SlideShare a Scribd company logo
1 of 13
Download to read offline
IMAGE COMPRESSION USING
HYBRID QUANTIZATION METHOD IN
JPEG
MANGESH JADHAV a
, SNEHA GHANEKAR b
, JIGAR JAIN c
a
13/A Krishi Housing Society, Gokhale Nagar, Pune – 411016,Maharashtra, India.
(mail2mangeshjadhav@gmail.com) (Contact: +91- 9967822171)
b
3/A Guruprasad Apartment, 483 Narayan Peth, Near Pune Marathi Granthalaya, Pune -411030, Maharashtra,
India (snehag17@gmail.com) (Contact: +91-9962843417)
c
B,402, Aditya Vardhan, off Saki Vihar Road, Andheri East, Mumbai -400072, Maharashtra, India
(jigarjagz@gmail.com) (Contact: +91-9320506834)
Abstract
This paper refers to proposed “Hybrid Quantization Method” in JPEG image compression standard. The purpose
of proposed Hybrid Quantization Method is to overcome the limitations in the standard JPEG method & to
provide a solution to them. In standard JPEG process, only one quantization matrix is used for compression of
the entire image. Higher Quantization matrix provide better compression ratio but poor image quality. Similarly
Lower Quantization matrix offers best image quality but the compression ratio is less. Different images have
different frequency contents. So, if the quantization matrix is chosen based on the frequency content of the input
image, then it is possible to improve image quality for almost same compression ratio. Proposed Hybrid
Quantization Method aims to find best possible solution for trade off between Compression ratio (size of image)
and Quality of compressed Image (MSE & PSNR).
Keywords: Image Compression, JPEG, Hybrid Quantization Method, Quantization in JPEG
Introduction
Image compression is minimizing the size in bytes of a graphics file without degrading the quality of the
image to an unacceptable level. Compression is needed to reduce the storage requirements & bandwidth
required for transmission of data (text, fax, images). The compressed data may be having some loss of
information (lossy compression) or no loss (lossless compression). Lossless compression involves the
preservation of the image as it is (with no information and thus no detail being lost).Lossy compression allows
loss of information. It achieves higher level of compression.
JPEG (Joint Photographic Experts Group) is a standard used for compression of still images. JPEG is lossy
type of image compression. There are different versions of JPEG. JPEG uses “Discrete Cosine Transform”
(DCT) while JPEG-2000 uses “Discrete Wavelet Transform” (DWT). The basic image compression model
consists of 3 major blocks- Transform, Quantization & Encoder.
First the input image is divided into different non-overlapping blocks of 8x8 pixels. Then forward DCT is
applied on these blocks. DCT transforms image from spatial domain to frequency domain. Low freq.
components are more sensitive to human eye & hence should be preserved for successful reconstruction of input
image. While high freq. components are less sensitive to human eye & thus they can be discarded resulting into
compression.
During quantization, output of DCT is divided by standard quantization matrix which converts most of the
high freq. components to zero (approximation or rounding off). By zig-zag scanning we get long runs of zeros
which can be easily compressed using Run-Length-Encoding (RLE). After RLE, normally Huffman Encoding is
used to remove coding redundancy.
Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST)
ISSN : 0975-5462 Vol. 4 No.09 September 2012 3975
Fig. 1 Block Diagram of JPEG image compression process.
Above mentioned steps constitute to the compression of image. Decompression process is exactly
reverse of this process. It consists of huffman decoder, inverse RLE, inverse zig-zag, de-quantizer, inverse DCT.
Finally reconstructed image is formed by collecting different 8x8 blocks.
Different quantization matrices are prepared based on the luminance matrix for human visual system.
These matrices are also called as “Quality Matrices”. Q-10 means quantization matrix offering 10% quality of
input image (i.e. quality of reconstructed image degrades). It has very high compression ratio. Similarly, Q-90
matrix offers very high quality (90%) but it has a drawback of less compression ratio.
Formula for generating different quality matrices for quantization is:
Qx = (50 / x)*Q50
Where, x = index of quality matrix
Q50 = standard Q-50 quantization matrix
The standard Q-50 quantization matrix is:
16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99
The graphs for different quality quantization matrices are shown below:
Original
Image
Divide image into
8x8 pixel blocks
Forward
DCT
Quantization
of Coefficients
Zig-Zag
traversal
Run Length
Encoding (RLE)
Huffman
Encoding
Compressed
Image
Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST)
ISSN : 0975-5462 Vol. 4 No.09 September 2012 3976
10 20 30 40 50 60 70 80 90
2
2.5
3
3.5
4
4.5
5
5.5
6
6.5
Quality Matrices
CompressionRatio
Fig. 2 Graph of Compression ratio v/s different quality quantization matrices
It is observed that the compression ratio decreases while using quantization matrices offering better quality.
10 20 30 40 50 60 70 80 90
10
20
30
40
50
60
70
80
90
Quality Matrices
MeanSquaredError(MSE)
Fig. 3 Graph of Mean Squared Error (MSE) v/s different quality quantization matrices
As compression ratio decreases from Q-10 to Q-90, the value of mean squared error (MSE) also decreases.
MSE is image quality parameter. Lower values of MSE indicate high quality of image.
Peak Signal to Noise Ratio (PSNR) is also a parameter for judging image quality. It is measured in decibels
(db). Generally images having PSNR above 25 or 30 are supposed to be good quality images.
Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST)
ISSN : 0975-5462 Vol. 4 No.09 September 2012 3977
10 20 30 40 50 60 70 80 90
28
29
30
31
32
33
34
35
36
37
38
Quality Matrices
PeakSignaltoNoiseRatio
(PSNR)indb
Fig. 4 Graph of Peak Signal to Noise Ratio (PSNR) in db v/s different quality quantization matrices
It is observed that quality matrices after Q-50 are offering good reconstructed image quality.
Limitations of standard JPEG compression technique
The main disadvantage in the process of standard JPEG compression technique is that is uses only one
quantization matrix for entire image. Image consists of low frequency and high frequency components. Low
frequency components (more sensitive to human eye) should be retained while high frequency components (less
sensitive to human eye) should be discarded in the process of compression.
JPEG process isolates low freq. & high freq. components of an 8x8 pixel block in the process of forward
discrete cosine transform (FDCT), but it does not identify entire blocks having either low freq. or high freq.
Concept of Proposed Hybrid Quantization Method
It is known that the frequency content of the input image may vary depending on the image. Hence the
output of the each DCT block may vary from image to image. Some of the DCT block outputs may describe
more amounts of low frequency components in that part of the image while some might describe more amounts
of high frequency components.
If a particular DCT Output block is having more number of high freq. components then it might be possible
to use quality matrices ranging from Q-10 to Q-40 which can offer more quantization resulting into better
compression for that particular block.
Fig. 5 TYPE-1 DCT output block- Containing more number of high freq. components
If a DCT Output block is having more number of low freq. components, then by using quality matrices
ranging from Q-50 to Q-90 for quantization, a better quality is obtained (by retaining low freq. components).
Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST)
ISSN : 0975-5462 Vol. 4 No.09 September 2012 3978
Fig. 6 TYPE-2 DCT output block- Containing more number of low freq. components
Similarly, if Q-50 quantization matrix is applied on TYPE-2 DCT output block, and Q-90 quantization
matrix on TYPE-1 DCT output block, then quality of reconstructed image can be improved (using q90 on
TYPE-1 DCT o/p block). But the use of q50 on TYPE-1 DCT o/p block will help in improving overall
compression ratio for that image.
Sample Images & their Histograms
After quantization of DCT output by standard Q-50 quantization matrix high freq. components of image are
converted to zero. Zig-zag traversing gives us long runs of zeros, which can be easily compressed by RLE. A
graph of these long runs of zeros & number of blocks in which those many zeros are repeated is plotted for some
sample images.
Fig. 7 Sample image of Leena
Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST)
ISSN : 0975-5462 Vol. 4 No.09 September 2012 3979
35 40 45 50 55 60 65
0
10
20
30
40
50
60
70
80
90
100
No. of zeros
No.ofblockscontaining
thatmanyzeroes
Fig. 8 Histogram of Leena Image
Fig. 9 Sample image of Peppers
Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST)
ISSN : 0975-5462 Vol. 4 No.09 September 2012 3980
35 40 45 50 55 60 65
0
10
20
30
40
50
60
70
80
90
100
No. of zeros
No.ofblockscontaining
thatmanyzeroes
Fig. 10 Histogram of Peppers Image
From above figures it is observed that both images have some blocks having more than 55 to 60 no. of
zeros. These blocks are having more number of high freq. components. As these high frequency components are
less sensitive to human eye, quality matrices ranging from Q-10 to Q-50 can be used to improve compression
ratio.
More number of low freq. components are present in blocks having less than 55 to 60 no. of zeros.
Quality matrices ranging from Q-50 to Q-90 can be used to retain these low freq. components & hence the
quality of reconstructed image is improved.
Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST)
ISSN : 0975-5462 Vol. 4 No.09 September 2012 3981
Proposed Algorithm for Hybrid Quantization Method
Fig. 11 Algorithm for Hybrid Quantization Method
Here, first the output of DCT is divided by standard Q-50 matrix. The no. of zeros is compared with certain
predetermined threshold (mostly 61). If number of zeros is less than threshold (i.e more no. of low freq.
components), then again output of DCT is quantized by quality matrices ranging from Q-50 to Q-90 (for better
quality). For blocks having no. of zeros less than threshold (more no. of high freq. components), the output of
DCT is quantized by quality matrices ranging from Q-10 to Q-50 (for better compression).
Original
Image
Divide image into
8x8 pixel blocks
Forward
DCT
Quantization by
Q-50 matrix
Zig-Zag
traversal
Run Length
Encoding (RLE)
Huffman
Encoding
Compressed
Image
No. of zeros <
threshold
No. of zeros >
threshold
Quantization by
Q-50 to Q-90
Quantization by
Q-10 to Q-50
Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST)
ISSN : 0975-5462 Vol. 4 No.09 September 2012 3982
The decompression process is exactly reverse of this process. The selection of quantization matrices for
decompression is also based on threshold & no. of zeros in the output of inverse zigzag.
Results for Hybrid Quantization Method (HQM)
A. Comparison of Results for Leena Image
The results for input image of Leena having resolution of 512x512 pixels & size of 256 kb was compressed
using standard Q-50, standard Q-90 & Hybrid Quantization Method (HQM). The comparison of their results is
shown in the following figures:
I II
III IV
Fig. 12 Comparison of results for Leena image
(I) original image
(II) Reconstructed image using Q-50 matrix
(III) Reconstructed image using Hybrid Quantization Method (Q50+Q90)
(IV) Reconstructed image using Q-90 matrix
The comparison of above mentioned results is shown in the following table:
TABLE I
COMPARISON OF RESULTS FOR LEENA IMAGE
Parameter
Original size of image = 256 kb
Standard
Q-50
H.Q.M
(Q50+Q90)
Standard
Q-90
Compressed file size 63.2 kb 81.1 kb 88.9 kb
MSE 12.39 8.70 8.35
PSNR 37.90 db 38.70 db 38.91 db
Compression Ratio 4.051 3.156 2.879
Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST)
ISSN : 0975-5462 Vol. 4 No.09 September 2012 3983
It is observed that for almost same value of mean squared error (MSE) & peak signal to noise ratio
(PSNR) the compressed file size for compression using Hybrid Quantization Method reduces by almost 10% of
the compressed file size obtained by compression using standard Q-90 matrix.
B. Results for Different Sizes of Leena Image
The Hybrid Quantization Method (HQM) was applied on different sizes (i.e. resolutions) of Leena image.
The table for input image of Leena having resolution of 256x256 pixels & size of 65 kb is shown below:
. TABLE III
COMPARISON OF RESULTS FOR LEENA IMAGE (256X256)
Parameter
Original size of image = 65 kb
Standard
Q-50
H.Q.M
(Q50+Q90)
Standard
Q-90
Compressed file size 22.8 kb 29.7 kb 30.4 kb
MSE 27.2 16.49 16.34
PSNR 33.70 db 35.95 db 35.99 db
Compression Ratio 2.850 2.188 2.138
The table for input image of leena having resolution of 512x512 pixels & size of 256 kb is shown below:
. TABLE IIIII
COMPARISON OF RESULTS FOR LEENA IMAGE (512X512)
Parameter
Original size of image = 256 kb
Standard
Q-50
H.Q.M
(Q50+Q90)
Standard
Q-90
Compressed file size 63.2 kb 81.1 kb 88.9 kb
MSE 12.39 8.70 8.35
PSNR 37.90 db 38.70 db 38.91 db
Compression Ratio 4.051 3.156 2.879
From above mentioned two tables following graph for mean squared error (MSE) can be plotted:
Fig. 13 Graph for MSE for different methods & sizes
It can be observed that for different resolutions i.e. (256x256) & (512x512), the value of MSE for Standard
Q-90 & Hybrid Quantization Method (HQM) is almost same.
From above mentioned two tables following graph for Compression Ratio can be plotted:
Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST)
ISSN : 0975-5462 Vol. 4 No.09 September 2012 3984
Fig. 14 Graph for Compression Ratio for different methods & sizes
It is observed that for resolution of 256x256 pixels, for similar values of MSE for Standard Q-90
quantization matrix & HQM similar values of compression ratio were obtained. But as the size of image
increases (i.e. for 512x512 resolution) we get more compression ratio for similar values of MSE for standard Q-
90 & HQM. As the size of the image increases, Hybrid Quantization Method provides better compression ratio
for the similar quality of reconstructed image (i.e. MSE).
C. Results for Different Input Images
Hybrid Quantization Method was applied on following images having resolution of 256x256 pixels & size of 65
kb.
I II
Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST)
ISSN : 0975-5462 Vol. 4 No.09 September 2012 3985
III
Fig. 15 Sample input images
(I) Leena
(II) Peppers
(III)Cameraman
Following are the results for above mentioned sample input images:
TABLE IVV
RESULTS FOR DIFFERENT INPUT IMAGES USING HQM
Parameter
Original size of image = 65 kb
Leena Peppers Cameraman
Entropy 15.8859 15.8791 15.7325
Compressed file size 29.7 kb 32.6 kb 32.6 kb
MSE 16.49 20.68 25.11
PSNR 35.95 db 34.97 db 34.13 db
Compression Ratio 2.188 1.993 2.110
Conclusions
Hybrid Quantization Method has following advantages:
1) It provides best possible solution for trade off between Compression ratio (size of image) and Quality of
compressed (MSE & PSNR).
2) It gives optimum results for larger size of images.
3) If the image has more high frequency components, then Hybrid Quantization Method gives better results.
4) If the image has more low frequency components, then Hybrid Quantization Method approaches to
standard method and gives results same as standard method.
5) Hybrid Quantization Method is a function of the threshold value (threshold value of 60). The threshold
can be varied depending on the application.
6) Hybrid Quantization is dependent on type of the image and size of the image.
7) In Hybrid Quantization Method, we can select different combinations of Quantization Matrices
depending on the application. For e.g. (Q10+Q50)…for better Compression
(Q50+Q90)…for better Quality
(Q10+Q30+Q80) etc
8) Iterative approach can also be implemented to select best suitable Quantization Matrix for maintaining
Quality of the image.
Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST)
ISSN : 0975-5462 Vol. 4 No.09 September 2012 3986
References
[1] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform”, IEEE Trans. Comput., vol. 23, no. 1, pp. 90-93, 1974.
[2] Gregory K. Wallace, “The JPEG Still Picture Compression Standard”, IEEE Transactions on Consumer Electronics, Vol. 38, No. 1,
FEBRUARY 1992.
[3] Okan K. Ersoy, “Image Coding with the Discrete Cosine-I11 Transform”, IEEE Journal On Selected Areas In Communications, Vol.
Io. No. 5, June 1992.
[4] Rafael C. Gonzalez, Richard E. Woods. (2002): “Digital Image processing”, Second Edition. Prentice Hall International.
[5] Anil K. Jain, “Fundamentals of Digital Image Processing”.
[6] Madhuri Joshi, “Digital Image Processing- An algorithmic Approach”.
[7] Khalid Syood, “Introduction to Data Compression”.
[8] http://computer.howstuffworks.com/question289.htm
[9] http://www.data-compression.com/image.shtml
[10] http://bretl.com/mpeghtml/DCxfrm.HTM
[11] http://en.wikipedia.org/wiki/Discrete_cosine_transform
Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST)
ISSN : 0975-5462 Vol. 4 No.09 September 2012 3987

More Related Content

What's hot

Image Compression using DPCM with LMS Algorithm
Image Compression using DPCM with LMS AlgorithmImage Compression using DPCM with LMS Algorithm
Image Compression using DPCM with LMS AlgorithmIRJET Journal
 
BIG DATA-DRIVEN FAST REDUCING THE VISUAL BLOCK ARTIFACTS OF DCT COMPRESSED IM...
BIG DATA-DRIVEN FAST REDUCING THE VISUAL BLOCK ARTIFACTS OF DCT COMPRESSED IM...BIG DATA-DRIVEN FAST REDUCING THE VISUAL BLOCK ARTIFACTS OF DCT COMPRESSED IM...
BIG DATA-DRIVEN FAST REDUCING THE VISUAL BLOCK ARTIFACTS OF DCT COMPRESSED IM...IJDKP
 
An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...
An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...
An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...iosrjce
 
Intelligent Parallel Processing and Compound Image Compression
Intelligent Parallel Processing and Compound Image CompressionIntelligent Parallel Processing and Compound Image Compression
Intelligent Parallel Processing and Compound Image CompressionDR.P.S.JAGADEESH KUMAR
 
Hybrid compression based stationary wavelet transforms
Hybrid compression based stationary wavelet transformsHybrid compression based stationary wavelet transforms
Hybrid compression based stationary wavelet transformsOmar Ghazi
 
Survey paper on image compression techniques
Survey paper on image compression techniquesSurvey paper on image compression techniques
Survey paper on image compression techniquesIRJET Journal
 
REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION
REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION
REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION cscpconf
 
A Comparative Study of Image Compression Algorithms
A Comparative Study of Image Compression AlgorithmsA Comparative Study of Image Compression Algorithms
A Comparative Study of Image Compression AlgorithmsIJORCS
 
Improved anti-noise attack ability of image encryption algorithm using de-noi...
Improved anti-noise attack ability of image encryption algorithm using de-noi...Improved anti-noise attack ability of image encryption algorithm using de-noi...
Improved anti-noise attack ability of image encryption algorithm using de-noi...TELKOMNIKA JOURNAL
 
IRJET- An Improved Technique for Hiding Secret Image on Colour Images usi...
IRJET-  	  An Improved Technique for Hiding Secret Image on Colour Images usi...IRJET-  	  An Improved Technique for Hiding Secret Image on Colour Images usi...
IRJET- An Improved Technique for Hiding Secret Image on Colour Images usi...IRJET Journal
 
Matlab Based Image Compression Using Various Algorithm
Matlab Based Image Compression Using Various AlgorithmMatlab Based Image Compression Using Various Algorithm
Matlab Based Image Compression Using Various Algorithmijtsrd
 
DCT and Simulink Based Realtime Robust Image Watermarking
DCT and Simulink Based Realtime Robust Image WatermarkingDCT and Simulink Based Realtime Robust Image Watermarking
DCT and Simulink Based Realtime Robust Image WatermarkingCSCJournals
 
Approximate Dynamic Programming using Fluid and Diffusion Approximations with...
Approximate Dynamic Programming using Fluid and Diffusion Approximations with...Approximate Dynamic Programming using Fluid and Diffusion Approximations with...
Approximate Dynamic Programming using Fluid and Diffusion Approximations with...dayuhuang
 

What's hot (15)

Image Compression using DPCM with LMS Algorithm
Image Compression using DPCM with LMS AlgorithmImage Compression using DPCM with LMS Algorithm
Image Compression using DPCM with LMS Algorithm
 
BIG DATA-DRIVEN FAST REDUCING THE VISUAL BLOCK ARTIFACTS OF DCT COMPRESSED IM...
BIG DATA-DRIVEN FAST REDUCING THE VISUAL BLOCK ARTIFACTS OF DCT COMPRESSED IM...BIG DATA-DRIVEN FAST REDUCING THE VISUAL BLOCK ARTIFACTS OF DCT COMPRESSED IM...
BIG DATA-DRIVEN FAST REDUCING THE VISUAL BLOCK ARTIFACTS OF DCT COMPRESSED IM...
 
An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...
An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...
An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...
 
Intelligent Parallel Processing and Compound Image Compression
Intelligent Parallel Processing and Compound Image CompressionIntelligent Parallel Processing and Compound Image Compression
Intelligent Parallel Processing and Compound Image Compression
 
Medical Image Compression
Medical Image CompressionMedical Image Compression
Medical Image Compression
 
Hybrid compression based stationary wavelet transforms
Hybrid compression based stationary wavelet transformsHybrid compression based stationary wavelet transforms
Hybrid compression based stationary wavelet transforms
 
Survey paper on image compression techniques
Survey paper on image compression techniquesSurvey paper on image compression techniques
Survey paper on image compression techniques
 
REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION
REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION
REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION
 
A Comparative Study of Image Compression Algorithms
A Comparative Study of Image Compression AlgorithmsA Comparative Study of Image Compression Algorithms
A Comparative Study of Image Compression Algorithms
 
Improved anti-noise attack ability of image encryption algorithm using de-noi...
Improved anti-noise attack ability of image encryption algorithm using de-noi...Improved anti-noise attack ability of image encryption algorithm using de-noi...
Improved anti-noise attack ability of image encryption algorithm using de-noi...
 
IRJET- An Improved Technique for Hiding Secret Image on Colour Images usi...
IRJET-  	  An Improved Technique for Hiding Secret Image on Colour Images usi...IRJET-  	  An Improved Technique for Hiding Secret Image on Colour Images usi...
IRJET- An Improved Technique for Hiding Secret Image on Colour Images usi...
 
Medical image compression
Medical image compressionMedical image compression
Medical image compression
 
Matlab Based Image Compression Using Various Algorithm
Matlab Based Image Compression Using Various AlgorithmMatlab Based Image Compression Using Various Algorithm
Matlab Based Image Compression Using Various Algorithm
 
DCT and Simulink Based Realtime Robust Image Watermarking
DCT and Simulink Based Realtime Robust Image WatermarkingDCT and Simulink Based Realtime Robust Image Watermarking
DCT and Simulink Based Realtime Robust Image Watermarking
 
Approximate Dynamic Programming using Fluid and Diffusion Approximations with...
Approximate Dynamic Programming using Fluid and Diffusion Approximations with...Approximate Dynamic Programming using Fluid and Diffusion Approximations with...
Approximate Dynamic Programming using Fluid and Diffusion Approximations with...
 

Viewers also liked

Viewers also liked (11)

Compression using JPEG
Compression using JPEGCompression using JPEG
Compression using JPEG
 
Medical images compression: JPEG variations for DICOM standard
Medical images compression: JPEG variations for DICOM standardMedical images compression: JPEG variations for DICOM standard
Medical images compression: JPEG variations for DICOM standard
 
Seminar Report on image compression
Seminar Report on image compressionSeminar Report on image compression
Seminar Report on image compression
 
Cada final es un nuevo amanecer
Cada final es un nuevo amanecerCada final es un nuevo amanecer
Cada final es un nuevo amanecer
 
Trabajo de google
Trabajo de googleTrabajo de google
Trabajo de google
 
Global Citizenship
Global CitizenshipGlobal Citizenship
Global Citizenship
 
Email Recommendation
Email Recommendation Email Recommendation
Email Recommendation
 
DraytonHall Fall 2016 Interiors Collector's Ed
DraytonHall Fall 2016 Interiors Collector's EdDraytonHall Fall 2016 Interiors Collector's Ed
DraytonHall Fall 2016 Interiors Collector's Ed
 
Portales de actividades
Portales de actividadesPortales de actividades
Portales de actividades
 
ใบงานที่6 พชรพร
ใบงานที่6 พชรพรใบงานที่6 พชรพร
ใบงานที่6 พชรพร
 
Cap esthétique parfumerie 2014 2015
Cap esthétique parfumerie 2014 2015 Cap esthétique parfumerie 2014 2015
Cap esthétique parfumerie 2014 2015
 

Similar to IJEST12-04-09-150

SQUASHED JPEG IMAGE COMPRESSION VIA SPARSE MATRIX
SQUASHED JPEG IMAGE COMPRESSION VIA SPARSE MATRIXSQUASHED JPEG IMAGE COMPRESSION VIA SPARSE MATRIX
SQUASHED JPEG IMAGE COMPRESSION VIA SPARSE MATRIXijcsit
 
An efficient image compression algorithm using dct biorthogonal wavelet trans...
An efficient image compression algorithm using dct biorthogonal wavelet trans...An efficient image compression algorithm using dct biorthogonal wavelet trans...
An efficient image compression algorithm using dct biorthogonal wavelet trans...eSAT Journals
 
A Review on Image Compression using DCT and DWT
A Review on Image Compression using DCT and DWTA Review on Image Compression using DCT and DWT
A Review on Image Compression using DCT and DWTIJSRD
 
Pipelined Architecture of 2D-DCT, Quantization and ZigZag Process for JPEG Im...
Pipelined Architecture of 2D-DCT, Quantization and ZigZag Process for JPEG Im...Pipelined Architecture of 2D-DCT, Quantization and ZigZag Process for JPEG Im...
Pipelined Architecture of 2D-DCT, Quantization and ZigZag Process for JPEG Im...VLSICS Design
 
PIPELINED ARCHITECTURE OF 2D-DCT, QUANTIZATION AND ZIGZAG PROCESS FOR JPEG IM...
PIPELINED ARCHITECTURE OF 2D-DCT, QUANTIZATION AND ZIGZAG PROCESS FOR JPEG IM...PIPELINED ARCHITECTURE OF 2D-DCT, QUANTIZATION AND ZIGZAG PROCESS FOR JPEG IM...
PIPELINED ARCHITECTURE OF 2D-DCT, QUANTIZATION AND ZIGZAG PROCESS FOR JPEG IM...VLSICS Design
 
IRJET- RGB Image Compression using Multi-Level Block Trunction Code Algor...
IRJET-  	  RGB Image Compression using Multi-Level Block Trunction Code Algor...IRJET-  	  RGB Image Compression using Multi-Level Block Trunction Code Algor...
IRJET- RGB Image Compression using Multi-Level Block Trunction Code Algor...IRJET Journal
 
Review of Diverse Techniques Used for Effective Fractal Image Compression
Review of Diverse Techniques Used for Effective Fractal Image CompressionReview of Diverse Techniques Used for Effective Fractal Image Compression
Review of Diverse Techniques Used for Effective Fractal Image CompressionIRJET Journal
 
Presentation of Lossy compression
Presentation of Lossy compressionPresentation of Lossy compression
Presentation of Lossy compressionOmar Ghazi
 
ROI Based Image Compression in Baseline JPEG
ROI Based Image Compression in Baseline JPEGROI Based Image Compression in Baseline JPEG
ROI Based Image Compression in Baseline JPEGIJERA Editor
 
Comparison and improvement of image compression
Comparison and improvement of image compressionComparison and improvement of image compression
Comparison and improvement of image compressionIAEME Publication
 
Comparison and improvement of image compression
Comparison and improvement of image compressionComparison and improvement of image compression
Comparison and improvement of image compressionIAEME Publication
 
Wavelet based Image Coding Schemes: A Recent Survey
Wavelet based Image Coding Schemes: A Recent Survey  Wavelet based Image Coding Schemes: A Recent Survey
Wavelet based Image Coding Schemes: A Recent Survey ijsc
 
Post-Segmentation Approach for Lossless Region of Interest Coding
Post-Segmentation Approach for Lossless Region of Interest CodingPost-Segmentation Approach for Lossless Region of Interest Coding
Post-Segmentation Approach for Lossless Region of Interest Codingsipij
 

Similar to IJEST12-04-09-150 (20)

Squashed JPEG Image Compression via Sparse Matrix
Squashed JPEG Image Compression via Sparse MatrixSquashed JPEG Image Compression via Sparse Matrix
Squashed JPEG Image Compression via Sparse Matrix
 
SQUASHED JPEG IMAGE COMPRESSION VIA SPARSE MATRIX
SQUASHED JPEG IMAGE COMPRESSION VIA SPARSE MATRIXSQUASHED JPEG IMAGE COMPRESSION VIA SPARSE MATRIX
SQUASHED JPEG IMAGE COMPRESSION VIA SPARSE MATRIX
 
Squashed JPEG Image Compression via Sparse Matrix
Squashed JPEG Image Compression via Sparse MatrixSquashed JPEG Image Compression via Sparse Matrix
Squashed JPEG Image Compression via Sparse Matrix
 
An efficient image compression algorithm using dct biorthogonal wavelet trans...
An efficient image compression algorithm using dct biorthogonal wavelet trans...An efficient image compression algorithm using dct biorthogonal wavelet trans...
An efficient image compression algorithm using dct biorthogonal wavelet trans...
 
A Review on Image Compression using DCT and DWT
A Review on Image Compression using DCT and DWTA Review on Image Compression using DCT and DWT
A Review on Image Compression using DCT and DWT
 
Pipelined Architecture of 2D-DCT, Quantization and ZigZag Process for JPEG Im...
Pipelined Architecture of 2D-DCT, Quantization and ZigZag Process for JPEG Im...Pipelined Architecture of 2D-DCT, Quantization and ZigZag Process for JPEG Im...
Pipelined Architecture of 2D-DCT, Quantization and ZigZag Process for JPEG Im...
 
PIPELINED ARCHITECTURE OF 2D-DCT, QUANTIZATION AND ZIGZAG PROCESS FOR JPEG IM...
PIPELINED ARCHITECTURE OF 2D-DCT, QUANTIZATION AND ZIGZAG PROCESS FOR JPEG IM...PIPELINED ARCHITECTURE OF 2D-DCT, QUANTIZATION AND ZIGZAG PROCESS FOR JPEG IM...
PIPELINED ARCHITECTURE OF 2D-DCT, QUANTIZATION AND ZIGZAG PROCESS FOR JPEG IM...
 
IRJET- RGB Image Compression using Multi-Level Block Trunction Code Algor...
IRJET-  	  RGB Image Compression using Multi-Level Block Trunction Code Algor...IRJET-  	  RGB Image Compression using Multi-Level Block Trunction Code Algor...
IRJET- RGB Image Compression using Multi-Level Block Trunction Code Algor...
 
Review of Diverse Techniques Used for Effective Fractal Image Compression
Review of Diverse Techniques Used for Effective Fractal Image CompressionReview of Diverse Techniques Used for Effective Fractal Image Compression
Review of Diverse Techniques Used for Effective Fractal Image Compression
 
Presentation of Lossy compression
Presentation of Lossy compressionPresentation of Lossy compression
Presentation of Lossy compression
 
JPEG Image Compression
JPEG Image CompressionJPEG Image Compression
JPEG Image Compression
 
ROI Based Image Compression in Baseline JPEG
ROI Based Image Compression in Baseline JPEGROI Based Image Compression in Baseline JPEG
ROI Based Image Compression in Baseline JPEG
 
Comparison and improvement of image compression
Comparison and improvement of image compressionComparison and improvement of image compression
Comparison and improvement of image compression
 
Comparison and improvement of image compression
Comparison and improvement of image compressionComparison and improvement of image compression
Comparison and improvement of image compression
 
Wavelet based Image Coding Schemes: A Recent Survey
Wavelet based Image Coding Schemes: A Recent Survey  Wavelet based Image Coding Schemes: A Recent Survey
Wavelet based Image Coding Schemes: A Recent Survey
 
H010315356
H010315356H010315356
H010315356
 
Post-Segmentation Approach for Lossless Region of Interest Coding
Post-Segmentation Approach for Lossless Region of Interest CodingPost-Segmentation Approach for Lossless Region of Interest Coding
Post-Segmentation Approach for Lossless Region of Interest Coding
 
Jv2517361741
Jv2517361741Jv2517361741
Jv2517361741
 
Jv2517361741
Jv2517361741Jv2517361741
Jv2517361741
 
I017125357
I017125357I017125357
I017125357
 

IJEST12-04-09-150

  • 1. IMAGE COMPRESSION USING HYBRID QUANTIZATION METHOD IN JPEG MANGESH JADHAV a , SNEHA GHANEKAR b , JIGAR JAIN c a 13/A Krishi Housing Society, Gokhale Nagar, Pune – 411016,Maharashtra, India. (mail2mangeshjadhav@gmail.com) (Contact: +91- 9967822171) b 3/A Guruprasad Apartment, 483 Narayan Peth, Near Pune Marathi Granthalaya, Pune -411030, Maharashtra, India (snehag17@gmail.com) (Contact: +91-9962843417) c B,402, Aditya Vardhan, off Saki Vihar Road, Andheri East, Mumbai -400072, Maharashtra, India (jigarjagz@gmail.com) (Contact: +91-9320506834) Abstract This paper refers to proposed “Hybrid Quantization Method” in JPEG image compression standard. The purpose of proposed Hybrid Quantization Method is to overcome the limitations in the standard JPEG method & to provide a solution to them. In standard JPEG process, only one quantization matrix is used for compression of the entire image. Higher Quantization matrix provide better compression ratio but poor image quality. Similarly Lower Quantization matrix offers best image quality but the compression ratio is less. Different images have different frequency contents. So, if the quantization matrix is chosen based on the frequency content of the input image, then it is possible to improve image quality for almost same compression ratio. Proposed Hybrid Quantization Method aims to find best possible solution for trade off between Compression ratio (size of image) and Quality of compressed Image (MSE & PSNR). Keywords: Image Compression, JPEG, Hybrid Quantization Method, Quantization in JPEG Introduction Image compression is minimizing the size in bytes of a graphics file without degrading the quality of the image to an unacceptable level. Compression is needed to reduce the storage requirements & bandwidth required for transmission of data (text, fax, images). The compressed data may be having some loss of information (lossy compression) or no loss (lossless compression). Lossless compression involves the preservation of the image as it is (with no information and thus no detail being lost).Lossy compression allows loss of information. It achieves higher level of compression. JPEG (Joint Photographic Experts Group) is a standard used for compression of still images. JPEG is lossy type of image compression. There are different versions of JPEG. JPEG uses “Discrete Cosine Transform” (DCT) while JPEG-2000 uses “Discrete Wavelet Transform” (DWT). The basic image compression model consists of 3 major blocks- Transform, Quantization & Encoder. First the input image is divided into different non-overlapping blocks of 8x8 pixels. Then forward DCT is applied on these blocks. DCT transforms image from spatial domain to frequency domain. Low freq. components are more sensitive to human eye & hence should be preserved for successful reconstruction of input image. While high freq. components are less sensitive to human eye & thus they can be discarded resulting into compression. During quantization, output of DCT is divided by standard quantization matrix which converts most of the high freq. components to zero (approximation or rounding off). By zig-zag scanning we get long runs of zeros which can be easily compressed using Run-Length-Encoding (RLE). After RLE, normally Huffman Encoding is used to remove coding redundancy. Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST) ISSN : 0975-5462 Vol. 4 No.09 September 2012 3975
  • 2. Fig. 1 Block Diagram of JPEG image compression process. Above mentioned steps constitute to the compression of image. Decompression process is exactly reverse of this process. It consists of huffman decoder, inverse RLE, inverse zig-zag, de-quantizer, inverse DCT. Finally reconstructed image is formed by collecting different 8x8 blocks. Different quantization matrices are prepared based on the luminance matrix for human visual system. These matrices are also called as “Quality Matrices”. Q-10 means quantization matrix offering 10% quality of input image (i.e. quality of reconstructed image degrades). It has very high compression ratio. Similarly, Q-90 matrix offers very high quality (90%) but it has a drawback of less compression ratio. Formula for generating different quality matrices for quantization is: Qx = (50 / x)*Q50 Where, x = index of quality matrix Q50 = standard Q-50 quantization matrix The standard Q-50 quantization matrix is: 16 11 10 16 24 40 51 61 12 12 14 19 26 58 60 55 14 13 16 24 40 57 69 56 14 17 22 29 51 87 80 62 18 22 37 56 68 109 103 77 24 35 55 64 81 104 113 92 49 64 78 87 103 121 120 101 72 92 95 98 112 100 103 99 The graphs for different quality quantization matrices are shown below: Original Image Divide image into 8x8 pixel blocks Forward DCT Quantization of Coefficients Zig-Zag traversal Run Length Encoding (RLE) Huffman Encoding Compressed Image Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST) ISSN : 0975-5462 Vol. 4 No.09 September 2012 3976
  • 3. 10 20 30 40 50 60 70 80 90 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 Quality Matrices CompressionRatio Fig. 2 Graph of Compression ratio v/s different quality quantization matrices It is observed that the compression ratio decreases while using quantization matrices offering better quality. 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 Quality Matrices MeanSquaredError(MSE) Fig. 3 Graph of Mean Squared Error (MSE) v/s different quality quantization matrices As compression ratio decreases from Q-10 to Q-90, the value of mean squared error (MSE) also decreases. MSE is image quality parameter. Lower values of MSE indicate high quality of image. Peak Signal to Noise Ratio (PSNR) is also a parameter for judging image quality. It is measured in decibels (db). Generally images having PSNR above 25 or 30 are supposed to be good quality images. Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST) ISSN : 0975-5462 Vol. 4 No.09 September 2012 3977
  • 4. 10 20 30 40 50 60 70 80 90 28 29 30 31 32 33 34 35 36 37 38 Quality Matrices PeakSignaltoNoiseRatio (PSNR)indb Fig. 4 Graph of Peak Signal to Noise Ratio (PSNR) in db v/s different quality quantization matrices It is observed that quality matrices after Q-50 are offering good reconstructed image quality. Limitations of standard JPEG compression technique The main disadvantage in the process of standard JPEG compression technique is that is uses only one quantization matrix for entire image. Image consists of low frequency and high frequency components. Low frequency components (more sensitive to human eye) should be retained while high frequency components (less sensitive to human eye) should be discarded in the process of compression. JPEG process isolates low freq. & high freq. components of an 8x8 pixel block in the process of forward discrete cosine transform (FDCT), but it does not identify entire blocks having either low freq. or high freq. Concept of Proposed Hybrid Quantization Method It is known that the frequency content of the input image may vary depending on the image. Hence the output of the each DCT block may vary from image to image. Some of the DCT block outputs may describe more amounts of low frequency components in that part of the image while some might describe more amounts of high frequency components. If a particular DCT Output block is having more number of high freq. components then it might be possible to use quality matrices ranging from Q-10 to Q-40 which can offer more quantization resulting into better compression for that particular block. Fig. 5 TYPE-1 DCT output block- Containing more number of high freq. components If a DCT Output block is having more number of low freq. components, then by using quality matrices ranging from Q-50 to Q-90 for quantization, a better quality is obtained (by retaining low freq. components). Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST) ISSN : 0975-5462 Vol. 4 No.09 September 2012 3978
  • 5. Fig. 6 TYPE-2 DCT output block- Containing more number of low freq. components Similarly, if Q-50 quantization matrix is applied on TYPE-2 DCT output block, and Q-90 quantization matrix on TYPE-1 DCT output block, then quality of reconstructed image can be improved (using q90 on TYPE-1 DCT o/p block). But the use of q50 on TYPE-1 DCT o/p block will help in improving overall compression ratio for that image. Sample Images & their Histograms After quantization of DCT output by standard Q-50 quantization matrix high freq. components of image are converted to zero. Zig-zag traversing gives us long runs of zeros, which can be easily compressed by RLE. A graph of these long runs of zeros & number of blocks in which those many zeros are repeated is plotted for some sample images. Fig. 7 Sample image of Leena Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST) ISSN : 0975-5462 Vol. 4 No.09 September 2012 3979
  • 6. 35 40 45 50 55 60 65 0 10 20 30 40 50 60 70 80 90 100 No. of zeros No.ofblockscontaining thatmanyzeroes Fig. 8 Histogram of Leena Image Fig. 9 Sample image of Peppers Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST) ISSN : 0975-5462 Vol. 4 No.09 September 2012 3980
  • 7. 35 40 45 50 55 60 65 0 10 20 30 40 50 60 70 80 90 100 No. of zeros No.ofblockscontaining thatmanyzeroes Fig. 10 Histogram of Peppers Image From above figures it is observed that both images have some blocks having more than 55 to 60 no. of zeros. These blocks are having more number of high freq. components. As these high frequency components are less sensitive to human eye, quality matrices ranging from Q-10 to Q-50 can be used to improve compression ratio. More number of low freq. components are present in blocks having less than 55 to 60 no. of zeros. Quality matrices ranging from Q-50 to Q-90 can be used to retain these low freq. components & hence the quality of reconstructed image is improved. Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST) ISSN : 0975-5462 Vol. 4 No.09 September 2012 3981
  • 8. Proposed Algorithm for Hybrid Quantization Method Fig. 11 Algorithm for Hybrid Quantization Method Here, first the output of DCT is divided by standard Q-50 matrix. The no. of zeros is compared with certain predetermined threshold (mostly 61). If number of zeros is less than threshold (i.e more no. of low freq. components), then again output of DCT is quantized by quality matrices ranging from Q-50 to Q-90 (for better quality). For blocks having no. of zeros less than threshold (more no. of high freq. components), the output of DCT is quantized by quality matrices ranging from Q-10 to Q-50 (for better compression). Original Image Divide image into 8x8 pixel blocks Forward DCT Quantization by Q-50 matrix Zig-Zag traversal Run Length Encoding (RLE) Huffman Encoding Compressed Image No. of zeros < threshold No. of zeros > threshold Quantization by Q-50 to Q-90 Quantization by Q-10 to Q-50 Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST) ISSN : 0975-5462 Vol. 4 No.09 September 2012 3982
  • 9. The decompression process is exactly reverse of this process. The selection of quantization matrices for decompression is also based on threshold & no. of zeros in the output of inverse zigzag. Results for Hybrid Quantization Method (HQM) A. Comparison of Results for Leena Image The results for input image of Leena having resolution of 512x512 pixels & size of 256 kb was compressed using standard Q-50, standard Q-90 & Hybrid Quantization Method (HQM). The comparison of their results is shown in the following figures: I II III IV Fig. 12 Comparison of results for Leena image (I) original image (II) Reconstructed image using Q-50 matrix (III) Reconstructed image using Hybrid Quantization Method (Q50+Q90) (IV) Reconstructed image using Q-90 matrix The comparison of above mentioned results is shown in the following table: TABLE I COMPARISON OF RESULTS FOR LEENA IMAGE Parameter Original size of image = 256 kb Standard Q-50 H.Q.M (Q50+Q90) Standard Q-90 Compressed file size 63.2 kb 81.1 kb 88.9 kb MSE 12.39 8.70 8.35 PSNR 37.90 db 38.70 db 38.91 db Compression Ratio 4.051 3.156 2.879 Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST) ISSN : 0975-5462 Vol. 4 No.09 September 2012 3983
  • 10. It is observed that for almost same value of mean squared error (MSE) & peak signal to noise ratio (PSNR) the compressed file size for compression using Hybrid Quantization Method reduces by almost 10% of the compressed file size obtained by compression using standard Q-90 matrix. B. Results for Different Sizes of Leena Image The Hybrid Quantization Method (HQM) was applied on different sizes (i.e. resolutions) of Leena image. The table for input image of Leena having resolution of 256x256 pixels & size of 65 kb is shown below: . TABLE III COMPARISON OF RESULTS FOR LEENA IMAGE (256X256) Parameter Original size of image = 65 kb Standard Q-50 H.Q.M (Q50+Q90) Standard Q-90 Compressed file size 22.8 kb 29.7 kb 30.4 kb MSE 27.2 16.49 16.34 PSNR 33.70 db 35.95 db 35.99 db Compression Ratio 2.850 2.188 2.138 The table for input image of leena having resolution of 512x512 pixels & size of 256 kb is shown below: . TABLE IIIII COMPARISON OF RESULTS FOR LEENA IMAGE (512X512) Parameter Original size of image = 256 kb Standard Q-50 H.Q.M (Q50+Q90) Standard Q-90 Compressed file size 63.2 kb 81.1 kb 88.9 kb MSE 12.39 8.70 8.35 PSNR 37.90 db 38.70 db 38.91 db Compression Ratio 4.051 3.156 2.879 From above mentioned two tables following graph for mean squared error (MSE) can be plotted: Fig. 13 Graph for MSE for different methods & sizes It can be observed that for different resolutions i.e. (256x256) & (512x512), the value of MSE for Standard Q-90 & Hybrid Quantization Method (HQM) is almost same. From above mentioned two tables following graph for Compression Ratio can be plotted: Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST) ISSN : 0975-5462 Vol. 4 No.09 September 2012 3984
  • 11. Fig. 14 Graph for Compression Ratio for different methods & sizes It is observed that for resolution of 256x256 pixels, for similar values of MSE for Standard Q-90 quantization matrix & HQM similar values of compression ratio were obtained. But as the size of image increases (i.e. for 512x512 resolution) we get more compression ratio for similar values of MSE for standard Q- 90 & HQM. As the size of the image increases, Hybrid Quantization Method provides better compression ratio for the similar quality of reconstructed image (i.e. MSE). C. Results for Different Input Images Hybrid Quantization Method was applied on following images having resolution of 256x256 pixels & size of 65 kb. I II Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST) ISSN : 0975-5462 Vol. 4 No.09 September 2012 3985
  • 12. III Fig. 15 Sample input images (I) Leena (II) Peppers (III)Cameraman Following are the results for above mentioned sample input images: TABLE IVV RESULTS FOR DIFFERENT INPUT IMAGES USING HQM Parameter Original size of image = 65 kb Leena Peppers Cameraman Entropy 15.8859 15.8791 15.7325 Compressed file size 29.7 kb 32.6 kb 32.6 kb MSE 16.49 20.68 25.11 PSNR 35.95 db 34.97 db 34.13 db Compression Ratio 2.188 1.993 2.110 Conclusions Hybrid Quantization Method has following advantages: 1) It provides best possible solution for trade off between Compression ratio (size of image) and Quality of compressed (MSE & PSNR). 2) It gives optimum results for larger size of images. 3) If the image has more high frequency components, then Hybrid Quantization Method gives better results. 4) If the image has more low frequency components, then Hybrid Quantization Method approaches to standard method and gives results same as standard method. 5) Hybrid Quantization Method is a function of the threshold value (threshold value of 60). The threshold can be varied depending on the application. 6) Hybrid Quantization is dependent on type of the image and size of the image. 7) In Hybrid Quantization Method, we can select different combinations of Quantization Matrices depending on the application. For e.g. (Q10+Q50)…for better Compression (Q50+Q90)…for better Quality (Q10+Q30+Q80) etc 8) Iterative approach can also be implemented to select best suitable Quantization Matrix for maintaining Quality of the image. Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST) ISSN : 0975-5462 Vol. 4 No.09 September 2012 3986
  • 13. References [1] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform”, IEEE Trans. Comput., vol. 23, no. 1, pp. 90-93, 1974. [2] Gregory K. Wallace, “The JPEG Still Picture Compression Standard”, IEEE Transactions on Consumer Electronics, Vol. 38, No. 1, FEBRUARY 1992. [3] Okan K. Ersoy, “Image Coding with the Discrete Cosine-I11 Transform”, IEEE Journal On Selected Areas In Communications, Vol. Io. No. 5, June 1992. [4] Rafael C. Gonzalez, Richard E. Woods. (2002): “Digital Image processing”, Second Edition. Prentice Hall International. [5] Anil K. Jain, “Fundamentals of Digital Image Processing”. [6] Madhuri Joshi, “Digital Image Processing- An algorithmic Approach”. [7] Khalid Syood, “Introduction to Data Compression”. [8] http://computer.howstuffworks.com/question289.htm [9] http://www.data-compression.com/image.shtml [10] http://bretl.com/mpeghtml/DCxfrm.HTM [11] http://en.wikipedia.org/wiki/Discrete_cosine_transform Mangesh Jadhav et al. / International Journal of Engineering Science and Technology (IJEST) ISSN : 0975-5462 Vol. 4 No.09 September 2012 3987