skid Risk in Improperly Banked Outer Curves Crash rates in curves have been found to be typically 2 to 4.5 times higher than on straight road sections (Leonard et al., 1994). There is good agreement in the road safety research community that sharper curves cause more accidents (Charlton & de Pont, 2007). Trucks show the highest raise in crash rates between straight and curved road sections. Single sharp curves in highways with long straight sections as well as “flat curves” create some of the most hazardous situations (Haywood, 1980). Lindholm (2002) investigated all single crashes with fatal outcome in Sweden during four years. The results show that the crash rate ratio between outer curves and inner curves is extremely high; outer curves were found to be 5 times as dangerous as inner curves. On low volume roads, the crash rate ratio exceeds 6. If the extreme over risk seen in outer curves can be eliminated, more than 10 % of all fatal road traffic crashes in Sweden would be prevented.
  • 3. Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 3 The Roadex III project (Granlund, 2008) identified two unique risk factors in outer curves on the NP road networks. The first is that many outer curves on old road sections have insufficient banking, with respect to reference speed and slippery surface conditions. These curves were properly designed when constructed, considering the neglect able cornering forces of ancient low speed traffic with horse-pulled wagons. However, these old curves do not meet the needs of motorized highway vehicles. The second risk factor is that many entrances and exits of improperly designed superelevated outer curves have insufficient Drainage Gradient; below 0.5 %. During and after rainfall, there may be large areas with a very thick water film in these transition sections. The thickness of the water film between tire and road is decisive for the hydroplaning risk. In wintertime, local outer curve sections with insufficient Drainage Gradient are often contaminated by extremely slippery ice while other parts of the road surface may be dry and safe. Such unexpected local ice spots may bring even higher risk, than generic and thus foreseeable slipperiness all over longer road sections. 1.2 Bumps and Ride Vibration Cause Poor Health Back disorders are costly to society and are the main causes of sick leave in the working community. They cause great pain to those suffering, and are a significant economical burden to society. Professional drivers are a group of workers that have been found to be at high risk for back disorders. Many epidemiological studies have been made on the relationship between back disorders and vehicle operation with vibration exposure. The results show overwhelming evidence of a relationship that is consistent and strong, which increases with increasing exposure, and is biologically plausible. Numerous back disorders are involved, including lumbago, sciatica, generalized back pain, and intervertebral disc herniation and degeneration. The risk is elevated in a broad range of driving occupations, including truck and bus drivers. Elevated risk is consistently observed after five years of exposure; see Teschke et al (1999). Amongst older commercial drivers, musculoskeletal problems and cardiovascular diseases are the primary reasons for changing their occupation. An increased risk of myocardial infarction among professional drivers was first reported about 50 years ago, and has been reported repeatedly since then. Stress under certain driving conditions is considered to explain the raised level of stress hormones found in commercial drivers, and is believed to cause a large proportion of the health problems, see Hedberg (1993). Bigert et al (2004) showed that the high incidence of certain heart disease among Swedish truck drivers is constant over time. McFarlane & Sweatman (2003) studied lane-keeping behaviour of heavy trucks on rough road sections. Where the road width is narrow, lateral bump steer disturbances may require the driver to increase concentration into a stress level significant for driver fatigue. Opinions of professional road users on road service levels across the EU NP area were mapped by Saarenketo & Saari (2004). Truck drivers stated that the worst sections had bumps at culverts, weak pavement shoulders, poor road alignment and incorrect cross slope (with respect to road curvature, decisive for the cornering lateral forces). They also reported continual stress when driving on some long routes that the road agency believed to be in good driving condition. This happens when unexpected poor road conditions make the perceived maximum safe speed drop far below the planned speed. The result is a stressing conflict within the driver, between making a delayed delivery and causing a major traffic safety risk.
  • 4. Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 4 Bray et al (2006) studied physiological stress responses to vehicular buffeting during a 5 minute mild ‘off road’ exposure in a motion simulator, producing transient low frequency roll vibration with 1 m/s2 r.m.s. lateral vibration. This level is not unusual during normal truck driving on rural roads in the EU NP. The controlled exposure provoked an increase in heart rate and blood pressure and a significant hypocapnia of PETCO2 34 mm Hg caused by tachypnea, which took the test persons 5 minutes to recover. The authors concluded that buffeting in everyday transport can affect people with cardiovascular disease. The Roadex III project has done an accurate assessment of truck driver’s exposure to vibration, see Granlund (2008). Measurements were made in a timber logging truck during ten roundtrips of 140 - 170 km, with most time spent on Rd 331 between the Swedish inland forest area and the coast. The results showed that for all measured working days, the daily vibration exposure A(8) was above 0.65 m/s2 , including normal pauses with zero vibration, and that A(8) = 0.76 m/s2 is a fair estimate for an 8 hour shift on this kind of routes. This is significantly above the EU Action Value of A(8) = 0.5 m/s2 . Thereby employers of truck drivers performing long and bumpy driving in the EU are required to take necessary technical and/or organizational actions to minimize the driver’s exposure to vibration. EU employers are also obliged to perform a special risk assessment for workers exposed to repeated mechanical shock, such as from bumpy rides. The Roadex III case study showed that even when driven at low speeds (below 40 km/h), severe bumps (> 5 cm) exposed the truck driver to an equivalent daily static compression dose Sed 2. Identifying Hazardous or Unhealthy Road Sections where Action is needed over 0.5 MPa. This stress level corresponds to health risk, as per the ISO 2631-5 (2004) standard. All the road analysis methods presented below are using data for road alignment and road condition, measured with a laser/inertial Profilometer such as the one showed in Figure 1. [Photo: Mats Landerberg] Figure 1 Vecturas Profilograph P45 2.1 High Curvature and Lack of Cross Slope Increase Side Friction Demand While much energy is spent on careful alignment design of new roads to be built or rehabilitated, the constructed ratios between cross slope to curve radius are seldom inspected. Even more serious is that ancient roads are not inspected in terms of alignment design. One reason is that many road managers consider it difficult to perform an evaluation. However, this section provides a simple but yet scientific method, which yields a single value to check. As described by Newton’s second law of mechanics, cornering vehicles undergo centripetal acceleration acting toward the centre of the curvature. The exciting lateral force is given by velocity (squared) [m/s], divided by curve radius [m] and gravity [m/s2 ]. The reaction forces
  • 5. Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 5 needed to balance the ride is simply the sum of pavement cross slope (E [%]) and the demanded side friction factor fsd, see equation 1. In order to provide acceptable stability margin for the ride, the demanded side friction must not exceed the supply side friction factor fss. The supply side friction factor fss used in Sweden is given by equation 2. For 90 km/h (25 m/s) roads, fss equals 0.118. Equation 2 does not provide conservative, “safe” values in a winter perspective, since slippery thin “black ice” may give fs < 0.05 when traversed with un- studded winter tires. The resulting lack of margin is remarkable, since more than 1 out of 2 fatal winter skid accidents in Sweden occur on ”thin ice”. See Granlund (2008) for details. sdfE gR +≈ * 2 ν (1) ν*0346.0 *28.0 − = efss (2) For the road section of interest, the demand fsd is simply calculated by inserting reference speed and data on curvature and cross slope (in 1 m steps) in equation 1. Then fsd is compared to the supply fss Figure 2given by inserting reference speed in equation 2. See the example in . There reference is given also to 70 % of the max supply fss; equal to “good design standard”. Figure 2 Excessive Friction Demand in a Sharp and Flat 70 km/h Crash Curve Experiences in Sweden show that road sections where the demand side friction factor fsd exceeds the supply side friction factor fss 2.2 Raise the Drainage Gradient above 0.5 % at Outer Curve Transitions typically have a very high crash rate. Key factors for crash prevention at these sites are speed reduction, intensified friction maintenance, increased cross slope/banking and increased road curve radius. The Drainage Gradient (DG) is the resultant of Cross Slope and Longitudinal Gradient. If the DG is too low, below 0.5 %, the road surface provides unacceptably low wet skid resistance. Both Cross Slope and Longitudinal Grade are measured with Profilometers as the one seen in Figure 1. Using Profilograph data from Rd 331, the Roadex III project demonstrated that most outer curves were poorly designed as they had insufficient DG. Later investigations on several
  • 6. Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 6 other roads, including accident hot spots on brand new express roads, showed that insufficient DG at entrances and exits of banked outer curves is often built in already in the road design. Transitions into and out of banked outer curves are less than 1 % of normal road length. Despite their small share of road length, experiences in Sweden show that a large share of all rural crashes take place in these sections. Key factor for crash prevention at these sites is to avoid poor drainage in sections where lateral forces may be significant. This can be done by redesigning the pavement geometry, so the cross slope transition is moved from the curve to a straight section where lateral forces are low. If possible, the transition should be made in an (artificially created, if needed) up- or downgrade. In some cases, permeable asphalt can be used in the curve transitions. 2.3 Ride Vibration and Shock: Keep Road Roughness IRI20m A study of 78 631 crashes showed that when road roughness level increase, also the crash rate increase (Ihs et al, 2002). A general relationship between crash rate and International Roughness Index (IRI) for roads with AADT 1000 – 4000 vehicles/day is given by equation 3. The equation shows that if the road is rough (IRI 3 mm/m), the crash rate is expected to be 20 % higher than if the road had been smooth (IRI 1 mm/m). The study also showed that high variance in roughness (local road damage) is accompanied by further increased crash rate. below 3 mm/m Crash rate per 100 million axle pair km = 22.7 + 2.54* IRI20m [mm/m] (3) Truck drivers’ exposure to ride vibration was related to the International Roughness Index by Ahlin et al (2000). For a heavy truck with trailer driving at 75 km/h, equation 4 gives a relationship between seat vibration and IRI [mm/m]. RMS(ax,y,z) = 0.18 + 0.30 * IRI100m (4) The EU Action Value A(8) is set to 0.5 m/s2 . Assuming that 100 min/day consists of loading, unloading and pauses with zero ride vibration, the remaining 380 min of the 8 hour working day is allowed to have an intensity of 0.56 m/s2 . In order to keep the driving time exposure below this value, equation 4 shows that average road network roughness should be below IRI = (0.56 – 0.18) / 0.30 = 1.27 mm/m. This is a low road roughness level for road networks; in many rural areas not realistic to achieve without significantly raised road funding. Experiences in Sweden show significant reduction in ride vibration and shock by eliminating bumps and other local road damage causing IRI20m higher than 3 mm/m, as well as steps at road/bridge joints and potholes causing 50 – 500 mm long Megatexture1m over 0.60 mm 2.4 Limit Truck Roll and Lateral Vibration by Keeping RBCSV below 0.30 % . The Roadex III study reported by Granlund (2008) validated a new pavement condition parameter called “Rut Bottom Cross Slope Variance” (RBCSV), by correlation with truck roll vibration as well as with truck lateral vibration. A limit value of 0.30 % was drafted for RBCSV, based on values recorded at hazardous sites / accident hot spots, on truck driver’s subjective opinion as well as on statistical analysis of data from road sections in various conditions.
  • 7. Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 7 RBCSV is based on road profile data, laser scanned at 16 kHz in the bottom of the truck wheel paths (left and right), inertial compensated for the Profilometer vehicle roll angle versus the horizon, and eventually reported in steps no longer than 1 m. Since Nordic HGV’s typically has a track width of about 2.0 m, the height sensors recording Rut Bottom Cross Slope (RBCS) should be spaced 2.0 m. Preferably, the elevation in each wheel path is estimated by readings from several (three or more) height sensors, rather than by readings from a single sensor in the Profilograph rut bar. From the data recovered, the RBCS is calculated as described below. The calculation is made with a crucial filtering procedure to remove very long wave slope variance, relating to superelevation change at outer curve transitions. Depending on road section width and reference speed, such desired change in cross slope takes place over some 40 - 200 m. These transitions smoothly tilt the truck cab roll angle from one side to the other without producing roll-mode vibration. The vital filter is calibrated with the road’s reference speed, thereby normalizing the filtering to typical roll vibration eigenfrequencies of heavy truck suspended masses. The long wave variance is removed from the RBCS with the following “running averaging” procedure: 1. For each road section, very long wave variance in RBCS is calculated centred over the base length relevant for the current reference speed limit, see Table 1. This is made by taking the average over as many values ”before” as ”after” the current section. Since this step is made for each section, the procedure may be called “moving averaging”. 2. The derived series of “the surroundings very long wave variance” is now subtracted from the origin RBCS series. 3. The resulting series of data has an average value of 0 % (zero) and reflects only sudden variance (within 1 to 31 m) in RBCS. This series does not longer give information about the RBCS magnitude, but from this series it is now possible to calculate RBCS variance in terms of running Root-Mean-Square. Table 1 Base length for moving averaging Reference speed Base length [km/h] [m/s] [m] 30 8.3 9 50 13.9 13 70 19.4 19 90 25 25 110 30.5 31 The RBCS of a 400 m long road section is showed with a red dotted graph in Figure 3; data is given in step of 1 m. Since the section has 70 km/h reference speed, the base length is 19 m (see Table 1). The long wave cross slope variance, which may be a fruit of smooth curve transitions, is showed with a purple graph. The difference between the two graphs in Figure 3 constitutes the undesired Cross Slope variance, and is showed with a blue graph in Figure 4.
  • 8. Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 8 Figure 3 RBCS and its “very long wave” variance Figure 4 RBCS and its undesired variance In the next step, running Root-Mean-Squares of undesired variances are calculated in two parallel runs. One run calculates the RMS variance over 5 m “short sections”, addressing truck wheel axle roll vibration. The other run calculates the RMS variance over 20 m “long sections”, addressing chassis/cab roll excitation. See Figure 5. Figure 5 RMS of short wave and long wave RBCS variance
  • 9. Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 9 In the final step, the maximum of the two variances in Figure 5 is reported as the undesired Variance of Rut Bottom Cross Slope (RBCSV). While the long wave RMS is generally decisive, the short wave RMS is highest in some sections with local extreme pavement edge damage. In the Roadex III project, the roll angle of a Scania R144G truck cab was measured at 100 Hz with an Oxford Technical Solutions RT 3050 GPS/inertial unit. The variance of truck cab roll angle is compared with the variance of the RBCS (RBCSV) in Figure 6. The graphs show a good overall fit. However, there is a large local shift in magnitude between the graphs at section 125/275 km. This discrepancy was caused as the truck driver decided to leave the wheel track at the edge damage in section 125/275 km seen in Figure 7 (photo and Profilograph scan). The laser scan showed that the edge deformation was 69 mm deep. Despite the fact that the truck was driven around the worst part of the 69 mm deep edge deformation, truck cab lateral acceleration peaked at 2 m/s2 . A seat pad under the truck drivers’ bottom peaked at 3.5 m/s2 lateral acceleration on the straight road section. Obviously the experienced truck driver’s decision to avoid the edge deformation by leaving the wheel paths was correct; otherwise a crash may have occurred during the test. Figure 6 Pavement RBCSV versus Variance of Truck Cab Roll Angle Figure 7 69 mm deep pavement edge deformation at 125/275 km
  • 10. Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 10 As showed in the Roadex III project, RBCSV is strongly correlated to both roll and lateral vibration in heavy vehicles. Furtermore, it has been showed that road sections with RBCSV exceeding 0.30 % are overrepresented "hot spots" in the crash records. 2.5 Avoid Low or Split Friction by Keeping Macro Texture above 0.6 mm in Both Ruts When driving in rain, too low pavement texture depth can be as hazardous as having slick worn tires. The minimum level of “safe” 0.5 – 50 mm long Macro-texture (MaTx) varies somewhat with surface type and texture measurement method. For MaTx-data from the Profilograph in Figure 1, a benchmark value is MPD minimum 0.6 mm. Poor patch repair often create large variance between wheel paths, in terms of colour and MaTx. The outcome may include hazardous Split Friction when braking hard in wet (or freeze/thaw) road condition. The result may be jack-knifing or trailer swing. There were 5 crashes in a curve on Swedish HW 61 within 2 weeks after the edge patch repair seen in Figure 8. Profilograph data showed good MaTx, MPD 1.0 – 1.3 mm, on the intact asphalt. However, the edge-patch had less than MPD 0.3 mm. The patch did not only give too low wet friction, but also Split Friction compared to the other wheel path. Photo: Bengt Andersson and Mats Ekehov Figure 8 Hw 61: After Edge Repair, the Curve had 5 Crashes in 2 Weeks 3. Conclusion There are disproportionally high health and safety risks on poorly maintained hot spot sections on the rural road network. Key risk factors are road roughness, lateral force, poor drainage and low road grip. Parameters that affect the key factors include pavement (edge) bearing capacity, speed, road curvature, cross slope, gradient and texture. This paper presents a handful of analysis methods that can be used to identify risk sections, where actions should be taken. Actions addressing the key factors listed above will reduce health risks for professional drivers and vulnerable ambulance patients. Such actions are also expected to reduce crash risk for both heavy vehicle and light vehicle traffic.
  • 11. Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 11 4. Consensus Statement This paper is prepared on behalf of the Nordic Road Associations (NVF) working group “Vehicle and Transportation”. The working group consists of about 50 Nordic recognized experts on vehicles, transportation and on vehicle-road interaction. The experts are nominated by a wide range of national organizations, including transport departments, police, road agencies, truck haulage associations and vehicle manufacturers in Sweden, Norway, Finland, Denmark, Iceland and the Pharoe Islands. Hereby the NVF working group “Vehicle and Transportation” states in consensus that: “-There is a need to implement new knowledge and practical methods into new approaches, aiming to make an efficient reduction of the disproportionally high health and safety risks on hot spot sections on the road network. This will improve the working environment for professional drivers and is expected to reduce crash risk for both heavy vehicle and light vehicle traffic as well”. On behalf of NVF working group “Vehicles and Transportation”, Mårten Johansson Asbjörn Johnsen Juha Valtonen Chairman, Sweden Chairman, Norway Chairman, Finland Hans Skat Daniel Arnason Bugvi Apol Chairman, Denmark Chairman, Iceland Chairman, Pharoe Islands
  • 12. Granlund: Reducing Health and Safety Risks on Poorly Maintained Rural Roads Heavy Vehicle Transport Technology symposium, Melbourne, March 2010 12 5. References • Directive 2002/44/EC on The minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (vibration). The European Parliament and the Council. Internet 2010-01-30: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:177:0013:0019:EN:PDF • Westerling, R. (2008). ”Åtgärdbar dödlighet som en indikator i den folkhälsopolitiska uppföljningen”. (Avoidable mortality as an indicator in the evaluation of public health politics). Statens folkhälsoinstitut, Rapport 2008:03. Internet 2010-01-30: http://www.fhi.se/PageFiles/3122/Atgardbar_dod_webb_0802.pdf • Leonard, J., Bilse, D., & Recker, W. (1994). “Superelevation rates at rural highway intersections”. Report no. RTA-53P434. Irvine CA: University of California Institute of Transportation Studies. • Charlton, S. G., & de Pont, J. J. (2007). ”Curve speed management”. Land Transport New Zealand, Research Report 323. • Haywood, J. C. (1980). “Highway alignment and superelevation: Some design-speed misconceptions”. Transportation Research Record, 757: 22−25. • Lindholm, M. (2002). “Analys av singelolyckor med dödlig utgång på det statliga vägnätet”. (Analysis of fatal single crashes on state highways). Swedish Road Administration, publ 2002:109. Internet 2010-01-30: http://publikationswebbutik.vv.se/upload/1436/2002_109_analys_av_singelolyckor_med_dodlig_utgang_pa_det_statliga_vagnatet_ex klusive_motorvagar_1997_2000.pdf • Granlund, J. (2008). “Health Issues Raised by Poorly Maintained Road Networks”. The Roadex III project. Internet 2010-01-30: http://www.roadex.org/Publications/docs-RIII-EN/Health%20Issues%20-%20RIII.pdf Videolecture 2010-01-31: http://videolectures.net/surf08_grandlund_rhirt/ • Teschke, K., Nicol, A-M., Davies, H. & Ju, S. (1999). “Whole Body Vibration and Back Disorders Among Motor Vehicle Drivers and Heavy Equipment Operators: A Review of the Scientific Evidence”. Report to Workers' Compensation Board of British Columbia. Internet 2010-01-30: http://www.cher.ubc.ca/PDFs/WBV_Report.pdf • Hedberg, G.E., et al. (1993). “Risk indicators of ischemic heart disease among male professional drivers in Sweden”. Scand. J Work Environ Health, Vol 19, p 326-333. • Bigert, C. Klerdal, K., Hammar, N., Hallqvist, J. & Gustavsson, P. (2004). ”Time trends in the incidence of myocardial infarction among professional drivers in Stockholm 1977-96”. Occup Environ Med; Vol 61, p 987 - 991. Internet 2010-01-30: http://oem.bmj.com/content/61/12/987.abstract • McFarlane, S. & Sweatman, P.F. (2003). ”Investigation into the Specification of Heavy Trucks and Consequent Effect on Truck Dynamics and Drivers: Final Report”. Roaduser International Pty Ltd. • Saarenketo, T. & Saari, J. (2004). “User perspective to ROADEX II test area’s road network service level”. The ROADEX II project. Internet 2010-01-30: http://www.roadex.org/Publications/docs-RII-EN/1_1%20User%20Perspective_l.pdf • Bray, A., Bronstein, A.M., Green, D.A., Gresty, M. A. & Golding, J. F. (2006). “Tachypnea and hypocapnia are induced by ‘buffeting’ in vehicles”. Clin Auton Res, 16:281–285. • Ahlin, K., Granlund, J. & Lundström, R. (2000). ”Whole-Body Vibration When Riding on Rough Roads – A Shocking Study”. Swedish Road Administration, Vol. 31E. Internet 2010-01- 30: http://publikationswebbutik.vv.se/upload/3054/2000_31E_Whole_body_vibrations_when_riding_on_rough_roads.zip • Ihs, A., Velin, H. & Wikström, M. (2002). ”Vägytans inverkan på trafiksäkerheten”. (The influence of road surface condition on traffic safety). Väg- och TransportforskningsInsti- tutet, VTI medd 909. Internet 2010-01-30: www.vti.se/EPiBrowser/Publikationer/M909.pdf